JP2003021103A - Hydraulic circuit device - Google Patents

Hydraulic circuit device

Info

Publication number
JP2003021103A
JP2003021103A JP2001204580A JP2001204580A JP2003021103A JP 2003021103 A JP2003021103 A JP 2003021103A JP 2001204580 A JP2001204580 A JP 2001204580A JP 2001204580 A JP2001204580 A JP 2001204580A JP 2003021103 A JP2003021103 A JP 2003021103A
Authority
JP
Japan
Prior art keywords
pressure
valve
hydraulic
proportional valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001204580A
Other languages
Japanese (ja)
Other versions
JP3783582B2 (en
Inventor
Junichi Miyagi
淳一 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001204580A priority Critical patent/JP3783582B2/en
Priority to EP02738707A priority patent/EP1403528A4/en
Priority to CNB028023161A priority patent/CN1274965C/en
Priority to KR1020037003299A priority patent/KR100781029B1/en
Priority to PCT/JP2002/005930 priority patent/WO2003004879A1/en
Priority to TW091113287A priority patent/TW552354B/en
Publication of JP2003021103A publication Critical patent/JP2003021103A/en
Application granted granted Critical
Publication of JP3783582B2 publication Critical patent/JP3783582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/03Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40553Flow control characterised by the type of flow control means or valve with pressure compensating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/413Flow control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41581Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • F15B2211/50572Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using a pressure compensating valve for controlling the pressure difference across a flow control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6323Electronic controllers using input signals representing a flow rate the flow rate being a pressure source flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6655Power control, e.g. combined pressure and flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the controlling performance of the supplying amount and pressure of hydraulic oil while suppressing a increase in a cost, and expand a controllable area of pressure to a zero point, in a hydraulic circuit devices 2, 20 wherein a solenoid proportional valve 6 is interposed in a supplying passage 5 of hydraulic oil to a main machine hydraulic circuit 1. SOLUTION: The solenoid proportional valve 6 is provided with a supply position supplying hydraulic oil to the main machine side, a discharge position discharging the hydraulic oil from the main machine side, and a stop position stopping supplying/discharging of the hydraulic oil. A pressure sensor 10 detecting the pressure of hydraulic oil of a downstream supplying passage 5b and a position sensor 11 detecting a spool position (opening) of the solenoid proportional valve 6 are provided, the opening of the solenoid proportional valve 6 is feedback controlled by a digital controller 12 so as to make the supplying amount Q and the supplying pressure P of the hydraulic oil to the main machine side become command values Qi, Pi, on the basis of signals from the pressure sensor 10 and the position sensor 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば射出成形機
のような機械装置の液圧アクチュエータを駆動するため
の液圧回路装置に関し、特に、該アクチュエータの動作
速度及び作動力を適正に制御するための作動液の流量及
び圧力制御の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic circuit device for driving a hydraulic actuator of a mechanical device such as an injection molding machine, and more particularly, to properly control the operating speed and operating force of the actuator. Belongs to the technical field of hydraulic fluid flow rate and pressure control.

【0002】[0002]

【従来の技術】従来より、この種の液圧回路装置とし
て、アクチュエータへの作動油の供給流量を制御するた
めの電磁比例弁(以下、単に流量比例弁ともいう)と圧
力を調整するための電磁比例弁(以下、単に圧力比例弁
ともいう)とを内蔵し、それぞれの比例弁を専用のドラ
イバ回路により制御するようにした電磁比例式リリーフ
弁付流量調整弁装置がある。
2. Description of the Related Art Conventionally, as a hydraulic circuit device of this type, an electromagnetic proportional valve (hereinafter, simply referred to as a flow rate proportional valve) for controlling a flow rate of hydraulic oil supplied to an actuator and a pressure adjusting valve have been used. There is an electromagnetic proportional type flow rate adjusting valve device with a relief valve which has a built-in electromagnetic proportional valve (hereinafter, also simply referred to as a pressure proportional valve) and each proportional valve is controlled by a dedicated driver circuit.

【0003】このものでは、図6に一例を示すように、
主機油圧回路(1)の油圧アクチュエータへの作動油の供
給通路(5)に流量比例弁(6)が介設され、この流量比例弁
(6)の下流側のAポートに前記アクチュエータが接続さ
れる一方、上流側のPポートには例えば定容量型ポンプ
(3)が接続される。また、前記流量比例弁(6)の上流側及
び下流側からそれぞれパイロット圧を受けて、それらの
差圧が略一定になるように上流側の供給通路(5a)から作
動油をTポートにバイパスさせる差圧補償弁(7)が設け
られている。
In this case, as shown in FIG.
A flow proportional valve (6) is provided in the hydraulic oil supply passage (5) to the hydraulic actuator of the main machine hydraulic circuit (1).
The actuator is connected to the A port on the downstream side of (6), while a constant displacement type pump is installed on the P port on the upstream side.
(3) is connected. Further, by receiving pilot pressures from the upstream side and the downstream side of the flow rate proportional valve (6), the hydraulic oil is bypassed from the upstream side supply passage (5a) to the T port so that the pressure difference between them is substantially constant. A differential pressure compensating valve (7) is provided.

【0004】さらに、前記差圧補償弁(7)に対して流量
比例弁(6)の下流側からパイロット圧を導く下流側のパ
イロット通路(15)にはオリフィス(17)が設けられてい
て、該オリフィス(17)と差圧補償弁(7)との間のパイロ
ット通路(15)には、そこから作動油をリリーフさせて下
流側のパイロット圧を調整する圧力比例弁(8)が接続さ
れている。そして、前記流量比例弁(6)及び圧力比例弁
(8)の開度がそれぞれ別個の電流ドライバ(9,9)により制
御されるようになっている。
Further, an orifice (17) is provided in the pilot passage (15) on the downstream side for guiding the pilot pressure from the downstream side of the proportional flow valve (6) to the differential pressure compensating valve (7). In the pilot passage (15) between the orifice (17) and the differential pressure compensating valve (7), a pressure proportional valve (8) for relieving hydraulic oil from there and adjusting the pilot pressure on the downstream side is connected. ing. Then, the flow rate proportional valve (6) and the pressure proportional valve
The opening of (8) is controlled by a separate current driver (9, 9).

【0005】このような構成の従来の流量圧力調整弁装
置の作動は、アクチュエータの動作状態に応じて自動的
に流量制御モードと圧力制御モードとに切り替わる。す
なわち、例えば、主機の油圧シリンダに作動油を供給す
る場合について説明すると、該油圧シリンダがストロー
クするときには、流量比例弁(6)の前後差圧が差圧補償
弁(7)により略一定に維持された状態で、該流量比例弁
(6)の開度を制御することにより、油圧シリンダへの供
給油量を調整してその動作速度を制御することができる
(流量制御モード)。この際、ポンプ(3)から吐出され
た作動油はPポート、流量比例弁(6)、Aポートを介し
て油圧シリンダに供給されるとともに、余剰の作動油は
差圧補償弁(7)からTポートを介して油タンク(4)にバイ
パスされる。
The operation of the conventional flow rate pressure regulating valve device having such a configuration is automatically switched between the flow rate control mode and the pressure control mode according to the operating state of the actuator. That is, for example, describing the case of supplying hydraulic oil to the hydraulic cylinder of the main engine, when the hydraulic cylinder makes a stroke, the differential pressure across the flow proportional valve (6) is maintained substantially constant by the differential pressure compensating valve (7). Flow rate proportional valve
By controlling the opening of (6), the amount of oil supplied to the hydraulic cylinder can be adjusted and its operating speed can be controlled (flow control mode). At this time, the hydraulic oil discharged from the pump (3) is supplied to the hydraulic cylinder via the P port, the flow rate proportional valve (6) and the A port, and the excess hydraulic oil is supplied from the differential pressure compensating valve (7). It is bypassed to the oil tank (4) via the T port.

【0006】そして、シリンダがストロークエンドに達
すると、負荷の急激な増大に伴い下流側の供給通路(5b)
の油圧が高まり、この油圧力が圧力比例弁(8)の設定圧
力を超えると、該圧力比例弁(8)と差圧補償弁(7)とオリ
フィス(17)とがいわゆるパイロット式電磁比例リリーフ
弁として機能して、それ以上の油圧の増大が阻止され
る。その際、前記下流側パイロット通路(15)のパイロッ
ト圧は、圧力比例弁(8)のリリーフ圧の制御によって変
更でき、これにより差圧補償弁(7)のリリーフ圧を変更
して、ポンプ(3)の吐出圧ひいては油圧シリンダへの供
給圧力を制御することができる(圧力制御モード)。
When the cylinder reaches the stroke end, the supply passage (5b) on the downstream side is accompanied by a sudden increase in load.
When the oil pressure increases, and this oil pressure exceeds the set pressure of the pressure proportional valve (8), the pressure proportional valve (8), the differential pressure compensating valve (7), and the orifice (17) are so-called pilot type electromagnetic proportional relief. It functions as a valve and prevents further increase in hydraulic pressure. At that time, the pilot pressure of the downstream side pilot passage (15) can be changed by controlling the relief pressure of the pressure proportional valve (8), whereby the relief pressure of the differential pressure compensating valve (7) is changed, and the pump ( It is possible to control the discharge pressure of 3) and thus the supply pressure to the hydraulic cylinder (pressure control mode).

【0007】[0007]

【発明が解決しようとする課題】ところが、前記のよう
な従来の流量圧力調整弁装置の場合、アクチュエータへ
の作動油の供給流量及び圧力がいずれも電磁弁(6,8)の
ソレノイドの特性をそのまま反映したものとなるから、
電流ドライバ(9)からの出力電流値に対する作動油の流
量や圧力の変化は非線形でヒステリシスを有するものと
なる(図4の破線のグラフを参照)。このため、作動油
の流量及び圧力の制御において十分な精度を得ることが
困難であり、また、電気センサを使用しないオープン制
御のため、指令値の変化に対する応答速度をあまり高く
することができないという問題がある。
However, in the case of the conventional flow rate pressure regulating valve device as described above, both the flow rate and the pressure of the hydraulic oil supplied to the actuator are the characteristics of the solenoid of the solenoid valve (6, 8). Because it will be reflected as it is,
The changes in the flow rate and pressure of the hydraulic oil with respect to the output current value from the current driver (9) are non-linear and have hysteresis (see the broken line graph in FIG. 4). For this reason, it is difficult to obtain sufficient accuracy in controlling the flow rate and pressure of the hydraulic oil, and because the open control does not use an electric sensor, the response speed to the change in the command value cannot be increased so much. There's a problem.

【0008】さらに、特に作動油の供給圧力の制御につ
いては、圧力比例弁(8)への電流値をゼロまで下げたと
しても、差圧補償弁(7)のリリーフ圧は、ばね部材の付
勢力に相当する所定圧までしか下がらないから、アクチ
ュエータへの供給圧は前記所定圧よりも低くすることは
できない。言い換えると、従来例の構造では、リリーフ
弁による圧力制御のため供給油圧の最低制御圧力が発生
し、これ以下の低圧での圧力制御ができなかった。この
点について、例えば射出成形機では金型の保護のために
設定される低圧型締め工程があり、低圧での圧力制御に
ついても非常に改善が望まれている。
Further, particularly in controlling the supply pressure of the hydraulic oil, even if the current value to the pressure proportional valve (8) is reduced to zero, the relief pressure of the differential pressure compensating valve (7) is not affected by the spring member. The supply pressure to the actuator cannot be made lower than the predetermined pressure because it drops only to the predetermined pressure corresponding to the force. In other words, in the structure of the conventional example, the minimum control pressure of the supply hydraulic pressure is generated due to the pressure control by the relief valve, and the pressure control at a low pressure below this cannot be performed. With respect to this point, for example, in an injection molding machine, there is a low-pressure mold clamping step that is set for protecting the mold, and pressure control at low pressure is also greatly improved.

【0009】本発明は斯かる諸点に鑑みてなされたもの
であり、その目的とするところは、液圧アクチュエータ
への作動液の供給通路(5)に電磁比例弁(6)を設けて、作
動液の供給流量及び圧力を制御するようにした液圧回路
装置(2,20)において、その制御精度や応答性を改善する
とともに、特に供給液圧についてはその最低制御圧力を
なくして制御範囲をゼロ圧力まで拡大することにあり、
加えて、コストアップを抑制できる弁構造を提供するこ
とにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide an electromagnetic proportional valve (6) in a hydraulic fluid supply passage (5) to a hydraulic actuator to operate it. In the hydraulic circuit device (2, 20) that controls the liquid supply flow rate and pressure, improve the control accuracy and responsiveness, and especially for the supply liquid pressure, eliminate the minimum control pressure and increase the control range. To expand to zero pressure,
In addition, it is to provide a valve structure capable of suppressing cost increase.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明の液圧回路装置(2,20)は、アクチュエータへ
の作動液の供給流量を調整する電磁比例弁(6)に、該ア
クチュエータから作動液を排出する排出位置を追加する
とともに、その電磁比例弁(6)の下流側の供給通路(5b)
の作動液圧を検出する圧力センサ(10)と、電磁比例弁
(6)のスプール位置を検出する位置センサ(11)とを設
け、それらのセンサからの出力信号に基づいて電磁比例
弁(6)のスプール位置をフィードバック制御するように
した。
In order to achieve the above-mentioned object, the hydraulic circuit device (2, 20) of the present invention comprises an electromagnetic proportional valve (6) for adjusting the supply flow rate of hydraulic fluid to an actuator, A discharge position for discharging hydraulic fluid from the actuator is added, and a supply passage (5b) on the downstream side of the solenoid proportional valve (6) is added.
Pressure sensor (10) that detects the hydraulic fluid pressure of the
A position sensor (11) for detecting the spool position of (6) is provided, and the spool position of the solenoid proportional valve (6) is feedback-controlled based on output signals from these sensors.

【0011】具体的に、請求項1の発明では、液圧アク
チュエータへの作動液の供給通路(5)に、作動液の供給
流量を調整する電磁比例弁(6)を介設するとともに、該
電磁比例弁(6)の上流側及び下流側からそれぞれパイロ
ット圧を受けて、それらの差圧が一定になるように上流
側の供給通路(5a)からタンク(4)に作動液をバイパスさ
せる差圧補償弁(7)を設けた液圧回路装置(2,20)を前提
とする。そして、前記電磁比例弁(6)を、アクチュエー
タに作動液を供給する供給位置のほかに、該アクチュエ
ータから作動液を排出する排出位置を少なくとも有する
ものとし、前記下流側の供給通路(5b)の作動液圧を検出
して電気信号を出力する圧力センサ(10)と、前記電磁比
例弁(6)のスプール位置を検出して電気信号を出力する
位置センサ(11)と、前記圧力センサ(10)及び位置センサ
(11)から出力される信号をそれぞれ受けて、前記アクチ
ュエータへの作動液の供給流量ないし供給液圧が制御指
令値になるように、前記電磁比例弁(6)の開度をフィー
ドバック制御するコントローラ(12)とを備ええる構成す
る。
Specifically, according to the first aspect of the invention, an electromagnetic proportional valve (6) for adjusting the supply flow rate of the hydraulic fluid is provided in the hydraulic fluid supply passage (5) to the hydraulic actuator, and A differential that receives pilot pressure from the upstream side and downstream side of the solenoid proportional valve (6) and bypasses the hydraulic fluid from the upstream supply passage (5a) to the tank (4) so that the differential pressure becomes constant. It is premised on a hydraulic circuit device (2, 20) provided with a pressure compensation valve (7). The solenoid proportional valve (6) has at least a discharge position for discharging the working fluid from the actuator in addition to the supply position for supplying the working fluid to the actuator, and the downstream side supply passage (5b) A pressure sensor (10) that detects hydraulic fluid pressure and outputs an electric signal, a position sensor (11) that detects the spool position of the solenoid proportional valve (6) and outputs an electric signal, and the pressure sensor (10 ) And position sensor
A controller that receives signals output from (11) and feedback-controls the opening of the solenoid proportional valve (6) so that the supply flow rate or supply pressure of the hydraulic fluid to the actuator reaches a control command value. (12) and can be provided.

【0012】この構成によれば、アクチュエータの動作
中に、電磁比例弁(6)の前後差圧が差圧補償弁(7)の機能
により略一定に維持された状態で、コントローラ(12)に
より該電磁比例弁(6)のスプール位置が制御され、これ
によりアクチュエータへの供給流量が制御される(流量
制御モード)。その際、電磁比例弁(6)の実際のスプー
ル位置が位置センサ(11)により検出され、その検出結果
に基づくフィードバック制御が行われるので、作動液の
流量制御は精度、応答性ともに非常に改善される。ま
た、フィードバック制御によってソレノイドの非線形特
性を見かけ上、吸収することができるので、作動液の流
量制御の特性を線形化しかつヒステリシスをなくすこと
ができる。
According to this structure, while the actuator is operating, the differential pressure across the solenoid proportional valve (6) is maintained substantially constant by the function of the differential pressure compensating valve (7), and the controller (12) controls the differential pressure. The spool position of the solenoid proportional valve (6) is controlled, thereby controlling the flow rate supplied to the actuator (flow rate control mode). At that time, the actual spool position of the solenoid proportional valve (6) is detected by the position sensor (11), and feedback control is performed based on the detection result, so the control of the flow rate of the hydraulic fluid is greatly improved in both accuracy and responsiveness. To be done. Further, since the non-linear characteristic of the solenoid can be apparently absorbed by the feedback control, the characteristic of the flow rate control of the hydraulic fluid can be linearized and the hysteresis can be eliminated.

【0013】一方、アクチュエータがストロークエンド
に達して殆ど動作しない状態になれば、その負荷の増大
に伴い下流側の供給通路(5b)の液圧が増大し、そのこと
が圧力センサ(10)により検出されて、この検出値に応じ
てコントローラ(12)により電磁比例弁(6)のフィードバ
ック制御が行われる。すなわち、電磁比例弁(6)が供給
位置にあるときには、圧力センサ(10)による検出値と圧
力指令値との偏差に基づいて電磁比例弁(6)の開度(ス
プール位置)の制御により供給流量を調整する一方、電
磁比例弁(6)が排出位置にあるときには下流側の供給通
路(5b)からの排出量を調整することにより、最終的には
該供給通路(5b)の液圧が圧力指令値を維持できるよう
に、スプール位置を制御する。このような圧力制御モー
ドにおいても前記の流量制御モードと同様に、フィード
バック制御によって制御精度、応答性、ソレノイドの非
線形特性等の改善が図られる。また、前記のように電磁
比例弁(6)を排出位置に切換えて、アクチュエータから
作動液を排出することで、該アクチュエータへの供給液
圧をゼロにまで低下させることができる。
On the other hand, when the actuator reaches the stroke end and becomes almost inoperative, the hydraulic pressure in the supply passage (5b) on the downstream side increases as the load increases, which is caused by the pressure sensor (10). After being detected, the controller (12) performs feedback control of the solenoid proportional valve (6) according to the detected value. That is, when the solenoid proportional valve (6) is in the supply position, it is supplied by controlling the opening (spool position) of the solenoid proportional valve (6) based on the deviation between the value detected by the pressure sensor (10) and the pressure command value. While adjusting the flow rate, when the solenoid proportional valve (6) is in the discharge position, by adjusting the discharge amount from the supply passage (5b) on the downstream side, the fluid pressure in the supply passage (5b) is finally adjusted. The spool position is controlled so that the pressure command value can be maintained. In this pressure control mode as well, similar to the flow rate control mode, feedback control can improve control accuracy, responsiveness, non-linear characteristics of the solenoid, and the like. Further, by switching the solenoid proportional valve (6) to the discharge position and discharging the hydraulic fluid from the actuator as described above, the hydraulic pressure supplied to the actuator can be reduced to zero.

【0014】しかも、前記の構成によれば、従来までの
構成と比べて、新たに圧力センサ(10)や位置センサ(11)
が必要になる一方で、圧力比例弁(8)とそのための電流
ドライバ回路が不要になるので、電気センサを採用する
ことによるコストアップは相殺される。
In addition, according to the above-mentioned structure, the pressure sensor (10) and the position sensor (11) are newly added as compared with the conventional structure.
On the other hand, since the pressure proportional valve (8) and the current driver circuit therefor are unnecessary, the cost increase due to the use of the electric sensor is offset.

【0015】請求項2の発明では、液圧回路装置(2,20)
のコントローラ(12)として、位置センサ(11)からの信号
に基づいてアクチュエータへの作動液の実供給流量を求
めるとともに、この実供給流量を流量指令値から減算し
て流量偏差を演算する流量偏差演算部(12b)と、圧力セ
ンサ(10)からの信号に基づいてアクチュエータへの作動
液の実供給液圧を求めるとともに、この実供給液圧を圧
力指令値から減算して圧力偏差を演算する圧力偏差演算
部(12a)と、前記流量偏差及び圧力偏差のうちの値の小
さい方の偏差を選択し、この選択した偏差に基づいて電
磁比例弁(6)の目標スプール位置を演算するPQ選択部
(12c)と、前記PQ選択部(12c)により演算された目標位
置になるように電磁比例弁(6)のスプール(6a)のソレノ
イド(6b)に電流を印加する電流ドライバ(12d)とを備え
る構成とする。
In the invention of claim 2, the hydraulic circuit device (2, 20)
As the controller (12) of the flow sensor, the actual flow rate of the hydraulic fluid supplied to the actuator is calculated based on the signal from the position sensor (11), and the actual flow rate is subtracted from the flow rate command value to calculate the flow rate deviation. The actual supply hydraulic pressure of the hydraulic fluid to the actuator is calculated based on the signal from the calculation unit (12b) and the pressure sensor (10), and the actual supply hydraulic pressure is subtracted from the pressure command value to calculate the pressure deviation. PQ selection for selecting the deviation of the flow rate deviation and the pressure deviation, whichever is smaller, and calculating the target spool position of the solenoid proportional valve (6) based on the selected deviation. Department
(12c) and a current driver (12d) that applies a current to the solenoid (6b) of the spool (6a) of the solenoid proportional valve (6) so as to reach the target position calculated by the PQ selection unit (12c). The configuration is provided.

【0016】この構成では、流量偏差演算部(12b)によ
り作動液の実供給流量と流量指令値との間の流量偏差が
演算されるとともに、圧力偏差演算部(12a)により作動
液の実供給液圧と圧力指令値との間の圧力偏差が演算さ
れる。そして、その実供給流量ないし実供給液圧が制御
指令値を超えたときには、より大きく超えた方が、ま
た、いずれも指令値以下ならば、より指令値に近い方が
PQ選択部(12c)により選択される。すなわち、PQ選
択部(12c)は、圧力ないし流量の指令値を超えることが
危険な状態であると判断し、その危険の度合いを流量及
び圧力のそれぞれの偏差から判断して、より危険の度合
いの大きい方の偏差を選択することにより、請求項1の
発明の作用効果を実現するものである。
In this configuration, the flow deviation calculator (12b) calculates the flow deviation between the actual supply flow rate of the hydraulic fluid and the flow command value, and the pressure deviation calculator (12a) actually supplies the hydraulic fluid. A pressure deviation between the hydraulic pressure and the pressure command value is calculated. Then, when the actual supply flow rate or the actual supply hydraulic pressure exceeds the control command value, the one that is larger than the control command value, and if both are the command values or less, the one that is closer to the command value is determined by the PQ selection unit (12c). To be selected. That is, the PQ selection unit (12c) judges that it is dangerous to exceed the command value of the pressure or the flow rate, judges the degree of the danger from the deviations of the flow rate and the pressure, and determines the degree of the danger. By selecting the larger deviation, the operation and effect of the invention of claim 1 is realized.

【0017】請求項3の発明では、液圧回路装置(2,20)
の差圧補償弁(7)を、その弁体(7a)を閉じる側に付勢す
るばね部材(7b)を有し、該弁体(7a)が閉じる側に電磁比
例弁(6)の下流側からのパイロット圧を受ける一方、弁
体(7a)が開く側に電磁比例弁(6)の上流側からのパイロ
ット圧を受けるものとする。そして、前記電磁比例弁
(6)の下流側から差圧補償弁(7)にパイロット圧を導く下
流側のパイロット通路(15)に、作動液の流れを絞るオリ
フィス(17)を配設し、さらに、該オリフィス(17)と差圧
補償弁(7)との間のパイロット通路(15)にパイロットリ
リーフ弁(18)を接続する構成とする。
In the invention of claim 3, the hydraulic circuit device (2, 20)
The differential pressure compensating valve (7) has a spring member (7b) for urging the valve body (7a) to the closing side, and the valve body (7a) is closed on the downstream side of the solenoid proportional valve (6). While the pilot pressure from the side is received, the pilot pressure from the upstream side of the solenoid proportional valve (6) is received on the side where the valve body (7a) opens. And the solenoid proportional valve
An orifice (17) for restricting the flow of hydraulic fluid is provided in the pilot passage (15) on the downstream side that guides the pilot pressure from the downstream side of (6) to the differential pressure compensating valve (7). ) And the differential pressure compensating valve (7), the pilot relief valve (18) is connected to the pilot passage (15).

【0018】この構成では、仮に、電磁比例弁(6)のス
プール(6a)がコントローラ(12)の電気的故障や作動液
のゴミ等により供給位置のままで動かなくなったとして
も、下流側供給通路(5b)の液圧がパイロットリリーフ弁
(18)の設定圧を超えたときには、パイロットリリーフ弁
(18)と差圧補償弁(7)とオリフィス(17)とがいわゆるパ
イロット式リリーフ弁として機能して、前記下流側供給
通路(5b)における液圧の増大が阻止される。また、その
差圧補償弁(7)の弁体(7a)の開閉動作に際し、下流側の
パイロット通路(15)における作動液の流れがオリフィス
(17)から通過抵抗を受けることで、前記弁体(7a)の動作
に適度なダンピングが付与されて、安定化が図られる。
In this structure, even if the spool (6a) of the solenoid proportional valve (6) is stuck at the supply position due to an electrical failure of the controller (12) or dust of hydraulic fluid, the downstream supply Fluid pressure in passage (5b) is pilot relief valve
When the set pressure in (18) is exceeded, the pilot relief valve
(18), the differential pressure compensating valve (7) and the orifice (17) function as a so-called pilot type relief valve, and an increase in hydraulic pressure in the downstream side supply passage (5b) is prevented. Further, when opening / closing the valve body (7a) of the differential pressure compensating valve (7), the flow of hydraulic fluid in the pilot passageway (15) on the downstream side becomes the orifice.
By receiving the passage resistance from (17), appropriate damping is imparted to the operation of the valve body (7a), and stabilization is achieved.

【0019】ところで、そのようにパイロット通路(15)
にオリフィス(17)を配設して作動液の流れを制限する
と、そのことが差圧補償弁(7)の弁体(7a)の動作速度を
低下させることになるので、アクチュエータへの作動液
の供給流量を増大させるときに応答性の低下を招くこと
がある。すなわち、アクチュエータへの作動液の供給流
量を増やすために電磁比例弁(6)の開度を大きくする
と、そのことによって該電磁比例弁(6)の前後差圧が一
時的に小さくなり、差圧補償弁(7)の弁体(7a)が閉じら
れることになる。このときには下流側のパイロット通路
(15)において差圧補償弁(7)に向かって作動液が流れ、
該差圧補償弁(7)の弁体(7a)を閉じる側に移動させるこ
とになるのだが、そもそも弁体(7a)を閉じようとする力
はばね部材(7b)の付勢力程度のものであり、その上に前
記のように作動液の流れがオリフィス(17)によって制限
されると、差圧補償弁(7)の弁体(7a)の閉動作が遅れて
しまい、このことで、電磁比例弁(6)への供給流量の増
大に応答遅れが生じるのである。
By the way, the pilot passage (15)
Restricting the flow of hydraulic fluid by arranging the orifice (17) in the valve will reduce the operating speed of the valve body (7a) of the differential pressure compensating valve (7). When the supply flow rate of is increased, the response may be deteriorated. That is, when the opening of the solenoid proportional valve (6) is increased in order to increase the flow rate of the hydraulic fluid supplied to the actuator, the differential pressure across the solenoid proportional valve (6) is temporarily reduced, and the differential pressure The valve body (7a) of the compensating valve (7) will be closed. At this time, the pilot passage on the downstream side
At (15), hydraulic fluid flows toward the differential pressure compensation valve (7),
Although the valve body (7a) of the differential pressure compensating valve (7) is moved to the closing side, the force to close the valve body (7a) is about the biasing force of the spring member (7b) in the first place. When the flow of the hydraulic fluid is restricted by the orifice (17) as described above, the closing operation of the valve body (7a) of the differential pressure compensating valve (7) is delayed, which causes There is a response delay in the increase in the flow rate supplied to the solenoid proportional valve (6).

【0020】このような過渡的な現象を考慮して、本願
の請求項4の発明では、前記請求項3の発明の液圧回路
装置(20)において、下流側のパイロット通路(15)に、第
1のオリフィス(21)とそれよりも絞り度合いの強い第2
のオリフィス(22)とを直列に配置するとともに、該第2
のオリフィス(22)をバイパスする通路(23)に、差圧補償
弁(7)へ向かう作動液の流れを許容する一方、その逆の
流れを阻止する逆止弁(24)を配設した。
In consideration of such a transient phenomenon, in the invention of claim 4 of the present application, in the hydraulic circuit device (20) of the invention of claim 3, in the pilot passage (15) on the downstream side, The first orifice (21) and the second with a narrower degree than that
And the orifice (22) of the
A check valve (24) that allows the flow of the working fluid toward the differential pressure compensating valve (7) while blocking the reverse flow is provided in the passage (23) that bypasses the orifice (22) of the above.

【0021】この構成では、例えば、アクチュエータへ
の作動液の供給流量を増大させるために、電磁比例弁
(6)の開度を大きくしたときには、下流側パイロット通
路(15)において作動液が差圧補償弁(7)へ向かって流れ
ることになるが、この作動液の流れは、絞り度合いの小
さい第1のオリフィス(21)を通過するものの、絞り度合
いの強い第2のオリフィス(22)はバイパスすることにな
るから、通過抵抗を相対的に小さくして差圧補償弁(7)
の弁体(7a)を速やかに閉じることが可能になり、これに
より、アクチュエータへの作動液の供給流量を速やかに
増大させることができる。
In this configuration, for example, in order to increase the flow rate of the hydraulic fluid supplied to the actuator, the proportional solenoid valve is used.
When the opening degree of (6) is increased, the hydraulic fluid flows in the downstream pilot passage (15) toward the differential pressure compensating valve (7). The second orifice (22), which passes through the first orifice (21) but has a large degree of throttling, is bypassed, so the passage resistance is relatively reduced and the differential pressure compensating valve (7).
The valve body (7a) can be closed promptly, and thus the flow rate of the hydraulic fluid supplied to the actuator can be increased rapidly.

【0022】一方、アクチュエータへの作動液の供給流
量を減らすときには、電磁比例弁(6)の開度を小さくす
ることになるが、このときには該電磁比例弁(6)の上流
側の液圧は急激に高くなり、極めて高い液圧が差圧補償
弁(7)の弁体(7a)に作用し、この弁体(7a)を開作動させ
ることになる。この際、下流側パイロット通路(15)では
差圧補償弁(7)から下流側供給通路(5b)に向かって作動
液が流れ、この流れは前記第1及び第2の両方のオリフ
ィス(21,22)から通過抵抗を受けることになる。しか
し、前記のように差圧補償弁(7)の弁体(7a)に極めて高
い上流側のパイロット圧が作用しているので、下流側パ
イロット通路(15)において作動液の流れが制限されてい
ても、差圧補償弁(7)の弁体(7a)は十分に速く開作動さ
れ、結局、供給流量の減少時には応答遅れが問題となる
ことはなく、むしろ、下流側パイロット通路(15)の流れ
が第2のオリフィス(22)により十分に絞られることで、
差圧補償弁(7)の安定動作が保たれるのである。
On the other hand, when the flow rate of hydraulic fluid supplied to the actuator is reduced, the opening of the solenoid proportional valve (6) is reduced. At this time, the hydraulic pressure on the upstream side of the solenoid proportional valve (6) is The pressure suddenly rises, and an extremely high hydraulic pressure acts on the valve body (7a) of the differential pressure compensating valve (7) to open the valve body (7a). At this time, in the downstream pilot passage (15), the hydraulic fluid flows from the differential pressure compensating valve (7) toward the downstream supply passage (5b), and this flow is caused by both the first and second orifices (21, 21). You will receive passage resistance from 22). However, since the extremely high upstream pilot pressure is acting on the valve body (7a) of the differential pressure compensating valve (7) as described above, the flow of the hydraulic fluid is restricted in the downstream pilot passage (15). However, the valve body (7a) of the differential pressure compensating valve (7) is opened sufficiently quickly, and in the end, the response delay does not become a problem when the supply flow rate decreases, rather, rather, the downstream pilot passage (15). The flow of is sufficiently restricted by the second orifice (22),
The stable operation of the differential pressure compensation valve (7) is maintained.

【0023】つまり、この発明では、下流側パイロット
通路(15)に配設したオリフィス(21,22)によって、差圧
補償弁(7)の弁体(7a)開動作は応答性を損なわない程度
に制限して安定性を確保し、一方、その弁体(7a)の閉動
作は制限しないで応答性を確保することができ、これに
より、アクチュエータへの作動液の供給流量の安定性と
応答性とをより高いレベルで両立することができる。
That is, according to the present invention, the orifices (21, 22) arranged in the downstream pilot passage (15) prevent the valve body (7a) opening operation of the differential pressure compensating valve (7) from impairing responsiveness. To ensure stability, while the valve body (7a) closing action is not restricted to ensure responsiveness, which stabilizes and stabilizes the flow rate of hydraulic fluid supplied to the actuator. It is possible to achieve compatibility with the higher level.

【0024】請求項5の発明では、液圧アクチュエータ
は、射出成形機を駆動するためのものとする。すなわ
ち、一般的に、射出成形機のアクチュエータの場合、成
型品の形状や材料の相違に応じて幅広い成形条件に対応
しながら、尚かつ高い再現性が求められるものであるか
ら、本発明の液圧回路装置(2,20)によって、アクチュエ
ータの動作速度及び作動力の制御の精度を向上できるこ
とが極めて有効であり、このことで、成形品質の大幅な
向上を実現できる。
According to the invention of claim 5, the hydraulic actuator is for driving the injection molding machine. That is, in general, in the case of an actuator of an injection molding machine, high reproducibility is required while responding to a wide range of molding conditions depending on the shape and material difference of the molded product. It is extremely effective that the pressure circuit device (2, 20) can improve the accuracy of the control of the operating speed and the operating force of the actuator, and by this, the molding quality can be significantly improved.

【0025】また、本発明によれば、アクチュエータへ
の作動液の供給圧力をゼロまで下げて制御することがで
きるので、射出成形機における低圧型締め工程での要求
にも十分に対応でき、加えて、特に請求項4の発明のよ
うに作動液の供給流量を応答性良く増大できることで、
射出成形機による薄肉の成形品の成形が容易になり、そ
の上さらに成形サイクルの短縮も可能になるから、この
ような観点からも本発明の作用効果は極めて有効なもの
となる。
Further, according to the present invention, since the supply pressure of the hydraulic fluid to the actuator can be controlled to be reduced to zero, it is possible to sufficiently meet the demand in the low-pressure mold clamping process in the injection molding machine. In particular, the supply flow rate of the hydraulic fluid can be increased with high responsiveness as in the invention of claim 4,
Since a thin molded product can be easily molded by an injection molding machine and the molding cycle can be further shortened, the action and effect of the present invention are extremely effective from this point of view.

【0026】[0026]

【発明の実施の形態】以下、本発明に係る液圧回路装置
を、射出成形機等の油圧(液圧)シリンダを駆動するサ
ーボ弁装置に適用した実施形態について、図面に基いて
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which a hydraulic circuit device according to the present invention is applied to a servo valve device for driving a hydraulic (hydraulic) cylinder of an injection molding machine or the like will be described below with reference to the drawings.

【0027】(実施形態1)図1は、射出成形機等の主
機の油圧回路(1)に接続されて、図示しない油圧シリン
ダ等のアクチュエータへ作動油を供給するとともに、そ
の供給流量Q及び供給圧力Pを調整して、該アクチュエ
ータの動作速度及び作動力を制御する圧力流量サーボ弁
装置(2)(以下、PQS弁という)を示す。このPQS
弁(2)には、主機油圧回路(1)へ接続されるAポートと、
固定容量型ポンプ(3)に接続されるPポートと、それぞ
れ油タンク(4)に接続されるTポート及びYポートとが
設けられていて、PポートからAポートに至る作動油の
供給通路(5)の途中にその供給流量を調整する電磁比例
弁(6)が介設されるとともに、該電磁比例弁(6)の上流側
(5a)及び下流側(5b)の供給通路からそれぞれパイロット
圧を受けて、それらの差圧が略一定になるように上流側
の供給通路(5a)から油タンク(4)へ作動油をバイパスさ
せる差圧補償弁(7)が配設されている。
(Embodiment 1) FIG. 1 is connected to a hydraulic circuit (1) of a main machine such as an injection molding machine and supplies hydraulic oil to an actuator such as a hydraulic cylinder (not shown), and the supply flow rate Q and supply thereof. A pressure flow servo valve device (2) (hereinafter referred to as a PQS valve) for adjusting the pressure P to control the operating speed and operating force of the actuator is shown. This PQS
The valve (2) has an A port connected to the main hydraulic circuit (1),
A P port connected to the fixed displacement pump (3) and a T port and a Y port respectively connected to the oil tank (4) are provided, and a hydraulic oil supply passage from the P port to the A port ( An electromagnetic proportional valve (6) for adjusting the supply flow rate is provided in the middle of 5), and the upstream side of the electromagnetic proportional valve (6)
By receiving pilot pressure from each of the (5a) and downstream (5b) supply passages, the hydraulic oil is bypassed from the upstream supply passage (5a) to the oil tank (4) so that the pressure difference between them is substantially constant. A differential pressure compensating valve (7) is provided.

【0028】また、このPQS弁(2)には、電磁比例弁
(6)よりも下流側の供給通路(5b)の作動油圧Pを検出し
て電気信号を出力する圧力センサ(10)と、電磁比例弁
(6)のスプール(6a)の位置を検出して電気信号を出力す
る位置センサ(11)とが配設されており、さらに、それら
の各センサ(10),(11)から出力される信号を受けて、主
機油圧回路(1)へ供給する作動油の供給流量Q及び供給
圧力Pが各々指令値Qi,Piになるように、前記電磁
比例弁(6)のスプール(6a)の位置、即ち電磁比例弁(6)の
開度をフィードバック制御するコントローラ(12)が配設
されている。
In addition, the PQS valve (2) includes an electromagnetic proportional valve.
A pressure sensor (10) that detects an operating oil pressure P in a supply passage (5b) downstream of (6) and outputs an electric signal, and a solenoid proportional valve.
A position sensor (11) for detecting the position of the spool (6a) of (6) and outputting an electric signal is provided, and further, a signal output from each of these sensors (10), (11). Accordingly, the position of the spool (6a) of the solenoid proportional valve (6) is adjusted so that the supply flow rate Q and the supply pressure P of the hydraulic oil supplied to the main machine hydraulic circuit (1) become the command values Qi and Pi, respectively. That is, a controller (12) for feedback-controlling the opening of the solenoid proportional valve (6) is provided.

【0029】詳しくは、前記電磁比例弁(6)は、コント
ローラ(12)からの制御信号(電流)によってソレノイド
(6b)が作動し、スプリング(6c)による押圧付勢力に抗し
てスプール(6a)の位置が制御されて、主機側へ作動油を
供給する供給位置と、主機側から作動油を排出する排出
位置と、その作動油の給排を停止する停止位置との何れ
かに切換えられるとともに、該供給位置又は排出位置に
おいては作動油の通過断面積を連続的に制御するように
構成されている。そして、図示の如く、電磁比例弁(6)
のスプール(6a)はスプリング(6c)により排出位置に向か
うよう図の右側に押圧付勢されており、この排出位置に
おいては、電磁比例弁(6)は、上流側の供給通路(5a)を
閉止するとともに、下流側の供給通路(5b)を排出通路(1
3)に連通させて、主機側の作動油を油タンク(4)に戻す
ようになる。この際、スプール(6a)の位置の連続的な変
化により戻り油の通過断面積が連続的に制御される。
Specifically, the solenoid proportional valve (6) is a solenoid operated by a control signal (current) from the controller (12).
(6b) operates, the position of the spool (6a) is controlled against the pressing biasing force of the spring (6c), and the supply position for supplying hydraulic oil to the main engine side and the discharge of hydraulic oil from the main engine side It is configured to be switched between a discharge position and a stop position for stopping the supply and discharge of the hydraulic oil, and is configured to continuously control the passage cross section of the hydraulic oil at the supply position or the discharge position. . Then, as shown, the solenoid proportional valve (6)
The spool (6a) is biased by the spring (6c) toward the discharge position to the right in the figure, and in this discharge position, the solenoid proportional valve (6) opens the upstream supply passage (5a). While closing, connect the supply passage (5b) on the downstream side to the discharge passage (1
The hydraulic oil on the main engine side is returned to the oil tank (4) by communicating with 3). At this time, the passing cross-sectional area of the return oil is continuously controlled by the continuous change of the position of the spool (6a).

【0030】また、図2に示すように、ソレノイド(6b)
の作動によってスプール(6a)がスプリング(6c)による付
勢力に抗して図の左側に移動して、供給位置になると、
電磁比例弁(6)は、排出通路(13)を閉止するとともに、
供給通路(5)の上流側及び下流側を連通させて、ポンプ
(3)から吐出される作動油を主機側に供給するようにな
る。この際、スプール(6a)の位置の連続的な変化により
作動油の通過断面積も連続的に変化されて、ポンプ(3)
から主機側への作動油の供給流量Qが連続的に制御され
る。さらに、スプール(6a)が前記供給位置及び排出位置
の中間の停止位置にあるときには、電磁比例弁(6)は、
供給通路(5)の上流側及び下流側、並びに排出通路(13)
をそれぞれ閉止するようになる。
As shown in FIG. 2, the solenoid (6b)
When the spool (6a) moves to the left side of the figure against the biasing force of the spring (6c) by the operation of, and reaches the supply position,
The solenoid proportional valve (6) closes the discharge passage (13) and
Connect the upstream and downstream sides of the supply passage (5) so that the pump
The hydraulic oil discharged from (3) will be supplied to the main engine side. At this time, the cross-sectional area of passage of the hydraulic oil is continuously changed due to the continuous change of the position of the spool (6a), and the pump (3)
The supply flow rate Q of the hydraulic oil from the engine to the main engine side is continuously controlled. Further, when the spool (6a) is at a stop position intermediate between the supply position and the discharge position, the solenoid proportional valve (6) is
Upstream and downstream of the supply passage (5), and the discharge passage (13)
Will be closed.

【0031】そして、前記電磁比例弁(6)への位置セン
サ(11)の取り付けは、該電磁比例弁(6)のスプール(6a)
が中央の停止位置にあるときにセンサ出力がゼロにな
り、スプール(6a)が図の右側の供給位置にあるときに
は、該スプール(6a)の位置の変化により作動油の通過断
面積が大きくなるに従って、正値のセンサ出力が増大す
るように、一方、スプール(6a)が図の左側の排出位置に
あるときには、該スプール(6a)の位置の変化により作動
油の通過断面積が大きくなるに従って、負値のセンサ出
力が減少するようになっている。
The position sensor (11) is attached to the solenoid proportional valve (6) by mounting the spool (6a) on the solenoid proportional valve (6).
The sensor output becomes zero when is in the central stop position, and when the spool (6a) is in the supply position on the right side of the drawing, the cross-sectional area of passage of the hydraulic oil increases due to the change in the position of the spool (6a). Accordingly, the positive sensor output is increased, and when the spool (6a) is in the discharge position on the left side of the drawing, as the position of the spool (6a) changes, the passage cross section of the hydraulic oil increases. The negative sensor output is reduced.

【0032】前記差圧補償弁(7)は、ポペット等からな
る弁体(7a)がスプリング(7b)(ばね部材)により閉じる
側に付勢されているリリーフ弁であって、上流側の供給
通路(5a)から分岐する分岐路(14)に、この分岐路(14)を
前記排出通路(13)に対してバイパスできるように配設さ
れている。すなわち、差圧補償弁(7)の弁体(7a)には、
下流側の供給通路(5b)から分岐する下流側のパイロット
通路(15)がスプリング(7b)と同じ側に接続されていて、
その下流側のパイロット圧を弁体(7a)の閉じる側に受け
る一方、反対側には、前記分岐路(14)を介して上流側供
給通路(5a)の油圧(上流側パイロット圧)を弁体(7a)の
開く側に受けている。
The differential pressure compensating valve (7) is a relief valve in which a valve body (7a) made of a poppet or the like is biased toward a closing side by a spring (7b) (spring member), and an upstream side supply valve is provided. The branch passage (14) branched from the passage (5a) is arranged so that the branch passage (14) can be bypassed with respect to the discharge passage (13). That is, in the valve body (7a) of the differential pressure compensating valve (7),
The downstream pilot passage (15) branched from the downstream supply passage (5b) is connected to the same side as the spring (7b),
The downstream pilot pressure is received on the closing side of the valve body (7a), while the opposite side receives the hydraulic pressure (upstream pilot pressure) of the upstream supply passage (5a) via the branch passage (14). It is received on the open side of the body (7a).

【0033】そして、前記差圧補償弁(7)は、上流側パ
イロット圧により弁体(7a)に作用する押圧力が、下流側
パイロット圧により弁体(7a)に作用する押圧力に比べて
スプリング(7b)の付勢力よりも大きくなったときに開作
動し、分岐路(14)を介して上流側供給通路(5a)の作動油
を排出通路(13)にバイパスさせる。これにより上流側パ
イロット圧が低下すれば、弁体(7a)が閉じて作動油のバ
イパスが中断し、再び上流側パイロット圧が上昇する。
そして、このような弁体(7a)の開閉動作が繰り返される
ことにより、電磁比例弁(6)の前後差圧が略一定に維持
される。このように電磁比例弁(6)の前後差圧が一定に
補償されることで、上流側供給通路(5a)から下流側供給
通路(5b)へ連通する電磁比例弁(6)の開度、即ち作動油
の通過断面積に対応するスプール位置が実供給流量と一
定の対応関係を持つことになり、このことで、スプール
位置に基づいて実供給流量を求めることが可能になる。
In the differential pressure compensating valve (7), the pressing force acting on the valve element (7a) by the upstream pilot pressure is higher than the pressing force acting on the valve element (7a) by the downstream pilot pressure. When it becomes larger than the biasing force of the spring (7b), it opens to bypass the hydraulic oil in the upstream supply passage (5a) to the discharge passage (13) via the branch passage (14). As a result, when the upstream pilot pressure decreases, the valve body (7a) closes, the bypass of hydraulic oil is interrupted, and the upstream pilot pressure increases again.
By repeating such opening / closing operation of the valve element (7a), the differential pressure across the solenoid proportional valve (6) is maintained substantially constant. By thus compensating the differential pressure across the solenoid proportional valve (6) to be constant, the opening of the solenoid proportional valve (6) communicating from the upstream supply passage (5a) to the downstream supply passage (5b), That is, the spool position corresponding to the passage cross-section of the hydraulic oil has a fixed correspondence with the actual supply flow rate, which makes it possible to obtain the actual supply flow rate based on the spool position.

【0034】前記下流側パイロット通路(15)には、作動
油の流れを絞るオリフィス(17)が配設されるとともに、
このオリフィス(17)と差圧補償弁(7)との中間に分岐路
(15a)が接続され、この分岐路(15a)に安全弁(18)(パイ
ロットリリーフ弁)が配設されている。該安全弁(18)
は、分岐路(15a)の油圧がスプリングの設定圧よりも高
くなったときに開作動し、分岐路(15a)を介して下流側
パイロット通路(15)の油圧をリリーフさせるものであっ
て、これによりオリフィス(17)の前後差圧が発生し、下
流側パイロット通路(15)の油圧が低下して差圧補償弁
(7)が開作動される。そして、その差圧補償弁(7)の開作
動により、供給通路(5)の作動油がTポートから油タン
ク(4)に排出される。つまり、前記差圧補償弁(7)は、供
給通路(5)の油圧力が過度に上昇したときに安全弁(18)
と協動して、いわゆるパイロット式リリーフ弁として油
圧を開放する機能も有している。
The downstream pilot passage (15) is provided with an orifice (17) for restricting the flow of hydraulic oil, and
A branch path is provided between the orifice (17) and the differential pressure compensation valve (7).
(15a) is connected, and a safety valve (18) (pilot relief valve) is arranged in this branch passage (15a). The safety valve (18)
Is to open when the oil pressure in the branch passage (15a) becomes higher than the set pressure of the spring, and to relieve the oil pressure in the downstream pilot passage (15) via the branch passage (15a). As a result, a differential pressure across the orifice (17) is generated, and the hydraulic pressure in the downstream pilot passage (15) decreases, causing a differential pressure compensation valve.
(7) is opened. Then, by opening the differential pressure compensating valve (7), the hydraulic oil in the supply passage (5) is discharged from the T port to the oil tank (4). That is, the differential pressure compensating valve (7) is a safety valve (18) when the hydraulic pressure in the supply passage (5) rises excessively.
It also has a function of releasing hydraulic pressure as a so-called pilot type relief valve in cooperation with.

【0035】また、前記オリフィス(17)は、例えば直径
約1mmの円形断面を有するものであり、下流側パイロ
ット通路(15)における作動油の流れを絞って通過抵抗を
与えることにより、差圧補償弁(7)の弁体(7a)の開閉動
作に適度なダンピングを付与して、該差圧補償弁(7)の
動作を安定化させ、これにより、供給通路(5)における
作動油の流量や圧力の振動減少を抑制する機能も有して
いる。
The orifice (17) has a circular cross section with a diameter of, for example, about 1 mm, and the differential pressure compensation is performed by throttling the flow of hydraulic oil in the downstream pilot passage (15) to give passage resistance. Appropriate damping is applied to the opening / closing operation of the valve body (7a) of the valve (7) to stabilize the operation of the differential pressure compensating valve (7), and thereby the flow rate of the hydraulic oil in the supply passage (5). It also has the function of suppressing the decrease in pressure vibration.

【0036】前記コントローラ(12)は、図示しないメモ
リに電子的に格納されている制御プログラムをCPUに
より所定の時間間隔で読み出して実行するデジタルコン
トローラであって、圧力センサ(10)からの信号に基づい
て、主機側への作動油の実際の供給圧力P(実供給圧
力)を求め、これを圧力指令値Pi(目標圧力)から減
算して圧力偏差を演算する圧力偏差演算部(12a)と、同
様に、位置センサ(11)からの信号に基づいて、主機側へ
の作動油の実際の供給流量Q(実供給流量)を求め、こ
れを流量指令値Qi(目標流量)から減算して流量偏差
を演算する流量偏差演算部(12b)とを備えている。言い
換えると、コントローラ(12)のメモリには、前記圧力偏
差演算部(12a)及び流量偏差演算部(12b)の機能をソフト
ウエア的に実現する制御プログラムが格納されている。
The controller (12) is a digital controller that reads out and executes a control program, which is electronically stored in a memory (not shown), by the CPU at predetermined time intervals, and outputs a signal from the pressure sensor (10). Based on the above, an actual supply pressure P (actual supply pressure) of the hydraulic oil to the main engine side is obtained, and this is subtracted from the pressure command value Pi (target pressure) to calculate a pressure deviation, and a pressure deviation calculation unit (12a) Similarly, on the basis of the signal from the position sensor (11), the actual supply flow rate Q (actual supply flow rate) of the hydraulic oil to the main machine side is obtained, and this is subtracted from the flow rate command value Qi (target flow rate). A flow rate deviation calculating unit (12b) for calculating a flow rate deviation is provided. In other words, the memory of the controller (12) stores a control program that implements the functions of the pressure deviation calculation unit (12a) and the flow rate deviation calculation unit (12b) by software.

【0037】また、前記コントローラ(12)には、前記圧
力偏差演算部(12a)及び流量偏差演算部(12b)によりそれ
ぞれ演算された圧力偏差及び流量偏差を対比して、それ
らのうちの値の小さい方を選択し、この選択した偏差に
基づいていわゆるPID制御則により電磁比例弁(6)の
目標開度、即ちスプール(6a)の位置を演算するPQ選択
部(12c)が設けられている。そして、このPQ選択部(12
c)からの出力を受けた電流ドライバ回路(12d)から電磁
比例弁(6)のソレノイド(6b)に対して、該電磁比例弁(6)
の目標開度に移動するための電流が印加されるようにな
っている。
Further, the controller (12) compares the pressure deviation and the flow rate deviation calculated by the pressure deviation calculating section (12a) and the flow rate deviation calculating section (12b) with each other, and A PQ selector (12c) is provided which selects the smaller one and calculates the target opening of the solenoid proportional valve (6), that is, the position of the spool (6a) based on the selected deviation according to the so-called PID control law. . Then, this PQ selection unit (12
From the current driver circuit (12d) receiving the output from c) to the solenoid (6b) of the solenoid proportional valve (6), the solenoid proportional valve (6)
An electric current for moving to the target opening degree is applied.

【0038】尚、前記PQ選択部(12c)による演算処理
もメモリに格納された制御プログラムの実行により実現
されるものであり、圧力偏差と流量偏差のうち、値の小
さい方を選択するようになっている。具体的には、圧力
偏差及び流量偏差がいずれも正の値ならば、絶対値の小
さな方を選択し、また、それらの両偏差の何れか一方が
正の値でかつ他方が負の値ならば、負の値の方を選択す
る。さらに、圧力偏差及び流量偏差がいずれも負の値な
らば、絶対値の大きな方を選択する。言い換えると、前
記PQ選択部(12c)の制御ロジックは、実供給流量Qや
実供給圧力Pが指令値Qi,Piを超える状態を危険な
状態と判断し、その危険の度合いを流量及び圧力のそれ
ぞれの偏差から判断して、より危険の度合いの大きい方
の偏差に基づいて、電磁比例弁(6)の制御を行えるよう
にしたものである。
The calculation processing by the PQ selection section (12c) is also realized by executing the control program stored in the memory, and the smaller value of the pressure deviation and the flow rate deviation is selected. Has become. Specifically, if the pressure deviation and the flow rate deviation are both positive values, the one with the smaller absolute value is selected, and if either one of these deviations is a positive value and the other is a negative value. For example, select the negative value. Furthermore, if both the pressure deviation and the flow rate deviation are negative values, the one with the larger absolute value is selected. In other words, the control logic of the PQ selection unit (12c) determines that the actual supply flow rate Q or the actual supply pressure P exceeds the command values Qi and Pi as a dangerous state, and determines the degree of the danger as the flow rate and the pressure. The solenoid proportional valve (6) can be controlled based on the deviation having the greater degree of danger, judging from the respective deviations.

【0039】(PQS弁の動作)次に、上述の如き構成
のPQS弁(2)の動作を説明する。
(Operation of PQS Valve) Next, the operation of the PQS valve (2) having the above-described structure will be described.

【0040】例えば、主機である射出成形機の型締め装
置において金型を移動及び締め付ける油圧シリンダを作
動させる場合には、まず、電磁比例弁(6)を供給位置に
移動させて、ポンプ(3)から吐出される作動油を主機側
に供給する。この際、シリンダがストロークエンドに達
するまでは、一般に、必要な実供給圧力Pよりも大きな
値に圧力指令Piが設定されるので、コントローラ(12)
は、実供給流量Qが流量指令値Qiを超えるまで電磁比
例弁(6)を開作動させ、該電磁比例弁(6)の前後差圧が差
圧補償弁(7)の機能により略一定に維持された状態で、
主機側への供給油量が流量指令値Qiに相当する略一定
量になるようにスプール(6a)の位置をフィードバック制
御する(流量制御モード)。これにより、図3に示すよ
うに、実供給油量Qはおおよそ流量指令値Qiに相当す
るものとなり、油圧シリンダが定速動作される。
For example, when operating the hydraulic cylinder for moving and tightening the mold in the mold clamping device of the injection molding machine which is the main machine, first, the solenoid proportional valve (6) is moved to the supply position and the pump (3 ) To supply the hydraulic oil to the main machine side. At this time, since the pressure command Pi is generally set to a value larger than the required actual supply pressure P until the cylinder reaches the stroke end, the controller (12)
The solenoid proportional valve (6) is opened until the actual supply flow rate Q exceeds the flow rate command value Qi, and the differential pressure across the solenoid proportional valve (6) is made substantially constant by the function of the differential pressure compensating valve (7). In a maintained state,
The position of the spool (6a) is feedback-controlled so that the amount of oil supplied to the main machine side becomes a substantially constant amount corresponding to the flow rate command value Qi (flow rate control mode). As a result, as shown in FIG. 3, the actual amount of supplied oil Q substantially corresponds to the flow rate command value Qi, and the hydraulic cylinder operates at a constant speed.

【0041】その際、電磁比例弁(6)のスプール位置が
位置センサ(11)により検出され、その検出結果に基づく
フィードバック制御が行われるので、電磁比例弁(6)の
制御ひいては作動油の流量の制御が極めて精度の高いも
のとなる。すなわち、印加される電流値に対するソレノ
イド(6b)の吸引力特性の非線形性、ヒステリシス、ばら
つき等は、位置センサ(11)からの信号に基づくフィード
バック制御によって完全に補正され、図4(a)に実線で
示すように、流量制御における静特性が大幅に向上す
る。また、フィードバック制御であるから、オープン制
御に比べてスプール(6a)の動作速度を格段に高くするこ
とができ、これにより流量制御の応答性も向上する。
At this time, the spool position of the solenoid proportional valve (6) is detected by the position sensor (11), and feedback control is performed based on the detection result. Therefore, the control of the solenoid proportional valve (6) and thus the flow rate of the hydraulic oil are performed. The control of is extremely accurate. That is, the non-linearity, hysteresis, variation, etc. of the attraction force characteristic of the solenoid (6b) with respect to the applied current value are completely corrected by the feedback control based on the signal from the position sensor (11). As indicated by the solid line, the static characteristics in flow rate control are greatly improved. Further, since the feedback control is used, the operating speed of the spool (6a) can be significantly increased as compared with the open control, and the response of the flow rate control is also improved.

【0042】加えて、前記の流量制御モードにおいて、
ポンプ(3)から吐出された作動油のうちの余剰のものは
差圧補償弁(7)の機能により一定差圧でバイパスされ、
このことで、ポンプ(3)の吐出圧を主機側の負荷に対し
て僅かに高い程度に留めることができるから、ポンプ
(3)の運転負荷を軽減して、省エネルギ化を実現でき
る。
In addition, in the above flow rate control mode,
Excess hydraulic oil discharged from the pump (3) is bypassed at a constant differential pressure by the function of the differential pressure compensation valve (7).
This allows the discharge pressure of the pump (3) to be kept slightly higher than the load on the main machine side.
Energy saving can be realized by reducing the operation load of (3).

【0043】次に、主機の油圧シリンダがストロークエ
ンドに達して、それ以上、移動しないようになると(前
記図3の時刻t1)、その後、PQS弁(2)における下
流側供給通路(5b)の圧力Pが徐々に上昇し、この圧力P
が圧力センサ(10)により検出されてコントローラ(12)に
フィードバックされる。そして、その検出圧力Pが圧力
指令値Piを超えると(図の時刻t2)、コントローラ
(12)のPQ選択部(12c)によって、圧力偏差演算部(12a)
による演算値、即ち圧力偏差が選択され、この圧力偏差
に基づいて、主機側への供給圧力Pが圧力指令値Piに
一致するように、電磁比例弁(6)の開度がフィードバッ
ク制御されるようになる(圧力制御モード)。
Next, when the hydraulic cylinder of the main engine reaches the stroke end and does not move any further (time t1 in FIG. 3), thereafter, the downstream side supply passage (5b) of the PQS valve (2) is closed. The pressure P gradually rises, and this pressure P
Is detected by the pressure sensor (10) and fed back to the controller (12). When the detected pressure P exceeds the pressure command value Pi (time t2 in the figure), the controller
By the PQ selection section (12c) of (12), the pressure deviation calculation section (12a)
The calculated value, that is, the pressure deviation is selected, and the opening of the solenoid proportional valve (6) is feedback-controlled based on this pressure deviation so that the supply pressure P to the main machine side matches the pressure command value Pi. (Pressure control mode).

【0044】その際、主機側への供給流量Qが直ちに零
になるわけではなく、まず、供給位置にある電磁比例弁
(6)のスプール(6a)が徐々に移動して作動油の通過断面
積が絞られることにより、図示の如く作動油の供給流量
Qが徐々に減少し(t2〜t3)、さらに該電磁比例弁
(6)が停止位置に切り替わって、供給流量Qが零になる
(t3)。この間、作動油は油圧シリンダに供給され続
けるから、供給流量Qが零になった時点で油圧シリンダ
の圧力(≒P)は最大になる。その後、電磁比例弁(6)
のスプール(6a)がさらに移動して排出位置に切換えら
れ、油圧シリンダから作動油が排出されると、圧力Pが
圧力指令値Piまで低下し、ここで整定する(t4)。
尚、実際には、主機油圧回路からの作動油の漏れに応じ
て、電磁比例弁(6)から主機側への作動油の供給及び停
止が繰り返されることになる。
At this time, the supply flow rate Q to the main engine side does not immediately become zero, but first, the solenoid proportional valve at the supply position is
By gradually moving the spool (6a) of (6) and narrowing the passage cross section of the hydraulic oil, the supply flow rate Q of the hydraulic oil gradually decreases as shown in the figure (t2 to t3), and the electromagnetic proportional valve
(6) is switched to the stop position, and the supply flow rate Q becomes zero (t3). During this time, since the hydraulic oil is continuously supplied to the hydraulic cylinder, the pressure (≈P) of the hydraulic cylinder becomes maximum when the supply flow rate Q becomes zero. After that, the solenoid proportional valve (6)
When the spool (6a) is further moved to the discharge position and the hydraulic oil is discharged from the hydraulic cylinder, the pressure P decreases to the pressure command value Pi and settles there (t4).
Actually, the supply and stop of the hydraulic oil from the solenoid proportional valve (6) to the main engine side are repeated according to the leakage of the hydraulic oil from the main engine hydraulic circuit.

【0045】このような圧力制御モードにおいても前記
の流量制御モードと同様に、フィードバック制御によっ
て図4(b)に実線で示すように静特性が向上する。ま
た、圧力制御モードにおいて前記の如く電磁比例弁(6)
を排出位置に切換えることで、主機側への供給圧力Pの
最低制御圧力(Pmin)をなくして、供給圧力Pを0点
まで制御することができる。
In such a pressure control mode as well, as in the case of the flow rate control mode, the static characteristics are improved by the feedback control as shown by the solid line in FIG. 4 (b). In the pressure control mode, the proportional solenoid valve (6)
By switching to the discharge position, the minimum control pressure (Pmin) of the supply pressure P to the main machine side can be eliminated and the supply pressure P can be controlled to 0 point.

【0046】したがって、この実施形態1に係るPQS
弁(2)(液圧回路装置)によると、主機油圧回路(1)への
作動油の供給流量を調整する電磁比例弁(6)に、主機側
から作動油を排出可能な排出位置を追加するとともに、
該電磁比例弁(6)の下流側の供給通路(5b)の圧力Pを検
出する圧力センサ(10)と、電磁比例弁(6)のスプール位
置を検出する位置センサ(11)とを設けて、それらセンサ
(10),(11)からの信号に基づいてスプール位置を制御す
ることで、主機側への作動油の供給流量Q及び供給圧力
Pをフィードバック制御するようにしたので、その制御
性、即ち、線形性やヒステリシス等の静特性及び応答性
等の動特性を従来までと比べて大幅に向上できる。
Therefore, the PQS according to the first embodiment is
According to the valve (2) (hydraulic circuit device), the electromagnetic proportional valve (6) that adjusts the supply flow rate of hydraulic oil to the main hydraulic circuit (1) has a discharge position where the hydraulic oil can be discharged from the main engine side. Along with
A pressure sensor (10) for detecting the pressure P in the supply passage (5b) on the downstream side of the solenoid proportional valve (6) and a position sensor (11) for detecting the spool position of the solenoid proportional valve (6) are provided. , Those sensors
By controlling the spool position based on the signals from (10) and (11), feedback control of the supply flow rate Q and the supply pressure P of the hydraulic oil to the main engine side is performed. The static characteristics such as linearity and hysteresis, and the dynamic characteristics such as response can be greatly improved as compared with the conventional one.

【0047】これにより、前記PQS弁(2)を例えば射
出成形機に適用した場合には、成型品の形状や材料の相
違に応じて幅広い成形条件に対応しながら、尚かつ高い
再現性を得ることができ、もって成形品質の大幅な向上
が実現できる。
As a result, when the PQS valve (2) is applied to, for example, an injection molding machine, a wide range of molding conditions can be dealt with depending on the shape of the molded product and the difference in the material, and yet high reproducibility is obtained. Therefore, the molding quality can be significantly improved.

【0048】また、前記の如く電磁比例弁(6)に排出位
置を設けて、その開度を圧力センサ(10)からの信号に基
づいてフィードバック制御するようにしているので、主
機側への供給圧力Pについてその最低制御圧力Pminを
なくして、ゼロ圧力までの制御が可能となり、これによ
り、射出成形機における低圧型締め工程等の要求にも十
分に対応できる。
Further, since the electromagnetic proportional valve (6) is provided with the discharge position and the opening thereof is feedback-controlled based on the signal from the pressure sensor (10) as described above, the supply to the main engine side is performed. With respect to the pressure P, the minimum control pressure Pmin can be eliminated, and the pressure can be controlled up to zero pressure. This makes it possible to sufficiently meet the requirements of the low-pressure mold clamping process in the injection molding machine.

【0049】しかも、前記PQS弁(2)の構成は、従来
までの比例電磁式リリーフ弁付流量調整弁装置(図6参
照)と比較しても、新たに圧力センサ(10)や位置センサ
(11)が必要になる一方で、従来まで必要であった圧力比
例弁(8)とそのための電流ドライバ回路(9)とが不要にな
るから、センサ(10,11)のコストアップは相殺される。
Moreover, the structure of the PQS valve (2) has a new pressure sensor (10) and position sensor even when compared with the flow control valve device with proportional solenoid type relief valve (see FIG. 6) up to now.
While (11) is required, the pressure proportional valve (8) and the current driver circuit (9) for it, which were required until now, are no longer required, which offsets the cost increase of the sensor (10, 11). It

【0050】(実施形態2)図5は、本願発明の実施形
態2に係るPQS弁(20)(液圧回路装置)の構成を示
す。このPQS弁(20)は、実施形態1のPQS弁(2)と
は下流側パイロット通路(15)におけるオリフィスの構成
が異なるのみで、それ以外の構成は前記実施形態1のも
のと同じなので、以下、同一部材には同一の符号を付し
てその説明は省略する。そして、この実施形態2のPQ
S弁(20)は、差圧補償弁(7)の開閉作動時にその弁体(7
a)の動作に対して前記実施形態1と同様に適度なダンピ
ングを付与しながら、弁体(7a)の閉作動速度だけはさら
に高速化するようにしたものである。
(Second Embodiment) FIG. 5 shows the structure of a PQS valve (20) (hydraulic circuit device) according to a second embodiment of the present invention. The PQS valve (20) is different from the PQS valve (2) of the first embodiment only in the configuration of the orifice in the downstream pilot passage (15), and the other configurations are the same as those in the first embodiment. Hereinafter, the same members will be denoted by the same reference numerals and the description thereof will be omitted. Then, the PQ of the second embodiment
The S valve (20) has its valve body (7) when the differential pressure compensating valve (7) is opened and closed.
Similar to the first embodiment, appropriate damping is applied to the operation of a) while the closing operation speed of the valve body (7a) is further increased.

【0051】すなわち、前記実施形態1のものでは、下
流側パイロット通路(15)のオリフィス(17)は、安全弁(1
8)や差圧補償弁(7)とともにパイロット式リリーフ弁と
して機能するときの差圧発生源であると同時に、差圧補
償弁(7)の弁体(7a)の動作に適度なダンピングを付与
し、この弁体(7a)の動作を安定化するようにも働いてい
るが、結果として、該差圧補償弁(7)の閉作動時に弁体
(7a)の動作が遅くなってしまい、上述の如く、電磁比例
弁(6)のスプール(6a)の動作速度を高めても、主機側へ
の流量立上げの応答があまり高速化しない原因となる。
That is, in the first embodiment, the orifice (17) of the downstream pilot passage (15) is provided with the safety valve (1
8) and the differential pressure compensating valve (7) as well as a source of differential pressure when functioning as a pilot type relief valve, and at the same time imparting appropriate damping to the operation of the valve body (7a) of the differential pressure compensating valve (7) However, it also works to stabilize the operation of the valve body (7a), but as a result, the valve body is closed when the differential pressure compensating valve (7) is closed.
The operation of (7a) is delayed, and as described above, even if the operating speed of the spool (6a) of the solenoid proportional valve (6) is increased, the response of the flow rate startup to the main machine side does not become so fast. Become.

【0052】この点について詳しく説明すると、実施形
態1のPQS弁(2)において、流量制御モードのときに
主機側への作動油の供給流量を増やすためには、流量指
令値Qiを変更して電磁比例弁(6)の開度を増大させる
とともに、ポンプ(3)から電磁比例弁(6)に向かう作動油
の流量を増やす必要がある。このときには、まず、コン
トローラ(12)からの信号により供給位置にある電磁比例
弁(6)の開度が増大され、そのことによって該電磁比例
弁(6)の前後差圧が一時的に小さくなると、上流側及び
下流側パイロット圧をそれぞれ受ける差圧補償弁(7)の
弁体(7a)が閉じられることになる。
Explaining this point in detail, in the PQS valve (2) of the first embodiment, in order to increase the flow rate of the hydraulic oil supplied to the main engine side in the flow rate control mode, the flow rate command value Qi is changed. It is necessary to increase the opening of the solenoid proportional valve (6) and increase the flow rate of hydraulic oil from the pump (3) toward the solenoid proportional valve (6). At this time, first, the opening of the solenoid proportional valve (6) in the supply position is increased by a signal from the controller (12), which causes the differential pressure across the solenoid proportional valve (6) to temporarily decrease. The valve element (7a) of the differential pressure compensating valve (7) that receives the upstream and downstream pilot pressures is closed.

【0053】この際、下流側のパイロット通路(15)では
作動油が差圧補償弁(7)に向かって流れることになる
が、そもそも差圧補償弁(7)の弁体(7a)を閉じる力は、
せいぜいスプリング(7b)の付勢力程度のものであるか
ら、前記のようにオリフィス(17)によって作動油の流れ
が絞られていると、弁体(7a)の閉動作が遅れてしまい、
ポンプ(3)から吐出される作動油を速やかに電磁比例弁
(6)に振り向けることができなくなる。つまり、電磁比
例弁(6)の開動作自体は高速化できても、そこから主機
側への作動油の供給流量を狙い通り増大させることがで
きないから、流量応答については改善の余地が残ること
になる。
At this time, the hydraulic oil flows toward the differential pressure compensating valve (7) in the downstream pilot passage (15), but the valve body (7a) of the differential pressure compensating valve (7) is closed in the first place. Power is
Since it is at most about the biasing force of the spring (7b), if the flow of hydraulic fluid is restricted by the orifice (17) as described above, the closing operation of the valve body (7a) will be delayed,
The hydraulic oil discharged from the pump (3) can be quickly transferred to the solenoid proportional valve.
You can no longer turn to (6). In other words, even if the opening operation of the solenoid proportional valve (6) itself can be speeded up, the flow rate of the hydraulic oil supplied to the main engine side cannot be increased as desired, and there is room for improvement in flow rate response. become.

【0054】このような過渡的な現象を考慮して、この
実施形態2のPQS弁(20)では、図示の如く、下流側パ
イロット通路(15)に、実施形態1のオリフィス(17)より
も作動油の通過断面積が大きい第1のオリフィス(21)
と、この第1のオリフィス(21)よりも絞り度合いの強
い、即ち通過断面積が小さい第2のオリフィス(22)とを
直列に配設するとともに、その第2のオリフィス(22)を
バイパスするバイパス通路(23)に、差圧補償弁(7)へ向
かう作動油の流れを許容する一方、その逆の流れを阻止
する逆止弁(24)を配設した。
In consideration of such a transient phenomenon, in the PQS valve (20) of the second embodiment, as shown in the drawing, the PQS valve (20) is provided in the downstream pilot passage (15) rather than the orifice (17) of the first embodiment. First orifice (21) with a large hydraulic oil passage cross section
And a second orifice (22) having a smaller degree of throttling than this first orifice (21), that is, a small passage cross-sectional area, are arranged in series, and the second orifice (22) is bypassed. A check valve (24) is provided in the bypass passage (23) to allow the flow of the hydraulic oil toward the differential pressure compensating valve (7) while blocking the reverse flow thereof.

【0055】より具体的に、前記第1のオリフィス(21)
は、例えば直径約2mmの円形断面を有するものであ
り、また、前記第2のオリフィス(22)は、前記実施形態
1のオリフィス(17)と同じく直径約1mmの円形断面を
有するものである。そして、作動油が下流側パイロット
通路(15)を差圧補償弁(7)から下流側供給通路(5b)に向
かって流れるときには、その作動油の流れは第1及び第
2の両方のオリフィス(21),(22)により絞られて、特に
第2のオリフィス(22)によって前記実施形態1の場合と
同様の通過抵抗を受ける。一方、作動油が下流側パイロ
ット通路(15)を差圧補償弁(7)に向かって流れるときに
は、その作動油の流れは相対的に絞り度合いの弱い第1
のオリフィス(21)のみから通過抵抗を受けることにな
り、流れの通過速度は相対的に高くなる。
More specifically, the first orifice (21)
Has a circular cross section with a diameter of about 2 mm, for example, and the second orifice (22) has a circular cross section with a diameter of about 1 mm like the orifice (17) of the first embodiment. When the working oil flows through the downstream pilot passage (15) from the differential pressure compensating valve (7) toward the downstream supply passage (5b), the working oil flows in both the first and second orifices ( It is throttled by 21) and (22), and in particular, the second orifice (22) receives the same passage resistance as in the case of the first embodiment. On the other hand, when the working oil flows through the downstream pilot passage (15) toward the differential pressure compensating valve (7), the working oil flow is relatively weak in the first degree.
The passage resistance is received only from the orifice (21), and the passage speed of the flow becomes relatively high.

【0056】このことで、主機側への作動油の供給流量
を増大させるために電磁比例弁(6)の開度を大きくした
ときに、下流側パイロット通路(15)において差圧補償弁
(7)へ向かって流れる作動油の流れが実施形態1のもの
よりも速くなり、その分、差圧補償弁(7)の弁体(7a)が
より高速に閉動作するようになる。このため、電磁比例
弁(6)の開作動に対する差圧補償弁(7)の閉作動の遅れが
大幅に軽減され、ポンプ(3)から電磁比例弁(6)に向かう
作動油の流量が直ちに増大することになるから、作動油
の供給流量の増大時にその応答性をさらに高めることが
できる。
As a result, when the opening of the solenoid proportional valve (6) is increased in order to increase the flow rate of the hydraulic oil supplied to the main engine side, the differential pressure compensating valve in the downstream pilot passage (15)
The flow of hydraulic oil flowing toward (7) becomes faster than that in the first embodiment, and the valve body (7a) of the differential pressure compensating valve (7) closes correspondingly faster. Therefore, the delay of the closing operation of the differential pressure compensating valve (7) with respect to the opening operation of the solenoid proportional valve (6) is significantly reduced, and the flow rate of the hydraulic oil from the pump (3) to the solenoid proportional valve (6) immediately increases. Therefore, the responsiveness can be further enhanced when the supply flow rate of the hydraulic oil is increased.

【0057】しかも、差圧補償弁(7)の弁体(7a)が開作
動するときには、下流側パイロット通路(15)を通過する
作動油が第1及び第2のオリフィス(21),(22)から相対
的に大きな通過抵抗を受けることになるので、該弁体(7
a)の動作に対して適度なダンピングが付与されることは
前記実施形態1と同様である。
Moreover, when the valve body (7a) of the differential pressure compensating valve (7) is opened, the working oil passing through the downstream pilot passage (15) is supplied with the first and second orifices (21), (22). ), The valve body (7
As in the first embodiment, appropriate damping is given to the operation a).

【0058】また、主機側への作動油の供給流量を減ら
すときには、コントローラ(12)により電磁比例弁(6)の
開度を小さくなるように制御するが、このときには該電
磁比例弁(6)の上流側の油圧が急激に高くなり、分岐路
(14)を介して差圧補償弁(7)の弁体(7a)に作用すること
になる。このときには、弁体(7a)の開作動に伴い下流側
パイロット通路(15)において作動油が差圧補償弁(7)か
ら下流側供給通路(5b)に向かって流れ、この作動油の流
れが第1及び第2の両方のオリフィス(21),(22)から通
過抵抗を受けることになるが、前記の如く弁体(7a)に対
して極めて高い上流側パイロット圧が作用しているか
ら、この弁体(7a)の開動作は十分に高速なものとなり、
結局、供給流量の減少時には応答遅れが問題となること
はない。
Further, when the flow rate of the hydraulic oil supplied to the main engine side is reduced, the controller (12) controls the opening of the solenoid proportional valve (6) to be small. At this time, the solenoid proportional valve (6) is controlled. The hydraulic pressure on the upstream side of the
It acts on the valve body (7a) of the differential pressure compensating valve (7) via (14). At this time, the hydraulic oil flows from the differential pressure compensating valve (7) toward the downstream supply passage (5b) in the downstream pilot passage (15) along with the opening operation of the valve body (7a), and the flow of this operating oil Passage resistance is received from both the first and second orifices (21) and (22), but as described above, extremely high upstream pilot pressure acts on the valve body (7a), The opening operation of this valve body (7a) is sufficiently fast,
After all, the response delay does not become a problem when the supply flow rate decreases.

【0059】したがって、この実施形態2に係るPQS
弁(20)によれば、前記実施形態1のものと同様の作用効
果が得られるとともに、下流側パイロット通路(15)に配
設した2つのオリフィス(21),(22)と逆止弁(24)とによ
って、差圧補償弁(7)の動作の安定性を確保しながら、
その弁体(7a)の閉動作をさらに高速化することができ、
これにより、主機側への作動油の供給流量を増加させる
ときにもその応答性を十分に高くすることができる。
Therefore, the PQS according to the second embodiment
According to the valve (20), the same operational effect as that of the first embodiment can be obtained, and the two orifices (21) and (22) arranged in the downstream pilot passage (15) and the check valve ( While ensuring the stability of the operation of the differential pressure compensation valve (7),
It is possible to further speed up the closing operation of the valve body (7a),
Thereby, the responsiveness can be sufficiently increased even when the flow rate of the hydraulic oil supplied to the main engine side is increased.

【0060】このことで、射出成形機に適用した場合に
は従来までと比べて薄肉の成型品の成形が容易になり、
その上に成形サイクルの短縮によりコスト低減が図られ
る。この点について、射出成形による薄肉成型品は、射
出された樹脂が金型内部に行き渡る途中で冷えて固まっ
てしまうことがあり、このことを防ぐために特に高速の
流量立ち上げ応答が要求されるから、この実施形態に係
るPQS弁のように応答性を向上できることが特に有効
なものとなる。
As a result, when applied to an injection molding machine, it becomes easier to form a thin-walled molded product as compared with the conventional one.
In addition, the cost can be reduced by shortening the molding cycle. In this regard, thin-walled products made by injection molding may cool and solidify while the injected resin reaches the inside of the mold, and in order to prevent this, a particularly high-speed flow rise response is required. It is particularly effective that the response can be improved as in the PQS valve according to this embodiment.

【0061】(他の実施形態)本発明は前記実施形態
1、2の構成に限定されるものではなく、その他の種々
の実構成を包含するものである。すなわち、前記実施形
態1、2では、いずれも本願発明に係る液圧回路装置を
1個のPQS弁(2,20)としているが、本願発明の液圧回
路を必ずしも一体型複合弁として構成する必要はない。
また、主機は、射出成形機に限らず、液圧シリンダや液
圧モータ等の液圧アクチュエータを有する種々の機械装
置に適用可能である。
(Other Embodiments) The present invention is not limited to the structures of the first and second embodiments, but includes various other actual structures. That is, in each of the first and second embodiments, the hydraulic circuit device according to the present invention is one PQS valve (2, 20), but the hydraulic circuit according to the present invention is not necessarily configured as an integrated type composite valve. No need.
Further, the main machine is not limited to the injection molding machine, and can be applied to various mechanical devices having a hydraulic actuator such as a hydraulic cylinder and a hydraulic motor.

【0062】また、コントローラの構成も前記各実施形
態のデジタルコントローラ(12)に限定されることはな
く、例えば、コンパレータやオペアンプ等を用いて同様
の機能を有するアナログコントローラを構成してもよ
い。
Further, the configuration of the controller is not limited to the digital controller (12) of each of the above embodiments, and for example, an analog controller having a similar function may be constructed by using a comparator, an operational amplifier or the like.

【0063】さらに、本発明の電磁比例弁は、前記各実
施形態のものに限定されず、Aポート、Pポート及びT
ポートを有する電気的に絞り量の可変な絞り弁であれば
よい。すなわち、スプール(6a)をソレノイド(6b)で直接
に押圧する直動タイプであっても、また、小型のパイロ
ット弁でスプールを間接的に動作させるパイロット式で
あってもよい。さらに、パイロット式の場合、パイロッ
ト弁として比例弁を用いるタイプとノズルフラッパ等の
サーボ弁を使用するタイプのいずれでもよい。また、本
発明は、スプール位置のセンサを設けているので、電磁
比例弁(6)をサーボ弁と読み替えることも一般的であ
る。
Further, the solenoid proportional valve of the present invention is not limited to the above-mentioned respective embodiments, but the A port, the P port, and the T port.
Any throttle valve having a port and an electrically variable throttle amount may be used. That is, it may be a direct acting type in which the spool (6a) is directly pressed by the solenoid (6b), or a pilot type in which the spool is indirectly operated by a small pilot valve. Further, in the case of the pilot type, either a type using a proportional valve as a pilot valve or a type using a servo valve such as a nozzle flapper may be used. Further, in the present invention, since the spool position sensor is provided, it is common to replace the solenoid proportional valve (6) with a servo valve.

【0064】[0064]

【発明の効果】以上、説明したように、請求項1の発明
に係る液圧回路装置(2,20)によると、液圧アクチュエー
タへの作動液の供給通路(5)に電磁比例弁(6)を介設する
とともに、該電磁比例弁(6)の上流側及び下流側からそ
れぞれパイロット圧を受けて、それらの差圧が一定にな
るように上流側の供給通路(5a)から作動液をバイパスさ
せる差圧補償弁(7)を設ける場合に、前記電磁比例弁(6)
に、アクチュエータから作動液を排出する排出位置を追
加するとともに、該電磁比例弁(6)の下流側の供給通路
(5b)の作動液圧を検出する圧力センサ(10)と、電磁比例
弁(6)のスプール位置を検出する位置センサ(11)とを設
け、それらのセンサからの出力信号に基づいて電磁比例
弁(6)のスプール位置(開度)をフィードバック制御す
るようにしたので、作動液の供給流量及び圧力の制御を
極めて高精度のものとすることができる。
As described above, according to the hydraulic circuit device (2, 20) of the first aspect of the invention, the solenoid proportional valve (6) is provided in the hydraulic fluid supply passage (5) to the hydraulic actuator. ), And receives pilot pressure from the upstream side and the downstream side of the solenoid proportional valve (6), respectively, and hydraulic fluid is supplied from the supply passage (5a) on the upstream side so that their differential pressure becomes constant. If a differential pressure compensating valve (7) to bypass is installed, the solenoid proportional valve (6)
In addition to the discharge position for discharging the hydraulic fluid from the actuator, the supply passage on the downstream side of the solenoid proportional valve (6)
A pressure sensor (10) that detects the hydraulic fluid pressure of (5b) and a position sensor (11) that detects the spool position of the solenoid proportional valve (6) are provided, and the solenoid proportional valve is based on the output signals from those sensors. Since the spool position (opening degree) of the valve (6) is feedback-controlled, it is possible to control the supply flow rate and pressure of the hydraulic fluid with extremely high precision.

【0065】しかも、フィードバック制御によってソレ
ノイドの非線形特性を見かけ上、打ち消すことができる
ので、作動液の供給流量及び圧力の制御特性を線形化で
き、さらに、電磁比例弁(6)の開閉速度を従来よりも高
くして、流量応答性も改善できる。また、電磁比例弁
(6)を排出位置に切換えれば、アクチュエータから作動
液を排出することもできるから、制御圧をゼロまで下げ
て制御不能領域をなくすことができる。
In addition, since the non-linear characteristic of the solenoid can be apparently canceled by the feedback control, the control characteristic of the hydraulic fluid supply flow rate and pressure can be linearized, and the opening / closing speed of the solenoid proportional valve (6) can be made conventional. It is possible to improve the flow rate responsiveness by making it higher than that. Also, a solenoid proportional valve
By switching (6) to the discharge position, the hydraulic fluid can be discharged from the actuator, so that the control pressure can be reduced to zero and the uncontrollable region can be eliminated.

【0066】従って、例えば射出成形機に適用した場合
には、サイクルタイムの短縮により生産性を向上できる
とともに、成形品質の大幅な向上を実現でき、また、薄
肉の成型品の成形が容易になり、さらに、低圧型締め工
程での要求にも十分に対応可能となる。
Therefore, when applied to, for example, an injection molding machine, productivity can be improved by shortening the cycle time, molding quality can be greatly improved, and thin-walled molded products can be easily molded. Furthermore, it becomes possible to sufficiently meet the requirements in the low-pressure mold clamping process.

【0067】加えて、従来まで必要だった圧力比例弁
(8)とそのための電流ドライバ回路が不要になるから、
センサの追加によるコストアップは相殺される。
In addition, the pressure proportional valve that was required until now
(8) and the current driver circuit for it are unnecessary,
The cost increase due to the addition of the sensor is offset.

【0068】請求項2の発明によると、液圧回路装置
(2,20)のコントローラ(12)に設けた流量偏差演算部(12
b)、圧力偏差演算部(12a)、PQ選択部(12c)等により、
作動液の実際の供給状態に応じて電磁比例弁(6)のフィ
ードバック制御を行い、請求項1の発明の効果を十分に
得ることができる。
According to the invention of claim 2, the hydraulic circuit device.
Flow rate deviation calculator (12, 20) controller (12)
b), pressure deviation calculation unit (12a), PQ selection unit (12c), etc.
The feedback control of the solenoid proportional valve (6) is performed according to the actual supply state of the hydraulic fluid, and the effect of the invention of claim 1 can be sufficiently obtained.

【0069】請求項3の発明によると、液圧回路装置
(2,20)の差圧補償弁(7)に対して電磁比例弁(6)の下流側
からパイロット圧を導く下流側のパイロット通路(15)
に、作動液の流れを絞るオリフィス(17)とパイロットリ
リーフ弁(18)とを設けたので、コントローラ(12)や電磁
比例弁(6)の万一の故障時にも十分な安全性が得られる
とともに、前記差圧補償弁(7)の弁体(7a)の動作に適度
なダンピングを付与して、その動作を安定化できる。
According to the invention of claim 3, the hydraulic circuit device.
Downstream pilot passage (15) that guides pilot pressure from the downstream side of the solenoid proportional valve (6) to the differential pressure compensation valve (7) of (2, 20)
In addition, the orifice (17) that throttles the flow of hydraulic fluid and the pilot relief valve (18) are provided, so sufficient safety can be obtained even in the unlikely event of failure of the controller (12) or the solenoid proportional valve (6). At the same time, appropriate damping can be applied to the operation of the valve body (7a) of the differential pressure compensating valve (7) to stabilize the operation.

【0070】請求項4の発明によると、前記請求項3の
発明のオリフィスとして、互いに絞り度合いの異なる第
1及び第2のオリフィス(21,22)を直列に配置し、その
うちの絞り度合いの強い第2のオリフィス(22)をバイパ
スする通路(23)に逆止弁(24)を配設することで、差圧補
償弁(7)の動作の安定性を確保しながら、その弁体(7a)
の閉動作を高速化して、アクチュエータへの作動液の供
給量を増大させるときにその流量応答性をより一層、向
上できる。
According to the invention of claim 4, as the orifice of the invention of claim 3, first and second orifices (21, 22) having different degrees of throttling are arranged in series, and the degree of throttling is strong. By arranging the check valve (24) in the passage (23) bypassing the second orifice (22), the stability of the operation of the differential pressure compensating valve (7) is ensured while the valve body (7a) is secured. )
It is possible to further improve the flow rate response when increasing the supply amount of the hydraulic fluid to the actuator by accelerating the closing operation of.

【0071】請求項5の発明によると、液圧アクチュエ
ータが射出成形機を駆動するためのものである場合に、
本発明の液圧回路装置(2,20)によってその作動速度及び
作動力の制御性を向上できることが極めて有効なものと
なり、このことで、成形品質の大幅な向上を実現でき
る。特に、請求項4の発明のように作動液の供給流量の
応答性を向上できることと、請求項1の発明のように制
御圧をゼロまで下げられることとが相俟って、低圧型締
め工程での要求にも十分に対応可能となり、かつコスト
低減も可能となる。
According to the invention of claim 5, when the hydraulic actuator is for driving an injection molding machine,
It is extremely effective that the hydraulic circuit device (2, 20) of the present invention can improve the controllability of the operating speed and the operating force thereof, and thus, the molding quality can be significantly improved. In particular, the responsiveness of the supply flow rate of the hydraulic fluid can be improved as in the invention of claim 4 and the control pressure can be reduced to zero as in the invention of claim 1, so that the low pressure mold clamping step is performed. It will be possible to fully meet the requirements of the above and also to reduce the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1に係るPQS弁の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of a PQS valve according to a first embodiment of the present invention.

【図2】電磁比例弁が供給位置にあるときの図1相当図
である。
FIG. 2 is a view corresponding to FIG. 1 when an electromagnetic proportional valve is in a supply position.

【図3】射出成形機の型締めシリンダを動作させるとき
の作動油の供給流量及び供給圧力の変化を示すタイムチ
ャート図である。
FIG. 3 is a time chart showing changes in the supply flow rate and supply pressure of hydraulic oil when operating the mold clamping cylinder of the injection molding machine.

【図4】電磁比例弁に入力する制御信号(電流値)と作
動油の供給流量ないし供給圧力との相関関係を、従来例
と対比して示す特性図である。
FIG. 4 is a characteristic diagram showing a correlation between a control signal (current value) input to a solenoid proportional valve and a supply flow rate or a supply pressure of hydraulic oil in comparison with a conventional example.

【図5】実施形態2に係る図1相当図である。FIG. 5 is a view corresponding to FIG. 1 according to the second embodiment.

【図6】従来の液圧回路装置の一例を示す図1相当図で
ある。
FIG. 6 is a view corresponding to FIG. 1 showing an example of a conventional hydraulic circuit device.

【符号の説明】[Explanation of symbols]

1 主機油圧回路 2 PQS弁(液圧回路装置) 5 供給通路 5a 上流側供給通路 5b 下流側供給通路 6 電磁比例弁 6a スプール 6b ソレノイド 7 差圧補償弁 7a 弁体 7b スプリング(ばね部材) 10 圧力センサ 11 位置センサ(位置センサ) 12 コントローラ 12a 圧力偏差演算部 12b 流量偏差演算部 12c PQ選択部 12d 電流ドライバ 15 下流側パイロット通路 17,21,22 オリフィス 23 バイパス通路 24 逆止弁 1 Main engine hydraulic circuit 2 PQS valve (hydraulic circuit device) 5 supply passages 5a upstream side supply passage 5b Downstream supply passage 6 solenoid proportional valve 6a spool 6b solenoid 7 Differential pressure compensation valve 7a valve body 7b Spring (spring member) 10 Pressure sensor 11 Position sensor (position sensor) 12 Controller 12a Pressure deviation calculation unit 12b Flow rate deviation calculation unit 12c PQ selection section 12d current driver 15 Downstream pilot passage 17,21,22 Orifice 23 Bypass passage 24 Check valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H089 AA22 AA65 AA67 BB14 BB17 CC01 DA02 DB24 DB45 DB49 EE36 FF05 FF07 GG02 JJ05 4F202 AP02 AP06 AR02 AR07 AR14 CA11 CL18 CL25 4F206 AP02 AP06 AR02 AR07 AR14 JA07 JP13 JT02 JT05 JT21   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3H089 AA22 AA65 AA67 BB14 BB17                       CC01 DA02 DB24 DB45 DB49                       EE36 FF05 FF07 GG02 JJ05                 4F202 AP02 AP06 AR02 AR07 AR14                       CA11 CL18 CL25                 4F206 AP02 AP06 AR02 AR07 AR14                       JA07 JP13 JT02 JT05 JT21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液圧アクチュエータへの作動液の供給通
路(5)に、作動液の供給流量を調整する電磁比例弁(6)を
介設するとともに、該電磁比例弁(6)の上流側及び下流
側からそれぞれパイロット圧を受けて、それらの差圧が
一定になるよう上流側の供給通路(5a)からタンク(4)に
作動液をバイパスさせる差圧補償弁(7)を設けた液圧回
路装置(2,20)において、 前記電磁比例弁(6)は、アクチュエータに作動液を供給
する供給位置のほかに、該アクチュエータから作動液を
排出する排出位置を少なくとも有し、 前記下流側の供給通路(5b)の作動液圧を検出して電気信
号を出力する圧力センサ(10)と、 前記電磁比例弁(6)のスプール位置を検出して電気信号
を出力する位置センサ(11)と、 前記圧力センサ(10)及び位置センサ(11)から出力される
信号をそれぞれ受けて、前記アクチュエータへの作動液
の供給流量ないし供給液圧が制御指令値になるように、
前記電磁比例弁(6)の開度をフィードバック制御するコ
ントローラ(12)とを備えたことを特徴とする液圧回路装
置。
1. An electromagnetic proportional valve (6) for adjusting a supply flow rate of the hydraulic fluid is provided in a hydraulic fluid supply passage (5) to the hydraulic actuator, and an upstream side of the electromagnetic proportional valve (6). And a liquid provided with a differential pressure compensating valve (7) for bypassing the hydraulic fluid from the upstream supply passage (5a) to the tank (4) so that the differential pressures thereof are received by the pilot pressures from the downstream side and the downstream side, respectively. In the pressure circuit device (2, 20), the solenoid proportional valve (6) has at least a discharge position for discharging hydraulic fluid from the actuator in addition to a supply position for supplying hydraulic fluid to the actuator, and the downstream side Pressure sensor (10) that detects hydraulic fluid pressure in the supply passage (5b) and outputs an electric signal, and position sensor (11) that detects the spool position of the solenoid proportional valve (6) and outputs an electric signal. And receiving signals output from the pressure sensor (10) and the position sensor (11), As the supply flow rate to the supply pressure of the hydraulic fluid to the serial actuator is a control command value,
A hydraulic circuit device comprising: a controller (12) for feedback-controlling the opening of the solenoid proportional valve (6).
【請求項2】 請求項1の液圧回路装置(2,20)におい
て、 コントローラ(12)は、 位置センサ(11)からの信号に基づいてアクチュエータへ
の作動液の実供給流量を求めるとともに、この実供給流
量を流量指令値から減算して流量偏差を演算する流量偏
差演算部(12b)と、 圧力センサ(10)からの信号に基づいてアクチュエータへ
の作動液の実供給液圧を求めるとともに、この実供給液
圧を圧力指令値から減算して圧力偏差を演算する圧力偏
差演算部(12a)と、 前記流量偏差及び圧力偏差のうちの値の小さい方の偏差
を選択し、この選択した偏差に基づいて電磁比例弁(6)
の目標スプール位置を演算するPQ選択部(12c)と、 前記PQ選択部(12c)により演算された目標位置になる
ように、電磁比例弁(6)のスプール(6a)のソレノイド(6
b)に電流を印加する電流ドライバ(12d)とを備えている
ことを特徴とする液圧回路装置。
2. The hydraulic circuit device (2, 20) according to claim 1, wherein the controller (12) obtains an actual supply flow rate of the hydraulic fluid to the actuator based on a signal from the position sensor (11), This actual supply flow rate is subtracted from the flow rate command value to calculate the flow rate deviation (12b), and the actual supply fluid pressure of the hydraulic fluid to the actuator is calculated based on the signal from the pressure sensor (10). , The pressure deviation calculation unit (12a) for calculating the pressure deviation by subtracting the actual supply hydraulic pressure from the pressure command value, and the deviation having the smaller value of the flow rate deviation and the pressure deviation is selected and selected. Solenoid proportional valve based on deviation (6)
Of the spool (6a) of the solenoid proportional valve (6) so that the target position calculated by the PQ selection unit (12c) is calculated.
A hydraulic circuit device comprising a current driver (12d) for applying a current to b).
【請求項3】 請求項1又は2のいずれかの液圧回路装
置(2,20)において、 差圧補償弁(7)は、その弁体(7a)を閉じる側に付勢する
ばね部材(7b)を有し、該弁体(7a)が閉じる側に電磁比例
弁(6)の下流側からのパイロット圧を受ける一方、弁体
(7a)が開く側に電磁比例弁(6)の上流側からのパイロッ
ト圧を受けており、 前記電磁比例弁(6)の下流側から差圧補償弁(7)にパイロ
ット圧を導く下流側のパイロット通路(15)には、作動液
の流れを絞るオリフィス(17)が配設され、さらに、該オ
リフィス(17)と差圧補償弁(7)との間のパイロット通路
(15)にパイロットリリーフ弁(18)が接続されていること
を特徴とする液圧回路装置。
3. The hydraulic circuit device (2, 20) according to claim 1 or 2, wherein the differential pressure compensating valve (7) is a spring member (5) for urging the valve body (7a) toward the closing side. 7b), the valve body (7a) receives the pilot pressure from the downstream side of the solenoid proportional valve (6) on the closing side, while the valve body
The pilot pressure from the upstream side of the solenoid proportional valve (6) is received on the side where (7a) opens, and the downstream side that guides the pilot pressure from the downstream side of the solenoid proportional valve (6) to the differential pressure compensation valve (7). An orifice (17) for restricting the flow of hydraulic fluid is provided in the pilot passage (15) of the pilot passage (15), and the pilot passage between the orifice (17) and the differential pressure compensating valve (7) is further provided.
A hydraulic circuit device characterized in that a pilot relief valve (18) is connected to (15).
【請求項4】 請求項3の液圧回路装置(20)において、 下流側のパイロット通路(15)には、第1のオリフィス(2
1)とそれよりも絞り度合いの強い第2のオリフィス(22)
とが直列に配置され、 前記第2のオリフィス(22)をバイパスする通路(23)に、
差圧補償弁(7)へ向かう作動液の流れを許容する一方、
その逆の流れを阻止する逆止弁(24)が配設されているこ
とを特徴とする液圧回路装置。
4. The hydraulic circuit device (20) according to claim 3, wherein the pilot passage (15) on the downstream side has a first orifice (2).
1) and a second orifice (22) with a narrower degree than that
And are arranged in series, and in the passage (23) bypassing the second orifice (22),
While allowing the flow of hydraulic fluid to the differential pressure compensation valve (7),
A hydraulic circuit device comprising a check valve (24) for blocking the reverse flow.
【請求項5】 請求項1〜4のいずれか1つの液圧回路
装置(20)において、 液圧アクチュエータは、射出成形機を駆動するためのも
のであることを特徴とする液圧回路装置。
5. The hydraulic circuit device (20) according to any one of claims 1 to 4, wherein the hydraulic actuator is for driving an injection molding machine.
JP2001204580A 2001-07-05 2001-07-05 Hydraulic circuit device Expired - Fee Related JP3783582B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001204580A JP3783582B2 (en) 2001-07-05 2001-07-05 Hydraulic circuit device
EP02738707A EP1403528A4 (en) 2001-07-05 2002-06-13 Hydraulic circuit device
CNB028023161A CN1274965C (en) 2001-07-05 2002-06-13 Hydraulic circuit device
KR1020037003299A KR100781029B1 (en) 2001-07-05 2002-06-13 Hydraulic circuit system
PCT/JP2002/005930 WO2003004879A1 (en) 2001-07-05 2002-06-13 Hydraulic circuit device
TW091113287A TW552354B (en) 2001-07-05 2002-06-18 Hydraulic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204580A JP3783582B2 (en) 2001-07-05 2001-07-05 Hydraulic circuit device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006007939A Division JP2006132783A (en) 2006-01-16 2006-01-16 Hydraulic circuit arrangement

Publications (2)

Publication Number Publication Date
JP2003021103A true JP2003021103A (en) 2003-01-24
JP3783582B2 JP3783582B2 (en) 2006-06-07

Family

ID=19041021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204580A Expired - Fee Related JP3783582B2 (en) 2001-07-05 2001-07-05 Hydraulic circuit device

Country Status (6)

Country Link
EP (1) EP1403528A4 (en)
JP (1) JP3783582B2 (en)
KR (1) KR100781029B1 (en)
CN (1) CN1274965C (en)
TW (1) TW552354B (en)
WO (1) WO2003004879A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243248A (en) * 2004-02-24 2005-09-08 Toyota Motor Corp Flow control device of stationary fuel cell system and its design method
US7425123B2 (en) * 2005-04-19 2008-09-16 Krauss-Maffei Kunststofftechnik Gmbh Hydraulic mold clamping unit
JP2011073526A (en) * 2009-09-30 2011-04-14 Japan Hamuwaaji Kk Rotary vane type helm machine
WO2018194121A1 (en) * 2017-04-19 2018-10-25 キョーラク株式会社 Molding machine
JP2018176644A (en) * 2017-04-19 2018-11-15 キョーラク株式会社 Molding machine

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687944B2 (en) * 2004-03-30 2011-05-25 Smc株式会社 Air servo gun cylinder for welding and control method thereof
CN102528743B (en) * 2007-05-16 2014-10-15 古斯塔夫.克劳克有限责任公司 Motor-driven hand-held pressing apparatus
CN102312872A (en) * 2011-08-19 2012-01-11 陈海波 Hydraulic balance speed limit control device of concrete pump truck
JP6023665B2 (en) * 2013-06-19 2016-11-09 株式会社神戸製鋼所 Method and apparatus for producing solid fuel
CN105642865A (en) * 2014-08-08 2016-06-08 重庆市恒牛机械制造有限公司 Synchronous liquid-cooling servo energy-saving method of die-casting machine
DE102015218832A1 (en) * 2015-09-30 2017-03-30 Robert Bosch Gmbh Pump-controller combination with power limitation
CN108527759B (en) * 2018-03-21 2024-04-19 重庆龙升巨威信息技术咨询服务中心 Accurate pressure control system in full-automatic foam molding machine
JP6947711B2 (en) * 2018-09-28 2021-10-13 日立建機株式会社 Construction machinery
EP3643422B8 (en) * 2018-10-25 2023-07-26 Emerson Professional Tools AG Pressing device for work pieces
CN109555738A (en) * 2019-01-21 2019-04-02 何旺成 Digital Control water hydraulic canonical system circuit
CN110526152B (en) * 2019-08-30 2024-08-06 太原理工大学 Multichannel anti-impact intelligent constant-deceleration hydraulic braking system
US11958226B2 (en) 2019-10-04 2024-04-16 Husky Injection Molding Systems Ltd. Stabilized adaptive hydraulic system pressure in an injection molding system
CN112855641B (en) * 2019-11-12 2023-01-03 上海朝田实业股份有限公司 Automatic hydraulic valve
DE102019131980A1 (en) * 2019-11-26 2021-05-27 Moog Gmbh Electrohydrostatic system with pressure sensor
CN111102253A (en) * 2019-12-25 2020-05-05 长沙中达智能科技有限公司 Device and method for controlling speed of hydraulic driving mechanism
CN113217320A (en) * 2021-05-12 2021-08-06 陈志昌 Hydraulic-electric intelligent numerical control crankshaft wheel plunger pump
CN113492407B (en) * 2021-07-22 2023-01-24 中广核研究院有限公司 Control system, control method, computer device, and storage medium
CN113757199B (en) * 2021-08-30 2023-10-17 三一汽车制造有限公司 Mechanical arm driving hydraulic system of high-response engineering equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524575U (en) * 1978-08-04 1980-02-16
JPS56141403A (en) * 1980-04-07 1981-11-05 Daikin Ind Ltd Fluid controller
JPH01318774A (en) * 1988-06-17 1989-12-25 Daikin Ind Ltd Device for controlling variable capacity type pump
JPH05106607A (en) * 1991-10-21 1993-04-27 Tokimec Inc Speed/thrust control device for hydraulic actuator
JPH08100805A (en) * 1994-09-29 1996-04-16 Daiden Co Ltd Pressure control valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2757660A1 (en) * 1977-12-23 1979-06-28 Bosch Gmbh Robert HYDRAULIC CONTROL DEVICE WITH AT LEAST ONE DIRECTIONAL VALVE
JPS5839807A (en) * 1981-09-02 1983-03-08 Daikin Ind Ltd Fluid controller
JPH03292402A (en) * 1990-04-10 1991-12-24 Kayaba Ind Co Ltd Multifunction spool valve
JP3081968B2 (en) * 1990-11-22 2000-08-28 株式会社小松製作所 Cutoff cancellation mechanism in load sensing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524575U (en) * 1978-08-04 1980-02-16
JPS56141403A (en) * 1980-04-07 1981-11-05 Daikin Ind Ltd Fluid controller
JPH01318774A (en) * 1988-06-17 1989-12-25 Daikin Ind Ltd Device for controlling variable capacity type pump
JPH05106607A (en) * 1991-10-21 1993-04-27 Tokimec Inc Speed/thrust control device for hydraulic actuator
JPH08100805A (en) * 1994-09-29 1996-04-16 Daiden Co Ltd Pressure control valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243248A (en) * 2004-02-24 2005-09-08 Toyota Motor Corp Flow control device of stationary fuel cell system and its design method
JP4624694B2 (en) * 2004-02-24 2011-02-02 トヨタ自動車株式会社 Flow control device for stationary fuel cell system and design method thereof
US7425123B2 (en) * 2005-04-19 2008-09-16 Krauss-Maffei Kunststofftechnik Gmbh Hydraulic mold clamping unit
JP2011073526A (en) * 2009-09-30 2011-04-14 Japan Hamuwaaji Kk Rotary vane type helm machine
WO2018194121A1 (en) * 2017-04-19 2018-10-25 キョーラク株式会社 Molding machine
JP2018176644A (en) * 2017-04-19 2018-11-15 キョーラク株式会社 Molding machine
US11241810B2 (en) 2017-04-19 2022-02-08 Kyoraku Co., Ltd. Molding machine

Also Published As

Publication number Publication date
KR20030029160A (en) 2003-04-11
WO2003004879A1 (en) 2003-01-16
CN1274965C (en) 2006-09-13
KR100781029B1 (en) 2007-11-29
CN1464945A (en) 2003-12-31
EP1403528A4 (en) 2011-06-29
EP1403528A1 (en) 2004-03-31
TW552354B (en) 2003-09-11
JP3783582B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP2003021103A (en) Hydraulic circuit device
US9550521B2 (en) Hydraulic steering arrangement
JP4128482B2 (en) Hydraulic control system
JP2678607B2 (en) Controller for fluid pressure drive of at least two actuators
JPH0450504A (en) Controller for load sensing hydraulic drive circuit
US20180372131A1 (en) Valve Block Arrangement and Method for a Valve Block Arrangement
JP5278517B2 (en) Hydraulic unit
US8616858B2 (en) Dual positive displacement pump pressure regulating control
JPS62270803A (en) Hydraulic circuit
JP2006132783A (en) Hydraulic circuit arrangement
CA1134711A (en) Flow control valve
KR960016819B1 (en) Flow control hydraulic circuit for a pump
JP3752326B2 (en) Control device for hydraulic drive machine
US20100212489A1 (en) Regulation structure for a hydraulic cylinder unit with cascade status regulator
JP2631125B2 (en) Load pressure compensation pump discharge flow control circuit
JPH07293508A (en) Hydraulic control device
US7984611B2 (en) Hydraulic control system
JPS6246886B2 (en)
JPS5928764B2 (en) Hydraulic control device for servo motor
JPH0432404B2 (en)
JPH0970700A (en) Pressure controlling method of hydraulic press device and device therefor
JP2643957B2 (en) Hydraulic pressure control device
JP3307442B2 (en) Load-sensitive hydraulic circuit
JPS5940002A (en) Controlling circuit for oil pressure
JP2000310205A (en) Hydraulic control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R151 Written notification of patent or utility model registration

Ref document number: 3783582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees