JP2005243556A - Drying agent for organic el devices, and its manufacturing method - Google Patents

Drying agent for organic el devices, and its manufacturing method Download PDF

Info

Publication number
JP2005243556A
JP2005243556A JP2004054626A JP2004054626A JP2005243556A JP 2005243556 A JP2005243556 A JP 2005243556A JP 2004054626 A JP2004054626 A JP 2004054626A JP 2004054626 A JP2004054626 A JP 2004054626A JP 2005243556 A JP2005243556 A JP 2005243556A
Authority
JP
Japan
Prior art keywords
organic
desiccant
hygroscopic material
hygroscopic
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004054626A
Other languages
Japanese (ja)
Inventor
Hideki Suzuki
秀樹 鈴木
Takashi Gonda
貴司 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004054626A priority Critical patent/JP2005243556A/en
Publication of JP2005243556A publication Critical patent/JP2005243556A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drying agent for organic EL element which suppresses deterioration of the element such as generation and expansion of a dark spot accompanying duration of drive time, and which has high hygroscopic performance and can continue initial performance for a long time, and can be manufactured at low cost, and which is suitable for mass production, and its manufacturing method. <P>SOLUTION: This is a drying agent for organic EL element which consists of a mixture containing a granular hygroscopic material 50-300 parts by mass against a thermoplastic resin 100 parts by mass. The foam resin of the drying agent for organic EL element has an expansion ratio of 1.1-2.0 times, the granular hygroscopic material is supported by the foam resin layer, and a gap is formed at least at a part of the surroundings of the granular hygroscopic material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機EL素子用乾燥剤およびその製造方法に関する。詳しくは、有機EL素子を水蒸気より保護するために使用される有機EL素子用乾燥剤およびその製造方法に関する。   The present invention relates to a desiccant for an organic EL element and a method for producing the same. In detail, it is related with the desiccant for organic EL elements used in order to protect an organic EL element from water vapor | steam, and its manufacturing method.

有機EL(エレクトロルミネッセンス)素子は、有機化合物を用いて作製された有機発光層を一対の電極で挟んだ構造体であり、液晶素子と比較して、応答性、輝度、視認性、低消費電力、発色性、薄型化などの点で優れている。したがって、有機EL素子を使用した有機EL表示ディスプレイは、ブラウン管ディスプレイや液晶ディスプレイに代わる次世代のディスプレイとして注目されている。   An organic EL (electroluminescence) element is a structure in which an organic light-emitting layer made using an organic compound is sandwiched between a pair of electrodes. Compared with a liquid crystal element, responsiveness, brightness, visibility, and low power consumption Excellent in terms of color development and thinning. Therefore, an organic EL display using an organic EL element has attracted attention as a next-generation display that replaces a cathode ray tube display or a liquid crystal display.

しかしながら、有機EL素子は、大気中の水蒸気、酸素、二酸化炭素などの物質に弱く、特に水蒸気に弱い。有機EL素子は、有機EL素子内に存在している水蒸気あるいは外部より有機EL素子内に浸入した水蒸気により、発光層と電極層が剥離し、その結果、いわゆるダークスポットと呼ばれる非発光領域が生じる。そこで、従来、有機EL素子を水蒸気より保護する有機EL素子用乾燥剤が多数提案され、実施されてきた。   However, organic EL elements are vulnerable to substances such as water vapor, oxygen, and carbon dioxide in the atmosphere, and are particularly vulnerable to water vapor. In the organic EL element, the light emitting layer and the electrode layer are peeled off by water vapor existing in the organic EL element or water vapor entering the organic EL element from the outside, and as a result, a non-light emitting region called a so-called dark spot is generated. . Thus, many desiccants for organic EL elements that protect the organic EL elements from water vapor have been proposed and implemented.

特許文献1に記載された有機EL素子では、有機EL構造体を気密ケース内に収納し、この構造体から隔離して該気密ケース内に五酸化二リンを配置させる乾燥手段が提案されている。しかし、五酸化二リンは潮解性化合物であるため、水蒸気を吸湿し、潮解してリン酸となり、このリン酸は、有機EL構造体に悪影響を及ぼす。また、五酸化二リンは、水蒸気の吸湿時に著しく発熱するため、取り扱いが困難である。   In the organic EL element described in Patent Document 1, a drying means has been proposed in which an organic EL structure is housed in an airtight case, and diphosphorus pentoxide is disposed in the airtight case isolated from the structure. . However, since diphosphorus pentoxide is a deliquescent compound, it absorbs water vapor and deliquesces to become phosphoric acid, and this phosphoric acid adversely affects the organic EL structure. In addition, diphosphorus pentoxide is extremely difficult to handle because it generates significant heat when moisture is absorbed.

特許文献2に記載された有機EL素子では、有機EL素子の周囲に保護ケースを設け、この保護ケース内にゼオライト、活性アルミナ、シリカゲルあるい酸化カルシウム等の微粉末固体脱水剤を充填する乾燥方法が提案されている。しかし、これら微粉末固体脱水剤は飛散しやすいため、クリーンルーム内での使用が困難である。また、微粉末固体脱水剤が飛散して、製造工程中に有機EL素子を汚染してしまう。
このように、粉末状乾燥剤は、飛散しやすいため、取り扱いが困難であるばかりでなく、有機EL素子内に該乾燥剤を配置することが難しいため、該乾燥剤の封入装置が極めて複雑となる。したがって、これらの問題を解決する方法として、樹脂と粉末状乾燥剤の混合物とする方法が提案されている。
In the organic EL device described in Patent Document 2, a protective case is provided around the organic EL device, and the protective case is filled with a fine powder solid dehydrating agent such as zeolite, activated alumina, silica gel or calcium oxide. Has been proposed. However, since these fine powder solid dehydrating agents are likely to be scattered, it is difficult to use them in a clean room. In addition, the fine powder solid dehydrating agent is scattered and the organic EL element is contaminated during the manufacturing process.
As described above, since the powdery desiccant is easily scattered, it is difficult to handle the powder desiccant, and it is difficult to dispose the desiccant in the organic EL element. Become. Therefore, as a method for solving these problems, a method of making a mixture of a resin and a powdery desiccant has been proposed.

特許文献3に記載された有機EL素子では、フルオロカーボン油中に吸湿剤を混ぜた乾燥剤が提案されている。しかし、この乾燥剤では、吸湿剤がフルオロカーボン油で覆われてしまうため、吸湿剤成分の初期吸湿能力及び吸湿力等の吸湿能力が低下してしまう。また、この乾燥剤を製造するには、フルオロカーボン油と吸湿剤の混合物を有機EL素子内に封入する工程を必要とし、この封入工程が煩雑となる。   In the organic EL element described in Patent Document 3, a desiccant obtained by mixing a hygroscopic agent in fluorocarbon oil has been proposed. However, in this desiccant, since the hygroscopic agent is covered with the fluorocarbon oil, the hygroscopic ability such as the initial hygroscopic ability and the hygroscopic ability of the hygroscopic component is lowered. Moreover, in order to manufacture this desiccant, the process of enclosing the mixture of fluorocarbon oil and a hygroscopic agent in an organic EL element is required, and this enclosing process becomes complicated.

特許文献4に記載された有機EL素子では、乾燥剤と、ASTM D570での吸水率(24時間、23℃の条件下)が1%以下の高分子有機化合物との混合物を用いた乾燥手段が開示されている。しかし、この混合物は、炭化水素系、またはハロゲン化炭化水素系の溶媒中に、上記乾燥剤と高分子有機化合物が混合されており、溶液状であるため、有機EL素子内に配置後、乾燥工程を必要とする。この乾燥工程中で、炭化水素系、またはハロゲン化炭化水素系の溶媒を完全に除去するのは困難であり、また、有機EL素子の発光中に放出される熱により、これら溶媒が揮発し、有機EL素子に悪影響を及ぼす慮がある。更に、乾燥剤を有機高分子化合物が覆うため、初期吸湿能力及び吸湿力等の吸湿能力が低下すると言う問題点がある。   In the organic EL element described in Patent Document 4, there is a drying means using a mixture of a desiccant and a high molecular organic compound having a water absorption rate of 24% at 23 ° C under ASTM D570 of 1% or less. It is disclosed. However, since this mixture is in the form of a solution in which the above desiccant and the high molecular weight organic compound are mixed in a hydrocarbon or halogenated hydrocarbon solvent, the mixture is dried after being placed in the organic EL device. Requires a process. During this drying step, it is difficult to completely remove the hydrocarbon-based or halogenated hydrocarbon-based solvent, and these solvents are volatilized by heat released during light emission of the organic EL element. There is a consideration that adversely affects the organic EL element. Furthermore, since the organic polymer compound covers the desiccant, there is a problem that the hygroscopic ability such as the initial hygroscopic ability and the hygroscopic ability is lowered.

特許文献5に記載された有機EL素子では、有機EL素子用乾燥剤として、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、水素化カルシウム、水素化ストロンチウム、水素化バリウム及び水素化アルミニウム等の乾燥剤とシリコーン化合物の混合物が開示されている。この乾燥剤は、バインダー樹脂として透湿度の高いシリコーン化合物が使用されているため、特許文献4で提案されている有機EL用乾燥剤よりは、初期吸湿能力及び吸湿力等の吸湿能力に優れている。しかし、この乾燥剤も有機EL素子の発光中に放出される熱により、低分子量シリコーン化合物が揮発して、有機EL素子の輝度に悪影響を及ぼす。   In the organic EL element described in Patent Document 5, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, calcium hydride, strontium hydride, barium hydride, and aluminum hydride are used as the desiccant for the organic EL element. A mixture of a desiccant and a silicone compound is disclosed. Since this desiccant uses a silicone compound having a high moisture permeability as a binder resin, it is superior to the desiccant for organic EL proposed in Patent Document 4 in moisture absorption capacity such as initial moisture absorption capacity and moisture absorption capacity. Yes. However, this desiccant also has a negative effect on the luminance of the organic EL element due to the volatilization of the low molecular weight silicone compound due to the heat released during the light emission of the organic EL element.

特許文献6に記載された有機EL素子では、アルカリ土類金属酸化物等を含む吸湿剤と気体透過性樹脂からなる吸湿性成形体が開示されている。この吸湿性成形体は、吸湿剤が気体透過性樹脂で被覆されているため、初期吸湿能力及び吸湿力等の吸湿能力が低下する。更に、特許文献6には、吸湿性成形体の吸湿能力の低下を改良する方法として、吸湿成形体の延伸加工による多孔質化、あるいは樹脂成分として、フッ素樹脂を使用したフィブリル化の方法が提案されている。しかし、これらは何れも一旦、シート状に加工しなければならず、製造工程が煩雑化する。また、アルカリ土類金属酸化物を吸湿剤として使用した場合、吸湿後膨張するため、有機EL素子に悪影響を与える。   In the organic EL element described in Patent Document 6, a hygroscopic molded body composed of a hygroscopic agent containing an alkaline earth metal oxide or the like and a gas permeable resin is disclosed. In this hygroscopic molded body, since the hygroscopic agent is coated with a gas permeable resin, the hygroscopic ability such as the initial hygroscopic ability and the hygroscopic ability is lowered. Furthermore, Patent Document 6 proposes a method of making the moisture-absorbent molded body porous by stretching, or a fibrillation method using a fluororesin as a resin component, as a method for improving the decrease in the hygroscopic capacity of the hygroscopic molded body. Has been. However, all of these must be once processed into a sheet shape, which complicates the manufacturing process. In addition, when an alkaline earth metal oxide is used as a hygroscopic agent, it expands after moisture absorption, which adversely affects the organic EL element.

特許文献7に記載された有機EL素子では、有機EL素子用乾燥剤として、バインダー樹脂と、吸湿性吸着剤からなる多孔質吸着シートが開示されている。この有機EL素子用乾燥剤は、吸着シートを多孔質化することにより、吸着剤の初期吸湿能力及び吸湿力等の吸湿能力の低下を防止している。しかし、この多孔質吸着シートは、成形時に成形助剤を必要とするが、この成形助剤が、有機EL素子の発光中に放出される熱により揮発し、有機EL素子の輝度に悪影響を及ぼす慮がある。   In the organic EL element described in Patent Document 7, a porous adsorbent sheet composed of a binder resin and a hygroscopic adsorbent is disclosed as a desiccant for the organic EL element. This desiccant for organic EL elements prevents the lowering of the hygroscopic ability such as the initial hygroscopic ability and the hygroscopic ability of the adsorbent by making the adsorbent sheet porous. However, this porous adsorbent sheet requires a molding aid at the time of molding, but this molding aid is volatilized by the heat released during the light emission of the organic EL element, adversely affecting the luminance of the organic EL element. There is consideration.

有機EL素子の吸湿を防止する方法として、高分子化合物中に吸湿剤を分散させる方法は、高分子化合物が吸湿剤表面を被覆してしまうため、吸湿剤が本来有している初期吸湿能力及び吸湿力等の吸湿能力を低下させてしまう問題点がある。更に、有機EL素子の発光中に発生する熱によって、高分子化合物あるいは成形助剤からアウトガスが揮発し、有機EL素子の輝度に悪影響を与えるという問題点がある。これら問題点を解決する方法が、特許文献8及び特許文献9に記載されている。
特許文献8には、熱分解性有機質バインダーと無機吸湿剤の混合物を有機バインダーの熱分解温度以上に加熱して、有機質バインダーを分解除去することにより得られる有機EL素子用乾燥剤が提案されている。この方法により得られる有機EL素子用乾燥剤によれば、吸湿剤の初期吸湿能力及び吸湿力等の吸湿能力の低下及びアウトガスの発生についての問題は解決されるが、乾燥剤の作製工程が煩雑であり、更に焼成に長時間を有するため実用的でない。
As a method of preventing moisture absorption of the organic EL element, the method of dispersing the hygroscopic agent in the polymer compound covers the surface of the hygroscopic agent, so that the initial hygroscopic ability inherent in the hygroscopic agent and There is a problem that the hygroscopic ability such as the hygroscopic power is lowered. Furthermore, there is a problem in that outgas is volatilized from the polymer compound or the molding aid due to heat generated during light emission of the organic EL element, which adversely affects the luminance of the organic EL element. Methods for solving these problems are described in Patent Document 8 and Patent Document 9.
Patent Document 8 proposes a desiccant for an organic EL element obtained by heating a mixture of a thermally decomposable organic binder and an inorganic moisture absorbent to a temperature higher than the thermal decomposition temperature of the organic binder to decompose and remove the organic binder. Yes. According to the desiccant for an organic EL element obtained by this method, the problems regarding the reduction of the hygroscopic capacity such as the initial hygroscopic capacity and the hygroscopic capacity of the hygroscopic agent and the outgas generation are solved, but the desiccant preparation process is complicated. Furthermore, since it takes a long time for firing, it is not practical.

また、特許文献9には、ガラスファイバーまたはセラミックスファイバーからなるシートにゼオライトあるいは酸化バリウムを担持した有機EL素子用乾燥剤が提案されている。この方法により得られる有機EL素子用乾燥剤は、シートにバインダー樹脂でゼオライトあるいは酸化バリウムを担持していないため、アウトガスが発生する慮はないが、有機EL素子用乾燥剤を有機EL素子内に配置するとき、シートよりゼオライトあるいは酸化バリウムが脱落し、有機EL素子を汚染する虞がある。また、焼成中に乾燥剤の割れ、反りの発生、シートより吸湿剤の脱落等の問題があり、更に、焼成に長時間を有するため、得られる乾燥剤は高価なものとなってしまい、実用的ではない。その上、シートに担持するゼオライトあるいは酸化バリウムの担持量が不明である。   Patent Document 9 proposes a desiccant for an organic EL element in which zeolite or barium oxide is supported on a sheet made of glass fiber or ceramic fiber. The desiccant for organic EL elements obtained by this method does not cause outgassing because the sheet does not support zeolite or barium oxide with a binder resin, but the desiccant for organic EL elements is not contained in the organic EL element. When arranged, zeolite or barium oxide may fall off from the sheet and contaminate the organic EL element. In addition, there are problems such as cracking of the desiccant during the firing, generation of warpage, dropping of the hygroscopic agent from the sheet, and since the firing has a long time, the resulting desiccant becomes expensive and practical. Not right. Moreover, the amount of zeolite or barium oxide supported on the sheet is unknown.

以上のように、従来の有機EL素子用乾燥剤は、初期吸湿能力及び吸湿等の吸湿能力に劣るため、有機EL素子内の水蒸気及び有機EL素子内に浸入した水蒸気を除去するまでに長時間を必要とし、その結果、有機EL素子の発光初期におけるダークスポットの発生及び発光時間の経過に伴うダークスポットの発生・拡大といった有機EL素子の劣化現象を防止する効果が不十分であった。また、従来の有機EL素子用乾燥剤には、ある程度、水蒸気除去効果があるとしても、有機EL素子の発光中に、該乾燥剤よりアウトガスが発生し、有機EL素子に悪影響を与える問題、また、該乾燥剤の製造に長時間を有する、製造工程が複雑である等の理由で、量産性あるいはコスト性に劣ると言った問題を有していた。   As described above, since the conventional desiccant for organic EL elements is inferior in initial moisture absorption capacity and moisture absorption capacity such as moisture absorption, it takes a long time to remove water vapor in the organic EL element and water vapor that has entered the organic EL element. As a result, the effect of preventing the deterioration phenomenon of the organic EL element such as the generation of the dark spot in the initial light emission of the organic EL element and the generation / expansion of the dark spot with the lapse of the light emission time is insufficient. Moreover, even if the conventional desiccant for organic EL elements has a water vapor removing effect to some extent, outgas is generated from the desiccant during light emission of the organic EL element, and the organic EL element is adversely affected. The desiccant has a problem that it is inferior in mass productivity or cost because it takes a long time to manufacture the desiccant and the manufacturing process is complicated.

特開平3−26109号公報JP-A-3-26109 特開平6-176867号公報JP-A-6-176867 特開平5-114486号公報Japanese Patent Laid-Open No. 5-114486 特開2000-195660号公報JP 2000-195660 A 特開2000−277254号公報JP 2000-277254 A 特開2002−43055号公報JP 2002-43055 A 特開2002−280166号公報JP 2002-280166 A 特開2003−187962号公報Japanese Patent Laid-Open No. 2003-187762 特開2003−163077号公報JP 2003-163077 A

本発明は、有機EL素子の発光初期に発生するダークスポットの発生及び発光時間の経過に伴う、ダークスポットの発生・拡大といった有機EL素子の劣化を抑制して、その初期性能を長時間持続できると共に、低コストで製造でき、しかも製造工程が簡単で、量産に適した有機EL用乾燥剤及びその製造方法を提供することを課題とする。   The present invention can suppress the deterioration of the organic EL element such as the generation and expansion of the dark spot with the occurrence of the dark spot and the emission time of the organic EL element in the initial light emission, and can maintain the initial performance for a long time. Another object of the present invention is to provide an organic EL desiccant that can be manufactured at low cost, has a simple manufacturing process, and is suitable for mass production, and a manufacturing method thereof.

本発明者は、上記課題を解決するために鋭意検討した結果、発泡させたポリマーに粒子状吸湿性材料を保持させ、かつ、該粒子状吸湿性材料の周囲に空隙を形成させることを見出し、かかる知見に基づき、更に研究を重ねて、本発明を完成するに至った。
すなわち、本発明は、熱可塑性樹脂100質量部に対し、粒子状吸湿性材料50〜300質量部を含む混合物からなる有機EL素子用乾燥剤であって、該有機EL素子用乾燥剤の発泡樹脂層は、発泡倍率が1.1〜2.0倍であり、該粒子状吸湿性材料が該発泡樹脂層に保持されており、該粒子状吸湿性材料の周囲の少なくとも一部に空隙が形成された構造を有することを特徴とする有機EL素子用乾燥剤である。
As a result of intensive studies to solve the above problems, the present inventor has found that the foamed polymer retains the particulate hygroscopic material and forms voids around the particulate hygroscopic material, Based on this knowledge, further studies have been made and the present invention has been completed.
That is, the present invention is a desiccant for an organic EL element comprising a mixture containing 50 to 300 parts by mass of a particulate hygroscopic material with respect to 100 parts by mass of a thermoplastic resin, and the foamed resin of the desiccant for the organic EL element The layer has a foaming ratio of 1.1 to 2.0 times, the particulate hygroscopic material is held by the foamed resin layer, and voids are formed in at least a part of the periphery of the particulate hygroscopic material. It is the desiccant for organic EL elements characterized by having the structure made.

本発明の有機EL素子用乾燥剤は、発泡セルが発泡樹脂層に存在し、粒子状吸湿性材料の周囲の少なくとも一部に空隙が形成された構造を有するため、粒子状吸湿性材料が水蒸気を吸収して膨張することにより、変形、反り等が発生しない。
本発明の有機EL素子用乾燥剤は、同一容積で無発泡状態の樹脂層を有する乾燥剤と比較して、樹脂層を形成する熱可塑性樹脂の量が少ないため、粒子状吸湿性材料への水蒸気の浸透速度が速くなり、透湿性が飛躍的に向上して、優れた即効性及び高い吸湿力が得られる。
本発明の有機EL素子用乾燥剤は、粒子状吸湿性材料を発泡体全体に分散させているため、吸湿量が経時的に一定であり、長期にわたって、安定した吸湿性能が維持できる。
The desiccant for organic EL elements of the present invention has a structure in which foamed cells are present in the foamed resin layer and voids are formed at least part of the periphery of the particulate hygroscopic material, so that the particulate hygroscopic material is water vapor. By absorbing and expanding, deformation, warpage, etc. do not occur.
The desiccant for organic EL elements of the present invention has a smaller amount of thermoplastic resin to form a resin layer than a desiccant having a non-foamed resin layer with the same volume. The permeation rate of water vapor is increased, the moisture permeability is drastically improved, and an excellent immediate effect and a high moisture absorption force are obtained.
In the desiccant for organic EL elements of the present invention, since the particulate hygroscopic material is dispersed throughout the foam, the amount of moisture absorption is constant over time, and stable moisture absorption performance can be maintained over a long period of time.

以下、図面を用いて本発明を詳細に説明する。図1は、本発明の有機EL素子用乾燥剤の1例を示した断面図である。図1中、1は有機EL素子用乾燥剤、2は発泡樹脂層、3は粒子状吸湿性材料、4は発泡セル、5は空隙である。
本発明の有機EL素子用乾燥剤1は、材料的には、熱可塑性樹脂と粒子状吸湿性材料を含む混合物からなり、構造的には、多数の発泡セル(気泡)4を有する発泡樹脂層2に、粒子状吸湿性材料3が保持されており、該粒子状吸湿性材料3の少なくとも一部が発泡セル4内に挿入され、該粒子状吸湿性材料3の周囲の少なくとも一部に空隙5が形成されている構造を有するものである。発泡樹脂層2は、有機EL素子用乾燥剤1のうち、粒子状吸湿性材料3を除いた部分であり、多数の発泡セル4、並びに空隙5を有する。
図1に示すように、粒子状吸湿性材料3の全体あるいは一部が発泡セル4内に挿入され、粒子状吸湿性材料3の周囲全部あるいは一部に空隙5が存在する点に、本発明の特徴がある。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the desiccant for an organic EL element of the present invention. In FIG. 1, 1 is a desiccant for organic EL elements, 2 is a foamed resin layer, 3 is a particulate hygroscopic material, 4 is a foam cell, and 5 is a void.
The desiccant 1 for organic EL elements of the present invention is made of a mixture containing a thermoplastic resin and a particulate hygroscopic material in terms of material, and structurally a foamed resin layer having a large number of foam cells (bubbles) 4. 2, the particulate hygroscopic material 3 is held, at least a part of the particulate hygroscopic material 3 is inserted into the foam cell 4, and a void is formed in at least a part of the periphery of the particulate hygroscopic material 3. 5 is formed. The foamed resin layer 2 is a portion excluding the particulate hygroscopic material 3 in the desiccant 1 for organic EL elements, and has a large number of foamed cells 4 and voids 5.
As shown in FIG. 1, the present invention is such that the whole or a part of the particulate hygroscopic material 3 is inserted into the foamed cell 4 and the void 5 exists in the whole or part of the periphery of the particulate hygroscopic material 3. There are features.

発泡樹脂層2は熱可塑性樹脂の発泡体からなる。該熱可塑性樹脂の具体的な例としては、低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン−プロピレン共重合体等のオレフィン系樹脂、エチレン−酢酸ビニル共重合樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ポリウレタン系樹脂、ポリエチレンテレフタレト、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリ乳酸、ポリカプロラクトン等のポリエステル系樹脂、ポリアミド6、ポリアミド66等のポリアミド系樹脂、ポリ(メタ)アクリル酸系樹脂、ポリアクリロニトリル系樹脂、ポリテトラフルオロエチエン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、エチレン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロエチレン−ビニリデンフロライド共重合体等のフッ素系樹脂等が挙げられる。
これらの中でも、本発明では、耐薬品性に優れ、耐熱性が高く、アウトガスの発生がない点で、フッ素系樹脂が好ましい。更に好ましくは、透湿度の高い、成型加工性に優れる非晶質フッ素系樹脂である。非晶質フッ素系樹脂としては、テトラフルオロエチレン−ヘキサフルオロエチレン−ビニリデンフルオライド共重合体が挙げられる。
また、発泡樹脂層2が非晶質性樹脂であると、結晶構造による透湿性低下や成形時の冷却方法による透湿性の変化を抑制することができる。したがって、発泡樹脂層2が結晶性樹脂の場合は、シート成形時に、急冷、徐冷などの冷却方法を適時選択して、透湿性を制御することが必要である。
また、上記熱可塑性樹脂は、それ自体の透湿性が、本発明の有機EL用乾燥剤の吸湿性能に影響を与えるため、その透湿度は、3g/m2/24hr./0.1mm厚(JIS
Z0208カップ法)以上であることが好ましい。
The foamed resin layer 2 is made of a thermoplastic resin foam. Specific examples of the thermoplastic resin include olefin resins such as low density polyethylene, ultra low density polyethylene, high density polyethylene, and ethylene-propylene copolymer, ethylene-vinyl acetate copolymer resin, polystyrene resin, and polycarbonate. Resin, polyurethane resin, polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, polybutylene adipate, polylactic acid, polycaprolactone, and other polyester resins, polyamide 6, polyamide 66, and other polyamide resins, poly (meth) Acrylic acid resin, polyacrylonitrile resin, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene- Kisa fluoroethylene - fluorine-based resins such vinylidene fluoride copolymers.
Among these, in the present invention, a fluorine-based resin is preferable because it has excellent chemical resistance, high heat resistance, and no outgassing. More preferably, it is an amorphous fluorine resin having high moisture permeability and excellent moldability. Examples of the amorphous fluorine-based resin include a tetrafluoroethylene-hexafluoroethylene-vinylidene fluoride copolymer.
Moreover, when the foamed resin layer 2 is an amorphous resin, it is possible to suppress a decrease in moisture permeability due to a crystal structure and a change in moisture permeability due to a cooling method during molding. Therefore, when the foamed resin layer 2 is a crystalline resin, it is necessary to control the moisture permeability by appropriately selecting a cooling method such as rapid cooling or slow cooling when forming the sheet.
Further, the thermoplastic resin, it moisture permeability of itself, to affect moisture absorption performance of the organic EL desiccant of the invention, the moisture permeability, 3g / m 2 / 24hr. /0.1mm thickness (JIS
Z0208 cup method) or higher.

粒子状吸湿性材料3としては、化学的、物理的吸着作用を示すものがあり、以下、詳細に示す。
化学的吸着作用を示す上記粒子状吸湿性材料としては、酸化ナトリウム、酸化カリウム等のアルカリ金属酸化物、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム等のアルカリ土類金属酸化物、塩化カルシウム、塩化マグネシウム、塩化クロム、塩化鉄等の金属ハロゲン化物、硫酸カルシウム、硫酸マグネシウム、硫酸化鉄、硫酸ニッケル等の金属硫酸塩、過塩素酸カリウム、過塩素酸ナトリウム、過塩素酸鉄、過塩素酸コバルト、過塩素酸マグネシウム、過塩素酸バリウム、過塩素酸マンガン等の過塩素酸塩、水素化カルシウム、水素化ストロンチウム、水素化バリウム、水素化アルミニウムリチウム等の金属水素化物等が挙げられる。但し、金属ハロゲン化物及び金属硫酸塩は、無水塩が好適に用いられる。
As the particulate hygroscopic material 3, there is a material exhibiting a chemical and physical adsorption action, which will be described in detail below.
Examples of the particulate hygroscopic material exhibiting a chemical adsorption action include alkali metal oxides such as sodium oxide and potassium oxide, alkaline earth metal oxides such as calcium oxide, magnesium oxide, strontium oxide and barium oxide, calcium chloride, Metal halides such as magnesium chloride, chromium chloride, iron chloride, metal sulfates such as calcium sulfate, magnesium sulfate, iron sulfate, nickel sulfate, potassium perchlorate, sodium perchlorate, iron perchlorate, perchloric acid Examples thereof include perchlorates such as cobalt, magnesium perchlorate, barium perchlorate and manganese perchlorate, and metal hydrides such as calcium hydride, strontium hydride, barium hydride and lithium aluminum hydride. However, anhydrous salts are preferably used as the metal halide and metal sulfate.

物理的吸湿性作用を示す上記粒子状吸湿性材料としては、シリカゲルA形、シリカゲルB形、天然ゼオライト、合成ゼオライト、セピオライト、アルミナシリカゲル、ベントナイト、アロフェン、活性白土、活性炭等が挙げられる。これらは、ガス吸着剤としても利用される。   Examples of the particulate hygroscopic material exhibiting a physical hygroscopic action include silica gel A type, silica gel B type, natural zeolite, synthetic zeolite, sepiolite, alumina silica gel, bentonite, allophane, activated clay, activated carbon and the like. These are also used as gas adsorbents.

これらの粒子状吸湿性材料は、所望する吸湿性能に合わせて、単独あるいは2種以上を適宜混合して使用することができる。また、粒子状吸湿性材料3の平均粒径は、通常、0.5〜100μmとするのが、本発明の効果を得る上で好ましい。   These particulate hygroscopic materials can be used alone or in admixture of two or more according to the desired hygroscopic performance. Further, the average particle diameter of the particulate hygroscopic material 3 is usually preferably 0.5 to 100 μm in order to obtain the effects of the present invention.

本発明の有機EL素子用乾燥剤1では、少なくとも粒子状吸湿性材料3の1種が、平均粒径0.5〜100μm、BET比表面積5〜100g/m2、および温度25℃、相対湿度50%の雰囲気下で1時間静置後の吸湿率が3〜30%である酸化カルシウム(CaO)であることが好ましい。この酸化カルシウムは、単独で用いても、あるいは化学的吸着作用、物理的吸着作用を示す他の粒子状吸湿性材料との混合物で用いてもよい。酸化カルシウムは、吸湿速度が速く、吸湿力が強く、毒性が低く、低コストであるという特徴を有する。 In the desiccant 1 for an organic EL device of the present invention, at least one of the particulate hygroscopic materials 3 has an average particle size of 0.5 to 100 μm, a BET specific surface area of 5 to 100 g / m 2 , a temperature of 25 ° C., and a relative humidity. Calcium oxide (CaO) having a moisture absorption rate of 3 to 30% after standing for 1 hour in a 50% atmosphere is preferable. This calcium oxide may be used alone or in a mixture with other particulate hygroscopic materials exhibiting a chemical adsorption action and a physical adsorption action. Calcium oxide has the characteristics of a high moisture absorption rate, strong moisture absorption, low toxicity, and low cost.

本発明で使用される酸化カルシウムの平均粒径は、好ましくは0.5〜100μm、より好ましくは1〜75μm、更に好ましくは3〜50μmである。平均粒径が0.5μm未満の場合は、溶融粘度が増大し、発泡押出成形が困難となる。平均粒径が100μmを超えると、熱可塑性樹脂への酸化カルシウムの高充填が難しく、更に溶融張力が低下するため、発泡シートの薄肉化が困難となる。   The average particle diameter of the calcium oxide used in the present invention is preferably 0.5 to 100 μm, more preferably 1 to 75 μm, and still more preferably 3 to 50 μm. When the average particle size is less than 0.5 μm, the melt viscosity increases and foam extrusion molding becomes difficult. When the average particle size exceeds 100 μm, it is difficult to highly fill the thermoplastic resin with calcium oxide, and the melt tension is further lowered, so that it is difficult to reduce the thickness of the foam sheet.

また、酸化カルシウムのBET比表面積は、好ましくは5〜100g/m2、より好ましくは10〜50g/m2、更に好ましくは20〜30g/m2である。BET比表面積が5g/m2未満の場合は、吸湿速度が遅いため、有機EL素子用乾燥剤として必要な条件である即効性が得られなくなる虞がある。BET非表面積が100g/m2を超える場合は、水蒸気との反応性が著しく速くなるため、発泡シート成形中に吸湿能力を消失してしまうか、あるいは吸湿中に発熱の慮がある。 The BET specific surface area of calcium oxide is preferably 5 to 100 g / m 2 , more preferably 10 to 50 g / m 2 , and still more preferably 20 to 30 g / m 2 . When the BET specific surface area is less than 5 g / m 2 , the moisture absorption rate is slow, so that there is a possibility that the immediate effect which is a necessary condition as a desiccant for organic EL elements cannot be obtained. When the BET non-surface area exceeds 100 g / m 2 , the reactivity with water vapor becomes remarkably fast, so that the hygroscopic ability is lost during foaming sheet molding, or heat is generated during moisture absorption.

更に、酸化カルシウムは、温度25℃、相対湿度50%の雰囲気下で1時間静置後の吸湿率が、好ましくは3〜30%、より好ましくは5〜25%、更に好ましくは7〜20%である。該吸湿率が3%未満の場合は、吸湿速度が遅いため有機EL素子用乾燥剤として必要な条件である即効性が得られない場合がある。該吸湿率が30%を超える場合は、水蒸気との反応性が著しく速くなるため、発泡シート成形中に吸湿能力を消失してしまうか、あるいは吸湿中に発熱の慮がある。   Furthermore, calcium oxide has a moisture absorption rate of preferably 3 to 30%, more preferably 5 to 25%, still more preferably 7 to 20% after standing for 1 hour in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50%. It is. When the moisture absorption rate is less than 3%, the moisture absorption rate is slow, so that the immediate effect which is a necessary condition for the desiccant for the organic EL element may not be obtained. When the moisture absorption rate exceeds 30%, the reactivity with water vapor is remarkably increased, so that the moisture absorption ability is lost during foamed sheet molding, or heat is generated during moisture absorption.

発泡セル4の平均径は、10〜300μmとすることが好ましい。発泡セルの平均径が10μm未満では、発泡形成による透湿性向上効果が低下し、一方、300μmを超えると、薄物のシートが成形できなくなるとともに、粒子状吸湿性材料の脱落が発生しやすくなる。発泡セルは、独立気泡、連続気泡のいずれか、もしくは、これらの混在した状態であればよく、成形時に破泡して不定状態で発泡セルが形成されている状態でもよい。なお、発泡セル4の平均径は、有機EL素子用乾燥剤の厚さ、流れ方向に対する発泡セルの径の平均とする。   The average diameter of the foam cell 4 is preferably 10 to 300 μm. When the average diameter of the foamed cells is less than 10 μm, the effect of improving the moisture permeability due to foam formation is reduced. On the other hand, when the average diameter exceeds 300 μm, a thin sheet cannot be formed and the particulate hygroscopic material is liable to fall off. The foamed cells may be either closed cells, open cells, or a mixture of these, and may be in a state where foamed cells are formed in an indefinite state by breaking during molding. In addition, let the average diameter of the foam cell 4 be the average of the thickness of the desiccant for organic EL elements and the diameter of the foam cell with respect to the flow direction.

空隙5は、粒子状吸湿性材料3の全体あるいは一部が発泡セル4内に挿入されることによって、粒子状吸湿性材料3の周囲全部あるいは一部にできた、発泡セル4の空間部分である。空隙5は、粒子状吸湿剤材料3の全体あるいは一部が発泡セル4内に押入されるか、または発泡段階で粒子状吸湿剤材料3が核となって形成される。この空隙5は、連続もしくは断続的に形成されていてもよいが、その大きさは、粒子状吸湿剤材料3の外周の10%以上、好ましくは40%以上が露出した状態で、熱可塑性樹脂との間隙が少なくとも1μm以上であることが好ましい。   The void 5 is a space portion of the foamed cell 4 that is formed entirely or partly around the particulate hygroscopic material 3 by inserting the whole or part of the particulate hygroscopic material 3 into the foamed cell 4. is there. The void 5 is formed by the whole or a part of the particulate hygroscopic material 3 being pushed into the foamed cell 4 or by the particulate hygroscopic material 3 as a nucleus in the foaming stage. The void 5 may be formed continuously or intermittently. The size of the void 5 is 10% or more, preferably 40% or more of the outer periphery of the particulate hygroscopic material 3, and the thermoplastic resin. Is preferably at least 1 μm or more.

本発明の有機EL素子用乾燥剤1は、上記した熱可塑性樹脂と粒子状吸湿性材料とを混合して得られる混合物からなり、この混合比は熱可塑性樹脂100質量部に対し、粒子状吸湿性材料50〜300質量部であり、好ましくは100〜250質量部、更に好ましくは100〜200質量部である。この粒子状吸湿性材料の混合比が50質量部未満では、吸湿量が不足して、有機EL素子用乾燥剤としての作用が認められない。一方、粒子状吸湿性材料の混合比が300質量部を超えると、熱可塑性樹脂との混合が難しく、溶融粘度が増大し、更に溶融張力が低下するため、発泡押出成形する際の成形性が著しく低下し、成形できないという不具合が生じる。なお、粒子状吸湿性材料の混合比は、該吸湿性材料の性能や発泡樹脂層の厚さ等を考慮して、上記範囲内にて任意に選択することができる。   The desiccant 1 for organic EL elements of the present invention is composed of a mixture obtained by mixing the above-described thermoplastic resin and particulate hygroscopic material, and this mixing ratio is particulate hygroscopic with respect to 100 parts by mass of the thermoplastic resin. It is 50-300 mass parts of an active material, Preferably it is 100-250 mass parts, More preferably, it is 100-200 mass parts. When the mixing ratio of the particulate hygroscopic material is less than 50 parts by mass, the hygroscopic amount is insufficient and an action as a desiccant for organic EL elements is not recognized. On the other hand, when the mixing ratio of the particulate hygroscopic material exceeds 300 parts by mass, mixing with the thermoplastic resin is difficult, the melt viscosity is increased, and the melt tension is further lowered. The problem is that it is significantly lowered and cannot be molded. The mixing ratio of the particulate hygroscopic material can be arbitrarily selected within the above range in consideration of the performance of the hygroscopic material, the thickness of the foamed resin layer, and the like.

本発明の有機EL素子用乾燥剤は、超臨界流体を発泡剤として使用し、押出成形法により、押出成形機に超臨界流体を注入し、押出成形機の先端のダイより押出発泡させて、シート状に成形することにより製造できる。この押出成形機としては、二台の押出機を連結したタンデム型押出機または二軸混練押出機などが利用できる。シート成形用のTダイを備えたタンデム型押出機を利用する場合、第1押出機に熱可塑性樹脂と粒子状吸湿性材料の混合物(通常ペレット状)を投入して、バレル内で溶融、混練を行い、第2押出機において溶融樹脂を発泡に適する温度条件に冷却させつつ、超臨界流体を適宜の注入量、圧力で注入する。そして、Tダイから吐出されるときの圧力開放により発泡状態が形成される。また、二軸混練押出機を利用する場合は、溶融樹脂に粒子状吸湿性材料を混合し、連続的に樹脂を冷却しながら超臨界流体を注入して、上記と同様の方法にて発泡シートを成形することができる。Tダイから吐出された樹脂は、例えば、ピンチロール方式により冷却され、所望する厚さのシートとする。この際、適宜な圧力で挟持することで、表面にスキン層が形成され、均一な表面をもつシートが得られる。
熱可塑性樹脂と粒子状吸湿性材料の混合物は、二軸押出機や加圧ニーダ等の一般的な混合装置を用いて、それぞれの材料を均一に混合分散することによって作製しても構わない。この混合物には、成形性を考慮して、ポリエチレン系ワックス、高級脂肪酸等からなる滑剤等の加工助剤のほか、熱安定剤等を本発明の効果を損なわない程度に適宜添加することもできる。
The desiccant for an organic EL device of the present invention uses a supercritical fluid as a foaming agent, injects the supercritical fluid into an extrusion machine by an extrusion method, and performs extrusion foaming from a die at the tip of the extrusion machine. It can be manufactured by molding into a sheet. As this extrusion molding machine, a tandem type extruder or a twin-screw kneading extruder in which two extruders are connected can be used. When using a tandem extruder equipped with a T-die for sheet forming, a mixture of thermoplastic resin and particulate hygroscopic material (usually pellets) is charged into the first extruder and melted and kneaded in the barrel. The supercritical fluid is injected at an appropriate injection amount and pressure while the molten resin is cooled to a temperature condition suitable for foaming in the second extruder. A foamed state is formed by releasing the pressure when discharged from the T die. Also, when using a twin-screw kneading extruder, a particulate hygroscopic material is mixed into the molten resin, a supercritical fluid is injected while continuously cooling the resin, and a foamed sheet is produced in the same manner as described above. Can be molded. The resin discharged from the T die is cooled by, for example, a pinch roll method to obtain a sheet having a desired thickness. At this time, by sandwiching with an appropriate pressure, a skin layer is formed on the surface, and a sheet having a uniform surface is obtained.
The mixture of the thermoplastic resin and the particulate hygroscopic material may be produced by uniformly mixing and dispersing each material using a general mixing apparatus such as a twin screw extruder or a pressure kneader. In consideration of moldability, the mixture can be appropriately added with a heat stabilizer and the like in addition to a processing aid such as a lubricant composed of polyethylene wax, higher fatty acid and the like, as long as the effects of the present invention are not impaired. .

本発明の有機EL素子用乾燥剤1の製造においては、発泡剤として、超臨界流体である超臨界窒素または超臨界二酸化炭素を使用する。これらを特に使用する理由は、熱可塑性樹脂と粒子状吸湿性材料の混合物に、上記超臨界流体を添加すると、粒子状吸湿性材料を核として発泡構造が形成されるため、該粒子状吸湿性材料の周囲に空隙5を設けることが可能となるからである。また、それと同時に、発泡樹脂層2に発泡セル4が形成される。超臨界流体が加工助剤の役割を果たすため、粒子状吸湿性材料を高充填した成形体の成形が可能となる。
粒子状吸湿性材料との反応性、有機EL素子への影響、発泡セルの大きさを考慮すると、超臨界窒素が好適である。また、粒子状吸湿性材料が酸化カルシウムの場合も、不活性である超臨界窒素が好ましく、更に、発泡セルを不定状のものとし、吸湿効果を上げるためにも超臨界窒素が好ましい。これら超臨界流体の注入量は、求める発泡倍率と溶融樹脂の吐出量から算出して決定する。
In the production of the desiccant 1 for an organic EL device of the present invention, supercritical nitrogen or supercritical carbon dioxide, which is a supercritical fluid, is used as a foaming agent. The reason for using these in particular is that when the supercritical fluid is added to a mixture of a thermoplastic resin and a particulate hygroscopic material, a foamed structure is formed with the particulate hygroscopic material as a core. This is because the gap 5 can be provided around the material. At the same time, the foam cell 4 is formed in the foam resin layer 2. Since the supercritical fluid plays the role of a processing aid, it is possible to mold a compact that is highly filled with a particulate hygroscopic material.
Considering the reactivity with the particulate hygroscopic material, the influence on the organic EL element, and the size of the foam cell, supercritical nitrogen is preferable. Also, when the particulate hygroscopic material is calcium oxide, inert supercritical nitrogen is preferable, and supercritical nitrogen is also preferable in order to make the foam cell indefinite and increase the hygroscopic effect. The injection amount of these supercritical fluids is determined by calculating from the required expansion ratio and the discharge amount of the molten resin.

本発明を構成する発泡樹脂層2の発泡倍率(無発泡体の比重/発泡体の比重)は、1.1〜2.0倍とし、1.3〜1.7倍とするのが好ましい。発泡倍率が1.1倍未満の場合は、発泡による吸湿速度の十分な改良効果が認められない。一方、発泡倍率が2.0倍より大きい場合は、機械的強度が低下する虞がある。
また、粒子状吸湿性材料3および発泡セル4は、発泡樹脂層2に均一に存在させることが好ましい。そうすることにより、長期にわたり吸湿量が経時的に一定となり、安定した吸湿性能を得ることができる。よって、有機EL素子内の湿度は、低い状態で維持される。
The expansion ratio of the foamed resin layer 2 constituting the present invention (the specific gravity of the non-foamed body / the specific gravity of the foamed body) is 1.1 to 2.0 times, and preferably 1.3 to 1.7 times. When the expansion ratio is less than 1.1 times, a sufficient improvement effect of the moisture absorption rate by foaming is not recognized. On the other hand, when the expansion ratio is larger than 2.0 times, the mechanical strength may be lowered.
Moreover, it is preferable that the particulate hygroscopic material 3 and the foamed cells 4 are uniformly present in the foamed resin layer 2. By doing so, the amount of moisture absorption becomes constant over time over a long period of time, and stable moisture absorption performance can be obtained. Therefore, the humidity in the organic EL element is maintained in a low state.

本発明の有機EL素子用乾燥剤に使用される発泡シートの厚さは、限定されないが、通常、50〜500μm、好ましくは100〜200μmである。発泡シートの厚さが50μm未満の場合は、粒子状吸湿性材料の添加量が十分に取れなくなり、必要とする吸湿能力が得られない場合がある。また、発泡シートの厚さが500μmを超えると、有機EL素子全体の厚さが厚くなるため、携帯電話等の小型化が要求される用途に適さなくなる。有機EL素子用乾燥剤の形状は、最終製品の使用目的等に応じて適宜選定すればよく、方形、円形等特に限定されない。   Although the thickness of the foam sheet used for the desiccant for organic EL elements of the present invention is not limited, it is usually 50 to 500 μm, preferably 100 to 200 μm. When the thickness of the foamed sheet is less than 50 μm, a sufficient amount of the particulate hygroscopic material cannot be taken and the required hygroscopic ability may not be obtained. On the other hand, if the thickness of the foamed sheet exceeds 500 μm, the thickness of the entire organic EL element is increased, which makes it unsuitable for applications requiring downsizing of mobile phones and the like. The shape of the desiccant for the organic EL element may be appropriately selected according to the purpose of use of the final product, and is not particularly limited, such as a square or a circle.

本発明の有機EL素子用乾燥剤を有機EL素子内に固定する方法は、有機EL素子内に確実に固定できる方法であれば特に限定されない。例えば、接着剤、粘着剤あるいは熱可塑性樹脂を用いて固定する方法が挙げられる。特に粘着剤で固定する方法が、簡便で作業性に優れるため好ましい。粘着剤は、アクリル系粘着剤、ゴム系粘着剤等、一般に市販されている無溶剤型粘着剤を使用することができる。アクリル系粘着剤が耐熱性に優れているため好ましい。   The method for fixing the desiccant for organic EL elements of the present invention in the organic EL element is not particularly limited as long as it can be reliably fixed in the organic EL element. For example, a method of fixing using an adhesive, a pressure-sensitive adhesive or a thermoplastic resin can be mentioned. In particular, a method of fixing with an adhesive is preferable because it is simple and excellent in workability. As the pressure-sensitive adhesive, a commercially available solventless pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. An acrylic pressure-sensitive adhesive is preferred because of its excellent heat resistance.

(実施例1〜3、比較例1〜3)
A.発泡シートの作製
熱可塑性樹脂として、表1に示す非晶質フッ素系樹脂(実施例1、2および比較例1、2はTHV220G、実施例3および比較例3はTHV310G、いずれも住友スリーエム社製、商品名)、粒子状吸湿性材料として、表1に示す酸化カルシウム(高活性生石灰:宇部マテリアルズ社製)を使用し、表2に示す組成比(質量部)からなる両者の混合物を、第1押出機(φ65mm、L/D=32)を用いて混合し、第2押出機(φ90mm、L/D=30、T−ダイ:面長300mm)にて、超臨界窒素を発泡剤として用いて、これを投入して、発泡シートを成形した(実施例1〜3、比較例1、3。なお、比較例2は成形不能であった。)。得られた発泡シートの厚さ、および発泡倍率を表1に示した。なお、上記発泡倍率は、式:発泡倍率=(無発泡シートの比重)/(発泡シートの比重)により求めた。
B.吸湿能力の測定
成形した各発泡シートについて、5cm×5cmのサンプルを作製し、所定時間経過後における、温度25℃、相対湿度50%雰囲気下での吸湿率を求めた。結果を表3、図2に示した。なお、吸湿率は、式:吸湿率={(吸湿後の発泡シートの質量)−(吸湿前の発泡シートの質量)
}×100/(吸湿前の発泡シートの質量)により求めた。
C.吸湿後の発泡シートの変形・反りの発生の確認
温度25℃、相対湿度50%雰囲気下、1時間放置後の上記サンプルの変形・反りの状態を目視により観察した。結果を表2に示した。
(Examples 1-3, Comparative Examples 1-3)
A. Production of Foamed Sheet As the thermoplastic resin, amorphous fluororesins shown in Table 1 (Examples 1 and 2 and Comparative Examples 1 and 2 are THV220G, Example 3 and Comparative Example 3 are THV310G, both manufactured by Sumitomo 3M Limited) ), As a particulate hygroscopic material, calcium oxide (highly active quicklime: manufactured by Ube Materials) shown in Table 1 is used, and a mixture of both having a composition ratio (parts by mass) shown in Table 2, Using a first extruder (φ65 mm, L / D = 32), mixing is performed, and in a second extruder (φ90 mm, L / D = 30, T-die: surface length 300 mm), supercritical nitrogen is used as a blowing agent. The foamed sheet was molded by using the same (Examples 1 to 3, Comparative Examples 1 and 3. In addition, Comparative Example 2 could not be molded). Table 1 shows the thickness of the obtained foamed sheet and the expansion ratio. The expansion ratio was determined by the formula: expansion ratio = (specific gravity of non-foamed sheet) / (specific gravity of foamed sheet).
B. Measurement of Hygroscopic Capacity A sample of 5 cm × 5 cm was prepared for each molded foam sheet, and the moisture absorption rate in an atmosphere at a temperature of 25 ° C. and a relative humidity of 50% after a predetermined time was determined. The results are shown in Table 3 and FIG. The moisture absorption rate is expressed by the formula: moisture absorption rate = {(mass of foam sheet after moisture absorption) − (mass of foam sheet before moisture absorption).
} × 100 / (mass of foam sheet before moisture absorption).
C. Confirmation of generation of deformation / warpage of foam sheet after moisture absorption The state of deformation / warpage of the sample after standing for 1 hour in an atmosphere at a temperature of 25 ° C. and a relative humidity of 50% was visually observed. The results are shown in Table 2.

Figure 2005243556
Figure 2005243556

Figure 2005243556
Figure 2005243556

Figure 2005243556
Figure 2005243556

(評価)
実施例の発泡シートからなる本発明の有機EL素子用乾燥剤は、無発泡シートと比較して、著しく吸湿が速いだけでなく、初期吸湿速度に優れ、吸湿性能が高く、しかも、吸湿後の成形シートの変形・反りを防止することができる。
(Evaluation)
The desiccant for an organic EL device of the present invention comprising the foamed sheet of the example not only has a significantly high moisture absorption compared to the non-foamed sheet, but also has an excellent initial moisture absorption rate, high moisture absorption performance, and after moisture absorption. Deformation and warpage of the molded sheet can be prevented.

本発明の有機EL素子用乾燥剤の一例を示す断面図である。It is sectional drawing which shows an example of the desiccant for organic EL elements of this invention. 吸湿率と測定時間の関係を示す図である。It is a figure which shows the relationship between a moisture absorption rate and measurement time.

符号の説明Explanation of symbols

1…有機EL素子用乾燥剤
2…発泡樹脂層
3…粒子状吸湿性材料
4…発泡セル
5…空隙
DESCRIPTION OF SYMBOLS 1 ... Desiccant for organic EL elements 2 ... Foamed resin layer 3 ... Particulate hygroscopic material 4 ... Foam cell 5 ... Gap

Claims (5)

熱可塑性樹脂100質量部に対し、粒子状吸湿性材料50〜300質量部を含む混合物からなる有機EL素子用乾燥剤であって、該有機EL素子用乾燥剤の発泡樹脂層は、発泡倍率が1.1〜2.0倍であり、該粒子状吸湿性材料が該発泡樹脂層に保持されており、該粒子状吸湿性材料の周囲の少なくとも一部に空隙が形成された構造を有することを特徴とする有機EL素子用乾燥剤。   An organic EL element desiccant comprising a mixture containing 50 to 300 parts by mass of a particulate hygroscopic material with respect to 100 parts by mass of a thermoplastic resin, wherein the foamed resin layer of the desiccant for organic EL element has an expansion ratio of 1.1 to 2.0 times, the particulate hygroscopic material is held in the foamed resin layer, and has a structure in which voids are formed in at least a part of the periphery of the particulate hygroscopic material. An organic EL device desiccant characterized by the above. 温度85℃、10分間加熱および温度105℃、5分間加熱により発生するアウトガス量が、それぞれ80ppm以下、100ppm以下である請求項1記載の有機EL素子用乾燥剤。   The desiccant for an organic EL device according to claim 1, wherein the amount of outgas generated by heating at a temperature of 85 ° C for 10 minutes and at a temperature of 105 ° C for 5 minutes is 80 ppm or less and 100 ppm or less, respectively. 熱可塑性樹脂が、非晶質フッ素系樹脂である請求項1記載の有機EL素子用乾燥剤。   The desiccant for an organic EL device according to claim 1, wherein the thermoplastic resin is an amorphous fluorine-based resin. 粒子状吸湿性材料の少なくとも1種が、平均粒径0.5〜100μm、BET比表面積5〜100g/m2、および温度25℃、相対湿度50%の雰囲気下で1時間静置後の吸湿率が3〜30%の酸化カルシウムである請求項1記載の有機EL素子用乾燥剤。 At least one particulate hygroscopic material has an average particle diameter of 0.5 to 100 μm, a BET specific surface area of 5 to 100 g / m 2 , a moisture absorption after standing for 1 hour in an atmosphere of a temperature of 25 ° C. and a relative humidity of 50%. The desiccant for an organic EL device according to claim 1, which is a calcium oxide having a rate of 3 to 30%. 熱可塑性樹脂100質量部に対し、粒子状吸湿性材料50〜300質量部を含む混合物を超臨界窒素または超臨界二酸化炭素を用いて発泡させることを特徴とする請求項1〜4のいずれか1項記載の有機EL素子用乾燥剤の製造方法。


The mixture containing 50 to 300 parts by mass of the particulate hygroscopic material with respect to 100 parts by mass of the thermoplastic resin is foamed using supercritical nitrogen or supercritical carbon dioxide. The manufacturing method of the desiccant for organic EL elements of description.


JP2004054626A 2004-02-27 2004-02-27 Drying agent for organic el devices, and its manufacturing method Pending JP2005243556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054626A JP2005243556A (en) 2004-02-27 2004-02-27 Drying agent for organic el devices, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054626A JP2005243556A (en) 2004-02-27 2004-02-27 Drying agent for organic el devices, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005243556A true JP2005243556A (en) 2005-09-08

Family

ID=35025048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054626A Pending JP2005243556A (en) 2004-02-27 2004-02-27 Drying agent for organic el devices, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005243556A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147156A1 (en) * 2012-03-30 2013-10-03 古河電気工業株式会社 Resin composition for sealing organic electro-luminescence element, method for manufacturing same, adhesive film in which same resin composition is used, gas-barrier film, organic electro-luminescence element, and organic electro-luminescence panel
WO2015037612A1 (en) * 2013-09-10 2015-03-19 共同印刷株式会社 Absorbent laminate provided with absorbent film, electronic device containing same, and method for producing same
WO2016136715A1 (en) * 2015-02-24 2016-09-01 積水化学工業株式会社 Sealing agent for organic electroluminescence display element
JP2017124383A (en) * 2016-01-15 2017-07-20 双葉電子工業株式会社 Drying agent, sealing structure, and organic EL element
WO2017188429A1 (en) * 2016-04-28 2017-11-02 ダイニック株式会社 Sheet for absorbing moisture
KR101862090B1 (en) * 2017-06-29 2018-06-29 신화인터텍 주식회사 Adhesive film and organic electric device including the same
US10374195B2 (en) 2017-06-29 2019-08-06 Shinwha Intertek Corp Adhesive film and organic electronic device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737686A (en) * 1993-07-23 1995-02-07 Sharp Corp El panel and manufacture thereof
JP2001079369A (en) * 1999-09-10 2001-03-27 Nitto Denko Corp Fluorocarbon resin composite material and organic electroluminescence element using the same
JP2002216951A (en) * 2000-11-14 2002-08-02 Semiconductor Energy Lab Co Ltd Light emitting device
WO2003106582A1 (en) * 2002-01-10 2003-12-24 積水化学工業株式会社 Adhesive for sealing organic electroluminescent element and use thereof
JP2004146381A (en) * 2002-10-25 2004-05-20 Ritdisplay Corp Oled (organic light emitting device) package and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737686A (en) * 1993-07-23 1995-02-07 Sharp Corp El panel and manufacture thereof
JP2001079369A (en) * 1999-09-10 2001-03-27 Nitto Denko Corp Fluorocarbon resin composite material and organic electroluminescence element using the same
JP2002216951A (en) * 2000-11-14 2002-08-02 Semiconductor Energy Lab Co Ltd Light emitting device
WO2003106582A1 (en) * 2002-01-10 2003-12-24 積水化学工業株式会社 Adhesive for sealing organic electroluminescent element and use thereof
JP2004146381A (en) * 2002-10-25 2004-05-20 Ritdisplay Corp Oled (organic light emitting device) package and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013147156A1 (en) * 2012-03-30 2015-12-14 古河電気工業株式会社 Resin composition for encapsulating organic electroluminescent element, method for producing the same, adhesive film using the resin composition, gas barrier film, organic electroluminescent element, and organic electroluminescent panel
US9257671B2 (en) 2012-03-30 2016-02-09 Furukawa Electric Co., Ltd. Resin composition for sealing organic electroluminescent device; method of producing the same; and adhesive film, gas-barrier film, organic electroluminescent device and organic electroluminescent panel using the resin composition
WO2013147156A1 (en) * 2012-03-30 2013-10-03 古河電気工業株式会社 Resin composition for sealing organic electro-luminescence element, method for manufacturing same, adhesive film in which same resin composition is used, gas-barrier film, organic electro-luminescence element, and organic electro-luminescence panel
US9643155B2 (en) 2013-09-10 2017-05-09 Kyodo Printing Co., Ltd. Absorbent laminate provided with absorbent film, electronic device containing same, and method for producing same
WO2015037612A1 (en) * 2013-09-10 2015-03-19 共同印刷株式会社 Absorbent laminate provided with absorbent film, electronic device containing same, and method for producing same
JP6033451B2 (en) * 2013-09-10 2016-11-30 共同印刷株式会社 Absorbent laminate provided with absorbent film, electronic device including the same, and manufacturing method thereof
KR101859076B1 (en) 2013-09-10 2018-05-17 교도 인사쯔 가부시키가이샤 Absorbent laminate provided with absorbent film, electronic device containing same, and method for producing same
JPWO2015037612A1 (en) * 2013-09-10 2017-03-02 共同印刷株式会社 Absorbent laminate provided with absorbent film, electronic device including the same, and manufacturing method thereof
WO2016136715A1 (en) * 2015-02-24 2016-09-01 積水化学工業株式会社 Sealing agent for organic electroluminescence display element
CN106797685A (en) * 2015-02-24 2017-05-31 积水化学工业株式会社 Organic electro-luminescent display unit sealant
JP6062107B1 (en) * 2015-02-24 2017-01-18 積水化学工業株式会社 Sealant for organic electroluminescence display element
CN106797685B (en) * 2015-02-24 2019-02-05 积水化学工业株式会社 Organic electro-luminescent display unit sealant
JP2017124383A (en) * 2016-01-15 2017-07-20 双葉電子工業株式会社 Drying agent, sealing structure, and organic EL element
CN106984144A (en) * 2016-01-15 2017-07-28 双叶电子工业株式会社 Drier, sealing structure and organic EL element
WO2017188429A1 (en) * 2016-04-28 2017-11-02 ダイニック株式会社 Sheet for absorbing moisture
JP2017196598A (en) * 2016-04-28 2017-11-02 ダイニック株式会社 Sheet for moisture absorption
KR101862090B1 (en) * 2017-06-29 2018-06-29 신화인터텍 주식회사 Adhesive film and organic electric device including the same
US10374195B2 (en) 2017-06-29 2019-08-06 Shinwha Intertek Corp Adhesive film and organic electronic device including the same

Similar Documents

Publication Publication Date Title
CN101222977B (en) Getter systems comprising an active phase inserted in a porous material distributed in a low permeability means
TW200401662A (en) Molded adsorbent and adsorbent unit
JP5209300B2 (en) Adsorption film and organic EL device
US20070184300A1 (en) Oxygen absorbent molding and organic electroluminescent element
CN101247888A (en) Getter systems comprising a gas-sorbing phase in the pores of a porous material distributed in a permeable means
JPWO2004006628A1 (en) Hygroscopic molded body
JP2005243556A (en) Drying agent for organic el devices, and its manufacturing method
JP2002280166A (en) Organic el element
JP2005270959A (en) Oxygen absorbent molding and organic el element
JP2009293770A (en) Vacuum heat insulation material and refrigerator using it
JP4252167B2 (en) Fluororesin composite member and organic electroluminescence device using the same
KR101817430B1 (en) Electrolyte and manufacturing method thereof
JP2010259967A (en) Device for adsorbing gas
EP1407818B1 (en) Sheet for treating gaseous ingredient and electroluminescent element employing the same
WO2018101142A1 (en) Filter, gas adsorption device using filter, and vacuum heat insulator
JP4583780B2 (en) Hygroscopic packing material
JP2007141745A (en) Air battery
JP2008023862A (en) Antistatic desicant-containing film
JP2014067485A (en) Hygroscopic molding
JP3447653B2 (en) Electroluminescent element member and electroluminescent element incorporating the same
JP2011142099A (en) Porous adsorbing sheet made of polytetrafluoroethylene
US7732060B2 (en) Sheet for treating gaseous ingredient and electroluminescent element employing the same
JP2006116501A (en) Adsorbent-kneaded resin and adsorbent for organic el device
JP2001198429A (en) Fluoroplastic resin composite member covered with peelable moisture impermeable film
JP2010259968A (en) Device for adsorbing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104