JP2005248087A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2005248087A
JP2005248087A JP2004063152A JP2004063152A JP2005248087A JP 2005248087 A JP2005248087 A JP 2005248087A JP 2004063152 A JP2004063152 A JP 2004063152A JP 2004063152 A JP2004063152 A JP 2004063152A JP 2005248087 A JP2005248087 A JP 2005248087A
Authority
JP
Japan
Prior art keywords
epoxy resin
aluminum hydroxide
resin composition
uranium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004063152A
Other languages
Japanese (ja)
Other versions
JP4631296B2 (en
Inventor
Shigeyuki Maeda
重之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004063152A priority Critical patent/JP4631296B2/en
Publication of JP2005248087A publication Critical patent/JP2005248087A/en
Application granted granted Critical
Publication of JP4631296B2 publication Critical patent/JP4631296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for semiconductor encapsulation which does not contain a halogen flame retardant and an antimony compound, is excellent in filling properties, and can be applied to a device liable to be affected by α-rays radiated by a constituent material; and a semiconductor device using the composition. <P>SOLUTION: The epoxy resin composition for semiconductor encapsulation includes (A) an epoxy resin, (B) a phenol resin, (C) a hardening promotor, (D) an inorganic filler except for aluminum hydroxide, and (E) aluminum hydroxide. The content of the aluminum hydroxide with a particle size of ≥10 μm is less than 5 wt.%. The total amount of uranium and thorium contained in the aluminum hydroxide is less than 10 ppb. The semiconductor device is prepared by encapsulating a semiconductor element with the epoxy resin composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ハロゲン系難燃剤及びアンチモン化合物を含まない半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device which does not contain a halogen flame retardant and an antimony compound.

ダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物で封止されている。これらのエポキシ樹脂組成物中には、難燃性を付与するために、ハロゲン系難燃剤及びアンチモン化合物が従来から配合されているが、近年環境対応のため、これらを使用せずに優れた難燃性を付与するエポキシ樹脂組成物が求められており、リン系化合物、水和金属系化合物、ホウ素系化合物、シリコーン化合物等が検討されている。難燃性と優れた耐半田性、耐湿性を両立させるために、水酸化アルミニウムを添加する方法がいくつか提案されており(例えば、特許文献1、特許文献2、特許文献3参照。)、従来市場の要求レベルを満足するものが得られていた。
しかしながら、最近の半導体デバイスの性能向上に伴う小型化、薄型化のため、半導体装置内の狭い空隙を確実に充填することが要求されるようになってきており、上述した従来の技術では不充分となってきていた。最も空隙の狭い半導体装置のひとつとしては、例えば半導体素子をフェイスダウン構造で回路が形成されたマザーボードあるいはドーターボードに実装される方法(フリップチップ方式)が挙げられる。
さらに、α線の影響を受け易いデバイスにおける誤動作を防止するためには、エポキシ樹脂組成物の構成材料中のウラン、トリウム、その壊変物質から放出されるα線を低減することが必要であり、これら全てに対応した水酸化アルミニウムを用いた樹脂組成物の開発が望まれていた。
Electronic components such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition. In these epoxy resin compositions, a halogen-based flame retardant and an antimony compound have been conventionally blended in order to impart flame retardancy. There is a demand for an epoxy resin composition that imparts flammability, and phosphorus compounds, hydrated metal compounds, boron compounds, silicone compounds, and the like have been studied. Several methods of adding aluminum hydroxide have been proposed in order to achieve both flame retardancy and excellent solder resistance and moisture resistance (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). Conventionally, what satisfies the required level of the market has been obtained.
However, due to downsizing and thinning accompanying recent performance improvements of semiconductor devices, it has been required to reliably fill narrow gaps in semiconductor devices, and the conventional techniques described above are insufficient. It was becoming. As one of the semiconductor devices having the narrowest gap, for example, there is a method (flip chip method) in which a semiconductor element is mounted on a mother board or daughter board on which a circuit is formed with a face-down structure.
Furthermore, in order to prevent malfunctions in devices that are susceptible to α-rays, it is necessary to reduce the α-rays emitted from uranium, thorium, and its destructive substances in the constituent materials of the epoxy resin composition, Development of a resin composition using aluminum hydroxide corresponding to all of these has been desired.

特開平10−152547号公報(第2〜4頁)JP 10-152547 A (pages 2 to 4) 特開2002−187999号公報(第2〜5頁)JP 2002-187999 A (pages 2 to 5) 特開2002−212397号公報(第2〜6頁)JP 2002-212397 A (pages 2 to 6)

本発明は、ハロゲン系難燃剤及びアンチモン化合物を含まずに耐燃性、充填性に優れ、なおかつ構成材料から放出されるα線の影響を受け易いデバイスにも対応することができる半導体封止用エポキシ樹脂組成物及び半導体装置を提供するものである。   The present invention is an epoxy for semiconductor encapsulation that does not contain a halogen-based flame retardant and an antimony compound, has excellent flame resistance and filling properties, and can also be applied to devices that are easily affected by α rays emitted from constituent materials. A resin composition and a semiconductor device are provided.

本発明は、
[1]エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、水酸化アルミニウムを除く無機充填材(D)、及び水酸化アルミニウム(E)を含み、前記水酸化アルミニウムにおける粒径10μm以上の粒子の割合が5重量%未満であり、かつ前記水酸化アルミニウムに含まれるウラン、トリウムの合計量が10ppb未満であることを特徴とする半導体封止用エポキシ樹脂組成物、
[2]前記水酸化アルミニウムに含まれるNa2Oの量が0.1重量%以下である第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3]温度上昇速度10℃/分で測定した、前記水酸化アルミニウムの重量減少率が10%に達する温度が250℃以上である第[1]又は[2]項記載の半導体封止用エポキシ樹脂組成物、
[4]前記無機充填材に含まれるウラン、トリウムの合計量が1ppb未満である第[1]、[2]又は[3]項記載の半導体封止用エポキシ樹脂組成物、
[5]エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、水酸化アルミニウムを除く無機充填材(D)、及び水酸化アルミニウム(E)を含むエポキシ樹脂組成物であって、前記水酸化アルミニウムにおける粒径10μm以上の粒子の割合が5重量%未満であり、かつ前記エポキシ樹脂組成物全体に含まれるウラン、トリウムの合計量が1ppb未満であることを特徴とする半導体封止用エポキシ樹脂組成物、
[6]第[1]ないし[5]項のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
The present invention
[1] An epoxy resin (A), a phenol resin (B), a curing accelerator (C), an inorganic filler (D) excluding aluminum hydroxide, and aluminum hydroxide (E), and particles in the aluminum hydroxide An epoxy resin composition for semiconductor encapsulation, wherein the proportion of particles having a diameter of 10 μm or more is less than 5% by weight, and the total amount of uranium and thorium contained in the aluminum hydroxide is less than 10 ppb;
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the amount of Na 2 O contained in the aluminum hydroxide is 0.1% by weight or less,
[3] The epoxy for semiconductor encapsulation according to [1] or [2], wherein the temperature at which the weight reduction rate of the aluminum hydroxide reaches 10%, measured at a temperature increase rate of 10 ° C./min, is 250 ° C. or higher. Resin composition,
[4] The epoxy resin composition for semiconductor encapsulation according to [1], [2] or [3], wherein the total amount of uranium and thorium contained in the inorganic filler is less than 1 ppb,
[5] An epoxy resin composition comprising an epoxy resin (A), a phenol resin (B), a curing accelerator (C), an inorganic filler (D) excluding aluminum hydroxide, and aluminum hydroxide (E). The ratio of particles having a particle diameter of 10 μm or more in the aluminum hydroxide is less than 5% by weight, and the total amount of uranium and thorium contained in the entire epoxy resin composition is less than 1 ppb. Epoxy resin composition for stopping,
[6] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition according to any one of [1] to [5],
It is.

本発明に従うと、優れた耐燃性、耐半田性、耐湿性に加え、従来の技術では得られなかった狭い空隙の充填性に優れ、なおかつ構成材料から放出されるα線の影響を受け易いデバイスにも対応することができる。   According to the present invention, in addition to excellent flame resistance, solder resistance, and moisture resistance, the device is excellent in filling of narrow voids that could not be obtained by the conventional technology, and is easily affected by α rays emitted from the constituent materials. Can also respond.

本発明は、エポキシ樹脂、フェノール樹脂、硬化促進剤、無機充填材、粒径10μm以上の粒子の割合が5重量%未満であり、かつ含有するウラン、トリウムの合計量が10ppb未満である水酸化アルミニウムを含むエポキシ樹脂組成物を用いること等により、耐燃性、充填性に優れ、なおかつ構成材料から放出されるα線の影響を受け易いデバイスにも対応することができる、という顕著な効果が得られるものである。
以下、本発明について詳細に説明する。
The present invention provides an epoxy resin, a phenol resin, a curing accelerator, an inorganic filler, a proportion of particles having a particle size of 10 μm or more is less than 5% by weight, and the total amount of uranium and thorium contained is less than 10 ppb. By using an epoxy resin composition containing aluminum, etc., a remarkable effect is obtained that it is excellent in flame resistance and filling properties, and can also be applied to devices that are easily affected by α rays emitted from the constituent materials. It is what
Hereinafter, the present invention will be described in detail.

本発明に用いるエポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロベンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、ハイドロキノン型エポキシ樹脂などが挙げられる。またこれらは単独でも混合して用いてもよい。なお優れた耐半田性を得るためには、成形時の溶融粘度が非常に低い結晶性エポキシ樹脂を用いて、無機充填材をより多く充填することが好ましい。   Epoxy resins used in the present invention are monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and their molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenylene skeleton-containing phenol aralkyl type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, naphthol novolak type epoxy resin, triphenolmethane type epoxy resin , Dicyclopentadiene-modified phenol type epoxy resin, terpene-modified phenol type epoxy resin, hydroquinone type epoxy resin, and the like. These may be used alone or in combination. In order to obtain excellent solder resistance, it is preferable to fill more inorganic filler using a crystalline epoxy resin having a very low melt viscosity during molding.

本発明に用いるフェノール樹脂は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロベンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂などが挙げられる。またこれらは単独でも混合して用いてもよい。なお優れた耐半田性を得るためには、エポキシ樹脂と同様に低粘度のものが好ましい。   The phenol resin used in the present invention is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol Examples thereof include novolak resins, dicyclopentadiene-modified phenol resins, phenol aralkyl resins, phenol aralkyl resins having a biphenylene skeleton, terpene-modified phenol resins, and triphenolmethane type resins. These may be used alone or in combination. In addition, in order to obtain excellent solder resistance, a material having a low viscosity is preferable like the epoxy resin.

本発明に用いる全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比としては、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。上記範囲を外れると、耐湿性、硬化性などが低下する恐れがあるので好ましくない。   The equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 to 2, and more preferably 0.7 to 1.5. If it is out of the above range, the moisture resistance, curability and the like may be lowered, which is not preferable.

本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定しないが、例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   The curing accelerator used in the present invention is not particularly limited as long as it accelerates the reaction between an epoxy group and a phenolic hydroxyl group. For example, a diastere such as 1,8-diazabicyclo (5,4,0) undecene-7 is used. Zabicycloalkene and its derivatives, organic phosphines such as triphenylphosphine and methyldiphenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium -Tetranaphthoyloxyborate, tetrasubstituted phosphonium such as tetraphenylphosphonium, tetranaphthyloxyborate, tetrasubstituted borate, and the like. These may be used alone or in combination of two or more. It may be used in combination.

本発明に用いる水酸化アルミニウムを除く無機充填材としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられ、最も好適に使用されるものとしては、溶融球状シリカである。これらの無機充填材は、単独でも混合して用いても差し支えない。またこれらがカップリング剤により表面処理されていてもかまわない。無機充填材の形状としては、流動性改善のために、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。本発明で用いられる水酸化アルミニウムをも含めた全無機充填材の含有量は、全エポキシ樹脂組成物中に83〜93重量%であり、好ましくは84〜90重量%である。下限値未満だと、低吸湿性、低熱膨張性が得られず耐半田性が不十分となる恐れがあるので好ましくない。上限値を越えると、流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不具合が生じたりする恐れがあるので好ましくない。   As the inorganic filler excluding aluminum hydroxide used in the present invention, those generally used in an epoxy resin composition for semiconductor encapsulation can be used. For example, fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like can be mentioned, and the most suitably used is fused spherical silica. These inorganic fillers may be used alone or in combination. These may be surface-treated with a coupling agent. The shape of the inorganic filler is preferably as spherical as possible and the particle size distribution is broad in order to improve fluidity. The content of the total inorganic filler including the aluminum hydroxide used in the present invention is 83 to 93% by weight, preferably 84 to 90% by weight in the total epoxy resin composition. If it is less than the lower limit, low hygroscopicity and low thermal expansion cannot be obtained, and solder resistance may be insufficient. Exceeding the upper limit is not preferable because the fluidity is lowered, and there is a risk of defective filling during molding, or problems such as deformation of the gold wire in the semiconductor device due to increased viscosity.

本発明に用いる水酸化アルミニウムは、粒径10μm以上の粒子の割合が5重量%未満であり、かつ含有するウラン、トリウムの合計量が10ppb未満であるものを必須とする。一般に水酸化アルミニウムは、難燃剤として作用し、その難燃機構は公知である。優れた耐半田性、耐湿性を得るためには、より少ない水酸化アルミニウムの添加量で優れた耐燃性を実現する手法は前述の特許文献等で紹介されているが、本発明に用いる水酸化アルミニウムを使用すると、ウラン、トリウム、その壊変物質から放出されるα線を低減することができ、その結果、α線の影響を受け易いデバイスへの適用が容易となる。但しこの場合、水酸化アルミニウムを除く無機充填材のウラン、トリウムの合計量についても、同様に考慮する必要がある。すなわち、α線の影響を受け易いデバイスへの適用が可能なレベルに樹脂組成物全体から放出されるα線量を低減させるためには、無機充填材に含まれるウラン、トリウムの合計量を1ppb未満とし、かつ水酸化アルミニウムに含まれるウラン、トリウムの合計量を10ppb未満とすること、或いはエポキシ樹脂組成物全体に含まれるウラン、トリウムの合計量を1ppb未満とすることが必要である。
また、水酸化アルミニウム中に含まれるウラン、トリウムの合計量が10ppb以上である場合で、α線の影響を受け易いデバイスに適用するためには、水酸化アルミニウムの添加量を少量に抑える必要があり、水酸化アルミニウム単独で難燃性を付与することが困難となる場合がある。
The aluminum hydroxide used in the present invention is essential in that the proportion of particles having a particle size of 10 μm or more is less than 5% by weight and the total amount of uranium and thorium contained is less than 10 ppb. In general, aluminum hydroxide acts as a flame retardant, and its flame retardant mechanism is known. In order to obtain excellent solder resistance and moisture resistance, techniques for realizing excellent flame resistance with a smaller amount of added aluminum hydroxide have been introduced in the above-mentioned patent documents and the like. When aluminum is used, α rays emitted from uranium, thorium, and its destructive substances can be reduced, and as a result, application to a device that is easily affected by α rays is facilitated. In this case, however, the total amount of uranium and thorium of the inorganic filler excluding aluminum hydroxide needs to be similarly considered. That is, in order to reduce the α dose emitted from the entire resin composition to a level that can be applied to devices that are easily affected by α rays, the total amount of uranium and thorium contained in the inorganic filler is less than 1 ppb. And the total amount of uranium and thorium contained in aluminum hydroxide must be less than 10 ppb, or the total amount of uranium and thorium contained in the entire epoxy resin composition must be less than 1 ppb.
In addition, when the total amount of uranium and thorium contained in aluminum hydroxide is 10 ppb or more, it is necessary to suppress the amount of aluminum hydroxide added to a small amount in order to apply to devices that are easily affected by α rays. In some cases, it becomes difficult to impart flame retardancy with aluminum hydroxide alone.

ここでの水酸化アルミニウム中のウラン量、トリウム量を測定するためには、硝酸などで酸溶解させた後、測定の妨害となるアルミニウムを除去するため、ウラン、トリウムをイオン交換樹脂に吸着させる。この吸着保持したウラン、トリウムを少量の溶離液で溶出させて濃縮する。ここで調整した試料をセイコーインスツルメンツ(株)製の誘導結合プラズマ質量分析(ICP−MS)装置SPQ−9000等を用いて測定することができる。
また、ここでのシリカ中のウラン量、トリウム量を測定するためには、フッ化水素に溶解して主成分を揮発させた後、残存物を硝酸に溶解し、遠心分離機で処理した上澄み液をセイコーインスツルメンツ(株)製の誘導結合プラズマ質量分析(ICP−MS)装置SPQ−9000等を用いて測定することができる。
また、ここでのエポキシ樹脂組成物中のウラン量、トリウム量を測定するためには、エポキシ樹脂組成物を700℃で4時間加熱して灰化させた後、フッ化水素に溶解してシリカ主成分を揮発させ、更に硝酸などで酸溶解させた後、測定の妨害となるアルミニウムを除去するため、ウラン、トリウムをイオン交換樹脂に吸着させる。この吸着保持したウラン、トリウムを少量の溶離液で溶出させて濃縮する。ここで調整した試料をセイコーインスツルメンツ(株)製の誘導結合プラズマ質量分析(ICP−MS)装置SPQ−9000等を用いて測定することができる。
In order to measure the amount of uranium and thorium in aluminum hydroxide here, after dissolving the acid with nitric acid or the like, uranium and thorium are adsorbed on the ion exchange resin in order to remove the aluminum that interferes with the measurement. . The adsorbed and retained uranium and thorium are eluted with a small amount of eluent and concentrated. The sample prepared here can be measured using an inductively coupled plasma mass spectrometer (ICP-MS) apparatus SPQ-9000 manufactured by Seiko Instruments Inc.
Moreover, in order to measure the amount of uranium and thorium in silica here, after dissolving the main component by volatilizing in hydrogen fluoride, the residue was dissolved in nitric acid and the supernatant treated with a centrifuge The liquid can be measured using an inductively coupled plasma mass spectrometer (ICP-MS) apparatus SPQ-9000 manufactured by Seiko Instruments Inc.
In addition, in order to measure the amount of uranium and thorium in the epoxy resin composition here, the epoxy resin composition was heated and ashed at 700 ° C. for 4 hours, and then dissolved in hydrogen fluoride to form silica. After the main component is volatilized and further dissolved with nitric acid or the like, uranium and thorium are adsorbed on the ion exchange resin in order to remove aluminum which interferes with the measurement. The adsorbed and retained uranium and thorium are eluted with a small amount of eluent and concentrated. The sample prepared here can be measured using an inductively coupled plasma mass spectrometer (ICP-MS) apparatus SPQ-9000 manufactured by Seiko Instruments Inc.

また狭い空隙を充填するためには、本発明に用いる水酸化アルミニウムの粒径10μm以上の粒子の割合を5重量%未満とする必要がある。粒径10μm以上の粒子が5重量%以上であると、数十μmの狭い充填領域が存在する半導体装置において未充填を引き起こす可能性が高い。   In order to fill narrow gaps, it is necessary to make the proportion of particles of aluminum hydroxide used in the present invention having a particle size of 10 μm or more less than 5% by weight. When particles having a particle diameter of 10 μm or more are 5% by weight or more, there is a high possibility of causing unfilling in a semiconductor device having a narrow filling region of several tens of μm.

ここでの水酸化アルミニウムの粒度は、JIS M8100粉塊混合物−サンプリング方法通則に準じて無機充填材を採取し、JIS R 1622−1995 ファインセラミック原料粒子径分布測定のための試料調整通則に準じて、水酸化アルミニウムを測定用試料として調整し、JIS R 1629−1997ファインセラミック原料のレーザー回折・散乱法による粒子径分布測定方法に準じて、日機装(株)製のマイクロトラック粒子径分布測定装置9320HRA(X−100)(レーザー回折散乱法)等を用い、溶媒中で超音波分散した後に測定した値である。   As for the particle size of aluminum hydroxide, the inorganic filler is sampled according to JIS M8100 powder mixture-sampling method general rule, and according to JIS R 1622-1995 Sample preparation general rule for fine ceramic raw material particle size distribution measurement. In accordance with a particle size distribution measuring method by a laser diffraction / scattering method of JIS R 1629-1997 fine ceramic raw material prepared using aluminum hydroxide as a measurement sample, Microtrack particle size distribution measuring device 9320HRA manufactured by Nikkiso Co., Ltd. This is a value measured after ultrasonic dispersion in a solvent using (X-100) (laser diffraction scattering method) or the like.

また水酸化アルミニウムに含まれるNa2O量は0.1重量%以下であることが好ましい。0.1重量%を超えると、不純物として遊離するナトリウムイオン量が多くなり、耐湿性を低下させる恐れがある。 The amount of Na 2 O contained in the aluminum hydroxide is preferably 0.1% by weight or less. If it exceeds 0.1% by weight, the amount of sodium ions liberated as impurities increases, which may reduce the moisture resistance.

また、温度上昇速度10℃/分で測定した、水酸化アルミニウムの重量減少率が10%に達する温度が250℃以上であることが好ましい。重量減少率10%が250℃を下回ると、IRリフロー処理の条件によっては耐半田性が低下する恐れがある。   Moreover, it is preferable that the temperature at which the weight loss rate of aluminum hydroxide reaches 10%, measured at a temperature rising rate of 10 ° C./min, is 250 ° C. or higher. If the weight reduction rate of 10% is less than 250 ° C., solder resistance may be lowered depending on the conditions of IR reflow treatment.

ここでの水酸化アルミニウムの重量減少率は、水酸化アルミニウム10mgを秤量し、セイコー電子工業(株)製の示差熱熱重量同時測定装置TG/DTA220(水平差動天秤方式)等を用い、開始温度30℃、終了温度450℃等として、空気雰囲気下、温度上昇速度10℃/分で測定した値である。   The weight reduction rate of aluminum hydroxide here starts with weighing 10 mg of aluminum hydroxide and using a differential thermothermal gravimetric simultaneous measurement device TG / DTA220 (horizontal differential balance method) manufactured by Seiko Denshi Kogyo Co., Ltd. It is a value measured at a temperature rising rate of 10 ° C./min under an air atmosphere as a temperature of 30 ° C., an end temperature of 450 ° C., and the like.

なお本発明では、難燃剤として水酸化アルミニウムを単独で用いる必要はなく、例えば、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤と併用してもよい。本発明に用いる水酸化アルミニウムの配合量は、全エポキシ樹脂組成物中に1〜10重量%が好ましく、更に好ましくは2〜5重量%である。下限値未満だと目的とする耐燃性が得られず、上限値を超えると耐半田性、耐湿性、流動性、硬化性が損なわれる恐れがあり好ましくない。   In the present invention, it is not necessary to use aluminum hydroxide alone as a flame retardant, and for example, it may be used in combination with a flame retardant such as magnesium hydroxide, zinc borate, zinc molybdate, and phosphazene. The amount of aluminum hydroxide used in the present invention is preferably 1 to 10% by weight, more preferably 2 to 5% by weight in the total epoxy resin composition. If it is less than the lower limit, the intended flame resistance cannot be obtained, and if it exceeds the upper limit, solder resistance, moisture resistance, fluidity, and curability may be impaired.

本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じてエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤、カーボンブラック、ベンガラ等の着色剤、酸化ビスマス水和物等の無機イオン交換体、酸化防止剤等の各種添加剤が適宜配合可能である。   In addition to the components (A) to (E), the epoxy resin composition of the present invention includes silane coupling agents such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, and titanate coupling as necessary. Agents, coupling agents such as aluminum coupling agents, aluminum / zirconium coupling agents, natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof, paraffins, etc. Various additives such as a mold release agent, a colorant such as carbon black and bengara, an inorganic ion exchanger such as bismuth oxide hydrate, and an antioxidant can be appropriately blended.

本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等を、ミキサー等を用いて常温混合し、ロール、ニーダー、押出機等の混練機で加熱混練、冷却後粉砕して得られる。   In the epoxy resin composition of the present invention, the components (A) to (E) and other additives are mixed at room temperature using a mixer or the like, heated and kneaded with a kneader such as a roll, kneader, or extruder, and cooled. Obtained by post-grinding.

本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。その他の半導体装置の製造方法は、公知の方法を用いることができる。   In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. As other semiconductor device manufacturing methods, known methods can be used.

以下に、実施例を挙げて本発明を説明するが、これらの実施例に限定されるものではない。配合割合は重量部とする。
尚、シリカ、水酸化アルミニウム、及びエポキシ樹脂組成物中のウラン量、トリウム量、並びに水酸化アルミニウムの平均粒径、粒度分布、及び重量減少率10%到達温度は下記により測定した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
In addition, the amount of uranium and thorium in silica, aluminum hydroxide, and epoxy resin composition, and the average particle diameter, particle size distribution, and 10% weight reduction temperature of aluminum hydroxide were measured as follows.

[水酸化アルミニウム中のウラン量、トリウム量の測定]
水酸化アルミニウムを酸で溶解させた後、ウラン、トリウムをイオン交換樹脂に吸着させる。この吸着保持したウラン、トリウムを少量の溶離液で溶出させて濃縮する。ここで調整した試料をセイコーインスツルメンツ(株)製の誘導結合プラズマ質量分析(ICP−MS)装置SPQ−9000を用いて測定した。
[シリカ中のウラン量、トリウム量の測定]
シリカをフッ化水素に溶解して主成分を揮発させた後、残存物を硝酸に溶解し、遠心分離機で処理した上澄み液をセイコーインスツルメンツ(株)製の誘導結合プラズマ質量分析(ICP−MS)装置SPQ−9000を用いて測定した。
[エポキシ樹脂組成物中のウラン量、トリウム量の測定]
エポキシ樹脂組成物を700℃で4時間加熱して灰化させた後、フッ化水素に溶解してシリカ主成分を揮発させ、更に酸で溶解させた後、測定の妨害となるアルミニウムを除去するため、ウラン、トリウムをイオン交換樹脂に吸着させる。この吸着保持したウラン、トリウムを少量の溶離液で溶出させて濃縮する。ここで調整した試料をセイコーインスツルメンツ(株)製の誘導結合プラズマ質量分析(ICP−MS)装置SPQ−9000を用いて測定した。
[Measurement of uranium and thorium in aluminum hydroxide]
After aluminum hydroxide is dissolved with acid, uranium and thorium are adsorbed on the ion exchange resin. The adsorbed and retained uranium and thorium are eluted with a small amount of eluent and concentrated. The sample prepared here was measured using an inductively coupled plasma mass spectrometer (ICP-MS) apparatus SPQ-9000 manufactured by Seiko Instruments Inc.
[Measurement of uranium and thorium in silica]
Silica was dissolved in hydrogen fluoride to volatilize the main component, the residue was dissolved in nitric acid, and the supernatant treated with a centrifuge was subjected to inductively coupled plasma mass spectrometry (ICP-MS) manufactured by Seiko Instruments Inc. ) Measured using apparatus SPQ-9000.
[Measurement of uranium content and thorium content in epoxy resin composition]
After the epoxy resin composition is ashed by heating at 700 ° C. for 4 hours, it is dissolved in hydrogen fluoride to volatilize the silica main component, and further dissolved with an acid, and then aluminum that interferes with the measurement is removed. Therefore, uranium and thorium are adsorbed on the ion exchange resin. The adsorbed and retained uranium and thorium are eluted with a small amount of eluent and concentrated. The sample prepared here was measured using an inductively coupled plasma mass spectrometer (ICP-MS) apparatus SPQ-9000 manufactured by Seiko Instruments Inc.

[水酸化アルミニウムの平均粒径、粒度分布の測定]
JIS M8100粉塊混合物−サンプリング方法通則に準じて水酸化アルミを採取し、JIS R 1622−1995 ファインセラミック原料粒子径分布測定のための試料調整通則に準じて、水酸化アルミニウムを測定用試料として調整し、JIS R 1629−1997ファインセラミック原料のレーザー回折・散乱法による粒子径分布測定方法に準じて、日機装(株)製のマイクロトラック粒子径分布測定装置9320HRA(X−100)(レーザー回折散乱法)等を用い、溶媒中で超音波分散した後に測定した。
[Measurement of average particle size and particle size distribution of aluminum hydroxide]
JIS M8100 powder mixture-Collect aluminum hydroxide according to the general rules of sampling, and prepare aluminum hydroxide as a sample for measurement according to JIS R 1622-1995 Sample preparation general rules for fine ceramic raw material particle size distribution measurement According to JIS R 1629-1997 fine ceramic raw material particle size distribution measuring method by laser diffraction / scattering method, Microtrack particle size distribution measuring device 9320HRA (X-100) (laser diffraction scattering method) manufactured by Nikkiso Co., Ltd. ) Etc., and measured after ultrasonic dispersion in a solvent.

[水酸化アルミニウムの重量減少率10%到達温度]
水酸化アルミニウム10mgを秤量し、セイコー電子工業(株)製の示差熱熱重量同時測定装置TG/DTA220(水平差動天秤方式)を用い、開始温度30℃、終了温度450℃で、空気雰囲気下、温度上昇速度10℃/分で測定した際に、重量減少率が10%に達する温度を求めた。
[The temperature at which the weight reduction rate of aluminum hydroxide reaches 10%]
Weigh 10 mg of aluminum hydroxide and use a differential thermothermal gravimetric simultaneous measurement device TG / DTA220 (horizontal differential balance method) manufactured by Seiko Denshi Kogyo Co., Ltd. at an initial temperature of 30 ° C. and an end temperature of 450 ° C. The temperature at which the weight loss rate reached 10% was determined when measured at a temperature increase rate of 10 ° C./min.

実施例1
ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000K、融点105℃、エポキシ当量185) 7.50重量部
フェノールノボラック樹脂(軟化点80℃、水酸基当量105) 2.80重量部
ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、MEH−7851SS、軟化点65℃、水酸基当量203) 2.80重量部
1,8−ジアザビシクロ(5,4,0)ウンデセン−7 0.20重量部
シリカA(平均粒径3.8μm、比表面積4.5m2/g、ウランとトリウムの合計量1ppb未満) 56.00重量部
シリカB(平均粒径0.5μm、比表面積5.4m2/g、ウランとトリウムの合計量1ppb未満) 25.00重量部
水酸化アルミニウムA1(平均粒径3.0μm、粒径10μm以上の粒子の割合3重量%、ウランとトリウムの合計量1ppb未満、Na2O量0.06%、重量減少率10%到達温度260℃) 5.00重量部
γ−メルカプトプロピルトリメトキシシラン 0.20重量部
カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーで混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物とした。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
Example 1
Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K, melting point 105 ° C., epoxy equivalent 185) 7.50 parts by weight Phenol novolac resin (softening point 80 ° C., hydroxyl group equivalent 105) 2.80 parts by weight Biphenylene skeleton Phenol aralkyl resin (Maywa Kasei Co., Ltd., MEH-7851SS, softening point 65 ° C., hydroxyl group equivalent 203) 2.80 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 0.20 parts by weight silica A (average particle size 3.8 μm, specific surface area 4.5 m 2 / g, total amount of uranium and thorium less than 1 ppb) 56.00 parts by weight Silica B (average particle size 0.5 μm, specific surface area 5.4 m 2 / g The total amount of uranium and thorium is less than 1 ppb) 25.00 parts by weight Aluminum hydroxide A1 (average particle size 3.0 μm, particle size 1 μm or more percentage 3% by weight of the particles, uranium and the total amount less than 1ppb of thorium, Na 2 O content 0.06%, weight reduction of 10% reached a temperature 260 ° C.) 5.00 parts by weight of γ- mercaptopropyltrimethoxysilane 0.20 parts by weight Carnauba wax 0.20 parts by weight Carbon black 0.30 parts by weight were mixed with a mixer, kneaded using two rolls with surface temperatures of 90 ° C. and 45 ° C., cooled, pulverized, and epoxy A resin composition was obtained. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。単位はcm。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The unit is cm.

金線変形率:トランスファー成形機を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で352ピンBGA(基板は厚さ0.56mmのビスマレイミド・トリアジン樹脂/ガラスクロス基板、半導体装置のサイズは30mm×30mm、厚さ1.17mm、半導体素子のサイズ10mm×10mm、厚さ0.35mm、半導体素子と回路基板のボンディングパッドを25μm径の金線でボンディングしている。)を成形し、得られた半導体装置を軟X線透視装置で観察し、金線の変形率を(流れ量)/(金線長)の比率で表した。単位は%。   Deformation rate of wire: Using a transfer molding machine, a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 2 minutes, and a 352-pin BGA (the substrate is a bismaleimide / triazine resin / glass cloth substrate having a thickness of 0.56 mm, The size of the semiconductor device is 30 mm × 30 mm, the thickness is 1.17 mm, the size of the semiconductor element is 10 mm × 10 mm, the thickness is 0.35 mm, and the bonding pads of the semiconductor element and the circuit board are bonded with a gold wire with a diameter of 25 μm.) And the obtained semiconductor device was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was expressed as a ratio of (flow rate) / (gold wire length). Units%.

模擬金型充填性:長手方向の一端にゲートを有し、長さ145mm、幅15mm、厚み0.5mmの矩形型流路中に、9mm×9mm×0.42mm(厚み)の四角柱を矩形型流路の中央に直列に6個有する(1個目の四角柱はゲートから5mmの距離にあり、各々の四角柱と四角柱の間隔は6mm)80μmギャップの狭路充填を想定した評価用金型、及び長手方向の一端にゲートを有し、長さ145mm、幅15mm、厚み0.5mmの矩形型流路中に、9mm×9mm×0.45mm(厚み)の四角柱を矩形型流路の中央に直列に6個有する(1個目の四角柱はゲートから5mmの距離にあり、各々の四角柱と四角柱の間隔は6mm)50μmギャップの狭路充填を想定した評価用金型を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分でトランスファー成形し、80μm及び50μmギャップの充填性(未充填、ボイドの有無)を判定した。   Simulated mold filling property: A rectangular column of 9 mm × 9 mm × 0.42 mm (thickness) is rectangular in a rectangular channel having a length of 145 mm, a width of 15 mm, and a thickness of 0.5 mm, having a gate at one end in the longitudinal direction. 6 in series in the center of the mold channel (the first square column is 5 mm from the gate, and the interval between each square column and the square column is 6 mm) For evaluation assuming narrow path filling with 80 μm gap A rectangular flow of 9 mm × 9 mm × 0.45 mm (thickness) is flown in a rectangular flow path in a rectangular flow channel having a length of 145 mm, a width of 15 mm, and a thickness of 0.5 mm. 6 molds in series at the center of the road (the first square column is 5mm from the gate, and the interval between each square column and the square column is 6mm) Mold temperature 175 ° C, injection pressure 9.8MPa Curing time and transfer molding at 2 minutes was determined 80μm and 50μm filling of gaps (the unfilled, the presence or absence of voids).

耐半田性:金線変形率の評価で成形した352ピンBGAパッケージを、175℃、2時間で後硬化し、得られた半導体装置各10個を、85℃、相対湿度60%の環境下で168時間、又は60℃、相対湿度60%の環境下で120時間処理した後、ピーク温度260℃のIRリフロー処理(255℃以上が10秒)を行った。処理後の内部の剥離及びクラックの有無を超音波探傷機で観察し、不良半導体装置の個数を数えた。不良半導体装置の個数がn個であるとき、n/10と表示した。   Solder resistance: 352-pin BGA package molded by evaluation of gold wire deformation rate is post-cured at 175 ° C. for 2 hours, and each of the obtained 10 semiconductor devices is placed in an environment of 85 ° C. and relative humidity 60%. After treatment for 168 hours or 60 hours at 60 ° C. and 60% relative humidity for 120 hours, IR reflow treatment at a peak temperature of 260 ° C. (255 ° C. or more is 10 seconds) was performed. The presence or absence of internal peeling and cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective semiconductor devices was counted. When the number of defective semiconductor devices was n, it was displayed as n / 10.

耐湿性:トランスファー成形機を用い、金型温度175℃、注入圧9.8MPa、硬化時間2分で16pSOP(モールドサイズ11mm×7mm、厚さ1.95mm、半導体素子サイズ3.5mm×3.0mm、厚さ0.48mm、半導体素子のボンディングパッドと42アロイフレームを25μm径の金線で12箇所ボンディングしている。半導体素子はアルミ配線幅10μm、配線間距離10μm、アルミ蒸着厚み1μm。)を成形し、175℃、2時間で後硬化してサンプルを得た。得られた半導体装置5個を室温に冷却後、140℃、相対湿度85%の環境下で20V印加(ボンディングした12箇所のうち6箇所を陽極、6箇所を陰極)、500Hr処理してからパッケージを取り出し、各々の端子にテスターを当てて回路の抵抗値を測定した。抵抗値が初期値の200%を超えたものを不良とし、不良箇所がn箇所であるときn/15と表示した(陽極:1パッケージ当たり3箇所×5個、陰極:1パッケージ当たり3箇所×5個)。
Moisture resistance: Using a transfer molding machine, mold temperature of 175 ° C., injection pressure of 9.8 MPa, curing time of 2 minutes, 16 pSOP (mold size 11 mm × 7 mm, thickness 1.95 mm, semiconductor element size 3.5 mm × 3.0 mm The semiconductor element bonding pad and 42 alloy frame are bonded to each other at 12 locations with a 25 μm diameter gold wire. The semiconductor element has an aluminum wiring width of 10 μm, an inter-wiring distance of 10 μm, and an aluminum deposition thickness of 1 μm. A sample was obtained by molding and post-curing at 175 ° C. for 2 hours. After 5 semiconductor devices obtained were cooled to room temperature, 20V was applied in an environment of 140 ° C. and 85% relative humidity (6 out of 12 bonded locations were anodes and 6 locations were cathodes), treated for 500 hours, and then packaged. The resistance value of the circuit was measured by applying a tester to each terminal. When the resistance value exceeded 200% of the initial value, it was regarded as defective, and indicated as n / 15 when there were n defective portions (Anode: 3 locations per package x 5, Cathode: 3 locations per package x 5).

耐燃性:トランスファー成形機を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で試験片(127mm×12.7mm、厚さ3.2mm)を成形し、175℃、8時間で後硬化した。得られた試験片をUL−94垂直法に準じて判定した。   Flame resistance: Using a transfer molding machine, a test piece (127 mm × 12.7 mm, thickness 3.2 mm) was molded at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and 175 ° C. for 8 hours. After curing. The obtained test piece was determined according to the UL-94 vertical method.

α線量:コンプレッション成形で金型温度175℃、硬化時間2分で試験片(140mm×120mm、厚さ0.2mm)を成形した。得られた試験片6枚(計1008cm2)を用いて低レベルα線測定装置LACS−4000M(印加電圧1.9KV、PR−10ガス(アルゴン:メタン=9:1)100m/分、有効計数時間88h)でα線量を測定し、0.001c/cm2・h以下をOK、0.001c/cm2・hを上回った場合をNGと判定した。 α Dose: A test piece (140 mm × 120 mm, thickness 0.2 mm) was molded by compression molding at a mold temperature of 175 ° C. and a curing time of 2 minutes. Using the obtained six test pieces (total 1008 cm 2 ), the low-level α-ray measuring device LACS-4000M (applied voltage 1.9 KV, PR-10 gas (argon: methane = 9: 1) 100 m / min, effective count) The α dose was measured at time 88 h), and 0.001 c / cm 2 · h or less was determined to be OK and 0.001 c / cm 2 · h was determined to be NG.

実施例2〜9、比較例1〜2
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、同様に評価した。これらの評価結果を表1、表2に示す。
実施例1以外で用いた水酸化アルミニウムを以下に示す。
水酸化アルミニウムA2(平均粒径2.8μm、粒径10μm以上の粒子の割合1重量%、ウランとトリウムの合計量1ppb未満、Na2O量0.06%、重量減少率10%到達温度260℃)
水酸化アルミニウムA3(平均粒径3.1μm、粒径10μm以上の粒子の割合4重量%、ウランとトリウムの合計量1ppb未満、Na2O量0.06%、重量減少率10%到達温度260℃)
水酸化アルミニウムA4(平均粒径3.0μm、粒径10μm以上の粒子の割合3重量%、ウランとトリウムの合計量1ppb未満、Na2O量0.04%、重量減少率10%到達温度260℃)
水酸化アルミニウムA5(平均粒径3.0μm、粒径10μm以上の粒子の割合3重量%、ウランとトリウムの合計量1ppb未満、Na2O量0.08%、重量減少率10%到達温度260℃)
水酸化アルミニウムB(平均粒径4.5μm、粒径10μm以上の粒子の割合15重量%、ウランとトリウムの合計量40ppb、Na2O量0.06%、重量減少率10%到達温度260℃)
水酸化アルミニウムC(平均粒径8.0μm、粒径10μm以上の粒子の割合35重量%、ウランとトリウムの合計量41ppb、Na2O量0.2%、重量減少率10%到達温度240℃)
Examples 2-9, Comparative Examples 1-2
According to the composition of Table 1 and Table 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner. These evaluation results are shown in Tables 1 and 2.
Aluminum hydroxide used in other than Example 1 is shown below.
Aluminum hydroxide A2 (average particle size 2.8 μm, proportion of particles having a particle size of 10 μm or more 1% by weight, total amount of uranium and thorium less than 1 ppb, Na 2 O amount 0.06%, weight reduction rate 10% reaching temperature 260 ℃)
Aluminum hydroxide A3 (average particle size 3.1 μm, proportion of particles having a particle size of 10 μm or more 4% by weight, total amount of uranium and thorium less than 1 ppb, Na 2 O amount 0.06%, weight reduction rate 10% reaching temperature 260 ℃)
Aluminum hydroxide A4 (average particle size 3.0 μm, proportion of particles having a particle size of 10 μm or more 3% by weight, total amount of uranium and thorium less than 1 ppb, Na 2 O amount 0.04%, weight reduction rate 10% reaching temperature 260 ℃)
Aluminum hydroxide A5 (average particle size 3.0 μm, proportion of particles having a particle size of 10 μm or more 3% by weight, total amount of uranium and thorium less than 1 ppb, Na 2 O amount 0.08%, weight reduction rate 10% reaching temperature 260 ℃)
Aluminum hydroxide B (average particle size 4.5 μm, proportion of particles having a particle size of 10 μm or more 15% by weight, total amount of uranium and thorium 40 ppb, Na 2 O amount 0.06%, weight reduction rate 10% ultimate temperature 260 ° C. )
Aluminum hydroxide C (average particle size 8.0 μm, proportion of particles having a particle size of 10 μm or more 35% by weight, uranium and thorium total amount 41 ppb, Na 2 O amount 0.2%, weight reduction rate 10% ultimate temperature 240 ° C. )

Figure 2005248087
Figure 2005248087

Figure 2005248087
Figure 2005248087

本発明の半導体封止用エポキシ樹脂組成物は、ハロゲン系難燃剤及びアンチモン化合物を含まずに耐燃性、耐半田性、耐湿性、充填性に優れたものであり、構成材料から放出されるα線の影響を受け易いデバイスへの適用に特に有用である。   The epoxy resin composition for semiconductor encapsulation of the present invention does not contain a halogen flame retardant and an antimony compound, and has excellent flame resistance, solder resistance, moisture resistance, and filling properties, and is released from the constituent materials. It is particularly useful for applications in devices that are susceptible to line effects.

Claims (6)

エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、水酸化アルミニウムを除く無機充填材(D)、及び水酸化アルミニウム(E)を含み、前記水酸化アルミニウムにおける粒径10μm以上の粒子の割合が5重量%未満であり、かつ前記水酸化アルミニウムに含まれるウラン、トリウムの合計量が10ppb未満であることを特徴とする半導体封止用エポキシ樹脂組成物。 An epoxy resin (A), a phenol resin (B), a curing accelerator (C), an inorganic filler (D) excluding aluminum hydroxide, and aluminum hydroxide (E), and a particle diameter of 10 μm or more in the aluminum hydroxide And a total amount of uranium and thorium contained in the aluminum hydroxide is less than 10 ppb. 前記水酸化アルミニウムに含まれるNa2Oの量が0.1重量%以下である請求項1記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the amount of Na 2 O contained in the aluminum hydroxide is 0.1% by weight or less. 温度上昇速度10℃/分で測定した、前記水酸化アルミニウムの重量減少率が10%に達する温度が250℃以上である請求項1又は2記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the temperature at which the weight reduction rate of the aluminum hydroxide reaches 10%, measured at a temperature rising rate of 10 ° C / min, is 250 ° C or higher. 前記無機充填材に含まれるウラン、トリウムの合計量が1ppb未満である請求項1、2又は3記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1, 2, or 3, wherein the total amount of uranium and thorium contained in the inorganic filler is less than 1 ppb. エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、水酸化アルミニウムを除く無機充填材(D)、及び水酸化アルミニウム(E)を含むエポキシ樹脂組成物であって、前記水酸化アルミニウムにおける粒径10μm以上の粒子の割合が5重量%未満であり、かつ前記エポキシ樹脂組成物全体に含まれるウラン、トリウムの合計量が1ppb未満であることを特徴とする半導体封止用エポキシ樹脂組成物。 An epoxy resin composition comprising an epoxy resin (A), a phenol resin (B), a curing accelerator (C), an inorganic filler (D) excluding aluminum hydroxide, and aluminum hydroxide (E), wherein the water An epoxy for semiconductor encapsulation, wherein the proportion of particles having a particle size of 10 μm or more in aluminum oxide is less than 5% by weight, and the total amount of uranium and thorium contained in the entire epoxy resin composition is less than 1 ppb Resin composition. 請求項1ないし5のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2004063152A 2004-03-05 2004-03-05 Epoxy resin composition and semiconductor device Expired - Lifetime JP4631296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063152A JP4631296B2 (en) 2004-03-05 2004-03-05 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063152A JP4631296B2 (en) 2004-03-05 2004-03-05 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2005248087A true JP2005248087A (en) 2005-09-15
JP4631296B2 JP4631296B2 (en) 2011-02-16

Family

ID=35028874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063152A Expired - Lifetime JP4631296B2 (en) 2004-03-05 2004-03-05 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4631296B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225385A (en) * 2010-04-15 2011-11-10 Nippon Steel Materials Co Ltd Method for producing spherical alumina powder
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
WO2017104298A1 (en) * 2015-12-18 2017-06-22 ナミックス株式会社 Epoxy resin composition
JP2020158694A (en) * 2019-03-27 2020-10-01 住友ベークライト株式会社 Powder and method for producing sealing resin composition
KR20230107646A (en) 2020-11-16 2023-07-17 스미또모 베이크라이트 가부시키가이샤 Resin composition for semiconductor encapsulation and semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461313A (en) * 1987-05-27 1989-03-08 Du Pont Aluminum hydroxide and alumina with extremely low alpha particle release
JPH09176286A (en) * 1995-12-27 1997-07-08 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device
JP2000212399A (en) * 1999-01-28 2000-08-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor apparatus
JP2002212397A (en) * 2001-01-19 2002-07-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003192874A (en) * 2001-12-26 2003-07-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003342447A (en) * 2002-05-24 2003-12-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461313A (en) * 1987-05-27 1989-03-08 Du Pont Aluminum hydroxide and alumina with extremely low alpha particle release
JPH09176286A (en) * 1995-12-27 1997-07-08 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device
JP2000212399A (en) * 1999-01-28 2000-08-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor apparatus
JP2002212397A (en) * 2001-01-19 2002-07-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003192874A (en) * 2001-12-26 2003-07-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003342447A (en) * 2002-05-24 2003-12-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225385A (en) * 2010-04-15 2011-11-10 Nippon Steel Materials Co Ltd Method for producing spherical alumina powder
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
WO2017104298A1 (en) * 2015-12-18 2017-06-22 ナミックス株式会社 Epoxy resin composition
JP2017110146A (en) * 2015-12-18 2017-06-22 ナミックス株式会社 Epoxy resin composition
KR20180094882A (en) 2015-12-18 2018-08-24 나믹스 가부시끼가이샤 Epoxy resin composition
JP2020158694A (en) * 2019-03-27 2020-10-01 住友ベークライト株式会社 Powder and method for producing sealing resin composition
KR20230107646A (en) 2020-11-16 2023-07-17 스미또모 베이크라이트 가부시키가이샤 Resin composition for semiconductor encapsulation and semiconductor device

Also Published As

Publication number Publication date
JP4631296B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP5983085B2 (en) Epoxy resin composition and electronic component device
JP3479827B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2019151685A (en) Resin composition for semiconductor sealing for transfer compression mold method and semiconductor device
JP5663250B2 (en) Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP4496786B2 (en) Epoxy resin composition and semiconductor device
EP2258772A1 (en) Epoxy Resin Composition for Semiconductor Encapsulation and Semiconductor Device Using the Same
JP6389382B2 (en) Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JPWO2019131097A1 (en) Epoxy resin composition for sealing ball grid array packages, cured epoxy resin, and electronic component equipment
JP4525139B2 (en) The manufacturing method of the epoxy resin composition for semiconductor sealing.
JP4631296B2 (en) Epoxy resin composition and semiconductor device
JP2013001861A (en) Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
JP2007217469A (en) Sealing epoxy resin composition and semiconductor device sealed therewith
JPS6259626A (en) Epoxy resin composition
JP2013119588A (en) Epoxy resin composition for sealing electronic component and electronic component device using the same
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP5407767B2 (en) Epoxy resin composition and semiconductor device
WO2018150779A1 (en) Resin composition, resin sheet, semiconductor device and method for producing semiconductor device
JP2004292514A (en) Epoxy resin composition and semiconductor device
US20020016398A1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP2006124420A (en) Epoxy resin composition and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3