JP2005243872A - Photoelectric converter and manufacturing method thereof - Google Patents

Photoelectric converter and manufacturing method thereof Download PDF

Info

Publication number
JP2005243872A
JP2005243872A JP2004050881A JP2004050881A JP2005243872A JP 2005243872 A JP2005243872 A JP 2005243872A JP 2004050881 A JP2004050881 A JP 2004050881A JP 2004050881 A JP2004050881 A JP 2004050881A JP 2005243872 A JP2005243872 A JP 2005243872A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
granular
insulating film
insulator
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004050881A
Other languages
Japanese (ja)
Inventor
Yoshio Miura
好雄 三浦
Youji Seki
洋二 積
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004050881A priority Critical patent/JP2005243872A/en
Publication of JP2005243872A publication Critical patent/JP2005243872A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter having higher conversion efficiency. <P>SOLUTION: The photoelectric converter can provide higher conversion efficiency by joining many particle semiconductors 20 for photoelectric conversion on a substrate 1 working as a lower electrode, providing an insulator 4 to the lower portions among these particle semiconductors, providing an insulating film 6 including non-covering portion to the upper portions of the particle semiconductors 20, and forming a light transmissive conductive layer 5 working as an upper electrode on the insulator 4 and the insulating film 6 for electrical connection with the particle semiconductors 20 through the non-covering portion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は光を電気に変換する太陽電池等の光電変換装置に関し、特に粒状半導体を用いた光電変換装置に関するものである。   The present invention relates to a photoelectric conversion device such as a solar cell that converts light into electricity, and more particularly to a photoelectric conversion device using a granular semiconductor.

従来から提案されている粒状半導体を用いた光電変換装置である太陽電池の例を図4に断面図で示す。   An example of a solar cell which is a photoelectric conversion device using a conventionally proposed granular semiconductor is shown in a sectional view in FIG.

すなわち、図4に示すように、基板101上に低融点金属層108が形成され、この低融点金属層108上に一方導電型の粒状半導体103の多数個が配設され、低融点金属層108が加熱されることでこれらの粒状半導体103が固定され、固定された粒状半導体103間を埋め、粒状半導体103と低融点金属108とを覆うように絶縁体102が形成された後、一方導電型の粒状半導体103上の絶縁体102の一部が研磨されて一方導電型の粒状半導体103を露出させ、その露出させた表面に他方導電型の半導体部104と透明導電層105とが順次形成された光電変換装置が開示されている(例えば特許文献1を参照。)。
特許第2641800号公報
That is, as shown in FIG. 4, a low melting point metal layer 108 is formed on a substrate 101, and a large number of one-conductivity type granular semiconductors 103 are disposed on the low melting point metal layer 108. These granular semiconductors 103 are fixed by heating, and the insulator 102 is formed so as to fill between the fixed granular semiconductors 103 and cover the granular semiconductors 103 and the low melting point metal 108, and then one conductivity type Part of the insulator 102 on the granular semiconductor 103 is polished to expose the one conductive type granular semiconductor 103, and the other conductive type semiconductor portion 104 and the transparent conductive layer 105 are sequentially formed on the exposed surface. A photoelectric conversion device is disclosed (see, for example, Patent Document 1).
Japanese Patent No. 2641800

しかしながら、図4に示す光電変換装置では、絶縁体102と一方導電型の粒状半導体103とを研磨するため、研磨工程により絶縁体102の厚みが薄い部分ができたり、絶縁体102に穴や剥がれなどの欠陥ができたりすることにより、透明導電層105と低融点金属層108とが短絡して変換効率が低下するという問題点があった。   However, in the photoelectric conversion device illustrated in FIG. 4, the insulator 102 and the one-conductivity-type granular semiconductor 103 are polished, so that a portion with a small thickness of the insulator 102 is formed by the polishing process, or a hole or a peeling is formed in the insulator 102. As a result, there is a problem that the transparent conductive layer 105 and the low melting point metal layer 108 are short-circuited to reduce conversion efficiency.

本発明はこの問題に鑑みてなされたものであり、その目的は、高い変換効率を有する光電変換装置を提供することにある。   The present invention has been made in view of this problem, and an object thereof is to provide a photoelectric conversion device having high conversion efficiency.

本発明の光電変換装置は、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合して、これら粒状半導体間の下部に絶縁体を設け、前記粒状半導体の上部に非被覆部を有する絶縁膜を設け、前記非被覆部を通じて前記粒状半導体と電気的に接続されるように、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層が形成されていることを特徴とするものである。   In the photoelectric conversion device of the present invention, a large number of granular semiconductors that perform photoelectric conversion are joined on a substrate that serves as a lower electrode, an insulator is provided between the granular semiconductors, and an uncoated portion is formed on the granular semiconductor. A transparent conductive layer serving as an upper electrode is formed on the insulator and the insulating film so as to be electrically connected to the granular semiconductor through the non-covering portion. It is characterized by.

また、本発明の光電変換装置は、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合して、これら粒状半導体の基板との接合部を除く表面に導電性保護層を設け、前記導電性保護層が形成された前記粒状半導体間の下部に絶縁体を設け、前記導電性保護層が形成された前記粒状半導体の上部に非被覆部を有する絶縁膜を設け、前記非被覆部を通じて前記導電性保護層と電気的に接続されるように、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層が形成されていることを特徴とするものである。   Further, the photoelectric conversion device of the present invention is provided with a plurality of granular semiconductors that perform photoelectric conversion on a substrate serving as a lower electrode, and a conductive protective layer is provided on the surface excluding the junction with the granular semiconductor substrate. An insulator is provided between the granular semiconductors on which the conductive protective layer is formed, and an insulating film having an uncoated portion is provided on the granular semiconductor on which the conductive protective layer is formed, A light-transmitting conductive layer serving as an upper electrode is formed on the insulator and the insulating film so as to be electrically connected to the conductive protective layer through the portion.

また、本発明の光電変換装置の製造方法は、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合する工程と、これら粒状半導体間の下部に絶縁体を、前記粒状半導体の上部に非被覆部を有する絶縁膜をそれぞれ形成する工程と、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層を形成して、前記粒状半導体と前記透光性導電層とを前記絶縁膜の前記非被覆部を通じて電気的に接続させる工程とを含むことを特徴とするものである。   The method for manufacturing a photoelectric conversion device of the present invention includes a step of bonding a number of granular semiconductors that perform photoelectric conversion on a substrate that serves as a lower electrode, and an insulator below the granular semiconductor, Forming an insulating film having an uncovered portion on the upper part, forming a light-transmitting conductive layer serving as an upper electrode on the insulator and the insulating film, and forming the granular semiconductor and the light-transmitting conductive layer And electrically connecting through the uncovered portion of the insulating film.

また、本発明の光電変換装置の製造方法は、上記製造方法において、前記基板および多数個の前記粒状半導体の上に、未硬化の2種類の絶縁材料を混合させて有機溶剤に溶かした混合溶液を供給し、前記粒状半導体間の下部に前記混合溶液を充填するとともに前記粒状半導体の上部に前記混合溶液の膜を形成した後に、前記混合溶液の硬化処理を行なって、前記絶縁体および前記非被覆部を有する前記絶縁膜を形成することを特徴とするものである。   Moreover, the manufacturing method of the photoelectric conversion device of the present invention is a mixed solution in which, in the above manufacturing method, two uncured insulating materials are mixed and dissolved in an organic solvent on the substrate and the plurality of granular semiconductors. And filling the mixed solution in the lower part between the granular semiconductors and forming a film of the mixed solution on the upper part of the granular semiconductor, followed by curing the mixed solution to obtain the insulator and the non- The insulating film having a covering portion is formed.

また、本発明の光電変換装置の製造方法は、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合する工程と、これら粒状半導体の前記基板との接合部を除く表面に導電性保護層を形成する工程と、前記粒状半導体間の下部に絶縁体を、前記導電性保護層が形成された前記粒状半導体の上部に非被覆部を有する絶縁膜をそれぞれ形成する工程と、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層を形成して、前記導電性保護層と前記透光性導電層とを前記絶縁膜の前記非被覆部を通じて電気的に接続させる工程とを含むことを特徴とするものである。   In addition, the method for manufacturing a photoelectric conversion device of the present invention includes a step of bonding a number of granular semiconductors that perform photoelectric conversion on a substrate to be a lower electrode, and a conductive surface on a surface of the granular semiconductor excluding the junction with the substrate. Forming a conductive protective layer, forming an insulator below the granular semiconductor, forming an insulating film having an uncovered portion above the granular semiconductor on which the conductive protective layer is formed, and A transparent conductive layer serving as an upper electrode is formed on the insulator and the insulating film, and the conductive protective layer and the transparent conductive layer are electrically connected through the uncovered portion of the insulating film. And a step of causing the step to occur.

また、本発明の光電変換装置の製造方法は、上記製造方法において、前記基板および多数個の前記導電性保護層が形成された粒状半導体の上に、未硬化の2種類の絶縁材料を混合させて有機溶剤に溶かした混合溶液を供給し、前記粒状半導体の下部に前記混合溶液を充填するとともに前記導電性保護層が形成された前記粒状半導体の上部に前記混合溶液の膜を形成した後に、前記混合溶液の硬化処理を行なって、前記絶縁体および前記非被覆部を有する前記絶縁膜を形成することを特徴とするものである。   Moreover, the method for manufacturing a photoelectric conversion device of the present invention is the method described above, wherein two uncured insulating materials are mixed on the substrate and the granular semiconductor on which the plurality of conductive protective layers are formed. After supplying a mixed solution dissolved in an organic solvent, filling the mixed solution in the lower part of the granular semiconductor and forming the film of the mixed solution on the upper part of the granular semiconductor on which the conductive protective layer is formed, The mixed solution is hardened to form the insulating film having the insulator and the non-covered portion.

本発明の光電変換装置によれば、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合して、これら粒状半導体間の下部に絶縁体を設け、粒状半導体の上部に非被覆部を有する絶縁膜を設け、非被覆部を通じて粒状半導体と電気的に接続されるように、絶縁体および絶縁膜の上に上部電極となる透光性導電層が形成されていることより、光電変換を行なう粒状半導体と透光性導電層とが非被覆部を通じて電気的に接続される一方で、上部電極となる透光性導電層と下部電極となる基板との短絡を防ぐことができるため、変換効率の高い光電変換装置となる。   According to the photoelectric conversion device of the present invention, a large number of granular semiconductors that perform photoelectric conversion are joined on a substrate that serves as a lower electrode, an insulator is provided between the granular semiconductors, and the upper part of the granular semiconductor is not covered. A transparent conductive layer serving as an upper electrode is formed on the insulator and the insulating film so as to be electrically connected to the granular semiconductor through the non-covered portion. Since the granular semiconductor to be converted and the translucent conductive layer are electrically connected through the non-covering portion, a short circuit between the translucent conductive layer serving as the upper electrode and the substrate serving as the lower electrode can be prevented. Thus, a photoelectric conversion device with high conversion efficiency is obtained.

また、本発明の光電変換装置によれば、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合して、これら粒状半導体の基板との接合部を除く表面に導電性保護層を設け、導電性保護層が形成された粒状半導体間の下部に絶縁体を設け、導電性保護層が形成された粒状半導体の上部に非被覆部を有する絶縁膜を設け、非被覆部を通じて導電性保護層と電気的に接続されるように、絶縁体および絶縁膜の上に上部電極となる透光性導電層が形成されていることより、光電流の発生した場所から上部電極となる透光性導電層までの経路の光電流に対する抵抗が少なくなり、発生した光電流の抵抗ロスを少なくすることができるため、変換効率の高い光電変換装置となる。   In addition, according to the photoelectric conversion device of the present invention, a large number of granular semiconductors that perform photoelectric conversion are bonded onto a substrate that serves as a lower electrode, and a conductive protective layer is formed on the surface excluding the bonding portion between the granular semiconductor and the substrate. An insulating material is provided below the granular semiconductor between which the conductive protective layer is formed, and an insulating film having an uncovered portion is provided above the granular semiconductor on which the conductive protective layer is formed. Since the light-transmitting conductive layer that becomes the upper electrode is formed on the insulator and the insulating film so as to be electrically connected to the conductive protective layer, the light-transmitting layer that becomes the upper electrode from the place where the photocurrent is generated. Since resistance to the photocurrent in the path to the photoconductive layer is reduced and resistance loss of the generated photocurrent can be reduced, a photoelectric conversion device with high conversion efficiency is obtained.

また、本発明の光電変換装置の製造方法によれば、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合する工程と、これら粒状半導体間の下部に絶縁体を、粒状半導体の上部に非被覆部を有する絶縁膜をそれぞれ形成する工程と、絶縁体および絶縁膜の上に上部電極となる透光性導電層を形成して、粒状半導体と透光性導電層とを絶縁膜の非被覆部を通じて電気的に接続させる工程とを含むため、研磨工程が不要となるとともに、上部電極となる透光性導電層と下部電極となる基板との短絡を確実に防ぐことができることより、変換効率が高い光電変換装置を生産性よく作製することができるものとなる。   In addition, according to the method for manufacturing a photoelectric conversion device of the present invention, a step of joining a number of granular semiconductors that perform photoelectric conversion on a substrate that serves as a lower electrode, and an insulator is provided below the granular semiconductor, and the granular semiconductor Forming an insulating film having an uncovered portion on the upper portion of the substrate, and forming a light-transmitting conductive layer as an upper electrode on the insulator and the insulating film to insulate the granular semiconductor from the light-transmitting conductive layer Including a step of electrically connecting through a non-covering portion of the film, and thus a polishing step is not required, and a short circuit between the translucent conductive layer serving as the upper electrode and the substrate serving as the lower electrode can be reliably prevented. Thus, a photoelectric conversion device with high conversion efficiency can be manufactured with high productivity.

また、本発明の光電変換装置の製造方法によれば、上記製造方法において、基板および多数個の粒状半導体の上に、未硬化の2種類の絶縁材料を混合させて有機溶剤に溶かした混合溶液を供給し、粒状半導体間の下部に混合溶液を充填するとともに粒状半導体の上部に混合溶液の膜を形成した後に、混合溶液の硬化処理を行なって、絶縁体および非被覆部を有する絶縁膜を形成するときには、絶縁体と非被覆部を有する絶縁膜とを同一工程により同時に形成することができることにより、本発明の光電変換装置を簡易に製造できるものとなる。   Moreover, according to the method for manufacturing a photoelectric conversion device of the present invention, in the above manufacturing method, a mixed solution in which two uncured insulating materials are mixed and dissolved in an organic solvent on a substrate and a number of granular semiconductors. After filling the lower part between the granular semiconductors with the mixed solution and forming the mixed solution film on the upper part of the granular semiconductor, the mixed solution is cured to form an insulating film having an insulator and an uncoated portion. When formed, the photoelectric conversion device of the present invention can be easily manufactured because the insulator and the insulating film having the non-covering portion can be formed simultaneously in the same process.

また、本発明の光電変換装置の製造方法によれば、下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合する工程と、これら粒状半導体の基板との接合部を除く表面に導電性保護層を形成する工程と、粒状半導体間の下部に絶縁体を、導電性保護層が形成された粒状半導体の上部に非被覆部を有する絶縁膜をそれぞれ形成する工程と、絶縁体および絶縁膜の上に上部電極となる透光性導電層を形成して、導電性保護層と透光性導電層とを絶縁膜の非被覆部を通じて電気的に接続させる工程とを含むことから、研磨工程が不要となるとともに、上部電極となる透光性導電層と下部電極となる基板との短絡を確実に防ぎ、かつ発生した光電流の抵抗ロスを少なくすることができるため、変換効率の高い光電変換装置を生産性よく作製することができる。   In addition, according to the method for manufacturing a photoelectric conversion device of the present invention, a step of bonding a large number of granular semiconductors that perform photoelectric conversion on a substrate serving as a lower electrode, and a surface excluding the bonding portion between these granular semiconductor substrates. A step of forming a conductive protective layer, a step of forming an insulator below the granular semiconductor, an insulating film having an uncovered portion above the granular semiconductor on which the conductive protective layer is formed, and an insulator and Forming a light-transmitting conductive layer to be an upper electrode on the insulating film, and electrically connecting the conductive protective layer and the light-transmitting conductive layer through the non-covered portion of the insulating film, A polishing step is not necessary, and it is possible to reliably prevent a short circuit between the translucent conductive layer serving as the upper electrode and the substrate serving as the lower electrode, and to reduce the resistance loss of the generated photocurrent, thereby reducing the conversion efficiency. Productive high photoelectric conversion device It can be.

また、本発明の光電変換装置の製造方法によれば、上記製造方法において、基板および多数個の導電性保護層が形成された粒状半導体の上に、未硬化の2種類の絶縁材料を混合させて有機溶剤に溶かした混合溶液を供給し、粒状半導体の下部に混合溶液を充填するとともに粒状半導体の上部に混合溶液の膜を形成した後に、混合溶液の硬化処理を行なって、絶縁体および非被覆部を有する絶縁膜を形成するときには、絶縁体と非被覆部を有する絶縁膜とを同一工程により同時に形成することができることにより、本発明の光電変換装置を簡易に製造できるものとなる。   Moreover, according to the method for manufacturing a photoelectric conversion device of the present invention, in the above manufacturing method, two uncured insulating materials are mixed on the substrate and the granular semiconductor on which a large number of conductive protective layers are formed. After supplying a mixed solution dissolved in an organic solvent, filling the lower part of the granular semiconductor with the mixed solution and forming a film of the mixed solution on the upper part of the granular semiconductor, the mixed solution is cured, and the insulator When forming the insulating film having the covering portion, the insulator and the insulating film having the non-covering portion can be formed simultaneously in the same process, whereby the photoelectric conversion device of the present invention can be easily manufactured.

以下、図面を参照しつつ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の光電変換装置の実施の形態の一例を示す断面図である。図1において1は基板、2は結晶質半導体粒子、3は結晶質半導体粒子2とは逆の導電型を呈する半導体部、4は絶縁体、5は透光性導電層、6は非被覆部を有する絶縁膜、10は基板1と結晶質半導体粒子2との合金層、20は光電変換を行なう粒状半導体である。   FIG. 1 is a cross-sectional view illustrating an example of an embodiment of a photoelectric conversion device of the present invention. In FIG. 1, 1 is a substrate, 2 is a crystalline semiconductor particle, 3 is a semiconductor portion exhibiting a conductivity type opposite to that of the crystalline semiconductor particle 2, 4 is an insulator, 5 is a translucent conductive layer, and 6 is an uncoated portion. 10 is an alloy layer of the substrate 1 and the crystalline semiconductor particles 2, and 20 is a granular semiconductor that performs photoelectric conversion.

ここで、光電変換を行なう粒状半導体20は、一方導電型の結晶質半導体粒子2の一部領域を除いた表面に、他方導電型の半導体部3を形成したものである。   Here, the granular semiconductor 20 that performs photoelectric conversion is obtained by forming the other-conductivity-type semiconductor portion 3 on the surface excluding a partial region of the one-conductivity-type crystalline semiconductor particles 2.

図1に示すように、本発明の光電変換装置は、下部電極となる基板1上に、表面に一部領域を除いて他方導電型(例えばn型)の半導体部3が形成された多数個の一方導電型(例えばp型)の結晶質半導体粒子2の一部領域が接合されており、他方導電型の半導体部3が形成された一方導電型の結晶質半導体粒子2の隣り合う間に、基板1と他方導電型の半導体部3の下部を覆い、かつ他方導電型の半導体部3の上部を露出させるように絶縁体4が形成され、他方導電型の半導体部3の上部を覆うように非被覆部を有する絶縁膜6が形成され、絶縁体4と絶縁膜6とを覆って上部電極となる透光性導電層5が形成されており、非被覆部を通じて他方導電型の半導体部3と透光性導電層5とが電気的に接続されている。ここで、結晶質半導体粒子2の一部領域は、基板1と確実に接合するために要する必要最小限の領域とし、かつ基板1と結晶質半導体粒子2とが結晶質半導体粒子2の一部領域の全面にわたり接合されている。このため、図1に示す光電変換装置においては、半導体部3が、結晶質半導体粒子2の下半分側においても基板1との接合部まで形成されている。   As shown in FIG. 1, the photoelectric conversion device of the present invention has a large number of other conductive type (for example, n-type) semiconductor portions 3 formed on a surface of a substrate 1 serving as a lower electrode except for a partial region. Between the adjacent regions of the one-conductivity-type crystalline semiconductor particles 2 in which a part of the one-conductivity-type (for example, p-type) crystalline semiconductor particles 2 is joined and the other-conductivity-type semiconductor portion 3 is formed. The insulator 4 is formed so as to cover the substrate 1 and the lower part of the other conductive type semiconductor part 3 and to expose the upper part of the other conductive type semiconductor part 3 so as to cover the upper part of the other conductive type semiconductor part 3. An insulating film 6 having an uncovered portion is formed, and a transparent conductive layer 5 serving as an upper electrode is formed so as to cover the insulator 4 and the insulating film 6, and the other conductive type semiconductor portion is formed through the uncovered portion. 3 and the translucent conductive layer 5 are electrically connected. Here, the partial region of the crystalline semiconductor particle 2 is a minimum necessary region necessary for reliably joining the substrate 1, and the substrate 1 and the crystalline semiconductor particle 2 are a part of the crystalline semiconductor particle 2. Bonded over the entire area. For this reason, in the photoelectric conversion device shown in FIG. 1, the semiconductor portion 3 is formed up to the junction with the substrate 1 also on the lower half side of the crystalline semiconductor particles 2.

基板1としては、金属,ガラス,セラミック等が用いられる。好ましくは、銀(Ag),アルミニウム(Al),銅(Cu)等の高反射金属を用いる。なぜなら、反射率が大きい基板1を用いることにより、基板1からの反射光を、光電変換を行なう粒状半導体20のpn接合部へ多く導くことができ、これにより変換効率が向上するからである。また、基板1として絶縁体を用いる場合には、基板1の表面に下部電極となる導電層を形成する必要がある。この導電層の存在により基板1からの反射光を、光電変換を行なう粒状半導体20のpn接合部へより多く導くために、銀,アルミニウム,銅等の高い光反射率であり、かつ良好な導電率を有する材料により形成することが好ましい。例えばアルミニウム単体もしくはアルミニウムの融点以上の融点を有する金属やセラミックを下地基板としその上にアルミニウムから成る電極層を形成した複合体を用いることができる。   As the substrate 1, metal, glass, ceramic, or the like is used. Preferably, a highly reflective metal such as silver (Ag), aluminum (Al), or copper (Cu) is used. This is because by using the substrate 1 having a high reflectance, a large amount of reflected light from the substrate 1 can be guided to the pn junction of the granular semiconductor 20 that performs photoelectric conversion, thereby improving the conversion efficiency. When an insulator is used as the substrate 1, it is necessary to form a conductive layer serving as a lower electrode on the surface of the substrate 1. In order to guide more reflected light from the substrate 1 to the pn junction part of the granular semiconductor 20 that performs photoelectric conversion due to the presence of this conductive layer, it has high light reflectivity such as silver, aluminum, copper, etc., and good conductivity. It is preferable to form with the material which has a rate. For example, a simple substance of aluminum or a composite in which a metal or ceramic having a melting point equal to or higher than that of aluminum is used as a base substrate and an electrode layer made of aluminum is formed thereon can be used.

基板1上には、一方導電型の結晶質半導体粒子2を多数個配設する。この結晶質半導体粒子2は、シリコン(Si),ゲルマニウム(Ge)等からなるが、結晶質半導体粒子2に添加してp型を呈するホウ素(B),アルミニウム,アンチモン(Sb)や、n型を呈するリン(P),砒素(As)等を含んでもよい。結晶質半導体粒子2の形状としては多面体状や丸みを帯びた角部を有するものや曲面を有するもの等であり、その粒径分布としては均一、不均一を問わないが、均一の場合は粒径を揃えるための工程が必要になるため、より安価にするためには不均一の方が有利である。さらに凸曲面を持つことによって光の光線角度の依存性を小さくすることができる。   On the substrate 1, a large number of one-conductive type crystalline semiconductor particles 2 are arranged. The crystalline semiconductor particles 2 are made of silicon (Si), germanium (Ge), etc., but added to the crystalline semiconductor particles 2 to exhibit p-type boron (B), aluminum, antimony (Sb), n-type, and the like. Phosphorus (P), arsenic (As), or the like exhibiting The crystalline semiconductor particles 2 may have a polyhedral shape, rounded corners, or curved surfaces, and the particle size distribution may be uniform or non-uniform. Since a process for aligning the diameters is required, non-uniformity is advantageous in order to reduce the cost. Furthermore, by having a convex curved surface, the dependence of the light beam angle can be reduced.

結晶質半導体粒子2の粒径としては、0.2mm以上1.0mm以下がよい。なぜなら、1.0mmを越えると切削部も含めた従来の結晶板型の光電変換装置の原料使用量と変わらなくなり、結晶質半導体粒子を用いるメリットがなくなるからである。また、0.2mm未満の場合には基板1へのアッセンブルがしにくくなるという別の問題が発生するので好ましくない。さらに好ましくは、結晶質半導体粒子2の粒径は、原料使用量の関係から0.2mm以上0.6mm以下がよい。   The particle size of the crystalline semiconductor particles 2 is preferably 0.2 mm or greater and 1.0 mm or less. This is because if the thickness exceeds 1.0 mm, the amount of raw material used in the conventional crystal plate type photoelectric conversion device including the cutting portion is not changed, and the merit of using crystalline semiconductor particles is lost. On the other hand, when the thickness is less than 0.2 mm, another problem that it is difficult to assemble the substrate 1 is not preferable. More preferably, the grain size of the crystalline semiconductor particles 2 is 0.2 mm or more and 0.6 mm or less because of the amount of raw material used.

また、結晶質半導体粒子2は単結晶,多結晶のいずれでもよいが、光電変換効率を高めるために単結晶であることが好ましい。   The crystalline semiconductor particles 2 may be either single crystal or polycrystalline, but are preferably single crystal in order to increase the photoelectric conversion efficiency.

これら多数個の結晶質半導体粒子2を基板1上に配設した後、一定の荷重を結晶質半導体粒子2上にかけて、基板1と結晶質半導体粒子2とを加熱して、基板1と結晶質半導体粒子2との合金層10を介して基板1と結晶質半導体粒子2とを接合する。例えば、アルミニウムからなる基板1とシリコンからなる結晶質半導体粒子2とを接合する場合には、接合強度を確保するためにアルミニウムとシリコンとの共晶温度である577℃以上に加熱すればよい。なお、シリコンからなる結晶質半導体粒子2の導電型をp型とした場合には、合金層10に接する結晶質半導体粒子2の領域では、基板1の材料であるアルミニウムが拡散してp層を形成する。このため、BSF効果(Back Surface Field)により高い変換効率を有する光電変換装置となるため好ましい。 After disposing a large number of these crystalline semiconductor particles 2 on the substrate 1, a certain load is applied on the crystalline semiconductor particles 2 to heat the substrate 1 and the crystalline semiconductor particles 2. The substrate 1 and the crystalline semiconductor particles 2 are bonded via the alloy layer 10 with the semiconductor particles 2. For example, when the substrate 1 made of aluminum and the crystalline semiconductor particles 2 made of silicon are bonded, heating to 577 ° C. or more, which is the eutectic temperature of aluminum and silicon, is sufficient to ensure bonding strength. When the conductivity type of the crystalline semiconductor particles 2 made of silicon is p-type, aluminum as the material of the substrate 1 diffuses in the region of the crystalline semiconductor particles 2 in contact with the alloy layer 10 and the p + layer. Form. For this reason, since it becomes a photoelectric conversion apparatus which has high conversion efficiency by a BSF effect (Back Surface Field), it is preferable.

結晶質半導体粒子2の一部領域を除く表面には、半導体部3を形成し、光電変換を行なう粒状半導体20を形成する。半導体部3は結晶質半導体粒子2と逆の導電型となるように、シリコン,ゲルマニウム等に微量成分を添加したものからなる。例えば、半導体部3は、気相成長法等でシラン化合物の気相にn型を呈するリン系化合物の気相、又はp型を呈するホウ素系化合物の気相を微量導入して形成する。また、半導体部3はイオン注入法、熱拡散法により、結晶質半導体粒子2の外郭に形成してもよい。半導体部3中の微量元素の濃度は例えば1×1016atoms/cm以上1×1019atoms/cm以下とすればよい。半導体部3は絶縁体4を形成する前に形成されるため、pn接合を絶縁体4の形成による汚染から保護することができる。 A semiconductor portion 3 is formed on the surface of the crystalline semiconductor particle 2 excluding a partial region, and a granular semiconductor 20 that performs photoelectric conversion is formed. The semiconductor portion 3 is formed by adding a trace component to silicon, germanium or the like so as to have a conductivity type opposite to that of the crystalline semiconductor particles 2. For example, the semiconductor unit 3 is formed by introducing a small amount of a vapor phase of a phosphorus-based compound exhibiting n-type or a vapor phase of a boron-based compound exhibiting p-type into the vapor phase of a silane compound by a vapor deposition method or the like. Further, the semiconductor portion 3 may be formed outside the crystalline semiconductor particles 2 by an ion implantation method or a thermal diffusion method. The concentration of the trace element in the semiconductor portion 3 may be, for example, 1 × 10 16 atoms / cm 3 or more and 1 × 10 19 atoms / cm 3 or less. Since the semiconductor portion 3 is formed before the insulator 4 is formed, the pn junction can be protected from contamination due to the formation of the insulator 4.

また、図1に示す光電変換装置によれば、結晶質半導体粒子2の下半分側の表面においても半導体部3が形成されている。このため、絶縁体4を透過した光が基板1で反射して、光電変換を行なう粒状半導体20のpn接合部に照射されることで、光電変換装置全体に入射される光を効率よく光電変換を行なう粒状半導体20のpn接合部に無駄なく照射することができる。このため、変換効率の高い光電変換となる。   Further, according to the photoelectric conversion device shown in FIG. 1, the semiconductor portion 3 is also formed on the surface of the lower half side of the crystalline semiconductor particles 2. For this reason, the light transmitted through the insulator 4 is reflected by the substrate 1 and irradiated to the pn junction of the granular semiconductor 20 that performs photoelectric conversion, so that the light incident on the entire photoelectric conversion device is efficiently photoelectrically converted. It is possible to irradiate the pn junction of the granular semiconductor 20 that performs the above without waste. For this reason, it becomes photoelectric conversion with high conversion efficiency.

半導体部3は、結晶質,非晶質,結晶質と非晶質とが混在する場合のいずれでもよいが、光透過率を考慮すると結晶質、または結晶質と非晶質とが混在するものがよい。   The semiconductor portion 3 may be any of crystalline, amorphous, and a mixture of crystalline and amorphous, but considering the light transmittance, crystalline or a mixture of crystalline and amorphous Is good.

隣り合う光電変換を行なう粒状半導体20間を埋めるように、基板1上に絶縁体4を形成する。絶縁体4は、正極と負極の分離を行なうための絶縁材料からなり、例えばSiO,B,Al,CaO,MgO,P,LiO,SnO,ZnO,BaO,TiO等から選択された任意の成分を主成分とする低温焼成用ガラス材料,上記材料の1種以上の任意の組み合わせからなるフィラーを複合したガラス組成物,エポキシ樹脂やポリイミド等の耐熱樹脂材料,無機有機複合材料等を用いればよいが、硬化温度が180℃以上250℃以下、より好ましくは硬化温度が220℃以下のポリイミドが好ましい。なぜなら、硬化させるための熱処理温度を250℃以下とすることで、光電変換を行なう粒状半導体20のpn接合に熱的ダメージを与えることなく、隣り合う光電変換を行なう粒状半導体20の間に絶縁体4を充填できるので、pn接合を高品質に保つことができ、変換効率の高い光電変換装置を作製できるからである。硬化させるための熱処理温度を180℃未満とする場合には未硬化部分が残るため好ましくない。ポリイミドの硬化温度を下げるには、原料の酸成分またはアミン成分の骨格を変更してもよいし、イミド化反応を促進する塩基性の低温硬化剤を添加してもよいが、低温硬化剤を用いる場合はポリイミドの硬化過程でできるだけ揮発除去できるものを選択することが望ましい。なお、ポリイミドの硬化温度は通常、熱分析または赤外線ピーク比から求めるイミド化率で見積もれるが、イミド化率99%以上になる温度を実質的に硬化温度と見なすことができる。 An insulator 4 is formed on the substrate 1 so as to fill between the adjacent granular semiconductors 20 that perform photoelectric conversion. The insulator 4 is made of an insulating material for separating the positive electrode and the negative electrode. For example, SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, MgO, P 2 O 5 , Li 2 O, SnO 2 , ZnO , BaO, TiO 2, etc., a glass material for low-temperature firing mainly composed of an arbitrary component selected from, for example, a glass composition in which a filler composed of any combination of one or more of the above materials is combined, epoxy resin, polyimide, etc. A heat-resistant resin material, an inorganic organic composite material, or the like may be used, but a polyimide having a curing temperature of 180 ° C. or higher and 250 ° C. or lower, more preferably a curing temperature of 220 ° C. or lower is preferable. This is because, by setting the heat treatment temperature for curing to 250 ° C. or less, an insulator is provided between the adjacent granular semiconductors 20 that perform photoelectric conversion without causing thermal damage to the pn junction of the granular semiconductor 20 that performs photoelectric conversion. This is because the pn junction can be kept in high quality and a photoelectric conversion device with high conversion efficiency can be manufactured. When the heat treatment temperature for curing is less than 180 ° C., an uncured portion remains, which is not preferable. In order to lower the curing temperature of polyimide, the skeleton of the raw acid component or amine component may be changed, or a basic low-temperature curing agent that promotes the imidization reaction may be added. If used, it is desirable to select one that can be volatilized and removed as much as possible during the polyimide curing process. In addition, although the curing temperature of a polyimide can be normally estimated by the imidation rate calculated | required from a thermal analysis or an infrared peak ratio, the temperature which becomes 99% or more of imidation rate can be considered substantially as a curing temperature.

絶縁体4の厚みは1μm以上が望ましい。なぜなら、厚みが1μmより薄くになると、絶縁性が不安定になるため、上部電極となる透光性導電層5から下部電極となる基板1へと短絡電流が流れやすくなり変換効率が低下するため好ましくないからである。また、上部電極となる透光性導電層5から下部電極となる基板1へと短絡電流が流れやすくなると、絶縁材料が変質するため、耐侯性や密着性が劣化するので好ましくない。例えば、絶縁体4としてポリイミドを用いた場合にはポリイミドの炭化が促進され、耐侯性や密着性が劣化する。   The thickness of the insulator 4 is desirably 1 μm or more. This is because if the thickness is less than 1 μm, the insulation becomes unstable, and therefore a short-circuit current easily flows from the translucent conductive layer 5 serving as the upper electrode to the substrate 1 serving as the lower electrode, thereby reducing the conversion efficiency. It is because it is not preferable. In addition, it is not preferable that a short-circuit current easily flows from the light-transmitting conductive layer 5 serving as the upper electrode to the substrate 1 serving as the lower electrode because the insulating material changes in quality and the weather resistance and adhesion are deteriorated. For example, when polyimide is used as the insulator 4, the carbonization of the polyimide is promoted and the weather resistance and adhesion are deteriorated.

また、絶縁体4の波長400nm以上1200nm以下での光透過率は70%以上であることが好ましい。なぜなら、光透過率が70%未満の場合には、光電変換を行なう粒状半導体20のpn接合部へ導かれる光の量が減少して変換効率が低下してしまうからである。   The light transmittance of the insulator 4 at a wavelength of 400 nm to 1200 nm is preferably 70% or more. This is because when the light transmittance is less than 70%, the amount of light guided to the pn junction of the granular semiconductor 20 that performs photoelectric conversion decreases, and conversion efficiency decreases.

絶縁体4は、半導体部3を形成した後に、光電変換を行なう粒状半導体20間を埋めるように基板1上に形成する。半導体部3は結晶質半導体粒子2上にそれぞれ独立して形成されるだけであり、透光性導電層5で相互に接続される。このため、絶縁体4の一部を除去する研磨工程が不要となり、その結果、従来の光電変換装置のように絶縁体4の一部を除去する研磨工程により生じる欠陥や、絶縁体4が結晶質半導体粒子2の表面に付着することによる汚染が原因でpn接合の品質を低下させることがないため、高い変換効率が実現できる。さらに、絶縁体4を除去する研磨工程が不要となり生産性が良好となる。   The insulator 4 is formed on the substrate 1 so as to fill the space between the granular semiconductors 20 that perform photoelectric conversion after the semiconductor portion 3 is formed. The semiconductor portions 3 are merely formed independently on the crystalline semiconductor particles 2 and are connected to each other by the translucent conductive layer 5. For this reason, a polishing process for removing a part of the insulator 4 is not required, and as a result, defects caused by a polishing process for removing a part of the insulator 4 as in the conventional photoelectric conversion device, or the insulator 4 is crystallized. Since the quality of the pn junction is not deteriorated due to the contamination due to adhering to the surface of the crystalline semiconductor particle 2, high conversion efficiency can be realized. Furthermore, the polishing step for removing the insulator 4 is not required, and the productivity is improved.

絶縁体4は、ディッピング法,スピンコート法,スプレー法,スクリーン印刷法,毛管現象を利用する方法などにより形成する。ここで毛管現象を利用する方法とは、基板1上に未硬化の絶縁材料を塗布し、この絶縁材料を毛管現象により多数個の光電変換を行なう粒状半導体20の隙間を埋めるように自動的に移動させて広がらせ、基板1上および多数個の光電変換を行なう粒状半導体20の隙間に充填させた後、熱処理を行ない硬化させるものである。この手法は、大掛かりな装置を使用せずに絶縁体4を形成できるため好ましい。   The insulator 4 is formed by a dipping method, a spin coating method, a spray method, a screen printing method, a method using a capillary phenomenon, or the like. Here, the method using the capillary phenomenon is to apply an uncured insulating material on the substrate 1 and automatically fill the gap between the granular semiconductors 20 that perform photoelectric conversion by the capillary phenomenon. After being moved and spread, the substrate 1 and the gap between the plurality of granular semiconductors 20 that perform photoelectric conversion are filled, and then heat treatment is performed and cured. This method is preferable because the insulator 4 can be formed without using a large-scale apparatus.

ポリイミドからなる絶縁体4を毛管現象を利用する方法により形成する場合について説明する。まず、未硬化のポリイミドを有機溶剤に溶かしてポリイミド溶液を作製する。有機溶剤としては、N−メチルピロリドン、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、o,m,p−メチルフェノール等を用いることができるが、溶解性が高く、毒性が低く、コストが低いことからN−メチルピロリドン、N,N’−ジメチルアセトアミドが好ましい。このように作製したポリイミド溶液を、例えばディスペンサーを用いて、基板1上の等間隔の特定の位置にスポット状もしくはライン状に、光電変換を行なう粒状半導体20の上部が露出するように、ポリイミド溶液の供給量を調整して供給する。基板1上のポリイミド溶液は、毛管現象により、自動的に光電変換を行なう粒状半導体20間に移動して、基板1上の隣り合う光電変換を行なう粒状半導体20間全体に充填される。ここで、毛管現象によりポリイミド溶液を移動しやすくして生産性よく絶縁体4を形成するためには、ポリイミド溶液の粘度を固形分10質量%の場合に25℃で100mPa・s以下、好適には60mPa・s以下、より好適には40mPa・s以下とすることが望ましい。粘度が60mPa・s以下の場合には、広範囲にわたり毛管現象により絶縁材料が移動できるため、絶縁材料を基板1上および光電変換を行なう粒状半導体20上に供給する箇所を少なくすることができ、生産性がよくなるため好ましい。さらに40mPa・s以下の場合には光電変換を行なう粒状半導体20間に迅速に未硬化の絶縁材料を充填することができ、かつ原料となる未硬化の絶縁材料の使用量を必要最小限度まで少なくすることができるので好ましい。また、絶縁体4の厚みを1μm以上にするためには、ポリイミド溶液の濃度を固形分10質量%以上とすることが好ましい。このようにして、基板1上全体に充填されたポリイミド溶液を加熱して硬化させ、絶縁体4を形成する。硬化させるための熱処理は、窒素またはアルゴン雰囲気等の非酸化雰囲気中で行なうことが望ましい。非酸化雰囲気で熱処理することでポリイミドからなる絶縁体4の光透過性が高くなり、基板との密着性も向上するからである。   A case where the insulator 4 made of polyimide is formed by a method using a capillary phenomenon will be described. First, uncured polyimide is dissolved in an organic solvent to prepare a polyimide solution. As the organic solvent, N-methylpyrrolidone, N, N′-dimethylformamide, N, N′-dimethylacetamide, o, m, p-methylphenol and the like can be used, but they have high solubility and low toxicity. N-methylpyrrolidone and N, N′-dimethylacetamide are preferable because of low cost. The polyimide solution thus prepared is used, for example, by using a dispenser so that the upper part of the granular semiconductor 20 that performs photoelectric conversion is exposed in a spot shape or a line shape at specific positions on the substrate 1 at equal intervals. Adjust the supply amount. The polyimide solution on the substrate 1 moves between the granular semiconductors 20 that automatically perform photoelectric conversion by capillary action, and fills the entire area between adjacent granular semiconductors 20 that perform photoelectric conversion on the substrate 1. Here, in order to easily move the polyimide solution by capillary action and form the insulator 4 with high productivity, when the viscosity of the polyimide solution is 10% by mass, preferably 100 mPa · s or less at 25 ° C. Is preferably 60 mPa · s or less, more preferably 40 mPa · s or less. When the viscosity is 60 mPa · s or less, since the insulating material can move over a wide range by capillary action, the number of locations where the insulating material is supplied onto the substrate 1 and the granular semiconductor 20 that performs photoelectric conversion can be reduced. This is preferable because of improved properties. Furthermore, in the case of 40 mPa · s or less, it is possible to quickly fill the uncured insulating material between the granular semiconductors 20 that perform photoelectric conversion, and reduce the amount of uncured insulating material used as a raw material to the minimum necessary level. This is preferable. Moreover, in order to make the thickness of the insulator 4 1 μm or more, the concentration of the polyimide solution is preferably 10% by mass or more. In this way, the polyimide solution filled on the entire substrate 1 is heated and cured to form the insulator 4. The heat treatment for curing is preferably performed in a non-oxidizing atmosphere such as a nitrogen or argon atmosphere. This is because heat treatment in a non-oxidizing atmosphere increases the light transmittance of the insulator 4 made of polyimide and improves the adhesion to the substrate.

光電変換を行なう粒状半導体20の、絶縁体4と接していない部位の表面に沿って絶縁膜6を形成する。絶縁膜6は絶縁体4と同様の材料を用いることができるが、2種類の絶縁材料を互いに分離した状態で混合させたものを用いることが好ましい。例えば、未硬化の、アルカリ性の絶縁材料と酸性もしくは中性の絶縁材料とを混合させたものを用いればよい。なぜなら、アルカリ性の絶縁材料と酸性もしくは中性の絶縁材料とを混合させた未硬化の絶縁材料を有機溶剤に溶かして、光電変換を行なう粒状半導体20の表面に薄く膜を形成し、硬化処理を行ない薄い絶縁膜6を形成すると、自動的に非被覆部が形成されるため、生産性よく絶縁膜6に非被覆部を形成できるからである。   An insulating film 6 is formed along the surface of the portion of the granular semiconductor 20 that performs photoelectric conversion that is not in contact with the insulator 4. The insulating film 6 can be made of the same material as that of the insulator 4, but it is preferable to use a material in which two kinds of insulating materials are mixed while being separated from each other. For example, a mixture of an uncured alkaline insulating material and an acidic or neutral insulating material may be used. This is because an uncured insulating material obtained by mixing an alkaline insulating material and an acidic or neutral insulating material is dissolved in an organic solvent, and a thin film is formed on the surface of the granular semiconductor 20 that performs photoelectric conversion. This is because when the thin insulating film 6 is formed, an uncovered portion is automatically formed, so that the uncovered portion can be formed on the insulating film 6 with high productivity.

このような非被覆部が形成される理由は未だ明らかではないが、以下のようなメカニズムにより形成されるものと推察される。即ち、アルカリ性と、酸性もしくは中性との未硬化の絶縁材料を混合させて、有機溶剤に溶かして混合溶液を作製すると、混合溶液中でアルカリ性の絶縁材料と酸性もしくは中性の絶縁材料とは、互いに分離した状態で存在している。このような混合溶液を用いて、例えば10nm程度の厚みの薄い膜を形成して硬化処理を行なうと、有機溶剤が蒸発し、アルカリ性の絶縁材料と、酸性もしくは中性の絶縁材料とがそれぞれ硬化するが、互いに分離した状態で存在しているため、両者の間に隙間が発生し非被覆部が形成されるものと推察される。このような特性を持つ絶縁材料の組み合わせとしては、例えば、ポリイミドとシリコーン樹脂との組み合わせがある。ポリイミドに対するシリコーン樹脂を5%以上40%以下の割合で混合させて有機溶剤に溶かして混合溶液を作製することで、薄い膜を形成して硬化処理を行なうと自動的に非被覆部が形成される。ここで、各絶縁材料の硬化温度,各絶縁材料を溶かす有機溶剤,混合溶液の濃度,混合溶液の粘度,各絶縁材料を硬化させたときの光透過率は、ポリイミドからなる絶縁体4の場合と同様にすればよい。   The reason why such an uncovered portion is formed is not yet clear, but it is presumed that it is formed by the following mechanism. That is, when an alkaline, acidic or neutral uncured insulating material is mixed and dissolved in an organic solvent to prepare a mixed solution, the alkaline insulating material and the acidic or neutral insulating material are mixed in the mixed solution. , Exist in a state separated from each other. Using such a mixed solution, for example, when a thin film having a thickness of about 10 nm is formed and cured, the organic solvent evaporates, and the alkaline insulating material and the acidic or neutral insulating material are cured. However, since it exists in the state isolate | separated from each other, it is guessed that a clearance gap will generate | occur | produce between both and an uncovered part will be formed. As a combination of insulating materials having such characteristics, for example, there is a combination of polyimide and silicone resin. By mixing silicone resin with respect to polyimide at a ratio of 5% to 40% and dissolving in an organic solvent to produce a mixed solution, a non-coated part is automatically formed when a thin film is formed and cured. The Here, the curing temperature of each insulating material, the organic solvent that dissolves each insulating material, the concentration of the mixed solution, the viscosity of the mixed solution, and the light transmittance when each insulating material is cured are in the case of the insulator 4 made of polyimide. You can do it in the same way.

また、絶縁膜6の膜厚を薄くすることで、絶縁膜6の非被覆部を埋めて容易に良好な導電率をもつ材料を形成することができるので、光電変換を行なう粒状半導体20と透光性導電層5とを電気的に接続することができる。良好な導電率をもつ材料として、例えば、導電性透光性導電層5と同じ材料を用いてもよい。   Further, by reducing the film thickness of the insulating film 6, it is possible to easily fill a non-covered portion of the insulating film 6 and form a material having a good conductivity. The photoconductive layer 5 can be electrically connected. For example, the same material as the conductive translucent conductive layer 5 may be used as the material having good conductivity.

絶縁膜6は、絶縁体4と同様にディッピング法,スピンコート法,スプレー法,スクリーン印刷法,毛管現象を利用する方法などにより形成すればよいが、大掛かりな装置を必要としないため毛管現象を利用する方法により形成することが好ましい。   The insulating film 6 may be formed by a dipping method, a spin coating method, a spray method, a screen printing method, a method using a capillary phenomenon, etc., as in the case of the insulator 4, but it does not require a large-scale device, so that the capillary phenomenon is prevented. It is preferable to form by the method to utilize.

絶縁膜6の非被覆部は、光電変換を行なう粒状半導体20と透光性導電層5とを電気的に接続することができれば、その個数,大きさ,形状を自由に設計することができる。非被覆部は、絶縁膜6を形成した後に光電変換を行なう粒状半導体20の天頂部付近の絶縁膜6の一部をエッチングなどにより除去して形成したり、未硬化の2種類の絶縁材料を互いに分離した状態で混合させて有機溶剤に溶かした混合溶液を用いて、光電変換を行なう粒状半導体20の表面に薄い膜を形成して硬化処理することで、自動的に形成したりすればよい。ここで、天頂部とは光電変換を行なう粒状半導体20の最も高い位置をいうものとする。   The number, size, and shape of the non-covered portion of the insulating film 6 can be freely designed as long as the granular semiconductor 20 that performs photoelectric conversion and the translucent conductive layer 5 can be electrically connected. The uncovered portion is formed by removing a part of the insulating film 6 near the zenith of the granular semiconductor 20 that performs photoelectric conversion after the insulating film 6 is formed, or by using two types of uncured insulating materials. Using a mixed solution that is mixed in a state separated from each other and dissolved in an organic solvent, a thin film may be formed on the surface of the granular semiconductor 20 that performs photoelectric conversion, and then cured to form automatically. . Here, the zenith portion refers to the highest position of the granular semiconductor 20 that performs photoelectric conversion.

このように非被覆部を有する絶縁膜6を半導体部3と透光性導電層5との間に形成することにより、非被覆部を通じて透光性導電層5と光電変換を行なう粒状半導体20とが電気的に接続される一方で、透光性導電層5と下部電極となる基板1との短絡を、絶縁体4に加え絶縁膜6により確実に防止することができるため、高い変換効率を得ることができる。   By forming the insulating film 6 having the uncovered portion between the semiconductor portion 3 and the translucent conductive layer 5 in this way, the granular semiconductor 20 that performs photoelectric conversion with the translucent conductive layer 5 through the uncovered portion, and Are electrically connected to each other, but a short circuit between the translucent conductive layer 5 and the substrate 1 serving as the lower electrode can be surely prevented by the insulating film 6 in addition to the insulator 4. Can be obtained.

絶縁体4および絶縁膜6を覆うように透光性導電層5を形成する。透光性導電層5はスパッタリング法や気相成長法等の成膜方法あるいは塗布焼成法等により、SnO,In,ITO,ZnO,TiO等から選ばれる1種又は複数の酸化物系膜、またはTi,Pt,Au等から選ばれる1種又は複数の金属系膜を形成する。なお、このような透光性導電層5は光を吸収しないように波長400nm以上1200nm以下での光透過率が高い材料で形成することが必要である。ここで光透過率が高い材料とは、例えば、光透過率が70%以上の材料をいい、ITOなどが好ましい。光透過性の高い材料で透光性導電層5を形成することにより、光電変換を行なう粒状半導体20のpn接合部へ導かれる光の量のロスを少なくすることができるからである。また、透光性導電層5は膜厚および屈折率を調整することにより反射防止膜としての効果も期待できる。 A translucent conductive layer 5 is formed so as to cover the insulator 4 and the insulating film 6. The translucent conductive layer 5 is formed of one or more oxides selected from SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2 and the like by a film forming method such as a sputtering method or a vapor phase growth method or a coating baking method. A material film or one or more metal films selected from Ti, Pt, Au and the like are formed. In addition, it is necessary to form such a translucent conductive layer 5 with a material having a high light transmittance at a wavelength of 400 nm to 1200 nm so as not to absorb light. Here, the material having a high light transmittance means, for example, a material having a light transmittance of 70% or more, and ITO or the like is preferable. This is because the loss of the amount of light guided to the pn junction of the granular semiconductor 20 that performs photoelectric conversion can be reduced by forming the translucent conductive layer 5 with a material having high light transmissivity. Moreover, the translucent conductive layer 5 can be expected to have an effect as an antireflection film by adjusting the film thickness and refractive index.

さらに、透光性導電層5の上に、直列抵抗値を低くするために、一定間隔のフィンガーやバスバーといったパターン電極(不図示)を設けてもよい。   Furthermore, pattern electrodes (not shown) such as fingers and bus bars at regular intervals may be provided on the translucent conductive layer 5 in order to reduce the series resistance value.

なお、透光性導電層5上には保護膜(不図示)を形成してもよい。保護膜は、透光性を有し、かつ誘電体の特性を持つものがよく、CVD(Chemical Vapor Deposition)法やPVD(Physical Vapor Deposition)法等により、酸化珪素,酸化セシウム,酸化アルミニウム,窒化珪素,酸化チタン,SiO−TiO,酸化タンタル,酸化イットリウム等を単一組成又は複数組成で単層又は組み合わせて形成すればよい。この保護膜は、光の入射面に配置されているために透光性が必要であり、また光電変換により得られた電流のリーク防止のために誘電体であることが必要である。さらに、保護膜には厚みを最適化すれば、反射防止膜としての機能も期待できる。 A protective film (not shown) may be formed on the translucent conductive layer 5. The protective film is preferably light-transmitting and having dielectric properties, such as silicon oxide, cesium oxide, aluminum oxide, nitride by CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition). Silicon, titanium oxide, SiO 2 —TiO 2 , tantalum oxide, yttrium oxide, or the like may be formed as a single layer or a combination of a single composition or a plurality of compositions. Since this protective film is disposed on the light incident surface, it needs to be translucent, and it needs to be a dielectric material to prevent leakage of current obtained by photoelectric conversion. Furthermore, if the thickness of the protective film is optimized, a function as an antireflection film can be expected.

また、図2に示すように、光電変換を行なう粒状半導体20と絶縁膜6との間に導電性保護層7を設けることが好ましい。図2は、光電変換を行なう粒状半導体20の基板1との接合部を除く表面に導電性保護層7を形成することで、光電変換を行なう粒状半導体20と絶縁膜6との間に導電性保護層7を介在させた光電変換装置の一例を示す断面図である。光電変換を行なう粒状半導体20と絶縁膜6との間に導電性保護層7を設けることで、光電変換を行なう粒状半導体20の、絶縁膜6の非被覆部を通じて透光性導電層5と電気的に接続されている部位(以下、接続部位という。)から離れた部位で発生した光電流を、抵抗の少ない導電性保護層7を通して接続部位に集電し、上部電極となる透光性導電層5に伝送することができ、光電変換を行なう粒状半導体20内で発生した光電流のロスを少なくすることができる。ここで、導電性保護層7は、光電変換を行なう粒状半導体20の上部を覆っていれば、光電変換を行なう粒状半導体20の基板1との接合部を除く表面全面に形成してもよいし、形成しない部位を設けてもよい。   Further, as shown in FIG. 2, it is preferable to provide a conductive protective layer 7 between the granular semiconductor 20 that performs photoelectric conversion and the insulating film 6. FIG. 2 shows that the conductive protective layer 7 is formed on the surface of the granular semiconductor 20 that performs photoelectric conversion, excluding the junction with the substrate 1, so that the conductivity is between the granular semiconductor 20 that performs photoelectric conversion and the insulating film 6. It is sectional drawing which shows an example of the photoelectric conversion apparatus which interposed the protective layer. By providing the conductive protective layer 7 between the granular semiconductor 20 that performs photoelectric conversion and the insulating film 6, the light-transmitting conductive layer 5 and the electricity through the non-covered portion of the insulating film 6 of the granular semiconductor 20 that performs photoelectric conversion. The photocurrent generated at a site distant from the connected site (hereinafter referred to as the connection site) is collected to the connection site through the conductive protective layer 7 having a low resistance, and the translucent conductive material serving as the upper electrode The loss of photocurrent generated in the granular semiconductor 20 that can be transmitted to the layer 5 and that performs photoelectric conversion can be reduced. Here, as long as the conductive protective layer 7 covers the upper part of the granular semiconductor 20 that performs photoelectric conversion, the conductive protective layer 7 may be formed on the entire surface of the granular semiconductor 20 that performs photoelectric conversion, excluding the junction with the substrate 1. , A portion not formed may be provided.

導電性保護層7は、透光性導電層5と同様に、スパッタリング法や気相成長法等の成膜方法あるいは塗布焼成法等により、SnO,In,ITO,ZnO,TiO等から選ばれる1種又は複数の酸化物系膜、またはTi,Pt,Au等から選ばれる1種又は複数の金属系膜を形成する。なお、このような導電性保護層7は光を吸収しないように波長400nm以上1200nm以下での光透過率が高い材料で形成することが必要である。ここで光透過率が高い材料とは、例えば、光透過率が70%以上の材料をいい、ITOなどが好ましい。なぜなら、光透過性の高い材料で導電性保護層7を形成することにより、光電変換を行なう粒状半導体20のpn接合部へ導かれる光の量のロスを少なくすることができるからである。 The conductive protective layer 7 is formed of SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2 by a film forming method such as sputtering or vapor phase growth, or a coating / firing method, as with the light-transmitting conductive layer 5. One or more oxide-based films selected from the above, or one or more metal-based films selected from Ti, Pt, Au, or the like are formed. Such a conductive protective layer 7 needs to be formed of a material having a high light transmittance at a wavelength of 400 nm to 1200 nm so as not to absorb light. Here, the material having a high light transmittance means, for example, a material having a light transmittance of 70% or more, and ITO is preferable. This is because the loss of the amount of light guided to the pn junction of the granular semiconductor 20 that performs photoelectric conversion can be reduced by forming the conductive protective layer 7 with a material having high light transmittance.

また、導電性保護層7は、結晶質半導体粒子2の一部領域を除く表面に形成された半導体部3を覆うように、絶縁体4を形成する前に形成されることが好ましい。なぜなら、絶縁体4を形成する前に導電性保護層7を形成するため、後述するように絶縁体4と絶縁膜6とを同時に形成することができ、生産性がよくなるからである。また、図2に示す光電変換装置によれば、結晶質半導体粒子2の下半分側の表面においても半導体部3と導電性保護層7とが形成されている。このため、絶縁体4を透過した光が基板1で反射して、光電変換を行なう粒状半導体20のpn接合部に照射されることで、光電変換装置全体に入射される光を効率よく光電変換を行なう粒状半導体20のpn接合部に無駄なく照射することができる。このため、効率よく光電変換を行なうことができ、かつ発生した光電流を抵抗ロスを少なく接合部位に導くことができる。   The conductive protective layer 7 is preferably formed before forming the insulator 4 so as to cover the semiconductor portion 3 formed on the surface excluding a partial region of the crystalline semiconductor particles 2. This is because, since the conductive protective layer 7 is formed before the insulator 4 is formed, the insulator 4 and the insulating film 6 can be formed at the same time as described later, and the productivity is improved. Further, according to the photoelectric conversion device shown in FIG. 2, the semiconductor portion 3 and the conductive protective layer 7 are also formed on the surface of the lower half side of the crystalline semiconductor particles 2. For this reason, the light transmitted through the insulator 4 is reflected by the substrate 1 and irradiated to the pn junction of the granular semiconductor 20 that performs photoelectric conversion, so that the light incident on the entire photoelectric conversion device is efficiently photoelectrically converted. It is possible to irradiate the pn junction of the granular semiconductor 20 that performs the above without waste. For this reason, photoelectric conversion can be performed efficiently, and the generated photocurrent can be led to the junction site with little resistance loss.

ここで、導電性保護層7の、光電変換を行なう粒状半導体20の天頂部の厚さは3nm以上30nm以下であることが好ましい。なぜなら、導電性保護層7の光電変換を行なう粒状半導体20の天頂部の厚さが3nm未満である場合には、透光性導電層5との接触抵抗が増大するため好ましくないからである。一方、導電性保護層7の光電変換を行なう粒状半導体20における天頂部の厚さが30nmを超える場合には、導電性保護層7で光を吸収し、光電変換を行なう粒状半導体20のpn接合部へ導く光の量が減り、特に、導電性保護層7が光電変換を行なう粒状半導体20の下部においても形成されているときには、導電性保護層7を通って下部電極となる基板1に流れるリーク電流が大きくなり変換効率が低下するため好ましくない。   Here, it is preferable that the thickness of the zenith part of the granular semiconductor 20 which performs photoelectric conversion of the conductive protective layer 7 is 3 nm or more and 30 nm or less. This is because if the thickness of the zenith portion of the granular semiconductor 20 that performs photoelectric conversion of the conductive protective layer 7 is less than 3 nm, the contact resistance with the translucent conductive layer 5 increases, which is not preferable. On the other hand, when the thickness of the top of the granular semiconductor 20 that performs photoelectric conversion of the conductive protective layer 7 exceeds 30 nm, the pn junction of the granular semiconductor 20 that absorbs light by the conductive protective layer 7 and performs photoelectric conversion The amount of light guided to the portion is reduced. In particular, when the conductive protective layer 7 is also formed below the granular semiconductor 20 that performs photoelectric conversion, it flows through the conductive protective layer 7 to the substrate 1 serving as the lower electrode. This is not preferable because leakage current increases and conversion efficiency decreases.

次に、本発明の光電変換装置の製造方法について図1に示す光電変換装置を例にとり、説明する。   Next, a method for manufacturing a photoelectric conversion device according to the present invention will be described using the photoelectric conversion device shown in FIG. 1 as an example.

図3は本発明の光電変換装置の製造方法の工程を示す断面図である。   FIG. 3 is a cross-sectional view showing the steps of the method for producing a photoelectric conversion device of the present invention.

まず、図3(a)に示すように、結晶質半導体粒子2を基板上に多数個、密に一層並べ、結晶質半導体粒子の上から荷重を加えながら、全体的に加熱し、基板1と結晶質半導体粒子2とを、基板1と結晶質半導体粒子2との合金層10を介して接合する。   First, as shown in FIG. 3A, a large number of crystalline semiconductor particles 2 are densely arranged on the substrate, and the whole is heated while applying a load from above the crystalline semiconductor particles. The crystalline semiconductor particles 2 are joined via an alloy layer 10 of the substrate 1 and the crystalline semiconductor particles 2.

次に、図3(b)に示すように、結晶質半導体粒子2の表面に半導体部3を形成し、光電変換を行なう粒状半導体20を作製する。このとき、結晶質半導体粒子2がp型であれば、半導体部3はn型となるように形成し、結晶質半導体粒子2がn型であれば、半導体部3はp型となるように形成する。なお、半導体部3は、結晶質半導体粒子2上に形成するのではなく、結晶質半導体粒子2へドーパントを注入して形成してもかまわない。また、半導体部3を結晶質半導体粒子2へドーパントを熱拡散させて形成してから、基板1と結晶質半導体粒子2とを接合してもよい。   Next, as shown in FIG. 3B, the semiconductor portion 3 is formed on the surface of the crystalline semiconductor particles 2 to produce a granular semiconductor 20 that performs photoelectric conversion. At this time, if the crystalline semiconductor particles 2 are p-type, the semiconductor portion 3 is formed to be n-type, and if the crystalline semiconductor particles 2 are n-type, the semiconductor portion 3 is p-type. Form. The semiconductor portion 3 may not be formed on the crystalline semiconductor particles 2 but may be formed by injecting a dopant into the crystalline semiconductor particles 2. Alternatively, the semiconductor portion 3 may be formed by thermally diffusing the dopant into the crystalline semiconductor particles 2, and then the substrate 1 and the crystalline semiconductor particles 2 may be joined.

次に、図3(c)に示すように、隣り合う光電変換を行なう粒状半導体20の間を埋めるように絶縁体4を、光電変換を行なう粒状半導体20の上部の表面に絶縁膜6をそれぞれ形成する。絶縁体4と絶縁膜6とは個別に形成しても、同時に形成してもよいが、製造工程が簡易になり生産性がよくなるため同時に形成することが好ましい。   Next, as shown in FIG. 3C, the insulator 4 is filled so as to fill in the space between adjacent granular semiconductors 20 that perform photoelectric conversion, and the insulating film 6 is formed on the upper surface of the granular semiconductor 20 that performs photoelectric conversion. Form. The insulator 4 and the insulating film 6 may be formed separately or at the same time, but are preferably formed at the same time because the manufacturing process is simplified and the productivity is improved.

なお、絶縁体2と絶縁膜6とを同一材料により、同時に形成する場合には、絶縁体2と絶縁膜6とは一体となる。このときには、光電変換を行なう粒状半導体20に沿って形成され、かつ透光性導電層5と接している部位が絶縁膜6となり、残る部位が絶縁体4となる。   When the insulator 2 and the insulating film 6 are formed of the same material at the same time, the insulator 2 and the insulating film 6 are integrated. At this time, the portion formed along the granular semiconductor 20 that performs photoelectric conversion and in contact with the translucent conductive layer 5 becomes the insulating film 6, and the remaining portion becomes the insulator 4.

絶縁膜6の非被覆部は、絶縁膜6を形成後にエッチング等により絶縁膜6の一部を除去して形成してもよいし、絶縁膜6を形成するときに同時に形成してもよい。絶縁膜6を形成するときに同時に非被覆部を形成するには、例えば、未硬化の2種類の絶縁材料を互いに分離した状態で混合させて有機溶剤に溶かした混合溶液を用いて、光電変換を行なう粒状半導体20の表面に薄い膜を形成し、硬化処理を行ない絶縁膜6を形成することで、自動的に非被覆部を形成すればよい。   The uncovered portion of the insulating film 6 may be formed by removing a part of the insulating film 6 by etching or the like after the insulating film 6 is formed, or may be formed at the same time as the insulating film 6 is formed. In order to form an uncovered portion at the same time as the formation of the insulating film 6, for example, photoelectric conversion is performed using a mixed solution in which two uncured insulating materials are mixed while being separated from each other and dissolved in an organic solvent. A thin film is formed on the surface of the granular semiconductor 20 to be subjected to the curing process, and the insulating film 6 is formed by performing a curing process, so that the uncovered portion may be automatically formed.

絶縁体4と絶縁膜6とを同時に形成し、かつ絶縁膜6を形成するときに同時に非被覆部を形成するには、例えば、以下の通りにすればよい。アルカリ性の絶縁材料と酸および中性系の絶縁材料とを未硬化の状態で混合させて有機溶剤に溶かした混合溶液を、ディッピング法,スピンコート法,スプレー法,毛管現象を利用する方法などにより基板1および光電変換を行なう粒状半導体20上に供給し、光電変換を行なう粒状半導体20の上部の表面および光電変換を行なう粒状半導体20間の下部に充填させた後、全体的に加熱して混合溶液を硬化させて、絶縁体4および絶縁膜6を形成する。ここで、光電変換を行なう粒状半導体20の表面を覆うように絶縁膜6が形成されるが、絶縁膜6の厚みを例えば10nmと薄くすれば、自動的に非被覆部が形成される。絶縁膜6の厚みは、混合溶液の粘度および濃度により、自由に調整できる。なお、毛管現象を利用する方法により絶縁体4および絶縁膜6を形成する場合には、混合溶液を供給した時に光電変換を行なう粒状半導体20上における混合溶液の厚みが厚くなっても、混合溶液が光電変換を行なう粒状半導体20間の隙間を埋めるように移動していき、結果として光電変換を行なう粒状半導体20の上部における厚みは薄くなり非被覆部が形成されるので問題ない。また、絶縁体4の厚みが光電変換を行なう粒状半導体20の高さに比べて薄くなるように、混合溶液の供給量を調整する。   In order to form the insulator 4 and the insulating film 6 at the same time and simultaneously form the non-covered portion when the insulating film 6 is formed, for example, the following may be performed. Using a dipping method, spin coating method, spray method, method using capillary action, etc., a mixed solution in which an alkaline insulating material and acid and neutral insulating materials are mixed in an uncured state and dissolved in an organic solvent Supply to the substrate 1 and the granular semiconductor 20 that performs photoelectric conversion, fill the upper surface of the granular semiconductor 20 that performs photoelectric conversion and the lower portion between the granular semiconductor 20 that performs photoelectric conversion, and then heat and mix as a whole The solution is cured to form the insulator 4 and the insulating film 6. Here, the insulating film 6 is formed so as to cover the surface of the granular semiconductor 20 that performs photoelectric conversion. If the thickness of the insulating film 6 is reduced to, for example, 10 nm, an uncovered portion is automatically formed. The thickness of the insulating film 6 can be freely adjusted by the viscosity and concentration of the mixed solution. In the case where the insulator 4 and the insulating film 6 are formed by a method utilizing the capillary phenomenon, even if the thickness of the mixed solution on the granular semiconductor 20 that performs photoelectric conversion when the mixed solution is supplied is increased. However, there is no problem because the thickness of the upper part of the granular semiconductor 20 that performs photoelectric conversion becomes thin and an uncoated portion is formed. Further, the supply amount of the mixed solution is adjusted so that the thickness of the insulator 4 is thinner than the height of the granular semiconductor 20 that performs photoelectric conversion.

次に、図3(d)に示すように絶縁体4と絶縁膜6とを覆うように、透光性導電層5を形成して図1に示す本発明の光電変換装置を得ることができる。ここで、絶縁膜6の非被覆部を埋めて透光性導電層5を形成することにより、光電変換を行なう粒状半導体20と透光性導電層5とが電気的に接続された状態とすることができる。   Next, as shown in FIG. 3D, the translucent conductive layer 5 is formed so as to cover the insulator 4 and the insulating film 6, and the photoelectric conversion device of the present invention shown in FIG. 1 can be obtained. . Here, by filling the uncovered portion of the insulating film 6 to form the light-transmitting conductive layer 5, the granular semiconductor 20 that performs photoelectric conversion and the light-transmitting conductive layer 5 are in an electrically connected state. be able to.

次に、本発明の光電変換装置の製造方法について、図2に示す光電変換装置を例にとって説明する。   Next, a method for manufacturing the photoelectric conversion device of the present invention will be described using the photoelectric conversion device shown in FIG. 2 as an example.

まず、上記製造方法と同様に、基板1上に結晶質半導体粒子2を接合し、結晶質半導体粒子2の基板1との接合部を除く表面に半導体部3を形成し、光電変換を行なう粒状半導体20を作製する。次に光電変換を行なう粒状半導体20の基板1との接合部を除く表面に、導電性保護層7を形成する。次に、上記製造方法と同様に、絶縁体4,絶縁膜6,透光性導電層5を形成して、図2に示す本発明の光電変換装置を得ることができる。   First, in the same manner as in the above manufacturing method, the crystalline semiconductor particles 2 are bonded onto the substrate 1, the semiconductor portion 3 is formed on the surface of the crystalline semiconductor particles 2 excluding the bonding portion with the substrate 1, and the photoelectric conversion is performed. The semiconductor 20 is manufactured. Next, the conductive protective layer 7 is formed on the surface of the granular semiconductor 20 that performs photoelectric conversion, excluding the joint portion with the substrate 1. Next, similarly to the above manufacturing method, the insulator 4, the insulating film 6, and the light-transmitting conductive layer 5 can be formed to obtain the photoelectric conversion device of the present invention shown in FIG.

なお、本発明の光電変換装置は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更・改良を加えることが可能である。   The photoelectric conversion device of the present invention is not limited to the above-described embodiment, and various changes and improvements can be added without departing from the gist of the present invention.

次に、本発明の光電変換装置の具体化した第1の実施例を図1に示した光電変換装置により説明する。   Next, a specific first embodiment of the photoelectric conversion device of the present invention will be described with reference to the photoelectric conversion device shown in FIG.

アルミニウムからなる基板1上に、粒径が0.3mm以上0.5mm以下であるp型シリコンである結晶質半導体粒子2を多数個設置した後、結晶質半導体粒子2が動かないように上から一定の荷重をかけて押し付けた状態で、N−H雰囲気中で630℃で10分間加熱して、基板1と結晶質半導体粒子2とを、基板1と結晶質半導体粒子2との合金層10を介して接合した。 After a large number of crystalline semiconductor particles 2 made of p-type silicon having a particle size of 0.3 mm or more and 0.5 mm or less are placed on a substrate 1 made of aluminum, the crystalline semiconductor particles 2 are fixed from above so that they do not move. The substrate 1 and the crystalline semiconductor particles 2 are heated in a N 2 —H 2 atmosphere at 630 ° C. for 10 minutes while being pressed under a load, and the alloy layer 10 between the substrate 1 and the crystalline semiconductor particles 2 is heated. It joined via.

次に結晶質半導体粒子2の表面をクリーニングするために、この結晶質半導体粒子2が接合された基板1を、弗酸の硝酸に対する混合比率を0.05とした弗酸硝酸混合液中に1分間浸漬した後、純水で十分洗浄した。次に結晶質半導体粒子2の一部領域を除く表面に、シランガスと微量のリン化合物からなる混合ガスを用いたプラズマCVD法により、n型非晶質シリコンからなる半導体部3を20nmの厚さで形成した。   Next, in order to clean the surface of the crystalline semiconductor particles 2, the substrate 1 to which the crystalline semiconductor particles 2 are bonded is immersed in a hydrofluoric nitric acid mixed solution in which the mixing ratio of hydrofluoric acid to nitric acid is 0.05 for 1 minute. And then thoroughly washed with pure water. Next, the semiconductor portion 3 made of n-type amorphous silicon is formed to a thickness of 20 nm on the surface excluding a partial region of the crystalline semiconductor particles 2 by plasma CVD using a mixed gas consisting of silane gas and a small amount of phosphorus compound. Formed with.

次に、硬化温度が230℃であるポリイミド樹脂とシリコーン樹脂とをポリイミドに対するシリコーン樹脂の割合を15%として混合し、N−メチルピロリドン溶液中に溶解させて混合溶液を作製した。混合溶液の濃度は12質量%であり、この混合溶液の濃度が10質量%のときの25℃における粘度は50mPa・sであった。この混合溶液を、光電変換を行なう粒状半導体20および基板1上にディスペンサーを用いて供給し、毛管現象を利用した方法で隣り合う光電変換を行なう粒状半導体20間の下部に充填させた。次に、窒素雰囲気中で250℃にて1時間加熱し、ポリイミドとシリコーン樹脂との混合溶液を硬化させて、絶縁体4および絶縁膜6を形成した。絶縁体4の厚みは1μm以上5μm以下の範囲で形成されていた。また、絶縁膜6の膜厚は5nmであり、絶縁膜6には円相当径が数100nmである非被覆部が数10個形成されていた。ここで、円相当径とは、非被覆部を上から見たときの面積と等しい面積を持つ円と仮定された円の直径を示す。絶縁膜6を上から見たときの非被覆部は、円状,楕円状,角の鈍った多角形状等、さまざまば形状のものが混在していた。また混合溶液をガラス基板に塗布して、窒素雰囲気中で250℃で1時間加熱処理した後、光吸収率を測定したところ、厚み1μm当たりの光吸収率が、波長400nmのとき15%、波長500nmのとき1%であり、波長400nm以上1200nm以下で良好な光透過性を有していた。   Next, a polyimide resin having a curing temperature of 230 ° C. and a silicone resin were mixed at a ratio of the silicone resin to the polyimide of 15% and dissolved in an N-methylpyrrolidone solution to prepare a mixed solution. The concentration of the mixed solution was 12% by mass, and the viscosity at 25 ° C. when the concentration of the mixed solution was 10% by mass was 50 mPa · s. This mixed solution was supplied onto the granular semiconductor 20 that performs photoelectric conversion and the substrate 1 using a dispenser, and filled in the lower part between adjacent granular semiconductors 20 that perform photoelectric conversion by a method utilizing capillary action. Next, it heated at 250 degreeC in nitrogen atmosphere for 1 hour, the mixed solution of the polyimide and the silicone resin was hardened, and the insulator 4 and the insulating film 6 were formed. The thickness of the insulator 4 was formed in the range of 1 μm or more and 5 μm or less. Further, the film thickness of the insulating film 6 is 5 nm, and several tens of uncovered portions having a circle-equivalent diameter of several hundred nm are formed on the insulating film 6. Here, the equivalent circle diameter indicates the diameter of a circle assumed to be a circle having an area equal to the area when the non-covered portion is viewed from above. When the insulating film 6 is viewed from above, the non-covered portion includes various shapes such as a circle, an ellipse, and a polygon with a blunt corner. The mixed solution was applied to a glass substrate, heat-treated at 250 ° C. for 1 hour in a nitrogen atmosphere, and the light absorptivity was measured. It was 1% at 500 nm, and had good light transmission at a wavelength of 400 nm to 1200 nm.

次に、ITOターゲットを用いたDCスパッタリング装置に投入し、絶縁体4および絶縁膜6を覆い、かつ絶縁膜の非被覆部を埋めるようにITOからなる透光性導電層5を100nmの厚みに形成した。   Next, it is put into a DC sputtering apparatus using an ITO target, and the transparent conductive layer 5 made of ITO is formed to a thickness of 100 nm so as to cover the insulator 4 and the insulating film 6 and fill the uncovered portion of the insulating film. Formed.

次に、透光性導電層5の上にフィンガーおよびバスバーからなるパターン電極を設けた後、光電変換率を測定したところ、8.3%であった。また、この光電変換装置に対し−40℃から90℃までの温度サイクル試験を500サイクル行なった後、変換効率を測定したところ、8.1%であった。   Next, after providing the pattern electrode which consists of a finger and a bus bar on the translucent conductive layer 5, when the photoelectric conversion rate was measured, it was 8.3%. Further, after 500 cycles of a temperature cycle test from −40 ° C. to 90 ° C. were performed on this photoelectric conversion device, the conversion efficiency was measured and found to be 8.1%.

次に、本発明の光電変換装置の第2の実施例として、図2に示した光電変換装置を例にして説明する。第1の実施例と同様に、基板1上に結晶質半導体粒子2を接合し、半導体部3を形成した後に、ITOターゲットを用いたDCスパッタリング装置に投入し、半導体部3上に、ITOからなる導電性保護層7を天頂部における厚みを10nmとして形成した。その後、第1の実施例と同様に、絶縁体4,絶縁膜6,透光性導電層5,パターン電極を形成して光電変換装置を作製して変換効率を測定したところ、8.5%であった。また、この試料に対し−40℃から90℃までの温度サイクル試験を500サイクル行なったところ、変換効率は8.4%であった。なお、導電性保護層7上に形成した絶縁膜6には自動的に非被覆部が多数個形成されていた。   Next, as a second embodiment of the photoelectric conversion device of the present invention, the photoelectric conversion device shown in FIG. 2 will be described as an example. As in the first embodiment, after bonding the crystalline semiconductor particles 2 on the substrate 1 and forming the semiconductor part 3, the semiconductor part 3 is put into a DC sputtering apparatus using an ITO target. A conductive protective layer 7 was formed with a thickness at the zenith portion of 10 nm. Thereafter, as in the first example, an insulator 4, an insulating film 6, a light-transmitting conductive layer 5, and a pattern electrode were formed to produce a photoelectric conversion device, and the conversion efficiency was measured. It was. Further, when 500 cycles of a temperature cycle test from −40 ° C. to 90 ° C. were performed on this sample, the conversion efficiency was 8.4%. A number of uncovered portions were automatically formed on the insulating film 6 formed on the conductive protective layer 7.

第1の実施例、第2の実施例ともに、高い変換効率を有するとともに、高い信頼性を有するものとなった。これは、非被覆部を有する絶縁膜6を半導体部3と透光性導電層5との間に形成したことにより、透光性導電層5と下部電極となる基板1との短絡を、絶縁体4に加え絶縁膜6により確実に防止することができたため、高い変換効率を有するとともに、高い信頼性が得られたものと推察される。また、高い変換効率を有することより、非被覆部を通じて、確実に半導体部3と透光性導電層6とが電気的に接続できていることが確認できた。また、第2の実施例は第1の実施例に比べて変換効率が高かった。これは、導電性保護層7と透光性導電層5とを電気的に接続することにより、抵抗が小さくなり、発生した光電流の抵抗ロスが少なくなったためと推察される。   Both the first embodiment and the second embodiment have high conversion efficiency and high reliability. This is because an insulating film 6 having an uncovered portion is formed between the semiconductor portion 3 and the translucent conductive layer 5 to insulate a short circuit between the translucent conductive layer 5 and the substrate 1 that becomes the lower electrode. Since it was reliably prevented by the insulating film 6 in addition to the body 4, it is presumed that high conversion efficiency and high reliability were obtained. Moreover, it has confirmed that the semiconductor part 3 and the translucent conductive layer 6 were able to be electrically connected reliably through the non-coating part from having high conversion efficiency. Further, the conversion efficiency of the second example was higher than that of the first example. This is presumably because the conductive protective layer 7 and the translucent conductive layer 5 are electrically connected to reduce the resistance and reduce the resistance loss of the generated photocurrent.

以上の結果から分かるように、非被覆部を有する絶縁膜6を半導体部3と透光性導電層5との間に形成することにより、透光性導電層5と下部電極となる基板1との短絡を確実に防止することで、高い変換効率を有する光電変換装置を得ることができた。また、導電性保護層7を絶縁膜6と半導体部3との間に形成することにより、発生した光電流の抵抗ロスを少なくすることができるため、より高い変換効率を有する光電変換装置を得ることができた。   As can be seen from the above results, by forming the insulating film 6 having an uncovered portion between the semiconductor portion 3 and the translucent conductive layer 5, the translucent conductive layer 5 and the substrate 1 serving as the lower electrode, It was possible to obtain a photoelectric conversion device having high conversion efficiency by reliably preventing the short circuit. In addition, since the conductive protective layer 7 is formed between the insulating film 6 and the semiconductor portion 3, the resistance loss of the generated photocurrent can be reduced, so that a photoelectric conversion device having higher conversion efficiency is obtained. I was able to.

本発明の光電変換装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the photoelectric conversion apparatus of this invention. (a)〜(d)は本発明の光電変換装置の製造方法の各工程を説明する断面図である。(A)-(d) is sectional drawing explaining each process of the manufacturing method of the photoelectric conversion apparatus of this invention. 従来の光電変換装置を示す断面図である。It is sectional drawing which shows the conventional photoelectric conversion apparatus.

符号の説明Explanation of symbols

1・・・・基板
2・・・・結晶質半導体粒子
3・・・・半導体部
4・・・・絶縁体
5・・・・透光性導電層
6・・・・絶縁膜
7・・・・導電性保護層
10・・・・合金層
20・・・・粒状半導体
DESCRIPTION OF SYMBOLS 1 ... substrate 2 ... crystalline semiconductor particle 3 ... semiconductor part 4 ... insulator 5 ... translucent conductive layer 6 ... insulating film 7 ...・ Conductive protective layer
10 ... Alloy layer
20 ... Granular semiconductor

Claims (6)

下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合して、これら粒状半導体間の下部に絶縁体を設け、前記粒状半導体の上部に非被覆部を有する絶縁膜を設け、前記非被覆部を通じて前記粒状半導体と電気的に接続されるように、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層が形成されていることを特徴とする光電変換装置。 A plurality of granular semiconductors that perform photoelectric conversion are joined on a substrate that serves as a lower electrode, an insulator is provided between the granular semiconductors, and an insulating film having an uncoated portion is provided on the granular semiconductor. A photoelectric conversion device, wherein a translucent conductive layer serving as an upper electrode is formed on the insulator and the insulating film so as to be electrically connected to the granular semiconductor through an uncovered portion. 下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合して、これら粒状半導体の基板との接合部を除く表面に導電性保護層を設け、前記導電性保護層が形成された前記粒状半導体間の下部に絶縁体を設け、前記導電性保護層が形成された前記粒状半導体の上部に非被覆部を有する絶縁膜を設け、前記非被覆部を通じて前記導電性保護層と電気的に接続されるように、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層が形成されていることを特徴とする光電変換装置。 A large number of granular semiconductors that perform photoelectric conversion are bonded onto a substrate that serves as a lower electrode, and a conductive protective layer is provided on the surface of the granular semiconductor excluding the bonded portion, whereby the conductive protective layer is formed. An insulator is provided between the granular semiconductors, an insulating film having an uncovered portion is provided on the granular semiconductor on which the conductive protective layer is formed, and the conductive protective layer is electrically connected to the conductive layer through the non-covered portion. A light-transmitting conductive layer serving as an upper electrode is formed on the insulator and the insulating film so as to be connected to the photoelectric conversion device. 下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合する工程と、これら粒状半導体間の下部に絶縁体を、前記粒状半導体の上部に非被覆部を有する絶縁膜をそれぞれ形成する工程と、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層を形成して、前記粒状半導体と前記透光性導電層とを前記絶縁膜の前記非被覆部を通じて電気的に接続させる工程とを含むことを特徴とする光電変換装置の製造方法。 A step of bonding a large number of granular semiconductors that perform photoelectric conversion on a substrate to be a lower electrode, and forming an insulator below the granular semiconductor and an insulating film having an uncoated portion above the granular semiconductor. Forming a translucent conductive layer to be an upper electrode on the insulator and the insulating film, and electrically connecting the granular semiconductor and the translucent conductive layer through the uncovered portion of the insulating film. And a step of connecting to the photoelectric conversion device. 前記基板および多数個の前記粒状半導体の上に、未硬化の2種類の絶縁材料を混合させて有機溶剤に溶かした混合溶液を供給し、前記粒状半導体間の下部に前記混合溶液を充填するとともに前記粒状半導体の上部に前記混合溶液の膜を形成した後に、前記混合溶液の硬化処理を行なって、前記絶縁体および前記非被覆部を有する前記絶縁膜を形成することを特徴とする請求項3記載の光電変換装置の製造方法。 Supplying a mixed solution in which two uncured insulating materials are mixed and dissolved in an organic solvent on the substrate and a large number of the granular semiconductors, and filling the mixed solution in the lower part between the granular semiconductors 4. The film of the mixed solution is formed on the granular semiconductor, and then the mixed solution is cured to form the insulating film having the insulator and the non-covered portion. The manufacturing method of the photoelectric conversion apparatus of description. 下部電極となる基板上に、光電変換を行なう粒状半導体を多数個接合する工程と、これら粒状半導体の前記基板との接合部を除く表面に導電性保護層を形成する工程と、前記粒状半導体間の下部に絶縁体を、前記導電性保護層が形成された前記粒状半導体の上部に非被覆部を有する絶縁膜をそれぞれ形成する工程と、前記絶縁体および前記絶縁膜の上に上部電極となる透光性導電層を形成して、前記導電性保護層と前記透光性導電層とを前記絶縁膜の前記非被覆部を通じて電気的に接続させる工程とを含むことを特徴とする光電変換装置の製造方法。 A step of bonding a number of granular semiconductors that perform photoelectric conversion on a substrate to be a lower electrode; a step of forming a conductive protective layer on a surface of the granular semiconductor excluding a bonding portion with the substrate; and between the granular semiconductors Forming an insulator on the bottom of the substrate, forming an insulating film having an uncovered portion on the granular semiconductor on which the conductive protective layer is formed, and forming an upper electrode on the insulator and the insulating film. Forming a light-transmitting conductive layer, and electrically connecting the conductive protective layer and the light-transmitting conductive layer through the non-covering portion of the insulating film. Manufacturing method. 前記基板および多数個の前記導電性保護層が形成された粒状半導体の上に、未硬化の2種類の絶縁材料を混合させて有機溶剤に溶かした混合溶液を供給し、前記粒状半導体の下部に前記混合溶液を充填するとともに前記導電性保護層を形成した前記粒状半導体の上部に前記混合溶液の膜を形成した後に、前記混合溶液の硬化処理を行なって、前記絶縁体および前記非被覆部を有する前記絶縁膜を形成することを特徴とする請求項5記載の光電変換装置の製造方法。 A mixed solution in which two uncured insulating materials are mixed and dissolved in an organic solvent is supplied to the lower part of the granular semiconductor on the substrate and the granular semiconductor on which the plurality of conductive protective layers are formed. After forming the film of the mixed solution on the granular semiconductor in which the mixed solution is filled and the conductive protective layer is formed, the mixed solution is cured to form the insulator and the non-covered portion. The method for manufacturing a photoelectric conversion device according to claim 5, wherein the insulating film is formed.
JP2004050881A 2004-02-26 2004-02-26 Photoelectric converter and manufacturing method thereof Pending JP2005243872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050881A JP2005243872A (en) 2004-02-26 2004-02-26 Photoelectric converter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050881A JP2005243872A (en) 2004-02-26 2004-02-26 Photoelectric converter and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005243872A true JP2005243872A (en) 2005-09-08

Family

ID=35025292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050881A Pending JP2005243872A (en) 2004-02-26 2004-02-26 Photoelectric converter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005243872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185537A1 (en) * 2013-05-17 2014-11-20 株式会社カネカ Solar cell, production method therefor, and solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273671A (en) * 1988-09-08 1990-03-13 Fuji Electric Co Ltd Manufacture of photoelectric transfer element
JPH06163953A (en) * 1992-11-27 1994-06-10 Sanyo Electric Co Ltd Photovoltaic element and its manufacture
JP2002043603A (en) * 2000-07-27 2002-02-08 Kyocera Corp Photoelectric converter
JP2003158278A (en) * 2001-11-26 2003-05-30 Kyocera Corp Photoelectric convertor and its manufacturing method
JP2003218369A (en) * 2002-01-25 2003-07-31 Kyocera Corp Photoelectric conversion device
JP2004031742A (en) * 2002-06-27 2004-01-29 Kyocera Corp Photoelectric converter and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273671A (en) * 1988-09-08 1990-03-13 Fuji Electric Co Ltd Manufacture of photoelectric transfer element
JPH06163953A (en) * 1992-11-27 1994-06-10 Sanyo Electric Co Ltd Photovoltaic element and its manufacture
JP2002043603A (en) * 2000-07-27 2002-02-08 Kyocera Corp Photoelectric converter
JP2003158278A (en) * 2001-11-26 2003-05-30 Kyocera Corp Photoelectric convertor and its manufacturing method
JP2003218369A (en) * 2002-01-25 2003-07-31 Kyocera Corp Photoelectric conversion device
JP2004031742A (en) * 2002-06-27 2004-01-29 Kyocera Corp Photoelectric converter and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185537A1 (en) * 2013-05-17 2014-11-20 株式会社カネカ Solar cell, production method therefor, and solar cell module
JP5695283B1 (en) * 2013-05-17 2015-04-01 株式会社カネカ SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
US9553228B2 (en) 2013-05-17 2017-01-24 Kaneka Corporation Solar cell, production method therefor, and solar cell module

Similar Documents

Publication Publication Date Title
JP6447926B2 (en) Solar cell and method for manufacturing solar cell
JP3722326B2 (en) Manufacturing method of solar cell
TW201203588A (en) Solar cell including sputtered reflective layer and method of manufacture thereof
US20160247960A1 (en) Method for Fabricating a Photovoltaic Cell
JP4963866B2 (en) Method for manufacturing photoelectric conversion element
CN1813356A (en) Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
EP2423981A2 (en) Method of manufacturing solar cell electrodes by paste firing
CN116014000A (en) Laser baffle layer for foil-based solar cell metallization
US20050205126A1 (en) Photovoltaic conversion device, its manufacturing method and solar energy system
TW201218394A (en) Photovoltaic device and method for manufacturing same
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
US7829782B2 (en) Photovoltaic conversion device, optical power generator and manufacturing method of photovoltaic conversion device
JP2005243872A (en) Photoelectric converter and manufacturing method thereof
JP4153814B2 (en) Method for manufacturing photoelectric conversion device
JP2011066044A (en) Method for manufacturing solar cell device
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP4926101B2 (en) Photoelectric conversion device
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2004259835A (en) Photoelectric converter and its manufacturing method
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP4780951B2 (en) Photoelectric conversion device
JP2005159168A (en) Photoelectric converter and its manufacturing method
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JP4280138B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628