JP2005243789A - Method of manufacturing ceramic component - Google Patents

Method of manufacturing ceramic component Download PDF

Info

Publication number
JP2005243789A
JP2005243789A JP2004049559A JP2004049559A JP2005243789A JP 2005243789 A JP2005243789 A JP 2005243789A JP 2004049559 A JP2004049559 A JP 2004049559A JP 2004049559 A JP2004049559 A JP 2004049559A JP 2005243789 A JP2005243789 A JP 2005243789A
Authority
JP
Japan
Prior art keywords
ceramic
conductor
powder
electronic component
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049559A
Other languages
Japanese (ja)
Inventor
Kenjiro Fukuda
憲次郎 福田
Toshifumi Azuma
登志文 東
Yoji Furukubo
洋二 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004049559A priority Critical patent/JP2005243789A/en
Publication of JP2005243789A publication Critical patent/JP2005243789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a ceramic component whereby it is possible to prevent a defect such as swelling, a crack or the like, from being generated at a conductor pattern or a via hole conductor that constitutes a ceramic component, when manufacturing the same. <P>SOLUTION: A conductor containing at least metal powder and carbon powder is formed on the surface of or inside a ceramic mold that includes ceramic powder and an organic binder, and then the conductor is calcined after the organic binder is removed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セラミック電子部品の製法に関し、特に、セラミック粉末と有機バインダとを含むセラミック成形体の表面又は内部に、少なくとも金属粉末を含む導体部を形成した後焼成するセラミック電子部品の製法に関するものである。   The present invention relates to a method for producing a ceramic electronic component, and more particularly to a method for producing a ceramic electronic component that is fired after forming a conductor portion containing at least a metal powder on the surface or inside of a ceramic molded body containing ceramic powder and an organic binder. It is.

従来より、アルミナやチタン酸バリウムあるいはマンガン亜鉛系スピネルに代表されるセラミックスは、その高絶縁性、高誘電性あるいは高磁性のために、これらのセラミックスの少なくとも表面に導体部を形成してそれぞれ機能的な電子部品として応用されている。   Conventionally, ceramics typified by alumina, barium titanate, or manganese zinc spinel function by forming a conductor on at least the surface of these ceramics because of their high insulation, high dielectric properties, and high magnetism. It is applied as an electronic component.

また近年では、アルミナに端を発して、アルミナやシリカを含むガラスセラミックスなどのニューセラミックスが開発され、このような新材料は半導体産業の発達に伴い半導体素子収納用パッケージなどの多層配線基板として好適に利用されている。   In recent years, new ceramics such as glass ceramics containing alumina and silica have been developed, starting with alumina. Such new materials are suitable as multilayer wiring boards for semiconductor element storage packages as the semiconductor industry develops. Has been used.

そして、このようなガラスセラミックスを絶縁基板として用いた多層配線基板は、ガラスセラミックス原料粉末を含むセラミックグリーシートの表面や内部に導体パターンやビアホール導体などの導体部を形成し、次いでセラミックグリーンシートを複数枚積層し、導体部とセラミックグリーンシートとを一体焼成して作製されている(例えば、特許文献1)。因みに、このような多層配線基板を形成するための導体パターンやビアホール導体は、例えば、銅粉末などの金属粉末と、それ以外に、ZnO、SiOおよびBなどのガラス粉末が所定の割合で配合され調製されている。
特開平6−26873号公報
A multilayer wiring board using such glass ceramics as an insulating substrate has a conductor part such as a conductor pattern or a via hole conductor formed on the surface or inside of a ceramic grease sheet containing glass ceramic raw material powder, and then a ceramic green sheet is formed. A plurality of layers are laminated, and the conductor part and the ceramic green sheet are integrally fired (for example, Patent Document 1). Incidentally, the conductor pattern and via-hole conductor for forming such a multilayer wiring board are, for example, metal powder such as copper powder and glass powder such as ZnO, SiO 2 and B 2 O 3 in addition to the predetermined powder. It is blended and prepared in proportions.
JP-A-6-26873

しかしながら、半導体素子収納用パッケージなどの多層配線基板は近年の高密度化要求にともない、薄層化および微細配線化が進んでおり、そのためこのようなセラミック電子部品では絶縁基板中の配線の割合が年々増加しており、セラミック電子部品の特性に及ぼす導体パターンやビアホール導体などの導体部の影響が無視できなくなっている。   However, multilayer wiring boards such as packages for housing semiconductor elements are becoming thinner and finer in line with the recent demand for higher density, and as a result, in such ceramic electronic components, the proportion of wiring in the insulating board is increased. Increasing year by year, the influence of conductor parts such as conductor patterns and via-hole conductors on the characteristics of ceramic electronic components cannot be ignored.

つまり、セラミック電子部品を構成する導体部はガラス粉末や金属酸化物などのフィラー成分の添加による抵抗値の上昇やメッキ性の低下を防止すべく添加量の調整が行われているが、導体部からのガラス粉末や金属酸化物などフィラー成分の拡散により磁器の焼結挙動が変化し、軟化したガラス粉末により脱脂不良が起きやすく、焼成後のセラミック電子部品の磁器部や導体部に、通称、膨れと呼ばれる欠陥が発生するという問題があった。   In other words, the conductor part constituting the ceramic electronic component has been adjusted in addition amount to prevent an increase in resistance value and a decrease in plating performance due to the addition of filler components such as glass powder and metal oxide. The sintering behavior of porcelain changes due to the diffusion of filler components such as glass powder and metal oxides from, and the degreasing failure is liable to occur due to the softened glass powder. There was a problem that defects called blisters occurred.

また、ビアホール導体については、銅粉末に対して、上記のようにガラス粉末や金属酸化物などのフィラーを添加するだけの方法では、ビアホール導体中の銅が磁器側に拡散した際にビアホール導体の周囲の磁器にクラックが発生するという問題があった。なお、図2は、焼成後に多層配線基板となるセラミック成形体20を焼成したときに発生する膨れ21、剥離22およびクラック23を示す模式図である。   As for the via-hole conductor, when the filler such as glass powder or metal oxide is added to the copper powder as described above, when the copper in the via-hole conductor diffuses to the porcelain side, There was a problem that cracks occurred in the surrounding porcelain. FIG. 2 is a schematic diagram showing a bulge 21, a separation 22, and a crack 23 generated when the ceramic molded body 20 that becomes a multilayer wiring board after firing is fired.

従って本発明は、セラミック電子部品を製造する際に、それを構成する導体パターンやビアホール導体に発生する膨れやクラック等の欠陥の発生を防止できるセラミック電子部品の製法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a ceramic electronic component capable of preventing the occurrence of defects such as blisters and cracks occurring in a conductor pattern and a via-hole conductor constituting the ceramic electronic component. .

本発明のセラミック電子部品の製法は、セラミック粉末と有機バインダとを含むセラミック成形体の表面又は内部に、少なくとも金属粉末および炭素粉末を含む導体部を形成し、前記有機バインダ除去後、焼成することを特徴とする。   In the method for producing a ceramic electronic component according to the present invention, a conductor part containing at least metal powder and carbon powder is formed on the surface or inside of a ceramic molded body containing ceramic powder and an organic binder, and the organic binder is removed and then fired. It is characterized by.

上記セラミック電子部品の製法では、導体部がセラミック成形体の表面に形成された導体パターンであること、導体部がセラミック成形体の内部に形成されたビアホール導体であること、導体部中に含まれる炭素粉末の含有量は、金属粉末100質量部当たり0.05〜10質量部であること、炭素粉末の平均粒径が1〜5μmであることが望ましい。   In the manufacturing method of the ceramic electronic component, the conductor portion is a conductor pattern formed on the surface of the ceramic molded body, the conductor portion is a via-hole conductor formed inside the ceramic molded body, and included in the conductor portion. The content of the carbon powder is preferably 0.05 to 10 parts by mass per 100 parts by mass of the metal powder, and the average particle size of the carbon powder is preferably 1 to 5 μm.

上記セラミック電子部品の製法では、セラミック成形体がセラミックグリーンシートの積層体であること、セラミックグリーンシートがガラス粉末とフィラーを含むこと、金属粉末がCuまたはAg、あるいはこれらの合金であることが望ましい。   In the method for producing a ceramic electronic component, the ceramic molded body is a laminate of ceramic green sheets, the ceramic green sheet preferably contains glass powder and filler, and the metal powder is preferably Cu or Ag, or an alloy thereof. .

本発明のセラミック電子部品の製法によれば、上記セラミック成形体上に導体部を形成するに際し、導体ペースト中に金属粉末とともに炭素粉末を含有させることにより、焼成時に導体部中に含まれるガラス粉末や金属酸化物などフィラー成分の拡散や軟化による脱脂不良を抑制し、これにより焼成後のセラミック電子部品の磁器部や導体部に発生する、通称膨れと呼ばれる欠陥を防止できる。   According to the method for producing a ceramic electronic component of the present invention, when the conductor part is formed on the ceramic molded body, a glass powder contained in the conductor part at the time of firing is obtained by including carbon powder together with the metal powder in the conductor paste. Degreasing failure due to diffusion and softening of filler components such as metal oxides and metal oxides can be suppressed, thereby preventing a so-called swollen defect that occurs in the ceramic part and conductor part of the ceramic electronic component after firing.

また、ビアホール導体においては、セラミック成形体とビアホール導体とを同時焼成する際に、ビアホール導体中に炭素粉末を含有させることにより、セラミック成形体の焼成時の異常な収縮挙動を抑制でき、これにより焼成後にビアホール導体の周囲に発生するクラックを防止できる。   In addition, in the via hole conductor, when the ceramic molded body and the via hole conductor are simultaneously fired, the abnormal shrinkage behavior at the time of firing the ceramic molded body can be suppressed by including carbon powder in the via hole conductor. Cracks generated around the via-hole conductor after firing can be prevented.

また本発明によれば、導体部中に含まれる炭素粉末の含有量を金属粉末100質量部当たり0.05〜10質量部とすることにより、セラミック成形体と導体部との焼成収縮量を近づけることができるとともに導体部の焼成後の密度を高く維持できる。   Further, according to the present invention, the amount of carbon powder contained in the conductor portion is set to 0.05 to 10 parts by mass per 100 parts by mass of the metal powder, whereby the amount of firing shrinkage between the ceramic molded body and the conductor part is made closer. In addition, the density of the conductor after firing can be maintained high.

さらに本発明によれば、炭素粉末の平均粒径を1〜5μmとすることにより導体部中における炭素粉末の分散度を高くでき局所的な空隙などの形成を防止できる。   Furthermore, according to the present invention, by setting the average particle size of the carbon powder to 1 to 5 μm, the degree of dispersion of the carbon powder in the conductor portion can be increased, and formation of local voids and the like can be prevented.

次に、上記したように本発明の製法は焼成時に導体部中に含まれるガラス粉末や金属酸化物などフィラー成分の拡散や軟化による脱脂不良などの不良対策に効果的であることから、本発明の製法に適用されるセラミック成形体としては、導体部を内層できるセラミックグリーンシートの積層体であることが望ましい。   Next, as described above, the production method of the present invention is effective in countermeasures against defects such as degreasing defects due to diffusion and softening of filler components such as glass powder and metal oxide contained in the conductor during firing. As a ceramic molded body applied to this manufacturing method, it is desirable that it is a laminated body of ceramic green sheets that can have a conductor portion as an inner layer.

つまり本発明の製法はセラミックグリーンシートが拡散や軟化し易いガラス粉末とフィラーを含むものであるものに好適である。   In other words, the production method of the present invention is suitable for a ceramic green sheet containing glass powder and filler that are easily diffused and softened.

また、本発明では、上記したガラス粉末を含むセラミックグリーンシートとの同時焼成が可能な金属粉末としてCuまたはAg、あるいはこれらの合金であることが望ましい。   Moreover, in this invention, it is desirable that it is Cu or Ag, or these alloys as a metal powder which can be cofired with the ceramic green sheet containing the above-mentioned glass powder.

そして、上記したような導体部およびセラミックグリーンシートの構成とすることにより、メタライズの抵抗値を上昇させる、あるいはめっき性を劣下させることなくメタライズの焼結性を高めることができる。   And by setting it as the structure of an above-described conductor part and a ceramic green sheet, the sinterability of metallization can be improved, without raising the resistance value of metallization or degrading plating property.

本発明のセラミック電子部品の代表例であるセラミック配線基板を作製する方法について図1の工程図に従って詳細に説明する。   A method for producing a ceramic wiring board, which is a representative example of the ceramic electronic component of the present invention, will be described in detail with reference to the process diagram of FIG.

(a)まず、ガラス粉末とセラミックフィラーとを混合してセラミック組成物を調製し、その混合物に有機バインダ等を加えた後、ドクターブレード法、圧延法、プレス法などによりセラミックグリーンシート1を作製する。 (A) First, a glass composition and a ceramic filler are mixed to prepare a ceramic composition, an organic binder is added to the mixture, and then a ceramic green sheet 1 is produced by a doctor blade method, a rolling method, a pressing method, or the like. To do.

ここで用いるセラミック組成物としては、焼成時に結晶化しやすく、低熱膨張係数、高強度、低誘電率を得ることができるという点でほう珪酸ガラス粉末が好ましく、このほう珪酸ガラス粉末を60〜99.5質量%と、セラミックフィラーとして、例えばコーディエライト粉末を0.5〜20質量%と、金属酸化物粉末を0〜35質量%とを含有させて用いることが好ましい。   The ceramic composition used here is preferably a borosilicate glass powder in that it is easily crystallized at the time of firing and a low thermal expansion coefficient, high strength, and a low dielectric constant can be obtained. As the ceramic filler, it is preferable to use, for example, 0.5 to 20% by mass of cordierite powder and 0 to 35% by mass of metal oxide powder as the ceramic filler.

また、上記のほう珪酸ガラス粉末は、SiO 20〜53質量%、Al 5〜61質量%、MgO 2〜24質量%、ZnO 2〜14質量%、B 2〜14質量%、BaO 3〜40質量%と、さらに任意成分として、CaO、SrO、ZrOの群から選ばれる少なくとも1種をその合量で0〜15質量%含有することが望ましい。 Further, silicate glass powder towards the above, SiO 2 20 to 53 wt%, Al 2 O 3 5~61 wt%, MgO 2 to 24 wt%, ZnO 2 to 14 wt%, B 2 O 3 2~14 mass %, BaO 3 to 40% by mass, and as an optional component, at least one selected from the group of CaO, SrO and ZrO 2 is preferably contained in an amount of 0 to 15% by mass.

さらに、金属酸化物粉末としては、アルミナ、ガーナイト、スピネル、ムライト、フォルステライト、エンスタタイト、アノーサイト、スラウソナイト、セルジアン、ジルコニア、CaZrO、CaSiO、石英ガラスの群から選ばれる少なくとも1種であることが望ましい。 Furthermore, the metal oxide powder is at least one selected from the group consisting of alumina, garnite, spinel, mullite, forsterite, enstatite, anosite, slausonite, serdian, zirconia, CaZrO 3 , CaSiO 3 , and quartz glass. It is desirable.

(b)次に、作製したセラミックグリーンシート1にレーザーやマイクロドリル、パンチングなどにより直径80〜200μmの貫通孔3を形成する。そして、本発明の製法は、ビアホール導体の平坦性を高めることができることから、貫通孔3のピッチを500μm以下と狭ピッチにしても好適に用いることができる。 (B) Next, the through-hole 3 having a diameter of 80 to 200 μm is formed in the produced ceramic green sheet 1 by laser, micro drill, punching or the like. And since the manufacturing method of this invention can improve the flatness of a via-hole conductor, it can be used suitably even if the pitch of the through-hole 3 is 500 micrometers or less and a narrow pitch.

(c)次に、この貫通孔3に導体ペーストを充填して、本発明の導体部の一つであるビアホール導体5を形成する。本発明の導体ペーストは、固形分として銅粉末とガラス成分と炭素粉末を含むことが重要である。この固形分に対して、アクリル樹脂などの有機樹脂と、αテルピネオールなどの有機溶剤とを均質に混合して調製される。 (C) Next, the through-hole 3 is filled with a conductor paste to form a via-hole conductor 5 which is one of the conductor portions of the present invention. It is important that the conductor paste of the present invention contains a copper powder, a glass component, and a carbon powder as a solid content. An organic resin such as an acrylic resin and an organic solvent such as α-terpineol are homogeneously mixed with the solid content.

(d)次に、このグリーンシート1の表面に、前記ビアホール導体5と同じく銅粉末aを含む導体ペーストをスクリーン印刷等の手法を用いて同じく導体部である導体パターン7を形成する。 (D) Next, on the surface of the green sheet 1, a conductor pattern 7 that is also a conductor portion is formed on the surface of the green sheet 1 by using a method such as screen printing with a conductor paste containing the copper powder a as with the via-hole conductor 5.

この導体パターン7およびビアホール導体5用の導体ペーストは、銅粉末a100質量部に対してガラス等の無機成分を4〜20質量部、炭素粉末を0.05〜10質量部含み、ここで銅粉末の平均粒径は3〜6μm、無機成分の平均粒径は1.5〜5μm、炭素粉末の平均粒径は1〜5μmであることが好ましい。有機樹脂および有機溶剤の成分およびその添加量は、脱脂速度をビアホール導体5に近づけるという理由から、ビアホール導体5用と同じものであることが好ましい。   The conductor paste for the conductor pattern 7 and the via-hole conductor 5 contains 4 to 20 parts by mass of an inorganic component such as glass and 0.05 to 10 parts by mass of carbon powder with respect to 100 parts by mass of the copper powder a copper powder. It is preferable that the average particle diameter is 3 to 6 μm, the average particle diameter of the inorganic component is 1.5 to 5 μm, and the average particle diameter of the carbon powder is 1 to 5 μm. The components of the organic resin and the organic solvent and the addition amount thereof are preferably the same as those for the via-hole conductor 5 because the degreasing speed is close to that of the via-hole conductor 5.

また、本発明では、導体パターン7として、より高寸法精度化できるという点で、上記の導体ペーストを用いる以外に金属箔をフォトリソ加工して形成した配線パターン7を用いることもできる。   Moreover, in this invention, the wiring pattern 7 formed by carrying out the photolithography process of metal foil other than using said conductor paste can also be used as the conductor pattern 7 at the point that a higher dimensional accuracy can be achieved.

(e)次に、上記と同様にして作製された複数のセラミックグリーンシート1を積層圧着して積層体9を形成する。この場合の積層には、積み重ねたセラミックグリーンシート1に熱と圧力を加えて熱圧着する方法、有機樹脂、可塑剤および有機溶剤からなる接着剤をシート間に塗布して接着する方法等が採用可能である。 (E) Next, a plurality of ceramic green sheets 1 produced in the same manner as described above are laminated and pressure-bonded to form a laminate 9. For the lamination in this case, a method of applying heat and pressure to the stacked ceramic green sheets 1 and thermocompression bonding, a method of applying an adhesive composed of an organic resin, a plasticizer and an organic solvent between the sheets, and the like are adopted. Is possible.

次に、積層体9を500〜700℃の水蒸気を含有する窒素雰囲気中で熱処理して有機樹脂を除去した後に、850℃〜1050℃の窒素などの非酸化性雰囲気中で焼成して、絶縁基板が相対密度90%以上まで緻密化されるまで焼成する。その後、このセラミック配線基板の表面のメタライズ配線に、電解めっき法や無電解めっき法によってCu、Au、Niなどのめっき層を形成してセラミック配線基板を完成する。本発明のセラミック配線基板は、それぞれ前記グリーンシート1、配線パターン7およびビアホール導体5を同時焼成して形成される複数の絶縁層31a〜31cからなる絶縁基板31と、メタライズ配線33と、ビアホール焼結導体35とから構成されている。   Next, after heat-treating the laminated body 9 in a nitrogen atmosphere containing water vapor at 500 to 700 ° C. to remove the organic resin, the laminate 9 is fired in a non-oxidizing atmosphere such as nitrogen at 850 ° C. to 1050 ° C. Baking until the substrate is densified to a relative density of 90% or higher. Thereafter, a plated layer of Cu, Au, Ni or the like is formed on the metallized wiring on the surface of the ceramic wiring substrate by an electrolytic plating method or an electroless plating method, thereby completing the ceramic wiring substrate. The ceramic wiring board of the present invention includes an insulating substrate 31 comprising a plurality of insulating layers 31a to 31c formed by simultaneously firing the green sheet 1, the wiring pattern 7 and the via hole conductor 5, respectively, a metallized wiring 33, and via hole baking. The conductor 35 is constituted.

本発明のセラミックスの製法について多層配線基板を実施例として評価した。   The multilayer wiring board was evaluated as an example for the method for producing the ceramic of the present invention.

まず、絶縁基板用のセラミックグリーンシートとして、質量比率で44%SiO−36%BaO−7%B−8%Al−5%CaO(屈伏点700℃)の組成のガラスを55体積%に対してフィラー成分としてSiOを45体積%混合したものを用いた。これにアクリル系バインダーと可塑剤、分散剤、溶剤を加え混合し、かかる泥しょうをドクターブレード法により厚さ平均200μmのセラミックグリーンシートに成形した。 First, as a ceramic green sheet for the insulating substrate, a glass composition of 44% SiO 2 -36% BaO- 7% B 2 O 3 -8% Al 2 O 3 -5% CaO in the mass ratio (sag point 700 ° C.) A mixture containing 45% by volume of SiO 2 as a filler component with respect to 55% by volume was used. An acrylic binder, a plasticizer, a dispersant, and a solvent were added thereto and mixed, and the slurry was formed into a ceramic green sheet having an average thickness of 200 μm by a doctor blade method.

導体パターン用の導体ペーストは平均粒径が5μmの銅粉末を用い、平均粒径が5μmの炭素粉末(:カーボンブラック、純度99.7%)粉末を各量添加した。さらにこれに所定量の有機ビヒクルを添加してペースト組成物を調製した。このペーストをセラミックグリーンシートの表面に導体ペーストを印刷して導体パターンを形成した。   As the conductive paste for the conductive pattern, copper powder having an average particle diameter of 5 μm was used, and carbon powder (carbon black, purity 99.7%) having an average particle diameter of 5 μm was added in various amounts. Further, a predetermined amount of an organic vehicle was added thereto to prepare a paste composition. The paste was printed on the surface of the ceramic green sheet to form a conductor pattern.

ビアホール導体用の導体ペーストは、平均粒径が5.1μmの銅粉末を準備した。そして、これらの銅粉末に100質量部(Cu換算)に対して、平均粒径が3μmおよび5μmの上記導体パターンに用いたと同じ炭素粉末を準備し、表1に示す割合で秤量添加した。また、平均粒径が1.5μmで軟化点が840℃のガラス粉末をそれぞれ表1に示す割合で秤量添加した。さらに、これらの固形分100質量部に対して有機樹脂としてアクリル樹脂を10質量部、有機溶剤としてα‐テルピネオールを10質量部添加し混錬してビアホール導体用の導体ペーストを調製した。   As the conductor paste for the via-hole conductor, copper powder having an average particle diameter of 5.1 μm was prepared. And with respect to 100 mass parts (Cu conversion) with respect to these copper powders, the same carbon powder as used for the said conductor pattern whose average particle diameters are 3 micrometers and 5 micrometers was prepared, and it added by the ratio shown in Table 1. Further, glass powders having an average particle diameter of 1.5 μm and a softening point of 840 ° C. were weighed and added in the proportions shown in Table 1, respectively. Further, 10 parts by mass of acrylic resin as an organic resin and 10 parts by mass of α-terpineol as an organic solvent were added to 100 parts by mass of these solid contents, and kneaded to prepare a conductor paste for via-hole conductors.

次に、前記グリーンシートを穴加工し、上記の導体ペーストを用いてビアホールに充填し、焼成後の直径が200μmとなるビアホール導体を形成し、次いで、このようなビアホール導体を形成したグリーンシートの表面に、今度は、上記導体パターン用の導体ペーストを印刷して導体パターンを形成し、こうして、それぞれ所望の配置およびパターン形状になるように、ビアホール導体および導体パターンを形成したセラミックグリーンシート4枚を加圧積層して積層体9を作製した。なお本実施例においてビアホール導体の評価は、試料No.5の試料をもとにビアホール導体評価用の試料を作製し評価した。   Next, the green sheet is drilled and filled into a via hole using the above-described conductor paste to form a via-hole conductor having a diameter of 200 μm after firing, and then the green sheet on which the via-hole conductor is formed is formed. This time, the conductor paste for the conductor pattern is printed on the surface to form a conductor pattern, and thus four ceramic green sheets on which via-hole conductors and conductor patterns are formed so as to have a desired arrangement and pattern shape, respectively. Was laminated by pressure to produce a laminate 9. In this example, the evaluation of the via-hole conductor is based on Sample No. Based on the sample of 5, a sample for via hole conductor evaluation was prepared and evaluated.

次いで、この積層体を、有機バインダなどの有機成分を分解除去するために、水蒸気含有窒素雰囲気中で750℃の温度で1時間保持して脱脂した後、窒素雰囲気中で900℃に昇温して1時間保持してセラミック配線基板を作製した。導体パターンの厚みは15μmであった。   Next, in order to decompose and remove organic components such as an organic binder, the laminate was degreased by holding at 750 ° C. for 1 hour in a steam-containing nitrogen atmosphere, and then heated to 900 ° C. in a nitrogen atmosphere. For 1 hour to produce a ceramic wiring board. The thickness of the conductor pattern was 15 μm.

その結果は表1の通りである。ビアホール導体周囲の絶縁基板部分のクラックや膨れを実体顕微鏡を用いて評価した。めっき性は10mm角のパターンを印刷してめっきを行い、めっき欠け、付着が無いものを○、あるものを×とした。

Figure 2005243789
The results are shown in Table 1. A stereomicroscope was used to evaluate the cracks and swelling of the insulating substrate around the via-hole conductor. As for the plating property, a 10 mm square pattern was printed and plating was performed.
Figure 2005243789

表1から明らかなように、炭素を含まないメタライズペーストを用いた試料No.1では膨れの発生があった。また、金属酸化物を添加したNo.2は膨れがなかったが、抵抗が4.5mΩ/□(シート抵抗:測定抵抗×(測定長/幅))と上昇、めっき性も低下した。これに対し、本発明試料No.3〜10ではフクレの発生が無く、比抵抗、めっき性も良好であった。

Figure 2005243789
As is apparent from Table 1, sample No. using a metallized paste containing no carbon. In No. 1, there was swelling. Further, No. 1 to which a metal oxide was added. Although No. 2 did not swell, the resistance increased to 4.5 mΩ / □ (sheet resistance: measurement resistance × (measurement length / width)), and the plating property also decreased. On the other hand, the present sample No. In 3 to 10, there was no occurrence of swelling, and the specific resistance and plating property were also good.
Figure 2005243789

また、表2の結果から明らかなように、ビアホール導体中に炭素を含有しない試料No.11では基板にクラックが発生した。   Further, as is apparent from the results in Table 2, the sample No. 1 containing no carbon in the via-hole conductor was used. In No. 11, a crack occurred in the substrate.

これに対して、本発明に従い、ビアホール導体中に炭素を含有する試料No.12〜20ではクラックがなかった。   On the other hand, according to the present invention, sample No. 1 containing carbon in the via-hole conductor was used. In 12-20, there was no crack.

本発明のセラミック電子部品の製法にかかるセラミック成形体を示す模式図であり、(a)は、その表面に導体層を具備するセラミック成形体、(b)は、複数のセラミックグリーンシートを積層して形成された積層体の表面および内部にビアホール導体を具備してなる積層体である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the ceramic molded body concerning the manufacturing method of the ceramic electronic component of this invention, (a) is the ceramic molded body which comprises a conductor layer on the surface, (b) is laminated | stacked several ceramic green sheet. And a via hole conductor on the surface and inside of the laminate formed in this manner. 焼成後に多層配線基板となるセラミック成形体を焼成したときに発生する膨れ、剥離およびクラックを示す模式図である。It is a schematic diagram which shows the swelling, peeling, and crack which generate | occur | produce when baking the ceramic molded body used as a multilayer wiring board after baking.

符号の説明Explanation of symbols

1 セラミックグリーンシート
5 ビアホール導体(導体部)
7 導体パターン(導体部)
9 積層体
1 Ceramic green sheet 5 Via-hole conductor (conductor part)
7 Conductor pattern (conductor part)
9 Laminate

Claims (8)

セラミック粉末と有機バインダとを含むセラミック成形体の表面又は内部に、少なくとも金属粉末および炭素粉末を含む導体部を形成し、前記有機バインダ除去後、焼成することを特徴とするセラミック電子部品の製法。 A method for producing a ceramic electronic component, comprising: forming a conductor part containing at least a metal powder and a carbon powder on a surface or inside of a ceramic molded body containing a ceramic powder and an organic binder; and firing after removing the organic binder. 導体部がセラミック成形体の表面に形成された導体パターンである請求項1記載のセラミック電子部品の製法。 2. The method of manufacturing a ceramic electronic component according to claim 1, wherein the conductor portion is a conductor pattern formed on the surface of the ceramic molded body. 導体部がセラミック成形体の内部に形成されたビアホール導体である請求項1又は2に記載のセラミック電子部品の製法。 The method for producing a ceramic electronic component according to claim 1, wherein the conductor portion is a via-hole conductor formed inside the ceramic molded body. 導体部中に含まれる炭素粉末の含有量が、金属粉末100質量部当たり0.05〜10質量部である請求項1乃至3のうちいずれか記載のセラミック電子部品の製法。 The method for producing a ceramic electronic component according to any one of claims 1 to 3, wherein the content of the carbon powder contained in the conductor part is 0.05 to 10 parts by mass per 100 parts by mass of the metal powder. 炭素粉末の平均粒径が1〜5μmである請求項1乃至4のうちいずれか記載のセラミック電子部品の製法。 The method for producing a ceramic electronic component according to claim 1, wherein the carbon powder has an average particle size of 1 to 5 μm. セラミック成形体がセラミックグリーンシートの積層体である請求項1乃至5のうちいずれか記載のセラミック電子部品の製法。 The method for producing a ceramic electronic component according to claim 1, wherein the ceramic molded body is a laminate of ceramic green sheets. セラミックグリーンシートがガラス粉末とフィラーを含む請求項1乃至6のうちいずれか記載のセラミック電子部品の製法。 The method for producing a ceramic electronic component according to claim 1, wherein the ceramic green sheet contains glass powder and a filler. 金属粉末がCuまたはAg、あるいはこれらの合金である請求項1乃至7のうちいずれか記載のセラミック電子部品の製法。 The method for producing a ceramic electronic component according to any one of claims 1 to 7, wherein the metal powder is Cu or Ag, or an alloy thereof.
JP2004049559A 2004-02-25 2004-02-25 Method of manufacturing ceramic component Pending JP2005243789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049559A JP2005243789A (en) 2004-02-25 2004-02-25 Method of manufacturing ceramic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049559A JP2005243789A (en) 2004-02-25 2004-02-25 Method of manufacturing ceramic component

Publications (1)

Publication Number Publication Date
JP2005243789A true JP2005243789A (en) 2005-09-08

Family

ID=35025222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049559A Pending JP2005243789A (en) 2004-02-25 2004-02-25 Method of manufacturing ceramic component

Country Status (1)

Country Link
JP (1) JP2005243789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127705A1 (en) * 2021-12-28 2023-07-06 京セラ株式会社 Wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127705A1 (en) * 2021-12-28 2023-07-06 京セラ株式会社 Wiring board

Similar Documents

Publication Publication Date Title
JP5158040B2 (en) Glass ceramic substrate
JP4673086B2 (en) Conductor paste for via conductor metallization and method of manufacturing ceramic wiring board using the same
JP4423008B2 (en) Manufacturing method of multilayer wiring board
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JP4844317B2 (en) Ceramic electronic component and manufacturing method thereof
JP2657008B2 (en) Metallized composition for ceramics
JP2008030995A (en) Multilayered ceramic substrate and its manufacturing method as well as composite green sheet for manufacturing multilayered ceramic substrate
JP2005243789A (en) Method of manufacturing ceramic component
JP2010034176A (en) Multilayer wiring board, and method of manufacturing the same
JP2008159726A (en) Multilayer wiring substrate
JP5004548B2 (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
JP2005136041A (en) Manufacturing method of ceramic wiring board
JP5201903B2 (en) Multilayer wiring board, method for producing the same, and composition for via-hole conductor
JPH11186727A (en) Wiring board and manufacture thereof
JP2005268712A (en) Laminated ceramic electronic component and manufacturing method for the same
JP2010034273A (en) Multilayer circuit board, and method of manufacturing the same
JP4443257B2 (en) Manufacturing method of ceramics
JP3786609B2 (en) COMPOSITE CERAMIC COMPONENT AND MANUFACTURING METHOD THEREOF
JP2009231542A (en) Glass ceramic multilayer wiring board and method for manufacturing the same
JP2005216998A (en) Ceramic circuit board and manufacturing method therefor
JP4099054B2 (en) Copper metallized composition, wiring board and method for producing the same
JP2008186908A (en) Manufacturing method for multilayer circuit board
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JP4762564B2 (en) Conductor composition, wiring board using the same, and method for producing the same
JP2005191129A (en) Ceramic multilayer composite substrate