JP2005245332A - Artificial aseptic culture for orchid (yoania flava) - Google Patents

Artificial aseptic culture for orchid (yoania flava) Download PDF

Info

Publication number
JP2005245332A
JP2005245332A JP2004061293A JP2004061293A JP2005245332A JP 2005245332 A JP2005245332 A JP 2005245332A JP 2004061293 A JP2004061293 A JP 2004061293A JP 2004061293 A JP2004061293 A JP 2004061293A JP 2005245332 A JP2005245332 A JP 2005245332A
Authority
JP
Japan
Prior art keywords
aseptic
medium
artificial culture
sterile
culture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004061293A
Other languages
Japanese (ja)
Other versions
JP4549698B2 (en
Inventor
Eiki Moriya
栄樹 守谷
Sonoko Tsuda
その子 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2004061293A priority Critical patent/JP4549698B2/en
Publication of JP2005245332A publication Critical patent/JP2005245332A/en
Application granted granted Critical
Publication of JP4549698B2 publication Critical patent/JP4549698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimal culture medium for aseptic artificial culture of saprophytic orchids which have no chlorophyll, particularly Yoania flava, and provide a growing method for dense seedlings under the aseptic culture by using aseptic budding and aseptic proliferation to grow cultured seedlings needed for protection of Yoania flava and further by enlarging the proliferated seedlings according to the method of this invention. <P>SOLUTION: This aseptic artificial cultivation method has the step where the seeds of Yoania flava are aseptically germinated on the aseptic germinating culture medium, and the step where the germinated and differentiated seedlings are proliferated on the aseptic proliferation medium. The proliferated seedlings are aseptically enlarged and made dense. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、野生ランの人工培養、特にシナノショウキラン(腐生ラン)の無菌人工培養方法に関する。   The present invention relates to an artificial culture of wild orchids, and more particularly to a method for aseptic artificial culture of linoleum orchids (humus orchids).

シナノショウキランとは、長野県南部に生息する葉緑素を持たない腐生ランで、2002年5月に新種として記載されたものである。日本にはこれまで、ショウキラン(Yoania japonica)とキバナノショウキラン(Yoania amagiensis)の2種のショウキラン属が確認されていたが、人工増殖は成功していない。シナノショウキランについても早急な保護が必要であるが、その生態の詳細すら不明であった。   Shinanosho Kiran is a humic orchid that has no chlorophyll inhabiting the southern part of Nagano Prefecture, and was described as a new species in May 2002. Until now, two kinds of genus of Shokilan, Yoannia japonica and Yoania amagiensis, have been confirmed in Japan, but artificial growth has not been successful. Shinosho Kiran also needs immediate protection, but even its ecological details were unclear.

ラン科植物の生活史においては、一般にラン菌と呼ばれる糸状菌との共生関係を持つことがよく知られている。これら糸状菌(共生菌)は、ランの発芽・成長に重要な役割を持つことが解明されているが、特にシナノショウキランのような腐生ランは葉緑素を持たないため、共生菌への依存が大きく、発芽に際しても共生菌の存在下でないと難しいと考えられている。   In the life history of orchidaceae plants, it is well known that they have a symbiotic relationship with filamentous fungi generally called orchid fungi. These filamentous fungi (symbiotic fungi) have been elucidated to have an important role in orchid germination and growth, but especially humic orchids such as linden shrimp have no chlorophyll, so they depend on symbiotic fungi. It is considered that it is difficult to germinate without the presence of commensal bacteria.

これに対し、野生ランを無菌的に栽培する「野生ランの大量生産方法」が紹介されている(特許文献1)。この方法は、絶滅危惧種に指定されているエビネやシュンラン、ヘッカランなどの野生ランを、共生菌を利用することなく大量生産する方法で、具体的には、
人工受粉させた種子に発芽阻害物質の除去処理及び殺菌処理を施す前処理工程と、
種子を発芽促進剤が入った培地に播種し培養する第一の培養工程と、発根促進剤を入れた培地で培養する第二の培養工程とを設けて苗を生長させる培養工程と、
培養した苗を培地から培養土に移し替えて順化、育苗させる工程
からなる、野生ランの大量生産方法である。
On the other hand, “a method for mass production of wild orchids” in which wild orchids are cultivated aseptically has been introduced (Patent Document 1). This method is a method of mass-producing wild orchids such as shrimp, shung orchid, and hekkaran, which are designated as endangered species, without using symbiotic bacteria.
A pretreatment step of performing germination inhibitor removal treatment and sterilization treatment on artificially pollinated seeds;
A culture process for growing seedlings by providing a first culture process for seeding and cultivating seeds in a medium containing a germination promoter, and a second culture process for culturing the seed in a medium containing a root promoter;
This is a method for mass production of wild orchids, which includes the process of transferring cultured seedlings from the medium to the culture soil, acclimatizing and raising them.

非特許文献1によれば、無菌でのランの発芽は多くの種で可能となり、園芸植物としての発展を遂げてきた。   According to Non-Patent Document 1, germination of aseptic orchids has become possible in many species and has developed as a horticultural plant.

一方、腐生ランを含む地生ランについても同様の試みは行われており、その詳細は非特許文献2にまとめられている。   On the other hand, similar attempts have been made for terrestrial orchids including humic orchids, and the details are summarized in Non-Patent Document 2.

しかしながら、腐生ランのなかでもショウキラン属、特にシナノショウキランについては、人工発芽や人工培養の成功例はいまだ報告されていない。
特開2003−189750公報 ジョゼフ アーディティ編著「ランの生物学I」(市橋 正一 日本語版編集 誠文堂新光社 1991年 13頁) 「Terrestrial Orchid」(Hanne N.Rasmussen CAMBRIDGE UNIVERSITY PRESS 1995年 17頁、77頁、142頁、227頁)
However, among the humic orchids, no successful examples of artificial germination or artificial culture have yet been reported for the genus Shokilan, particularly Shinano shokiran.
JP 2003-189750 A Joseph Ardity edited by "Orchid Biology I" (Edited by Shoichi Ichihashi, Japanese version of Seikodo Shinkosha, 1991, p. 13) “Terrestrial Orchid” (Hanne N. Rasmussen CAMBRIDGE UNIVERSITY PRESS 1995, pp. 17, 77, 142, 227)

そこで本発明は、葉緑素を持たない腐生ラン、特にシナノショウキランの無菌人工培養に最適な培地を提供し、また、これを用いた無菌発芽及び無菌増殖によりシナノショウキランの保護に必要な培養苗を育成することを目的とする。さらに本発明によって増殖した苗を無菌で肥大させることにより、無菌培養下での充実した培養苗の育成方法を提供するものである。   Therefore, the present invention provides a medium optimal for aseptic artificial culture of humic orchids that do not have chlorophyll, especially linden guts, and also provides cultured seedlings necessary for protection of linden guts by sterilized germination and sterilization. It aims to nurture. Further, the present invention provides a method for growing a solid cultured seedling under aseptic culture by aseptically growing the seedling grown according to the present invention.

上記課題を解決するために、本発明者は鋭意研究を重ねた結果、以下のような無菌人工培養方法を開発した。   In order to solve the above-mentioned problems, the present inventor has developed an aseptic artificial culture method as described below as a result of intensive research.

本発明の無菌人工培養方法は、腐生ランの種子を無菌発芽培地上で無菌的に発芽させる工程と、発芽し分化したものを無菌増殖培地で増殖させる工程とを備えている。   The aseptic artificial culture method of the present invention includes a step of germinating humic orchid seeds on a sterile germination medium and a step of growing germinated and differentiated seeds on a sterile growth medium.

また、必要に応じて、無菌増殖培地で増殖させた後、さらに無菌肥大培地で肥大させることも可能である。   In addition, if necessary, after growing in a sterile growth medium, it can be further enlarged using a sterile enlargement medium.

まず、無菌人工培養をするシナノショウキランの種子を採取する。ラン科植物の種子は、さく果(朔果)と呼ばれる果実の中に入っているが、野生株では結実率が不安定であることから人工受粉によって結実させることが望ましい。人工受粉は自家受粉、他家受粉のいずれの方法も用いることができる。結実したさく果は採取後滅菌処理を行う必要がある。滅菌処理方法としては、例えば、さく果を流水下で、脱脂綿等でこすりながら表面を洗浄し、70%エタノールに30秒間浸漬・攪拌する。続いて1%次亜鉛素酸ナトリウム水溶液に10分浸漬・攪拌後滅菌水で5分×3回すすぎを行う。その後さらに70%エタノールに1分間浸漬し、ガスバーナーで表面を焼いて完全に滅菌を行うことができる。   First, the seeds of shinanoshoquiran to be aseptically cultured are collected. The seeds of orchidaceae are contained in the fruit called “fruits” (fruits). However, since the fruiting rate is unstable in wild strains, it is desirable to produce them by artificial pollination. For artificial pollination, either self-pollination or cross-pollination can be used. The fruited fruit must be sterilized after collection. As a sterilization method, for example, the surface of the sorghum is washed under running water while rubbing with absorbent cotton or the like, and immersed and stirred in 70% ethanol for 30 seconds. Then, after immersing and stirring in a 1% sodium zincate aqueous solution for 10 minutes, rinse with sterilized water for 5 minutes × 3 times. Thereafter, it is further immersed in 70% ethanol for 1 minute, and the surface is baked with a gas burner for complete sterilization.

続いてさく果の先端を切り落として縦半分に割り、中の種子を掻きだして無菌発芽培地に置床する。無菌発芽培地の成分組成は、通常、無機質の窒素・リン・カリウムを約1:1:3の割合で含有する複合肥料0.5〜8.0kgm-3、窒素源0.5〜5.0kgm-3、炭素源2.0〜60.0kgm-3、凝固剤0〜20.0kgm-3とする。望ましくは、無機質の窒素・リン・カリウムを約1:1:3の割合で含有する複合肥料1.0〜5.0kgm-3、窒素源1.0〜3.0kgm-3、炭素源5.0〜40.0kgm-3、凝固剤0〜15.0kgm-3とする。 Subsequently, the tip of the fruit is cut off and divided into half halves, and the seeds inside are scraped and placed in a sterile germination medium. The component composition of the sterile germination medium is usually 0.5 to 8.0 kgm −3 of a fertilizer containing inorganic nitrogen, phosphorus and potassium in a ratio of about 1: 1: 3, and a nitrogen source of 0.5 to 5.0 kgm. -3 , carbon source 2.0 to 60.0 kgm -3 , coagulant 0 to 20.0 kgm -3 . Desirably, compound fertilizer containing inorganic nitrogen, phosphorus, and potassium in a ratio of about 1: 1: 3, 1.0 to 5.0 kgm −3 , nitrogen source 1.0 to 3.0 kgm −3 , carbon source 5. 0 to 40.0 kgm −3 and coagulant 0 to 15.0 kgm −3 .

前記複合肥料として例えば微粉ハイポネックス(ハイポネックスジャパン(株)登録商標)を好適に使用することができる。   As the composite fertilizer, for example, fine powder HONEX (Hyponex Japan Co., Ltd. registered trademark) can be suitably used.

また、前記窒素源としては、例えばペプトン、プロテアーゼペプトン、プロテアーゼペプトンNo.3、トリプトン、トリプテーゼ、ネオペプトン、プロトン、カシトン、カザミノ酸又はイースト抽出物等タンパク質の加水分解物を使用することができる(非特許文献1 95頁)。特にカザミノ酸は好適に使用可能である。   Examples of the nitrogen source include peptone, protease peptone, and protease peptone no. 3, Hydrolyzate of protein such as tryptone, tryptase, neopeptone, proton, casitone, casamino acid or yeast extract can be used (Non-patent Document 1, page 95). In particular, casamino acid can be preferably used.

さらに前記炭素源としては、グルコース(ブドウ糖)、フルクトース(果糖)、マン二トール等の単糖類、スクロース(蔗糖)、マルトース(麦芽糖)等の二糖類、またはオリゴ糖の群から一種または二種以上を使用可能であるが、特にグルコース(単糖)、スクロース(非還元性二糖類)を使用することが望ましい。さらには、スクロースを使用することが望ましい。本発明者らは、スクロースを使用した方がグルコースに比して発芽率が良好であることを確認している。   Further, as the carbon source, one or more kinds from the group of monosaccharides such as glucose (fructose), fructose (fructose), mannitol, disaccharides such as sucrose (sucrose) and maltose (maltose), or oligosaccharides In particular, it is desirable to use glucose (monosaccharide) and sucrose (non-reducing disaccharide). Furthermore, it is desirable to use sucrose. The present inventors have confirmed that the use of sucrose has a better germination rate than glucose.

種子を採取後無菌発芽培地に播種するが、培地としては液体培地よりも固体培地のほうが望ましい。種子が空気雰囲気下に置かれたほうが発芽率は良好だからである。そのため、凝固剤を添加し固体培地とすることが望ましい。前記凝固剤としては、寒天、ゲルライト(ジェランガム)、増粘性多糖類等凝固剤を使用することができるが、特に寒天、ゲルライトを好適に使用することができる。さらに、無菌発芽培地は通常、pH約5.3〜6.0であるが、望ましくはpH約5.5〜5.8とする。   The seed is collected and then sown in a sterile germination medium. As the medium, a solid medium is preferable to a liquid medium. This is because the germination rate is better when the seeds are placed in an air atmosphere. Therefore, it is desirable to add a coagulant to obtain a solid medium. As the coagulant, coagulants such as agar, gellite (gellan gum), thickening polysaccharides and the like can be used, and agar and gellite can be particularly preferably used. Further, the sterile germination medium usually has a pH of about 5.3 to 6.0, but preferably has a pH of about 5.5 to 5.8.

また、種子を播種する無菌発芽培地の形態としては、必ずしも固体培地である必要は無い。前記凝固剤を添加しない液体の無菌発芽培地を、例えばスポンジ、不織布、紙等の吸水性支持体に浸透させ、その表面に播種して無菌発芽培地とすることも可能である。ただしこの場合使用する吸水性支持体の滅菌を行う必要がある。   Further, the form of the sterile germination medium for seeding the seed is not necessarily a solid medium. It is also possible to infiltrate a water-absorbing support such as sponge, non-woven fabric, paper, etc. with a liquid aseptic germination medium without adding the coagulant and sow on the surface thereof to make a sterile germination medium. In this case, however, it is necessary to sterilize the water-absorbing support used.

種子を前記無菌発芽培地上に播種すると、2〜3ヶ月で発芽しプロトコーム(原塊体)が形成される。プロトコームを形成した種子は、さらにリゾーム(根茎)へと成長する。種子がプロトコーム又はリゾームへと成長した段階で次の工程である無菌増殖培地に移し代える。   When seeds are sown on the germination medium, germination occurs in 2 to 3 months, and a protocomb (original block) is formed. The seed that formed the protocomb further grows into a lysosome (rhizome). When the seed grows into a protocomb or a lysozyme, it is transferred to a sterile growth medium which is the next step.

無菌増殖培地の成分組成は、通常、無機質の窒素・リン・カリウムを約1:1:3の割合で含有する複合肥料0.5〜8.0kgm-3、窒素源0.5〜5.0kgm-3、炭素源2.0〜60.0kgm-3、凝固剤0〜20.0kgm-3とする。望ましくは、無機質の窒素・リン・カリウムを約1:1:3の割合で含有する複合肥料1.0〜5.0kgm-3、窒素源1.0〜3.0kgm-3、炭素源5.0〜40.0kgm-3、凝固剤0〜15.0kgm-3とする。 The component composition of the sterile growth medium is usually 0.5 to 8.0 kgm −3 of a fertilizer containing inorganic nitrogen, phosphorus and potassium in a ratio of about 1: 1: 3, and a nitrogen source of 0.5 to 5.0 kgm. -3 , carbon source 2.0 to 60.0 kgm -3 , coagulant 0 to 20.0 kgm -3 . Desirably, compound fertilizer containing inorganic nitrogen, phosphorus, and potassium in a ratio of about 1: 1: 3, 1.0 to 5.0 kgm −3 , nitrogen source 1.0 to 3.0 kgm −3 , carbon source 5. 0 to 40.0 kgm −3 and coagulant 0 to 15.0 kgm −3 .

複合肥料、窒素源、炭素源についても前記無菌発芽培地と同様の成分を使用することが可能である。さらに、無菌増殖培地は通常、pH約5.3〜6.0であるが、望ましくは、pH約5.5〜5.8とする。   It is possible to use the same components as in the sterile germination medium for the complex fertilizer, nitrogen source, and carbon source. Furthermore, the sterile growth medium usually has a pH of about 5.3 to 6.0, but preferably has a pH of about 5.5 to 5.8.

上記無菌増殖培地に移し代えたプロトコーム又はリゾームは、成長と肥大を続ける。例えば約2ヶ月後、前記プロトコーム又はリゾームを充実した培養苗にしたい場合には、無菌肥大培地に移し替える。   The protocomb or resome transferred to the sterile growth medium continues to grow and enlarge. For example, after about 2 months, if it is desired to make the protocomb or lysome a rich cultured seedling, it is transferred to a sterile hypertrophic medium.

無菌肥大培地としては、Norstog培地を使用することが望ましい。Norstog培地の主要な成分は表4に示す。   As a sterile enlargement medium, it is desirable to use a Norstog medium. The main components of Norstog medium are shown in Table 4.

<試料採取>
人工増殖のための試料として、シナノショウキランの花茎、さく果、及び地下茎を採取した。シナノショウキランの生息地では、開花・結実期の気温12〜26℃、10cm深さの地温17〜18℃、40cm深さの地温15〜17℃、湿度66〜99%、照度610〜43700lx、光子量11〜658μmolm-2-1との測定結果を得た。シナノショウキランの好む環境は、高温になることはないが、湿度が高く直射の届きにくい環境であることが予想できる。
<Sample collection>
As samples for artificial growth, flower stems, berries, and underground stems of Shinano shokiran were collected. In the habitat of Shinanosho Kiran, the temperature of flowering and fruiting is 12-26 ° C, the soil temperature is 17-18 ° C at a depth of 10 cm, the soil temperature is 15-17 ° C at a depth of 40 cm, the humidity is 66-99%, the illumination is 610-43700 lx, Measurement results with photon amounts of 11 to 658 μmolm −2 s −1 were obtained. The environment that Shinano Shokiran prefers does not reach high temperatures, but it can be expected that it is highly humid and difficult to reach directly.

また、生息土壌の表層部は腐植が堆積している。その下部には大量の礫が存在し粘土質の土壌がその間隙を充填している。   Also, humus is deposited on the surface layer of the habitat soil. There is a large amount of gravel at the bottom, and clayey soil fills the gap.

受精した場合には、直後から花弁の褐変化が始まり、やがて花の基部が膨らみ始める。開花3週間後には、大きなさく果(朔果)となり、その後約1ヶ月で熟す。多くはこの過程で昆虫による食害を受けるため、自然状態での結実数は大変低いものである。   When fertilized, the petal begins to turn brown immediately afterwards, and eventually the base of the flower begins to swell. After 3 weeks of flowering, the fruits become large berries (fruits) and then ripen in about a month. Many of them suffer from insect damage during this process, so the number of fruits in the natural state is very low.

試料採取にあたり、結実率を向上させるため人工受粉も実施した。
<無菌発芽と無菌増殖>
1)無菌発芽
採取したさく果は、流水下で脱脂綿でこすりながら表面を洗浄し、70%エタノールに30秒間浸漬して攪拌した。つぎに1%次亜鉛素酸ナトリウム水溶液に10分浸漬・攪拌し、滅菌水で5分×3回すすいだ。さらに、70%エタノールに1分浸漬・攪拌した後、ガスバーナーで表面を焼いて完全に滅菌した。
Artificial pollination was also carried out in order to improve the fruiting rate.
<Aseptic germination and aseptic growth>
1) Aseptic germination The surface of the collected sap was washed with absorbent cotton under rubbing water, and immersed in 70% ethanol for 30 seconds and stirred. Next, it was immersed and stirred for 10 minutes in a 1% aqueous sodium zincate solution and rinsed with sterile water for 5 minutes × 3 times. Further, after being immersed and stirred in 70% ethanol for 1 minute, the surface was baked with a gas burner and completely sterilized.

さく果の先端を切り落として縦半分に割り、中の種子を掻きだして無菌発芽培地に置床した。無菌発芽培地には、複合肥料としてハイポネックスを含むものと希釈したMS培地成分を含むものを用意し、それぞれ液体及び固体の培地を使用した。無菌発芽培地の成分組成の例を表1に示す。   The tip of the fruit was cut off and split into half halves, the seeds inside were scraped and placed in a sterile germination medium. As a sterile germination medium, a compound fertilizer containing Hyponex and a diluted MS medium component were prepared, and liquid and solid media were used, respectively. An example of the component composition of the sterile germination medium is shown in Table 1.

Figure 2005245332
シナノショウキランの種子は、熟度が進むと種子表面の筋模様が濃くはっきりしてくる。さく果には虫喰いなどの痛みが多く、さく果を表面殺菌しても培養中にコンタミネーション(雑菌混入)が多く発生した。しかし、コンタミネ―ションを起こした種子は、一旦培地から取り出して再度滅菌すれば、再び発芽試験に用いることが可能である。
Figure 2005245332
As the seeds of Shinanosho Kiran grow, the streaks on the seed surface become darker and clearer. The berries have many pains such as insect bites, and even when the berries were sterilized, many contaminations (mixed bacteria) occurred during the cultivation. However, once contaminated seeds are removed from the medium and sterilized again, they can be used again in the germination test.

無菌発芽培地の種類を代え、発芽状況を観察した。また、各培地で種子の熟度によって発芽数にどのような差が見られるのかについても観察した。観察結果を以下に示す。   The germination situation was observed by changing the type of sterile germination medium. In addition, the difference in the number of germination depending on the maturity of seeds in each medium was also observed. The observation results are shown below.

Figure 2005245332
置床後2〜3ヶ月を経ると、一部の種子からプロトコーム状に白く膨らんだ組織ができる。この実験では、前記状態に成長した種子を発芽種子とした。種子は、未熟なもののほうが発芽率が高く、培地は、液体よりも固体のほうが発芽率は高い。
Figure 2005245332
Two to three months after placement, a tissue that swells white like a protocomb is formed from some seeds. In this experiment, seeds grown in the above state were used as germinated seeds. Seeds have a higher germination rate for immature seeds, and a medium has a higher germination rate for solids than liquids.

2)無菌増殖
無菌発芽培地で発芽後、プロトコーム状あるいはリゾームへと生長した段階で数種の無菌増殖培地へと移植し、定期的な重量測定、写真撮影など行い経過を観察した。
2) Sterile growth After germination in a sterile germination medium, the seeds were transplanted to several types of sterile growth medium at the stage of growth into a protocomb or lysosome, followed by regular weight measurement, photography, etc., and the progress was observed.

無菌増殖培地の成分組成の例を表3に示す。   Table 3 shows examples of the component composition of the sterile growth medium.

Figure 2005245332
前記無菌発芽と同様、当初はハイポネックス培地(液体)でリゾームの生育が早く、2ヶ月後に600%の成長率を示した。ここで成長率とは、試験開始時のリゾーム又はプロトコームの質量に対して増加した質量(累積した各月の増加質量)の割合をいう。その後、Norstog培地でのリゾームの増加量(月次の増加質量)が大きくなり、4ヶ月後にはハイポネックス培地(液体)でのリゾームの増加量を上回り旺盛な生育を続けた。MS培地を基本とした培地は、他のラン科植物で発明者等がもっとも良い結果を得た1/20MS改変培地と、EC(電気伝導度)をハイポネックス培地(液体)と同等にした1/2MS改変培地を用いたが、どちらも生長が遅く差もなかった。またT処方培地は炭素源としてスクロースを用いたが、全くと言えるほどリゾームは生長しなかった。
Figure 2005245332
Similar to the germination, the growth of the lysosome was fast in the Hyponex medium (liquid), and the growth rate was 600% after 2 months. Here, the growth rate refers to the ratio of the increased mass (accumulated mass for each month) to the mass of the lysosome or protocomb at the start of the test. Thereafter, the amount of increase in lysosome (monthly increase mass) in the Norstog medium increased, and after 4 months, the amount of increase in lysosome in the Hyponex medium (liquid) exceeded that of vigorous growth. The medium based on the MS medium is a 1/20 MS modified medium that the inventors have obtained the best results in other orchidaceae plants, and 1/20 MS (conductivity) equivalent to the Hyponex medium (liquid). Although 2MS modified medium was used, neither of them was slow to grow and there was no difference. The T-prescription medium used sucrose as a carbon source, but the lysozyme did not grow as much as it could be said.

前記無菌増殖培地のうち、ハイポネックス培地(液体)、1/20MS改変培地、Norstog培地での結果を図1に示す。   FIG. 1 shows the results of Hyponex medium (liquid), 1/20 MS modified medium, and Norstog medium among the above-described sterile growth medium.

培地の違いによる最も大きな差は形態である。生育の良かったハイポネックス培地(液体)では、細いリゾームが何本もでき、ごくまれに1〜2本のリゾームがより太く生長した。一方同程度の成長量を示したNorstog培地では、最初から1〜2本のリゾームが太く成長し、6ヶ月後には節間が詰まっていたものの現地で採取したほどの太さに成長した。
<考察>
ショウキラン属は、これまで殆ど研究例がなく、ショウキランの保護対策を確立するために、人工受粉、無菌培養に取り組んできた。
The biggest difference due to the difference in culture medium is the morphology. Hyponex medium (liquid), which had good growth, produced many thin lysosomes, and very rarely 1 to 2 lysosomes grew thicker. On the other hand, in the Norstog medium showing the same amount of growth, one to two resomes grew thick from the beginning, and after six months the internodes were clogged, but grew to a thickness that was collected locally.
<Discussion>
There have been few studies on the genus Shokilan, and artificial pollination and aseptic culture have been addressed in order to establish protection measures for shokilan.

生態調査では、毎年同じ場所にシナノショウキランが見られることはまれで、特に大きな群落が見られた場所では、翌年シナノショウキランを見ることはできなかった。このため、土壌から現れるタイミングを観察したり、開花初期から虫害防除を施したりすることが殆どできなかった。自然状態で種子はつきにくく、またついても成熟まで達するものが非常に少なく、保護増殖が難しい植物である。   In the ecological survey, linden groves were rarely found in the same place every year, and especially in places where large communities were seen, we could not see linden groves the following year. For this reason, it was hardly possible to observe the timing of emergence from the soil or to carry out insect damage control from the beginning of flowering. It is a plant that is difficult to protect and proliferate because it is difficult to grow seeds in the natural state, and there are very few seeds that reach maturity.

人工授粉については、自家受粉と他家受粉のどちらが適当であるかは明言できないが、人工受粉の有効性は示されたと考えられる。   With regard to artificial pollination, it is not clear whether self-pollination or cross-pollination is appropriate, but the effectiveness of artificial pollination is considered to have been demonstrated.

無菌発芽培地を用いれば、共生菌が無くとも発芽させることができる。無菌発芽に用いる種子は比較的未熟であることが望ましく、本実施例では、受粉後1ヶ月程度のもので良い結果を得た。基本培地による差は殆ど無いが、ペプトンやカザミノ酸が添加されていることが望ましく、これらを添加していない培地では、発芽は無いか発芽しても成長はみられなかった。   If a sterile germination medium is used, germination can be achieved without symbiotic bacteria. It is desirable that the seeds used for aseptic germination are relatively immature, and in this example, good results were obtained with about one month after pollination. Although there is almost no difference depending on the basic medium, it is desirable that peptone or casamino acid is added. In the medium to which these were not added, there was no germination or growth even after germination.

また、固体培地の方が発芽数は多い。液体培地では種子が沈んでしまうことから、酸素供給量が影響しているものと考えられる。   Moreover, the number of germination is larger in the solid medium. Since seeds sink in the liquid medium, it is considered that the oxygen supply amount has an influence.

発芽後は、プロトコームからリゾームへと成長し、in Vitro(試験管内)での植物体保持は問題なく行えるようになった。細く枝分かれしたリゾームは、細かく折って増殖させることができ、実施例で用いたリゾームも同様にして増やした個体である。枝分かれしてボリュームのでたリゾームからは、ごくまれに1〜2本の太いリゾームが成長したが、Norstog培地では枝分かれすること無く、太くがっちりとしたリゾームが成長した。   After germination, the protocomb grew into a lysosome, and plant body retention in vitro (in vitro) became possible without problems. The thinly branched lysosomes can be broken and proliferated, and the lysosomes used in the examples are also increased in the same manner. Rarely, one or two thick lysosomes grew from branched and volumey lysosomes, but a thick and solid lysosome grew without branching in Norstog medium.

無菌培地の組成をさらに細かく検討し、細かく枝分かれする条件、太いリゾームを伸ばす条件を明らかにできれば、個体の保護増殖だけでなく、生態解明のうえでも新たな知見を得られる可能性がある。   If the composition of a sterile medium is examined in more detail and the conditions for fine branching and the expansion of thick lysosomes can be clarified, there is a possibility that new knowledge can be obtained not only for the protective growth of individuals but also for the elucidation of ecology.

本発明に係る無菌人工培養方法により、シナノショウキランの保護が可能となるだけでなく、ショウキラン属、さらには腐生ランに属する多くのランの野生株を保護にも適用可能であることが期待される。   It is expected that the sterile artificial culture method according to the present invention can not only protect Shinano shokiran, but can also be applied to protect wild orchid strains belonging to the genus Shokilan, and further to orchid orchids. Is done.

前述のNorstog培地の組成を以下に示す。

Figure 2005245332
The composition of the aforementioned Norstog medium is shown below.
Figure 2005245332

培地の種類と無菌リゾームの成長を示すヒストグラムである。It is a histogram which shows the kind of culture medium and the growth of aseptic lysosome.

Claims (17)

シナノショウキランの無菌人工培養において、種子を無菌発芽培地上で無菌的に発芽させる工程と、発芽し分化したものを無菌増殖培地で増殖させる工程とを備えることを特徴とするシナノショウキランの無菌人工培養方法。   In aseptic artificial culture of shinanoshokiran, sterilization of shinanoshoquiran characterized by comprising a step of germinating seeds aseptically on a germination medium and a step of propagating germinated and differentiated materials in a sterile growth medium Artificial culture method. 前記無菌増殖培地で増殖させる工程の後、さらに無菌肥大培地で肥大させることを特徴とする請求項1記載のシナノショウキランの無菌人工培養方法。   The method for aseptic artificial culture of shinanoshoquiran according to claim 1, wherein after the step of growing in the sterile growth medium, the mixture is further enlarged in a sterile enlargement medium. 前記無菌発芽培地の成分組成が、無機質の窒素・リン・カリウムを約1:1:3の割合で含有する複合肥料0.5〜8.0kgm-3、窒素源0.5〜5.0kgm-3、炭素源2.0〜60.0kgm-3、凝固剤0〜20.0kgm-3、の組成要件を満たすことを特徴とする請求項1又は2記載のシナノショウキランの無菌人工培養方法。 The component composition of the germination medium is 0.5 to 8.0 kgm −3 of a fertilizer containing inorganic nitrogen, phosphorus and potassium at a ratio of about 1: 1: 3, and a nitrogen source of 0.5 to 5.0 kgm −. 3. The aseptic artificial culture method for linden shrimp according to claim 1, wherein the composition requirements of carbon source 2.0 to 60.0 kgm −3 and coagulant 0 to 20.0 kgm −3 are satisfied. 前記無菌発芽培地の成分組成のうち、複合肥料が微粉ハイポネックス(ハイポネックスジャパン(株)登録商標)であることを特徴とする請求項3記載のシナノショウキランの無菌人工培養方法。   4. The aseptic artificial culture method for shinanoshoquiran according to claim 3, wherein, among the component composition of the sterile germination medium, the compound fertilizer is fine powder Hyponex (registered trademark of Hyponex Japan). 前記無菌発芽培地の成分組成のうち、窒素源がタンパク質の加水分解物であることを特徴とする請求項3又は4記載のシナノショウキランの無菌人工培養方法。   5. The aseptic artificial culture method for shinanoshoquiran according to claim 3 or 4, wherein a nitrogen source is a protein hydrolyzate among the component composition of the sterile germination medium. 前記タンパク質の加水分解物が、カザミノ酸であることを特徴とする請求項5記載のシナノショウキランの無菌人工培養方法。   6. The aseptic artificial culture method of shinanoshoquiran according to claim 5, wherein the protein hydrolyzate is casamino acid. 前記無菌発芽培地の成分組成のうち、炭素源が単糖類、二糖類又はオリゴ糖の群から選ばれる一種又は二種以上であることを特徴とする請求項3〜6いずれか一記載のシナノショウキランの無菌人工培養方法。   7. The linden show according to any one of claims 3 to 6, wherein among the component composition of the germination medium, the carbon source is one or more selected from the group of monosaccharides, disaccharides and oligosaccharides. A sterile artificial culture method for Kiran. 前記無菌発芽培地の成分組成のうち、凝固剤がゲルライト(ジェランガム)であることを特徴とする請求項2〜7いずれか一記載のシナノショウキランの無菌人工培養方法。   The sterilized artificial culture method of shinanoshoquiran according to any one of claims 2 to 7, wherein the coagulant is gellite (gellan gum) among the components of the germination medium. 前記無菌発芽培地が、pH約5.3〜6.0であることを特徴とする請求項3〜8いずれか一記載のシナノショウキランの無菌人工培養方法。   9. The aseptic artificial culture method for shinanoshoquiran according to any one of claims 3 to 8, wherein the sterile germination medium has a pH of about 5.3 to 6.0. 前記無菌増殖培地の成分組成が、無機質の窒素・リン・カリウムを約1:1:3の割合で含有する複合肥料0.5〜8.0kgm-3、窒素源0.5〜5.0kgm-3、炭素源2.0〜60.0kgm-3、凝固剤0〜20.0kgm-3、の組成要件を満たすことを特徴とする請求項1又は2記載のシナノショウキランの無菌人工培養方法。 The component composition of the sterile growth medium is 0.5 to 8.0 kgm −3 of a complex fertilizer containing inorganic nitrogen, phosphorus and potassium in a ratio of about 1: 1: 3, and a nitrogen source of 0.5 to 5.0 kgm −. 3. The aseptic artificial culture method for linden shrimp according to claim 1, wherein the composition requirements of carbon source 2.0 to 60.0 kgm −3 and coagulant 0 to 20.0 kgm −3 are satisfied. 前記無菌増殖培地の成分組成のうち複合肥料が、微粉ハイポネックスであることを特徴とする請求項10記載のシナノショウキランの無菌人工培養方法。   The aseptic artificial culture method for shinanoshoquiran according to claim 10, wherein the compound fertilizer of the component composition of the sterilized growth medium is fine powder hyponex. 前記無菌増殖培地の成分組成のうち窒素源が、タンパク質の加水分解物であることを特徴とする請求項10記載のシナノショウキランの無菌人工培養方法。   The aseptic artificial culture method of shinanoshoquiran according to claim 10, wherein the nitrogen source of the component composition of the sterile growth medium is a protein hydrolyzate. 前記タンパク質の加水分解物が、カザミノ酸であることを特徴とする請求項12記載のシナノショウキランの無菌人工培養方法。   The aseptic artificial culture method of Shinanoshokiram according to claim 12, wherein the protein hydrolyzate is casamino acid. 前記無菌増殖培地の成分組成のうち炭素源が、単糖類、二糖類又はオリゴ糖の群から選ばれる一種又は二種以上であることを特徴とする請求項10〜13いずれか一記載のシナノショウキランの無菌人工培養方法。   The linden show according to any one of claims 10 to 13, wherein the carbon source in the composition of the sterile growth medium is one or more selected from the group of monosaccharides, disaccharides and oligosaccharides. A sterile artificial culture method for Kiran. 前記無菌増殖培地がpH約5.3〜6.0であることを特徴とする請求項10〜14いずれか一記載のシナノショウキランの無菌人工培養方法。   The aseptic artificial culture method for shinanoshoquiran according to any one of claims 10 to 14, wherein the sterile growth medium has a pH of about 5.3 to 6.0. 前記無菌肥大培地が、Norstog培地であることを特徴とする請求項2〜15のいずれか一記載のシナノショウキランの無菌人工培養方法。   The aseptic artificial culture method for shinanoshoquiran according to any one of claims 2 to 15, wherein the aseptic enlargement medium is a Norstog medium. ショウキラン属の無菌人工培養において、種子を無菌発芽培地上で無菌的に発芽させる工程と、発芽し分化したものを無菌増殖培地で増殖させる工程とを備えることを特徴とするショウキラン属の無菌人工培養方法。



In the aseptic artificial culture of the genus Shochiran, the method comprises the steps of germinating seeds aseptically on a sterile germination medium, and proliferating the germinated and differentiated ones in an aseptic growth medium. Artificial culture method.



JP2004061293A 2004-03-04 2004-03-04 Aseptic artificial culture method of Shinanoshokiran Expired - Fee Related JP4549698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061293A JP4549698B2 (en) 2004-03-04 2004-03-04 Aseptic artificial culture method of Shinanoshokiran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061293A JP4549698B2 (en) 2004-03-04 2004-03-04 Aseptic artificial culture method of Shinanoshokiran

Publications (2)

Publication Number Publication Date
JP2005245332A true JP2005245332A (en) 2005-09-15
JP4549698B2 JP4549698B2 (en) 2010-09-22

Family

ID=35026425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061293A Expired - Fee Related JP4549698B2 (en) 2004-03-04 2004-03-04 Aseptic artificial culture method of Shinanoshokiran

Country Status (1)

Country Link
JP (1) JP4549698B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431149A (en) * 2022-03-05 2022-05-06 南昌大学 Non-symbiotic germination method for seeds of rare or endangered plant large yellow croaker calanthe
CN117561982A (en) * 2024-01-19 2024-02-20 深圳市兰科植物保护研究中心 Culture medium group for aseptic culture of beancurd blue Mao Eshan coral, application and culture method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972953A (en) * 2019-12-30 2020-04-10 临沧市云瑞堂生物科技有限公司 High-quality anoectochilus formosanus tissue culture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056875A (en) * 1996-08-23 1998-03-03 Nippon Mektron Ltd Culture of orchid
JP2002335755A (en) * 2002-05-17 2002-11-26 Iwate Prefecture Medium for plant belonging to cypripedium macranthum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056875A (en) * 1996-08-23 1998-03-03 Nippon Mektron Ltd Culture of orchid
JP2002335755A (en) * 2002-05-17 2002-11-26 Iwate Prefecture Medium for plant belonging to cypripedium macranthum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431149A (en) * 2022-03-05 2022-05-06 南昌大学 Non-symbiotic germination method for seeds of rare or endangered plant large yellow croaker calanthe
CN114431149B (en) * 2022-03-05 2022-11-08 南昌大学 Non-symbiotic germination method for seeds of rare or endangered plant large yellow croaker calanthe
CN117561982A (en) * 2024-01-19 2024-02-20 深圳市兰科植物保护研究中心 Culture medium group for aseptic culture of beancurd blue Mao Eshan coral, application and culture method thereof
CN117561982B (en) * 2024-01-19 2024-03-26 深圳市兰科植物保护研究中心 Culture medium group for aseptic culture of beancurd blue Mao Eshan coral, application and culture method thereof

Also Published As

Publication number Publication date
JP4549698B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
CN100444722C (en) Cyrtopterin tissue culturing method and fast reproduction thereof
CN102187810B (en) Tissue culture propagation method for curcuma soloensis
CN110679482B (en) Chrysanthemum multocida detoxification culture medium with high stem tip induction rate and tissue culture quality and method
CN100405897C (en) Method for breeding clonal seedling by utilizing muskmelon seed leaf segment
JPH09271282A (en) Manufacture of moth orchid seedling by root apex cultivation
CN113661924B (en) Tissue culture rapid propagation method of Baotihua
CN109757373A (en) A kind of Jing Banxia quick breeding method for tissue culture
CN113331055A (en) Cutting method of stingless pepper tissue culture seedlings
CN1341350A (en) Method for high-efficiency breeding rice polyploid by combination of tissue culture and chemical induction
CN104542307A (en) Culturing method of momordica cochinchinensis
CN103155869A (en) Sweet cherry rootstock Colt tissue culture method
CN103843664A (en) Lycium exsertum tissue culture and rapid propagation method
JP4549698B2 (en) Aseptic artificial culture method of Shinanoshokiran
CN104094841B (en) Solanaceae Lycium short handle matrimony vine tissue is cultivated and method for quickly breeding
Gangaprasad et al. Micropropagation of terrestrial orchids, Anoectochilus sikkimensis and Anoectochilus regalis
CN115316278A (en) Seed propagation technology of atractylodes lancea of Compositae
KR100741816B1 (en) The orchid seed chip and the method of preparing it
Hume et al. A methodological problem in genecology. Seeds versus clones as source material for uniform gardens
CN112806265A (en) Yaozhao tissue culture method taking leaves as explants
CN105815214A (en) Leaf seedling rapid breeding method of ornithogalum caudatum
CN112243856A (en) Early-maturing late-japonica rice hybrid breeding method
CN105123522A (en) Tissue culture rapid propagation method of Guangxi Mayten
JP2000197423A (en) Culture and proliferation of solanaceous plant
CN111374015B (en) Sexual propagation method for rodgersia southwest
JPH0937666A (en) Tissue culture of sophora japonica l.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees