JP2005243248A - Flow control device of stationary fuel cell system and its design method - Google Patents

Flow control device of stationary fuel cell system and its design method Download PDF

Info

Publication number
JP2005243248A
JP2005243248A JP2004047318A JP2004047318A JP2005243248A JP 2005243248 A JP2005243248 A JP 2005243248A JP 2004047318 A JP2004047318 A JP 2004047318A JP 2004047318 A JP2004047318 A JP 2004047318A JP 2005243248 A JP2005243248 A JP 2005243248A
Authority
JP
Japan
Prior art keywords
operation amount
control device
flow rate
pid controller
pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004047318A
Other languages
Japanese (ja)
Other versions
JP4624694B2 (en
Inventor
和政 ▲高▼田
Kazumasa Takada
Hiroaki Kato
浩明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2004047318A priority Critical patent/JP4624694B2/en
Publication of JP2005243248A publication Critical patent/JP2005243248A/en
Application granted granted Critical
Publication of JP4624694B2 publication Critical patent/JP4624694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow control device of a stationary fuel cell system capable of balancing a robust property with responsiveness. <P>SOLUTION: This flow control device 10 is provided with: a driver circuit 12 for driving a pump or an air blower 13 provided for the stationary fuel cell system; and a PID controller 11 for finding an operation amount of the driver circuit 12 by PID control so that an actual flow rate of a fluid flowing out from the pump or the air blower 13 coincides with a target value. By employing closed loop control with the PID control adopted to feedback compensation, the pump or the air blower 13 can stably be operated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は定置用燃料電池システムの流量制御装置及びその設計方法に関し、特に、ロバスト性と応答性の両立を図るための改良技術に関する。   The present invention relates to a flow control device for a stationary fuel cell system and a design method thereof, and more particularly to an improved technique for achieving both robustness and responsiveness.

図8は家庭などで使用される定置用燃料電池システムの流量制御装置の構成を示している。定置用燃料電池システムは負荷が必要とする電力量の指示を受けると、予め用意された燃料供給指示値マップ31を参照して改質器又は燃料電池スタック32に供給される都市ガス、水、エア等の目標流量を流量制御装置20に与える。流量制御装置20は都市ガス、水、エア等を改質器又は燃料電池スタック32に供給するためのポンプ又はエアブロア23と、ポンプ又はエアブロア23を駆動するためのドライバ回路22と、都市ガス、水、エア等の実流量が目標流量に一致するようにドライバ回路22への操作量を算出する制御器21を備えている。尚、特開2001−23669号公報には燃料電池システムの燃焼器に供給されるエア流量をPID制御する構成が開示されている。
特開2001−23669号公報
FIG. 8 shows a configuration of a flow rate control device of a stationary fuel cell system used at home or the like. When the stationary fuel cell system receives an instruction of the amount of electric power required by the load, city gas, water, and water supplied to the reformer or the fuel cell stack 32 with reference to a fuel supply instruction value map 31 prepared in advance. A target flow rate such as air is supplied to the flow control device 20. The flow control device 20 includes a pump or air blower 23 for supplying city gas, water, air or the like to the reformer or fuel cell stack 32, a driver circuit 22 for driving the pump or air blower 23, and city gas, water. And a controller 21 that calculates an operation amount to the driver circuit 22 so that an actual flow rate of air or the like matches a target flow rate. Japanese Patent Laid-Open No. 2001-23669 discloses a configuration in which the air flow rate supplied to the combustor of the fuel cell system is PID controlled.
Japanese Patent Laid-Open No. 2001-23669

上述した流量制御装置20においては、都市ガス、水、エア等の流量制御を安定に動作させることが技術的課題となっており、量産時に生じる製造バラツキを補償しつつ(ロバスト性の確保)、制御のチューニング手順が定式化され、実装後も応答制御を意図するまま操作できるように制御器21を設計する必要があった。   In the flow control device 20 described above, it is a technical problem to stably operate the flow control of city gas, water, air, etc., while compensating for manufacturing variations that occur during mass production (ensuring robustness), The control tuning procedure was formulated, and it was necessary to design the controller 21 so that the response control can be operated even after mounting.

そこで、本発明はロバスト性と応答性を両立できる定置用燃料電池システムの流量制御装置及びその設計方法を提案することを課題とする。   Therefore, an object of the present invention is to propose a flow control device for a stationary fuel cell system capable of achieving both robustness and responsiveness, and a design method thereof.

上記の課題を解決するため、本発明の流量制御装置は、定置用燃料電池システムに備え付けられた流体供給装置の流量を制御する流量制御装置であって、流体供給装置を駆動するためのドライバ回路と、流体供給装置から流出する流体の実流量が目標流量に一致するようにPID制御によってドライバ回路の操作量を求めるPID制御器を備える。PID制御をフィードバック補償に取り入れた閉ループ制御を採用することにより、流体供給装置を安定に動作させることができる。   In order to solve the above problems, a flow control device of the present invention is a flow control device for controlling the flow rate of a fluid supply device provided in a stationary fuel cell system, and a driver circuit for driving the fluid supply device And a PID controller that obtains the operation amount of the driver circuit by PID control so that the actual flow rate of the fluid flowing out from the fluid supply device matches the target flow rate. By adopting closed loop control that incorporates PID control in feedback compensation, the fluid supply apparatus can be operated stably.

ここで、PID制御器は前回の操作量と今回の操作量との差分に相当する微小操作量を求め、微小操作量に前回の操作量を加減算して今回の操作量を求める速度型PID制御器であるのが好ましい。速度型PID制御器にすることで、操作量に上限値又は下限値を設定することが可能となり、操作量の急峻な変化を抑制できる。   Here, the PID controller obtains a minute operation amount corresponding to the difference between the previous operation amount and the current operation amount, and adds or subtracts the previous operation amount to / from the minute operation amount to obtain the current operation amount. A vessel is preferred. By using the speed type PID controller, it is possible to set an upper limit value or a lower limit value for the operation amount, and it is possible to suppress a steep change in the operation amount.

速度型PID制御器には微小操作量の値が所定の上限値又は下限値を超えたときに微小操作量の値を制限する制限手段を備えるのが好ましい。微小操作量が所定の上限値又は下限値を超えたときに微小操作量の値を制限することで、操作量の急峻な変化を抑制し、制御方法若しくはPID制御ゲインを切り替えることなく、流体供給装置の流量制御を安定化できる。   The speed type PID controller preferably includes a limiting means for limiting the value of the minute operation amount when the value of the minute operation amount exceeds a predetermined upper limit value or lower limit value. By restricting the value of the micro operation amount when the micro operation amount exceeds a predetermined upper limit value or lower limit value, a sudden change in the operation amount is suppressed, and fluid supply is performed without switching the control method or the PID control gain. The flow control of the device can be stabilized.

本発明の流量制御装置の設計方法は、定置用燃料電池システムに備え付けられた流体供給装置の流量を制御する流量制御装置を設計するための方法であって、システム同定実験により流体供給装置の動特性を記述した数学モデルを導出するステップと、数学モデルを基に所望の目標応答を示す制御システムの規範モデルを導出するステップと、数学モデルとPID制御器により閉ループ制御システムを構成し、この閉ループ制御システムの周波数特性が前記規範モデルの周波数特性と略一致するように部分モデルマッチング法によりPID制御器のPID制御ゲインを導出するステップを備える。この方法によれば、PID制御ゲイン等を闇雲に調整する手法に比べて目標とする性能を備えたPID制御器を短期間で設計することが可能となる。   A design method for a flow control device of the present invention is a method for designing a flow control device for controlling the flow rate of a fluid supply device provided in a stationary fuel cell system, and the operation of the fluid supply device is determined by a system identification experiment. A step of deriving a mathematical model describing the characteristics, a step of deriving a reference model of a control system showing a desired target response based on the mathematical model, and a closed loop control system comprising the mathematical model and the PID controller. A step of deriving a PID control gain of the PID controller by a partial model matching method so that the frequency characteristic of the control system substantially matches the frequency characteristic of the reference model. According to this method, it is possible to design a PID controller having a target performance in a short period of time compared to a method of adjusting the PID control gain or the like to a dark cloud.

本発明の流量制御装置によれば、PID制御をフィードバック補償に取り入れた閉ループ制御を採用することにより、流体供給装置を安定に動作させることができる。特に、微小操作量が所定の上限値又は下限値を超えたときに微小操作量の値を制限することで、操作量の急峻な変化を抑制し、制御方法若しくはPID制御ゲインを切り替えることなく、流体供給装置の流量制御を安定化できる。また、本発明の設計方法によれば、PID制御ゲイン等を闇雲に調整する手法に比べて、目標とする性能を備えたPID制御器を短期間で設計することが可能となる。   According to the flow control device of the present invention, the fluid supply device can be stably operated by employing the closed loop control in which the PID control is incorporated in the feedback compensation. In particular, by limiting the value of the minute operation amount when the minute operation amount exceeds a predetermined upper limit value or lower limit value, it is possible to suppress a steep change in the operation amount without switching the control method or the PID control gain. The flow control of the fluid supply device can be stabilized. Further, according to the design method of the present invention, it is possible to design a PID controller having a target performance in a short period of time as compared with a method of adjusting a PID control gain or the like to a dark cloud.

図1は本実施形態に関わる家庭用電力発電等に用いられる定置用燃料電池システムの流量制御装置を示している。同図に示すように流量制御装置10は、都市ガス、水、エア等を改質器又は燃料電池スタックに供給するためのポンプ又はエアブロア(流体供給装置)13と、ポンプ又はエアブロア13を駆動するためのドライバ回路12と、ポンプ又はエアブロア13から流出する流体の実流量(real_flow)が目標流量(ref_flow)に一致するようにPID(比例積分微分)制御によってドライバ回路12の操作量(duty)を求めるPID制御器11を備えて構成されている。流量制御装置10は閉ループ型の制御システムとして構成されており、PID制御をフィードバック補償に取り入れていることで、ポンプ又はエアブロア13から流出する都市ガス、水、エア等の実流量(real_flow)と目標流量(ref_flow)との偏差(dv)がゼロとなるように操作量(duty)を求めている。ポンプ又はエアブロア23をPWM(Pulse Width Modulation)制御によってモータ駆動する場合には、ドライバ回路22に入力される操作量(duty)は駆動電圧のduty比となる。   FIG. 1 shows a flow rate control device of a stationary fuel cell system used for household power generation and the like according to this embodiment. As shown in the figure, the flow control device 10 drives a pump or air blower (fluid supply device) 13 for supplying city gas, water, air, etc. to a reformer or a fuel cell stack, and the pump or air blower 13. Driver circuit 12 and the operation amount (duty) of driver circuit 12 by PID (proportional integral derivative) control so that the actual flow rate (real_flow) of the fluid flowing out from the pump or air blower 13 matches the target flow rate (ref_flow). The PID controller 11 to be obtained is provided. The flow control device 10 is configured as a closed loop control system, and by incorporating PID control into feedback compensation, the actual flow (real_flow) of city gas, water, air, etc. flowing out from the pump or air blower 13 and the target The operation amount (duty) is obtained so that the deviation (dv) from the flow rate (ref_flow) becomes zero. When the pump or air blower 23 is motor driven by PWM (Pulse Width Modulation) control, the operation amount (duty) input to the driver circuit 22 is the duty ratio of the drive voltage.

PID制御器11としては、例えば、前回の操作量(duty_old)と今回の操作量(duty)との差分に相当する微小操作量(dmv)を求め、微小操作量(dmv)に前回の操作量(duty_old)を加減算して今回の操作量(duty)を求める速度型PID制御器が好ましい。速度型PID制御器にすることで、操作量(duty)に上限又は下限を設定することが可能となり、操作量(duty)の急峻な変化を抑制できる。同図にはPID制御器11を速度型PID制御器として構成した場合のPIDフィルタの一例が示されている。ここで、Pbは比例帯、Tiは積分時間、Tdは微分時間、Tsはサンプリング時間、1/Zは遅延素子である。PIDフィルタには微小操作量(dmv)の値が所定の上限値又は下限値を超えたときに微小操作量(dmv)の値を制限するリミッタ14が付加されている。このリミッタ14は微小操作量(dmv)の値が上限値を上回ったときに微小操作量(dmv)の値を上限値に制限し、又は微小操作量(dmv)の値が下限値を下回ったときに微小操作量(dmv)の値を下限値に制限するための制限手段である。リミッタ14によって上限又は下限が制限された微小操作量(dmv)は遅延素子によって1サンプリング遅れた前回の操作量(duty_old)と加算又は減算された後、今回の操作量(duty)としてドライバ回路12へ出力される。   As the PID controller 11, for example, a minute operation amount (dmv) corresponding to the difference between the previous operation amount (duty_old) and the current operation amount (duty) is obtained, and the previous operation amount is calculated as the minute operation amount (dmv). A speed type PID controller that calculates the current operation amount (duty) by adding and subtracting (duty_old) is preferable. By using a speed type PID controller, it is possible to set an upper limit or a lower limit for the operation amount (duty), and it is possible to suppress a sharp change in the operation amount (duty). The figure shows an example of a PID filter when the PID controller 11 is configured as a speed type PID controller. Here, Pb is a proportional band, Ti is an integration time, Td is a differentiation time, Ts is a sampling time, and 1 / Z is a delay element. The PID filter is provided with a limiter 14 for limiting the value of the minute operation amount (dmv) when the value of the minute operation amount (dmv) exceeds a predetermined upper limit value or lower limit value. This limiter 14 limits the value of the minute manipulated variable (dmv) to the upper limit when the value of the minute manipulated variable (dmv) exceeds the upper limit, or the value of the minute manipulated variable (dmv) falls below the lower limit. Sometimes it is a limiting means for limiting the value of the minute operation amount (dmv) to the lower limit value. The minute operation amount (dmv) whose upper limit or lower limit is limited by the limiter 14 is added or subtracted with the previous operation amount (duty_old) delayed by one sampling by the delay element, and then the driver circuit 12 as the current operation amount (duty). Is output.

図2はPID制御器11の制御ロジックを記述した制御ルーチンを示している。PID制御器11は、都市ガス、水、エア等の目標流量(ref_flow)を受信すると(S11)、これら流体の実流量(real_flow)を検出し(S12)、偏差(dv=ref_flow-real_flow)を求める(S13)。次いで、dmv=C(z,Pb,Ti,Td)・dvにより微小操作量(dmv)を求める(S14)。ここで、C(z,Pb,Ti,Td)は微小操作量(dmv)を生成するためのPIDフィルタである。そして、微小操作量(dmv)の値が所定の上限値(uplimit)を上回っている場合には、微小操作量の値を上限値に制限し(dmv=uplimit)、微小操作量(dmv)の値が所定の下限値(downlimit)を下回っている場合には、微小操作量の値を下限値に制限する(dmv=downlimit)。このようにして微小操作量(dmv)の範囲を制限したならば(S15)、1サンプリング前の前回の操作量(duty_old)と微小操作量(dmv)を加減算して今回の操作量(duty)を求めて(S16)、ドライバ回路12へ出力する(S17)。   FIG. 2 shows a control routine describing the control logic of the PID controller 11. When the PID controller 11 receives the target flow rate (ref_flow) of city gas, water, air, etc. (S11), it detects the actual flow rate (real_flow) of these fluids (S12) and calculates the deviation (dv = ref_flow-real_flow). Obtain (S13). Next, a minute operation amount (dmv) is obtained by dmv = C (z, Pb, Ti, Td) · dv (S14). Here, C (z, Pb, Ti, Td) is a PID filter for generating a minute manipulated variable (dmv). When the value of the minute operation amount (dmv) exceeds the predetermined upper limit value (uplimit), the value of the minute operation amount is limited to the upper limit value (dmv = uplimit), and the minute operation amount (dmv) When the value is below a predetermined lower limit (downlimit), the value of the minute manipulated variable is limited to the lower limit (dmv = downlimit). When the range of the minute operation amount (dmv) is limited in this way (S15), the previous operation amount (duty_old) one sampling before and the minute operation amount (dmv) are added and subtracted to determine the current operation amount (duty). (S16) and output to the driver circuit 12 (S17).

PID制御器11にリミッタ14を付加した場合と付加してない場合とで制御性能を比較した。比較結果を図4〜図7に示す。ここで、図4はPID制御器11にリミッタ14を付加してない状態でポンプ又はエアブロアを様々な動作モードで動作させたときの流量変化を示しており、図5はPID制御器11にリミッタ14を付加した状態でポンプ又はエアブロアを様々な動作モードで動作させたときの流量変化を示している。これらの図に示すように、リミッタ14を付加してないPID制御器11では動作モードの違いによって制御性能にムラが生じているのが確認できる。これに対し、リミッタ14を付加したPID制御器11では動作モードの違いに依らず一様な制御性能を確保できていることが確認できる。図6はPID制御器11にリミッタ14を付加してない状態でポンプ又はエアブロアを様々な動作モードで動作させたときのduty比を示しており、図7はPID制御器11にリミッタ14を付加した状態でポンプ又はエアブロアを様々な動作モードで動作させたときのduty比を示している。これらの図に示すように、リミッタ14を付加してないPID制御器11ではduty比の変化が急峻となる動作モードがあり、その動作モードでは制御性能が悪化していることが確認できる。これに対し、リミッタ14を付加したPID制御器11ではduty比の急峻な変化を示す動作モードがなくなるのが確認できる。以上の結果から、PID制御器11にリミッタ14を付加することによって微小操作量(dmv)の上限及び下限を制限すれば、操作量(duty)の急峻な変化を抑制することが可能となり、様々な動作モードにおいて安定した流量制御を実現できることが確認できた。   The control performance was compared between when the limiter 14 was added to the PID controller 11 and when it was not added. The comparison results are shown in FIGS. Here, FIG. 4 shows the flow rate change when the pump or air blower is operated in various operation modes without adding the limiter 14 to the PID controller 11, and FIG. 5 shows the limiter in the PID controller 11. 14 shows a change in flow rate when the pump or air blower is operated in various operation modes with 14 added. As shown in these figures, it can be confirmed that the PID controller 11 to which the limiter 14 is not added is uneven in the control performance due to the difference in the operation mode. On the other hand, it can be confirmed that the PID controller 11 to which the limiter 14 is added can ensure uniform control performance regardless of the difference in the operation mode. FIG. 6 shows the duty ratio when the pump or air blower is operated in various operation modes without adding the limiter 14 to the PID controller 11, and FIG. 7 shows the addition of the limiter 14 to the PID controller 11. The duty ratio when the pump or the air blower is operated in various operation modes in the above state is shown. As shown in these figures, it can be confirmed that the PID controller 11 to which the limiter 14 is not added has an operation mode in which the change in the duty ratio is steep, and the control performance is deteriorated in the operation mode. On the other hand, it can be confirmed that the PID controller 11 to which the limiter 14 is added does not have an operation mode showing a steep change in the duty ratio. From the above results, if the upper limit and the lower limit of the minute operation amount (dmv) are limited by adding the limiter 14 to the PID controller 11, it is possible to suppress a sudden change in the operation amount (duty). It was confirmed that stable flow rate control can be realized in various operation modes.

図3はリミッタ14付きのPID制御器11を設計する手順を記述したフローチャートである。まず、ポンプ又はエアブロアのバルブ開度を入力とし、都市ガス、水、エア等の実流量を出力として、これら制御対象(プロセス)の動特性(ダイナミクス)を記述した数学モデル(物理モデル)をシステム同定実験により導出する(S21)。システム同定実験においては、実験データを用いた時間応答又は周波数応答の波形フィッティングによって数学モデルを導出する。次いで、目標流量までの到達時間又は目標流量までの振る舞いなど(例えば、エア投入量の変化のさせ方など)を考慮し、安定した目標応答を示す制御システムの数学モデル(規範モデル)を導出する(S22)。次いで、制御対象とPID制御器11とを用いて閉ループ制御システムを構成し、この閉ループ制御システムの周波数特性が規範モデルの周波数特性と略一致するようにPID制御器11のPID制御ゲインを導出する(S23)。PID制御ゲインが得られたならば、微分方程式の差分近似又はZ変換などでPID制御器11を離散化する(S24)。このとき、図1に示したように速度型PID制御器の構成にした上で更にリミッタ14を付加した構成にする。制御対象とPID制御器11とによって構成される閉ループ制御システムの周波数特性が規範モデルの周波数特性と一致しない場合(評価性能を満足しない場合)には(S25;NO)、S22〜S24のステップを繰り返す。一方、閉ループ制御システムの周波数特性が規範モデルの周波数特性と一致し、評価性能を満足する場合は(S25;YES)、PID制御器11にプログラム実装を行い(S26)、設計を終了する。   FIG. 3 is a flowchart describing a procedure for designing the PID controller 11 with the limiter 14. First, a mathematical model (physical model) describing the dynamic characteristics (dynamics) of these controlled objects (processes) with the actual valve flow of the pump or air blower as input and the actual flow rate of city gas, water, air, etc. as output Derived by an identification experiment (S21). In the system identification experiment, a mathematical model is derived by waveform fitting of time response or frequency response using experimental data. Next, a mathematical model (normative model) of the control system showing a stable target response is derived in consideration of the arrival time to the target flow rate or the behavior to the target flow rate (for example, how to change the air input amount). (S22). Next, a closed loop control system is configured using the control target and the PID controller 11, and a PID control gain of the PID controller 11 is derived so that the frequency characteristic of the closed loop control system substantially matches the frequency characteristic of the reference model. (S23). If the PID control gain is obtained, the PID controller 11 is discretized by differential approximation of differential equations or Z conversion (S24). At this time, the speed type PID controller is configured as shown in FIG. 1, and the limiter 14 is further added. When the frequency characteristic of the closed loop control system configured by the control target and the PID controller 11 does not match the frequency characteristic of the reference model (when the evaluation performance is not satisfied) (S25; NO), the steps of S22 to S24 are performed. repeat. On the other hand, when the frequency characteristic of the closed loop control system matches the frequency characteristic of the reference model and satisfies the evaluation performance (S25; YES), the program is installed in the PID controller 11 (S26), and the design is finished.

本実施形態の流量制御装置10によれば、PID制御をフィードバック補償に取り入れた閉ループ制御を採用することにより、ポンプ又はエアブロア13を安定に動作させることができる。特に、微小操作量(dmv)が所定の上限値(uplimit)又は下限値(downlimit)を超えたときに微小操作量(dmv)の値を制限することで、操作量(duty)の急峻な変化を抑制し、制御方法若しくはPID制御ゲインを切り替えることなく、ポンプ又はエアブロア13の流量制御を安定化できる。また、本実施形態の流量制御装置10の設計方法によれば、PID制御ゲイン等を闇雲に調整する手法に比べて、目標とする性能を備えたPID制御器11を短期間で設計することが可能となる。   According to the flow control device 10 of the present embodiment, the pump or the air blower 13 can be stably operated by employing the closed loop control in which the PID control is incorporated in the feedback compensation. In particular, when the micro manipulated variable (dmv) exceeds a predetermined upper limit (uplimit) or lower limit (downlimit), the micro manipulated variable (dmv) is limited to make a sharp change in the manipulated variable (duty). And the flow control of the pump or air blower 13 can be stabilized without switching the control method or the PID control gain. Moreover, according to the design method of the flow control device 10 of the present embodiment, it is possible to design the PID controller 11 having the target performance in a short period of time compared to the method of adjusting the PID control gain or the like to the dark clouds. It becomes possible.

本実施形態の流量制御装置のシステム構成図である。It is a system configuration figure of the flow control device of this embodiment. PID制御ルーチンを記述したフローチャートである。3 is a flowchart describing a PID control routine. PID制御器の設計手順を記述したフローチャートである。It is a flowchart describing the design procedure of the PID controller. ポンプ又はエアブロアの流量変化を示す図である(リミッタ無)。It is a figure which shows the flow volume change of a pump or an air blower (without a limiter). ポンプ又はエアブロアの流量変化を示す図である(リミッタ有)。It is a figure which shows the flow volume change of a pump or an air blower (with a limiter). ポンプ又はエアブロアのduty比の変化を示す図である(リミッタ無)。It is a figure which shows the change of the duty ratio of a pump or an air blower (without a limiter). ポンプ又はエアブロアのduty比の変化を示す図である(リミッタ有)。It is a figure which shows the change of the duty ratio of a pump or an air blower (with a limiter). 従来の流量制御装置のシステム構成図である。It is a system block diagram of the conventional flow control apparatus.

符号の説明Explanation of symbols

10…流量制御装置 11…PID制御器 12…ドライバ回路 13…ポンプ又はエアブロア 14…リミッタ DESCRIPTION OF SYMBOLS 10 ... Flow control apparatus 11 ... PID controller 12 ... Driver circuit 13 ... Pump or air blower 14 ... Limiter

Claims (4)

定置用燃料電池システムに備え付けられた流体供給装置の流量を制御するための流量制御装置であって、
前記流体供給装置を駆動するためのドライバ回路と、
前記流体供給装置から流出する流体の実流量が目標流量に一致するようにPID制御によって前記ドライバ回路の操作量を求めるPID制御器を備える、流量制御装置。
A flow rate control device for controlling the flow rate of a fluid supply device provided in a stationary fuel cell system,
A driver circuit for driving the fluid supply device;
A flow rate control device comprising a PID controller that obtains an operation amount of the driver circuit by PID control so that an actual flow rate of the fluid flowing out from the fluid supply device matches a target flow rate.
請求項1に記載の流量制御装置であって、
前記PID制御器は前回の操作量と今回の操作量との差分に相当する微小操作量を求め、前記微小操作量に前回の操作量を加減算して今回の操作量を求める速度型PID制御器である、流量制御装置。
The flow control device according to claim 1,
The PID controller obtains a minute operation amount corresponding to the difference between the previous operation amount and the current operation amount, and adds and subtracts the previous operation amount to the minute operation amount to obtain a current operation amount. A flow control device.
請求項2に記載の流量制御装置であって、
前記PID制御器は前記微小操作量の値が所定の上限値又は下限値を超えたときに前記微小操作量の値を制限する制限手段を備える、流量制御装置。
The flow control device according to claim 2,
The PID controller includes a limiting unit that limits a value of the minute operation amount when the value of the minute operation amount exceeds a predetermined upper limit value or lower limit value.
定置用燃料電池システムに備え付けられた流体供給装置の流量を制御する流量制御装置を設計するための方法であって、
システム同定実験により前記流体供給装置の動特性を記述した数学モデルを導出するステップと、
前記数学モデルを基に所望の目標応答を示す制御システムの規範モデルを導出するステップと、
前記数学モデルとPID制御器により閉ループ制御システムを構成し、前記閉ループ制御システムの周波数特性が前記規範モデルの周波数特性と略一致するように部分モデルマッチング法により前記PID制御器のPID制御ゲインを導出するステップを備える、流量制御装置の設計方法。

A method for designing a flow rate control device for controlling a flow rate of a fluid supply device provided in a stationary fuel cell system, comprising:
Deriving a mathematical model describing the dynamic characteristics of the fluid supply device by system identification experiments;
Deriving a reference model of a control system that exhibits a desired target response based on the mathematical model;
A closed loop control system is configured by the mathematical model and the PID controller, and a PID control gain of the PID controller is derived by a partial model matching method so that the frequency characteristic of the closed loop control system substantially matches the frequency characteristic of the reference model. A method for designing a flow control device, comprising the step of:

JP2004047318A 2004-02-24 2004-02-24 Flow control device for stationary fuel cell system and design method thereof Expired - Fee Related JP4624694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047318A JP4624694B2 (en) 2004-02-24 2004-02-24 Flow control device for stationary fuel cell system and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047318A JP4624694B2 (en) 2004-02-24 2004-02-24 Flow control device for stationary fuel cell system and design method thereof

Publications (2)

Publication Number Publication Date
JP2005243248A true JP2005243248A (en) 2005-09-08
JP4624694B2 JP4624694B2 (en) 2011-02-02

Family

ID=35024778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047318A Expired - Fee Related JP4624694B2 (en) 2004-02-24 2004-02-24 Flow control device for stationary fuel cell system and design method thereof

Country Status (1)

Country Link
JP (1) JP4624694B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187210A (en) * 2010-03-05 2011-09-22 Toto Ltd Solid electrolyte fuel cell
CN103345271A (en) * 2013-06-27 2013-10-09 湖北三江航天万峰科技发展有限公司 Gas flow regulation control device based on embedded system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834167B1 (en) 2016-04-21 2018-04-13 현대자동차주식회사 Fuel cell system and control method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147723A (en) * 2000-09-07 2001-05-29 Hitachi Metals Ltd Method for controlling flow rate
JP2003021103A (en) * 2001-07-05 2003-01-24 Daikin Ind Ltd Hydraulic circuit device
JP2003100324A (en) * 2001-09-21 2003-04-04 Nissan Motor Co Ltd Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147723A (en) * 2000-09-07 2001-05-29 Hitachi Metals Ltd Method for controlling flow rate
JP2003021103A (en) * 2001-07-05 2003-01-24 Daikin Ind Ltd Hydraulic circuit device
JP2003100324A (en) * 2001-09-21 2003-04-04 Nissan Motor Co Ltd Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187210A (en) * 2010-03-05 2011-09-22 Toto Ltd Solid electrolyte fuel cell
US8546029B2 (en) 2010-03-05 2013-10-01 Toto Ltd. Solid oxide fuel cell
CN103345271A (en) * 2013-06-27 2013-10-09 湖北三江航天万峰科技发展有限公司 Gas flow regulation control device based on embedded system
CN103345271B (en) * 2013-06-27 2015-12-02 湖北三江航天万峰科技发展有限公司 A kind of gas flow control set for adjusting based on embedded system

Also Published As

Publication number Publication date
JP4624694B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US6975087B1 (en) Closed-loop control system
JP5362241B2 (en) Proportional solenoid valve drive
EP1944862A3 (en) Induction motor controller
US9322410B2 (en) Electric pump device
WO2018012357A1 (en) Linear solenoid valve
JP4476312B2 (en) Control device for transmission
KR102632083B1 (en) Air sampler with closed loop flow control system
US20140111132A1 (en) Apparatus and method for controlling motor
KR20160058039A (en) Fuel cell system
JP4624694B2 (en) Flow control device for stationary fuel cell system and design method thereof
KR101480745B1 (en) Method and apparatus of controlling pwm current for driving solenoid valve
US8838257B1 (en) Controller and design support apparatus
JP2002280036A (en) Cooling control device of fuel cell
JP4590836B2 (en) Control device for fuel cell system
US10755843B2 (en) Method and apparatus for controlling a solenoid valve
JP2010103075A (en) Fuel cell system
JP2011042240A (en) Current controller for electric power steering device
KR101094988B1 (en) Anti-windup pid controller
JP6344070B2 (en) Solenoid control device
JP2010061481A (en) Controller for flow rate control valve
JP2006288029A (en) Motor current control device of vehicle and motor current control method
JP5265997B2 (en) Electrostatic atomizer
JP4305949B2 (en) Method for switching control mode of gas turbine power generator
JP2008215145A (en) Electronic control governor
JP5950868B2 (en) Control device for motor for fuel pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R151 Written notification of patent or utility model registration

Ref document number: 4624694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees