JP2005240086A - High strength steel having excellent cold workability and delayed fracture resistance, and high strength steel component having excellent delayed fracture resistance - Google Patents

High strength steel having excellent cold workability and delayed fracture resistance, and high strength steel component having excellent delayed fracture resistance Download PDF

Info

Publication number
JP2005240086A
JP2005240086A JP2004050086A JP2004050086A JP2005240086A JP 2005240086 A JP2005240086 A JP 2005240086A JP 2004050086 A JP2004050086 A JP 2004050086A JP 2004050086 A JP2004050086 A JP 2004050086A JP 2005240086 A JP2005240086 A JP 2005240086A
Authority
JP
Japan
Prior art keywords
less
delayed fracture
strength steel
fracture resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004050086A
Other languages
Japanese (ja)
Other versions
JP4332446B2 (en
Inventor
Manabu Fujita
学 藤田
Yuichi Namimura
裕一 並村
Wataru Urushibara
亘 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004050086A priority Critical patent/JP4332446B2/en
Publication of JP2005240086A publication Critical patent/JP2005240086A/en
Application granted granted Critical
Publication of JP4332446B2 publication Critical patent/JP4332446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide high strength steel whose delayed fracture resistance in an acid environment and an environment to which a thermal load is applied can be improved, and which has excellent cold workability as well, and to provide a high strength component obtained from the high strength steel. <P>SOLUTION: The high strength steel has a composition comprising, by mass, 0.30 to 0.6% C, ≤0.2% Si, 0.1 to 0.8% Mn, ≤0.02% P, ≤0.02% S, >0.5 to 0.95% Cr, 1.3 to 2.2% Mo, 0.05 to 0.15% Ti, 0.1 to 0.50% V, ≤0.5% Al and ≤0.02% N, and the balance Fe with inevitable impurities, and in which the Cr content, Mo content, Ti content and V content satisfy prescribed relations. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高強度ボルトや高強度ばね、高強度PC鋼線、高強度鉄筋などの伸線加工部品を製造するのに有用な高強度鋼、並びに高強度鋼部品に関し、特に引張強さが1300N/mm以上であっても、冷間加工性と耐遅れ破壊特性に優れた高強度鋼および高強度鋼部品に関するものである。 The present invention relates to high-strength steel useful for producing drawn parts such as high-strength bolts, high-strength springs, high-strength PC steel wires, and high-strength rebars, and high-strength steel parts, and particularly has a tensile strength. The present invention relates to a high-strength steel and high-strength steel parts that are excellent in cold workability and delayed fracture resistance even if they are 1300 N / mm 2 or more.

10〜12T(約980〜1372N/mm程度)クラスの高強度ボルト用鋼としては、従来から、SCM435鋼(C:0.32〜0.39%、Si:0.15〜0.35%、Mn:0.55〜0.90%、P:0.030%以下、S:0.030%以下、Cr:0.85〜1.25%、Mo:0.15〜0.35%)や、SCM440鋼(C:0.42〜0.49%、Si:0.15〜0.35%、Mn:0.55〜0.90%、P:0.030%以下、S:0.030%以下、Cr:0.85〜1.25%、Mo:0.15〜0.35%)などが使用されている(以下、前記SCM435鋼とSCM440鋼をまとめて「SCM435鋼等」と称する)。ところが一般に、高強度ボルトは引張強さが1200N/mm程度を超えると遅れ破壊を生じやすくなるため、その使用範囲は制約を受けている。 The 10~12T (about 980~1372N / mm 2 approximately) High-strength bolt steel class, conventionally, SCM435 steel (C: 0.32~0.39%, Si: 0.15~0.35%, Mn: 0.55~0.90%, P: 0.030% or less, S: 0.030% or less, Cr: 0.85-1.25%, Mo: 0.15-0.35%), SCM440 steel (C: 0.42-0.49%, Si: 0.15-0.35%, Mn: 0.55-0.90) %, P: 0.030% or less, S: 0.030% or less, Cr: 0.85 to 1.25%, Mo: 0.15 to 0.35%) and the like (hereinafter, the SCM435 steel and the SCM440 steel are collectively referred to as “SCM435 steel, etc. "). In general, however, high strength bolts tend to cause delayed fracture when their tensile strength exceeds about 1200 N / mm 2 , and their use range is limited.

そこで引張強さが1300N/mm以上の高強度鋼における遅れ破壊特性を改善するため、例えば特許文献1の技術が提案されている。この技術では、従来鋼種よりもMn量を低下させる一方でMo量を増加させることによって、疲労限界拡散性水素量および遅れ破壊限界拡散性水素量を増加させている。 Therefore, in order to improve delayed fracture characteristics in high-strength steel having a tensile strength of 1300 N / mm 2 or more, for example, the technique of Patent Document 1 has been proposed. In this technique, the fatigue limit diffusible hydrogen amount and the delayed fracture limit diffusible hydrogen amount are increased by decreasing the Mn amount and increasing the Mo amount as compared with conventional steel types.

また本発明者らは、非特許文献1において、Vは拡散性水素を多量にトラップできるものの、水素トラップ作用が弱く熱負荷環境にて水素を解放すること、ところがTi炭窒化物は熱負荷によりV炭窒化物トラップから解放された水素を再トラップし、遅れ破壊を抑制することを発表し、V−Tiを複合添加してやれば耐遅れ破壊特性が向上し、熱負荷が加わるような環境では耐遅れ破壊特性がより一層向上することを明らかにしている。   In addition, in the Non-Patent Document 1, the present inventors have disclosed that although V can trap a large amount of diffusible hydrogen, the hydrogen trapping action is weak and hydrogen is released in a heat load environment. Announced to re-trap hydrogen released from V carbonitride traps and suppress delayed fracture. Combined addition of V-Ti improves delayed fracture resistance and is resistant in environments where thermal loads are applied. It has been clarified that the delayed fracture characteristics are further improved.

しかし上記特許文献1や非特許文献1には、高強度鋼の耐遅れ破壊特性を改善することについては記載されているものの、冷間加工性については何ら考慮されていなかった。
特開2002-173739号公報([特許請求の範囲]、[0012]参照) 材料とプロセス,第14巻,2001年,1308頁[CAMPS−ISIJ Vol.14(2001)−1308]
However, although Patent Document 1 and Non-Patent Document 1 describe improving the delayed fracture resistance of high-strength steel, no consideration was given to cold workability.
JP 2002-173739 A (see [Claims] and [0012]) Materials and Processes, Vol. 14, 2001, 1308 [CAMPS-ISIJ Vol. 14 (2001) -1308]

本発明は、この様な状況に鑑みてなされたものであり、その目的は、酸性環境下や熱負荷が加わる環境下における耐遅れ破壊特性を高めることができ、さらには冷間加工性にも優れた高強度鋼を提供することにある。   The present invention has been made in view of such a situation, and its purpose is to improve delayed fracture resistance in an acidic environment or an environment where a thermal load is applied, and further to cold workability. It is to provide an excellent high strength steel.

また、酸性環境下や熱負荷が加わる環境下における耐遅れ破壊特性に優れた高強度鋼部品を提供することも本発明の目的である。   It is also an object of the present invention to provide a high-strength steel part that is excellent in delayed fracture resistance in an acidic environment or an environment where a thermal load is applied.

本発明の他の目的は、酸性環境下や熱負荷が加わる環境下における耐遅れ破壊特性と冷間加工性とを、高いレベルで両立できる高強度鋼および該高強度鋼から得られる高強度部品を提供することにある。   Another object of the present invention is to provide a high-strength steel and a high-strength component obtained from the high-strength steel that can achieve both a delayed fracture resistance and a cold workability in an acidic environment or an environment in which a thermal load is applied. Is to provide.

上記課題を解決することのできた本発明に係る冷間加工性および耐遅れ破壊特性に優れた高強度鋼とは、質量%で(以下、同じ)、C:0.30〜0.6%、Si:0.2%以下、Mn:0.1〜0.8%、P:0.02%以下、S:0.02%以下、Cr:0.5%超、0.95%以下、Mo:1.3〜2.2%、Ti:0.05〜0.15%、V:0.1〜0.50%、Al:0.5%以下およびN:0.02%以下を満たし、残部がFeおよび不可避不純物からなる鋼であり、各成分が下記(1)式および(2)式を満足する点に要旨を有する。
0.3≦10×{exp(0.4×[Cr])/〔exp(2×[Mo])+exp(92×[Ti]×[V])〕}≦0.6 …(1)
[Ti]/[V]≧0.1 …(2)
上記式中、[Cr],[Mo],[Ti],[V]は、それぞれ鋼中に含まれるCr量(質量%),Mo量(質量%),Ti量(質量%)およびV量(質量%)を示す。
The high-strength steel excellent in cold workability and delayed fracture resistance according to the present invention that has solved the above-mentioned problems is in mass% (hereinafter the same), C: 0.30 to 0.6%, Si: 0.2% or less, Mn: 0.1-0.8%, P: 0.02% or less, S: 0.02% or less, Cr: more than 0.5%, 0.95% or less, Mo : 1.3-2.2%, Ti: 0.05-0.15%, V: 0.1-0.50%, Al: 0.5% or less and N: 0.02% or less, The balance is steel composed of Fe and inevitable impurities, and the gist is that each component satisfies the following formulas (1) and (2).
0.3 ≦ 10 × {exp (0.4 × [Cr]) / [exp (2 × [Mo]) + exp (92 × [Ti] × [V])]} ≦ 0.6 (1)
[Ti] / [V] ≧ 0.1 (2)
In the above formula, [Cr], [Mo], [Ti], and [V] are the amount of Cr (mass%), the amount of Mo (mass%), the amount of Ti (mass%) and the amount of V contained in the steel, respectively. (Mass%) is shown.

上記鋼には、更に、他の元素として、
(1)Ni:1.0%以下(0%を含まない)および/またはCu:1%以下(0%を含まない)、
(2)Zr、WおよびNbよりなる群から選択される元素を合計で0.5%以下(0%を含まない)、
(3)B:0.003%以下(0%を含まない)、
等を含むものが好ましい。
In the steel, further, as other elements,
(1) Ni: 1.0% or less (not including 0%) and / or Cu: 1% or less (not including 0%),
(2) A total of 0.5% or less (not including 0%) of elements selected from the group consisting of Zr, W and Nb,
(3) B: 0.003% or less (excluding 0%),
And the like are preferred.

本発明の範囲には、上記の鋼を熱間圧延した後、球状化焼鈍し、次いで所定の形状に冷間加工し、該冷間加工された鋼を加熱温度890〜960℃で焼入れし、次いで加熱温度550℃以上で焼戻し処理することによって得られる耐遅れ破壊特性に優れた高強度鋼部品も含まれる。   Within the scope of the present invention, after hot rolling the above steel, spheroidizing annealing, then cold working into a predetermined shape, the cold worked steel is quenched at a heating temperature of 890-960 ° C, Subsequently, high strength steel parts having excellent delayed fracture resistance obtained by tempering at a heating temperature of 550 ° C. or higher are also included.

また、上記に示される成分組成を有すると共に、下記(a)〜(d)に示す特性を有する耐遅れ破壊特性に優れた高強度鋼部品も本発明の範囲に含まれる。
(a)引張強さ:1300N/mm以上
(b)オーステナイト結晶粒度番号:9以上
(c)pH3.0の5質量%NaCl水溶液に試験片を浸漬させた状態でクロスヘッド速度を2×10−3mm/分として低歪み速度試験を行なうことにより伸びEを測定し、また、NaCl水溶液に浸漬させることなく大気中で行なう以外は前記浸漬させた場合と同様にして低歪み速度試験を行なうことにより伸びEを測定し、測定されたEとEの値から下記(3)式で算出される遅れ破壊特性値αが0.50以下
遅れ破壊特性値α=(1−E/E)×100 …(3)
(d)上記(c)においてNaCl水溶液の代わりに、80℃の蒸留水を用いる以外は同じ条件で伸びEを測定し、また、上記(c)と同様に蒸留水に浸漬させることなく大気中で伸びEを測定し、測定されたEとEの値から下記(4)式で算出される遅れ破壊特性値βが0.50以下
遅れ破壊特性値β=(1−E/E)×100 …(4)
なお、上記「伸び」とは「全伸び(破断伸び)」の意味である。
In addition, high-strength steel parts having the above-described component composition and excellent in delayed fracture resistance having the characteristics shown in the following (a) to (d) are also included in the scope of the present invention.
(A) Tensile strength: 1300 N / mm 2 or more (b) Austenite grain size number: 9 or more (c) A crosshead speed of 2 × 10 with a test piece immersed in a 5 mass% NaCl aqueous solution having a pH of 3.0 the low strain rate test measures the elongation E 1 by performing a -3 mm / min, also a non-performed in the atmosphere in the same way as in is the dipping low strain rate testing without immersion in NaCl solution the elongation E 0 was measured by performing, measured E 1 and E (3) below from a value of 0 delayed fracture characteristic value calculated by the equation alpha is 0.50 or less delayed fracture property value alpha = (1-E 1 / E 0 ) × 100 (3)
(D) Elongation E 2 is measured under the same conditions except that 80 ° C. distilled water is used in place of the NaCl aqueous solution in (c) above, and the atmosphere is not immersed in distilled water as in (c) above. The elongation E 0 is measured in the sample, and the delayed fracture characteristic value β calculated by the following equation (4) from the measured values of E 2 and E 0 is 0.50 or less. Delayed fracture characteristic value β = (1−E 2 / E 0 ) × 100 (4)
The term “elongation” means “total elongation (elongation at break)”.

本発明によれば、酸性環境下や熱負荷が加わる環境下における耐遅れ破壊特性を高めることができ、さらには冷間加工性にも優れた高強度鋼を提供できる。また本発明によれば、酸性環境下や熱負荷が加わる環境下における耐遅れ破壊特性に優れた高強度鋼部品を提供できる。さらに本発明によれば、酸性環境下や熱負荷が加わる環境下における耐遅れ破壊特性と冷間加工性とを、高いレベルで両立できる高強度鋼および該高強度鋼から得られる高強度部品を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high-strength steel which can improve the delayed fracture resistance in the acidic environment and the environment where a heat load is added, and also excellent in cold workability can be provided. Moreover, according to this invention, the high strength steel components excellent in the delayed fracture resistance in the acidic environment and the environment where a heat load is added can be provided. Furthermore, according to the present invention, a high-strength steel capable of achieving both high-level delayed fracture resistance and cold workability in an acidic environment or an environment where a thermal load is applied, and a high-strength component obtained from the high-strength steel are provided. Can be provided.

本発明者等は、高強度鋼の冷間加工性と耐遅れ破壊特性を向上させるべく種々検討を重ねた。その結果、
(I)酸性環境下における耐遅れ破壊特性とCr,Mo,TiおよびVとの関係、及び、冷間加工性とCr,Mo,TiおよびVとの関係が一つの式で統一的に整理できること、
(II)そしてこの整理された式に従えば、Crを0.5%超とした場合でも酸性環境下における耐遅れ破壊特性と冷間加工性とを高レベルで両立できること、
(III)TiとVを複合添加することにより炭化物を効率的に析出させ、この炭化物は強い水素トラップ能力を有するために、熱負荷が加わる環境下における耐遅れ破壊特性を改善できること、
を見出し、本発明を完成した。以下、本発明を詳細に説明する。なお、「酸性環境下における耐遅れ破壊特性」と「熱負荷が加わる環境下における耐遅れ破壊特性」とを総称して「耐遅れ破壊特性」と表現する場合がある。
The inventors have made various studies in order to improve the cold workability and delayed fracture resistance of high-strength steel. as a result,
(I) The relationship between delayed fracture resistance and Cr, Mo, Ti, and V in an acidic environment, and the relationship between cold workability and Cr, Mo, Ti, and V can be unified in one equation. ,
(II) And according to this organized formula, even when Cr exceeds 0.5%, it is possible to achieve both a high level of delayed fracture resistance and cold workability in an acidic environment,
(III) Carbide is efficiently precipitated by adding Ti and V in combination, and since this carbide has a strong hydrogen trapping capability, it can improve delayed fracture resistance in an environment where a thermal load is applied,
The present invention has been completed. Hereinafter, the present invention will be described in detail. Note that “delayed fracture resistance in an acidic environment” and “delayed fracture resistance in an environment where a thermal load is applied” may be collectively referred to as “delayed fracture resistance”.

10〜12T(約980〜1372N/mm程度)クラスの高強度ボルト用鋼としては、従来からSCM435鋼等が使用されているが、このSCM435鋼等に対してMoやTi,Vを複合添加しても酸性環境下における耐遅れ破壊特性の改善は不充分である。前記SCM435鋼等には、焼入性を高めて高強度を確保することを目的として約1%程度のCrが添加されているからである。つまり約1%程度のCrを添加した場合には、鋼材がピット状に腐食し、このピット状部が応力集中部となって酸性環境下における耐遅れ破壊特性が低下するのである。 10~12T The (approximately 980~1372N / mm 2 approximately) High-strength bolt steel class, but conventionally SCM435 steel or the like is used, combined addition Mo and Ti, and V with respect to the SCM435 steel etc. Even so, the improvement of delayed fracture resistance in an acidic environment is insufficient. This is because about 1% of Cr is added to the SCM435 steel or the like for the purpose of enhancing hardenability and ensuring high strength. That is, when about 1% of Cr is added, the steel material is corroded in a pit shape, and the pit-shaped portion becomes a stress concentration portion, which deteriorates the delayed fracture resistance in an acidic environment.

一方、各種鋼を部品に成形加工する際には、冷間加工されるのが一般的であるが、従来では冷間加工性についてあまり考慮されておらず、変形抵抗が大きいまま成形加工されていた。   On the other hand, when various steels are formed into parts, they are generally cold-worked. Conventionally, however, cold workability has not been considered so much, and forming is performed with a large deformation resistance. It was.

そこで本発明者らは、酸性環境下における耐遅れ破壊特性を改善し、しかも冷間加工性を向上させるべく鋭意検討を重ねた。その過程で、成分組成の異なる鋼を用いて冷間加工にて部品を製造し、冷間加工時の変形抵抗を測定すると共に、得られた部品の酸性環境下における遅れ破壊特性値αを測定することにより、冷間加工性と酸性環境下における耐遅れ破壊特性とを評価した。即ち、C:0.39%、Si:0.06%、Mn:0.50%、P:0.006%、S:0.005%、Cr:0.5%超、0.95%以下、Mo:1.3〜2.2%、Ti:0.05〜0.15%、V:0.1〜0.50%、Al:0.037%およびN:0.0037%を含有し、残部がFeおよび不可避不純物からなる鋼を、熱間圧延した後、球状化焼鈍処理した。なお、球状化焼鈍処理は、熱間圧延で得られた線材を、740℃に加熱して5時間保持した後、650℃まで徐冷(冷却速度:約10℃/hr程度)し、次いで大気放冷して行なった。   Therefore, the present inventors have made extensive studies to improve delayed fracture resistance in an acidic environment and to improve cold workability. In the process, parts are manufactured by cold working using steels with different composition, and the deformation resistance during cold working is measured, and the delayed fracture characteristic value α in the acidic environment of the obtained parts is measured. Thus, cold workability and delayed fracture resistance in an acidic environment were evaluated. That is, C: 0.39%, Si: 0.06%, Mn: 0.50%, P: 0.006%, S: 0.005%, Cr: more than 0.5%, 0.95% or less, Mo: 1.3-2.2%, Ti: 0.05-0.15% V: 0.1 to 0.50%, Al: 0.037%, and N: 0.0037%, and the remaining steel composed of Fe and inevitable impurities was hot-rolled and then subjected to spheroidizing annealing. The spheroidizing annealing is performed by heating the wire obtained by hot rolling to 740 ° C. and holding it for 5 hours, and then gradually cooling to 650 ° C. (cooling rate: about 10 ° C./hr), The reaction was allowed to cool.

次いで、冷間加工にて下記実施例に示す圧縮試験片とダンベル状試験片とを作製し、得られた試験片を加熱温度920〜950℃で焼入れ、次いで加熱温度570〜600℃で焼戻し処理した。このとき含有されるCr,Mo,TiおよびV量を種々変更して得られた各試験片について、下記条件で冷間加工時の変形抵抗と酸性環境下における遅れ破壊特性値αを測定し、冷間加工性または酸性環境下における耐遅れ破壊特性とCr,Mo,TiおよびV量との関係について検討した。   Next, a compression test piece and a dumbbell-shaped test piece shown in the following examples are produced by cold working, and the obtained test piece is quenched at a heating temperature of 920 to 950 ° C., and then tempered at a heating temperature of 570 to 600 ° C. did. For each test piece obtained by variously changing the amount of Cr, Mo, Ti and V contained at this time, the deformation resistance during cold working and the delayed fracture characteristic value α in an acidic environment were measured under the following conditions, The relationship between delayed fracture resistance in cold workability or acidic environment and the amount of Cr, Mo, Ti and V was investigated.

冷間加工時の変形抵抗の評価には、上記圧縮試験片を、その両端面を拘束しながら圧縮し、圧下率を70%とするのに必要な応力(測定値)を用いた。なお、変形抵抗は小さいほど冷間加工性に優れており、特に変形抵抗が900N/mm以下であれば、量産可能な金型寿命を確保できる。 For the evaluation of the deformation resistance during cold working, the stress (measured value) necessary for compressing the compression test piece while restraining the both end faces and setting the rolling reduction to 70% was used. Note that the smaller the deformation resistance, the better the cold workability. In particular, when the deformation resistance is 900 N / mm 2 or less, it is possible to secure a mold life capable of mass production.

遅れ破壊特性値αは、次に示す手順で算出した。即ち、HClを用いてpH3.0に調整した水溶液にNaClを添加して得られる5質量%NaCl水溶液に、上記ダンベル状試験片を浸漬させた状態でクロスヘッド速度を2×10−3mm/分として低歪み速度試験(SSRT試験;Slow Strain Rate Technique)を行なうことにより伸びEを測定した。また、前記NaCl水溶液中に浸漬させることなく大気中で、クロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定した。測定されたEとEの値から下記(3)式で遅れ破壊特性値αを算出する。なお、遅れ破壊特性値αが0.50以下であれば酸性環境下における遅れ破壊特性に優れる。
遅れ破壊特性値α=(1−E/E)×100 …(3)
The delayed fracture characteristic value α was calculated by the following procedure. That is, the crosshead speed was set to 2 × 10 −3 mm / min with the dumbbell-shaped test piece immersed in a 5 mass% NaCl aqueous solution obtained by adding NaCl to an aqueous solution adjusted to pH 3.0 using HCl. It was measured elongation E 1 by performing; as minute low strain rate test (Slow strain rate Technique SSRT test). Further, the elongation E 0 was measured by performing an SSRT test at a crosshead speed of 2 × 10 −3 mm / min in the air without being immersed in the NaCl aqueous solution. The delayed fracture characteristic value α is calculated from the measured values of E 1 and E 0 by the following equation (3). If the delayed fracture characteristic value α is 0.50 or less, the delayed fracture characteristic in an acidic environment is excellent.
Delayed fracture characteristic value α = (1−E 1 / E 0 ) × 100 (3)

下記(1a)式で示される複合添加量Xと、測定された部品の変形抵抗または遅れ破壊特性値αとの関係を示すと図1の通りである。図中、◆は冷間加工時の変形抵抗、■は遅れ破壊特性値αの結果を夫々示している。なお、下記式中、[Cr],[Mo],[Ti]および[V]は、それぞれ鋼中に含まれるCr量(質量%),Mo量(質量%),Ti量(質量%)およびV量(質量%)を示す。
複合添加量X=10×{exp(0.4×[Cr])/〔exp(2×[Mo])+exp(92×[Ti]×[V])〕} …(1a)
FIG. 1 shows the relationship between the composite addition amount X expressed by the following formula (1a) and the measured deformation resistance or delayed fracture characteristic value α of the component. In the figure, ◆ indicates the deformation resistance during cold working, and ■ indicates the result of delayed fracture characteristic value α. In the following formula, [Cr], [Mo], [Ti] and [V] are the Cr amount (mass%), Mo amount (mass%), Ti amount (mass%) and V amount (mass%) is shown.
Compound addition amount X = 10 × {exp (0.4 × [Cr]) / [exp (2 × [Mo]) + exp (92 × [Ti] × [V])]} (1a)

図1から明らかな様に、複合添加量Xの値が0.3未満では、遅れ破壊特性値αが小さくなり、酸性環境下における耐遅れ破壊特性に極めて優れたものとなるが、冷間加工時の変形抵抗が大きくなり過ぎ、冷間加工性が悪くなる。一方、複合添加量Xの値が0.6を超えると、冷間加工時の変形抵抗が小さくなり、冷間加工性に極めて優れたものとなるが、遅れ破壊特性値αが大きくなり過ぎ、酸性環境下における耐遅れ破壊特性が劣悪となる。つまり、この図1から明らかな様に、下記(1)式の中辺から算出される値(複合添加量Xの値)は、冷間加工性と酸性環境下における耐遅れ破壊特性の両特性の指標となる。そして本発明の高強度鋼では、下記(1)式として示す如く複合添加量Xの値が0.3〜0.6の範囲になる様に各元素量を調整する必要がある。好ましい下限値は0.30、より好ましい下限値は0.31、さらに好ましい下限値は0.32、特に好ましい下限値は0.35、最も好ましい下限値は0.40である。一方、好ましい上限値は0.60、より好ましい上限値は0.59、さらに好ましい上限値は0.58、特に好ましい上限値は0.55、最も好ましい上限値は0.50である。
0.3≦10×{exp(0.4×[Cr])/〔exp(2×[Mo])+exp(92×[Ti]×[V])〕}≦0.6 …(1)
As apparent from FIG. 1, when the value of the composite addition amount X is less than 0.3, the delayed fracture property value α is small, and the delayed fracture resistance value in an acidic environment is extremely excellent. Deformation resistance becomes too large and cold workability deteriorates. On the other hand, if the value of the composite addition amount X exceeds 0.6, the deformation resistance during cold working becomes small and the cold workability becomes extremely excellent, but the delayed fracture characteristic value α becomes too large, and the acidic environment Underlying delayed fracture resistance is poor. That is, as is clear from FIG. 1, the value calculated from the middle side of the following equation (1) (the value of the composite addition amount X) is a characteristic of both cold workability and delayed fracture resistance in an acidic environment. It becomes an index. In the high-strength steel of the present invention, it is necessary to adjust the amount of each element so that the value of the composite addition amount X is in the range of 0.3 to 0.6 as represented by the following formula (1). The preferred lower limit is 0.30, the more preferred lower limit is 0.31, the still more preferred lower limit is 0.32, the particularly preferred lower limit is 0.35, and the most preferred lower limit is 0.40. On the other hand, the preferable upper limit value is 0.60, the more preferable upper limit value is 0.59, the still more preferable upper limit value is 0.58, the particularly preferable upper limit value is 0.55, and the most preferable upper limit value is 0.50.
0.3 ≦ 10 × {exp (0.4 × [Cr]) / [exp (2 × [Mo]) + exp (92 × [Ti] × [V])]} ≦ 0.6 (1)

上記の結果、鋼の成分組成のうち、鋼中に含まれるCr,Mo,TiおよびV量の関係が、上記(1)式を満足すれば、試験片に加工する際の冷間加工性に優れ、しかも得られた試験片の酸性環境下における耐遅れ破壊特性は良好となり、冷間加工性と酸性環境下における耐遅れ破壊特性との両方のバランスが良好な高強度鋼となることが分かった。即ち、冷間加工性と酸性環境下における耐遅れ破壊特性の両方のバランスを調整するには、Cr量(式中の分子)とMo,TiおよびV量(式中の分母)とのバランスが重要となる。   As a result of the above, if the relationship among the Cr, Mo, Ti and V amounts contained in the steel among the component composition of the steel satisfies the above formula (1), the cold workability when processing into the test piece is improved. It was found that the obtained specimens had good delayed fracture resistance in an acidic environment and a high strength steel with a good balance between cold workability and delayed fracture resistance in an acidic environment. It was. That is, in order to adjust the balance between cold workability and delayed fracture resistance in an acidic environment, the balance between the Cr content (numerator in the formula) and the amounts of Mo, Ti, and V (denominator in the formula) It becomes important.

ところで、Vは、高温焼入れ高温焼戻しによって効率良く微細VCを生成し、析出硬化によって強度を向上できる点で有用である。さらには鋼中に存在する水素をトラップする効果を有する。しかしVCの水素トラップ能力は比較的弱く、応力や熱が負荷されるとトラップした水素を解放してしまい、逆に拡散性水素量を増加させ、熱負荷が加わる環境下における耐遅れ破壊特性を低下させる要因となる。一方、Tiも析出硬化型の元素であるが、その炭化物は強いトラップ能力を有しており、高い応力や熱が負荷されても水素を解放しにくい性質を有する。   By the way, V is useful in that fine VC can be efficiently generated by high-temperature quenching and high-temperature tempering, and strength can be improved by precipitation hardening. Furthermore, it has the effect of trapping hydrogen present in the steel. However, the hydrogen trapping capability of VC is relatively weak. When stress or heat is applied, the trapped hydrogen is released, and conversely, the amount of diffusible hydrogen is increased, resulting in delayed fracture resistance in an environment where heat load is applied. It becomes a factor to reduce. On the other hand, Ti is also a precipitation hardening type element, but its carbide has a strong trapping ability and has a property of not releasing hydrogen even when high stress or heat is applied.

そこで本発明では、所定量のTiとVを複合添加する。即ち、Vの単独添加では水素トラップ能力が不十分であり、それを補うためにTiの添加が必須となる。TiとVを複合添加することによりTi−V複合炭化物やTi炭化物、V炭化物を形成し、効率的に炭化物を析出することができると共に、強いトラップ能力を持つ炭化物群を形成できる。   Therefore, in the present invention, a predetermined amount of Ti and V are added in combination. In other words, the hydrogen trapping capability is insufficient when V is added alone, and the addition of Ti is indispensable to make up for it. By adding Ti and V in combination, Ti-V composite carbide, Ti carbide, and V carbide can be formed, and carbide can be precipitated efficiently, and a carbide group having a strong trapping capability can be formed.

こうした観点から本発明者らは、成分組成の異なる鋼を用いて冷間加工にて部品を製造し、得られた部品の熱負荷が加わる環境下における遅れ破壊特性値βを測定することにより、熱負荷が加わる環境下における耐遅れ破壊特性を評価した。即ち、上記で作製したダンベル状試験片を、上記と同じ条件で焼入れ、焼戻し処理した。このとき含有されるCr,Mo,TiおよびV量を種々変更して得られた試験片について、下記条件で熱負荷が加わる環境下における遅れ破壊特性値βを測定し、熱負荷が加わる環境下における耐遅れ破壊特性と、TiとVの比(Ti/V)との関係について検討した。   From these viewpoints, the present inventors manufactured parts by cold working using steels having different component compositions, and measured the delayed fracture characteristic value β in an environment where a thermal load of the obtained parts is applied, Delayed fracture resistance was evaluated in an environment where heat load was applied. That is, the dumbbell-shaped test piece produced above was quenched and tempered under the same conditions as described above. For the test pieces obtained by variously changing the amounts of Cr, Mo, Ti and V contained at this time, the delayed fracture characteristic value β was measured under an environment where a thermal load was applied under the following conditions, and under the environment where the thermal load was applied The relationship between the delayed fracture resistance and the ratio of Ti to V (Ti / V) was examined.

遅れ破壊特性値βは、次に示す手順で算出した。即ち、80℃の蒸留水に試験片を浸漬させた状態でクロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定する。また、蒸留水に浸漬させることなく試験片を大気中でクロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定する。測定されたEとEの値から下記(4)式で遅れ破壊特性値βを算出する。なお、遅れ破壊特性値βが0.50以下であれば熱負荷が加わる環境下における耐遅れ破壊特性に優れる。
遅れ破壊特性値β=(1−E/E)×100 …(4)
The delayed fracture characteristic value β was calculated by the following procedure. That is, the elongation E 2 is measured by performing an SSRT test with a crosshead speed of 2 × 10 −3 mm / min with the test piece immersed in distilled water at 80 ° C. Further, the elongation E 0 is measured by performing an SSRT test with the crosshead speed of 2 × 10 −3 mm / min in the air without immersing the sample in distilled water. The delayed fracture characteristic value β is calculated from the measured values of E 2 and E 0 by the following equation (4). If the delayed fracture characteristic value β is 0.50 or less, the delayed fracture resistance is excellent in an environment where a thermal load is applied.
Delayed fracture characteristic value β = (1−E 2 / E 0 ) × 100 (4)

下記(2a)式で示されるTiとVの比([Ti]/[V])と、測定された部品の遅れ破壊特性値βとの関係を示すと図2の通りである。なお、下記式中、[Ti]と[V]は、それぞれ鋼中に含まれるTi量(質量%)とV量(質量%)を示す。
TiとVの比=[Ti]/[V] …(2a)
FIG. 2 shows the relationship between the ratio of Ti to V ([Ti] / [V]) expressed by the following equation (2a) and the measured delayed fracture characteristic value β of the component. In the following formulae, [Ti] and [V] represent the Ti amount (mass%) and V amount (mass%) contained in the steel, respectively.
Ratio of Ti and V = [Ti] / [V] (2a)

図2から明らかな様に、TiとVの比が0.1未満では、遅れ破壊特性値βが大きくなり過ぎ、熱負荷が加わる環境下における耐遅れ破壊特性が劣悪となる。そして本発明の高強度鋼では、下記(2)式として示す如くTiとVの比が0.1以上となる様に各元素量を調整する必要がある。好ましくは0.10以上、より好ましくは0.100以上、さらに好ましくは0.2以上、特に好ましくは0.3以上である。
[Ti]/[V]≧0.1 …(2)
As apparent from FIG. 2, when the ratio of Ti and V is less than 0.1, the delayed fracture characteristic value β becomes too large, and the delayed fracture resistance in an environment where a thermal load is applied becomes poor. In the high-strength steel of the present invention, it is necessary to adjust the amount of each element so that the ratio of Ti and V is 0.1 or more as shown in the following formula (2). Preferably it is 0.10 or more, More preferably, it is 0.100 or more, More preferably, it is 0.2 or more, Most preferably, it is 0.3 or more.
[Ti] / [V] ≧ 0.1 (2)

次に、本発明に係る高強度鋼の成分組成を限定した理由について説明する。   Next, the reason for limiting the component composition of the high-strength steel according to the present invention will be described.

本発明の高強度鋼は、C:0.30〜0.6%、Si:0.2%以下、Mn:0.1〜0.8%、P:0.02%以下、S:0.02%以下、Cr:0.5%超、0.95%以下、Mo:1.3〜2.2%、Ti:0.05〜0.15%、V:0.1〜0.50%、Al:0.5%以下およびN:0.02%以下を満たすものである。   The high-strength steel of the present invention includes C: 0.30 to 0.6%, Si: 0.2% or less, Mn: 0.1 to 0.8%, P: 0.02% or less, S: 0.02% or less, Cr: more than 0.5%, 0.95% or less, Mo: 1.3-2.2%, Ti: 0.05-0.15%, V: 0.1-0.50%, Al: 0.5% or less and N: 0.02% or less are satisfied.

C:0.30〜0.6%
Cは、鋼の焼入性と強度確保のために必要な元素である。特に本発明の鋼では、後述する様に、MoやTi,Vなどの析出硬化型元素を含有し、高温焼入れによってこれら元素を固溶させ、高温焼戻しによってこれらの元素を析出させている。そのため高温焼戻しを施しても所定の引張強度を確保するため、C量は0.30%以上とする。好ましくは0.35%以上、より好ましくは0.38%以上である。しかしCが過剰になると、鋼の靭性が劣化するために耐遅れ破壊特性が低下し、さらには冷間加工性も悪化するため、C量の上限は0.6%とする。好ましくは0.55%以下、より好ましくは0.48%以下、さらに好ましくは0.40%以下である。
C: 0.30-0.6%
C is an element necessary for ensuring the hardenability and strength of steel. In particular, the steel of the present invention contains precipitation hardening elements such as Mo, Ti, and V, as described later, and these elements are dissolved by high temperature quenching, and these elements are precipitated by high temperature tempering. Therefore, in order to ensure a predetermined tensile strength even after high temperature tempering, the C content is set to 0.30% or more. Preferably it is 0.35% or more, more preferably 0.38% or more. However, if C is excessive, the toughness of the steel deteriorates, so the delayed fracture resistance deteriorates, and further the cold workability deteriorates. Therefore, the upper limit of C content is 0.6%. Preferably it is 0.55% or less, More preferably, it is 0.48% or less, More preferably, it is 0.40% or less.

Si:0.2%以下
Siは、脱酸剤として添加されるために鋼中に残存しているが、Siの残存量が増大するにつれて冷間加工性が低下し易くなり、さらには焼入れ等の熱処理時における粒界酸化を助長し、耐遅れ破壊特性も低下し易くなる。よってSi量は0.2%以下とする。好ましくは0.1%以下、より好ましくは0.07%以下、さらに好ましくは0.05%以下、特に好ましくは0.03%以下とする。最も好ましくは0%であるが、現実的にはSi量が0%となることはない。
Si: 0.2% or less Since Si is added as a deoxidizer, it remains in the steel, but as the remaining amount of Si increases, the cold workability tends to decrease, and furthermore, heat treatment such as quenching. Grain boundary oxidation at the time is promoted, and the delayed fracture resistance is also easily deteriorated. Therefore, the Si content is 0.2% or less. It is preferably 0.1% or less, more preferably 0.07% or less, further preferably 0.05% or less, and particularly preferably 0.03% or less. Most preferably, it is 0%, but in reality, the Si amount never becomes 0%.

Mn:0.1〜0.8%
Mnは、焼入性向上元素であり、高強度を達成するのに有用である。Mn量は0.1%以上、好ましくは0.3%以上、より好ましくは0.35%以上、さらに好ましくは0.40%以上とする。しかしMnが過剰になると、冷間加工性が低下し易くなり、さらには粒界に偏析して粒界強度を低下させ、耐遅れ破壊特性に悪影響を及ぼす。よってMn量は0.8%以下、好ましくは0.6%以下、より好ましくは0.55%以下、さらに好ましくは0.50%以下とする。
Mn: 0.1 to 0.8%
Mn is a hardenability improving element and is useful for achieving high strength. The amount of Mn is 0.1% or more, preferably 0.3% or more, more preferably 0.35% or more, and further preferably 0.40% or more. However, when Mn is excessive, cold workability is liable to deteriorate, and further segregates at the grain boundary to lower the grain boundary strength, which adversely affects the delayed fracture resistance. Therefore, the Mn content is 0.8% or less, preferably 0.6% or less, more preferably 0.55% or less, and still more preferably 0.50% or less.

P:0.02%以下
Pは、不純物として鋼中に残存する元素であり、粒界偏析を起こして耐遅れ破壊特性を低下させ易い。よってP量は0.02%以下とする。好ましくは0.015%以下、より好ましくは0.010%以下、さらに好ましくは0.005%以下である。最も好ましくは0%であるが、現実的にはPが0%となることはない。
P: 0.02% or less P is an element remaining in the steel as an impurity, and tends to cause segregation at the grain boundary to deteriorate the delayed fracture resistance. Therefore, the P content is 0.02% or less. Preferably it is 0.015% or less, More preferably, it is 0.010% or less, More preferably, it is 0.005% or less. Most preferably, it is 0%, but P is not practically 0%.

S:0.02%以下
Sも不純物として鋼中に残存する元素であり、MnSを形成して応力集中箇所となって耐遅れ破壊特性を低下させ易い。よってS量は0.02%以下とし、好ましくは0.015%以下、より好ましくは0.010%以下、さらに好ましくは0.005%以下である。最も好ましくは0%であるが、現実的にはS量が0%となることはない。
S: 0.02% or less S is also an element remaining in the steel as an impurity. MnS is formed and becomes a stress-concentrated portion, which tends to deteriorate the delayed fracture resistance. Therefore, the S content is 0.02% or less, preferably 0.015% or less, more preferably 0.010% or less, and still more preferably 0.005% or less. Most preferably, it is 0%, but in reality, the S amount never becomes 0%.

Cr:0.5%超、0.95%以下
本発明の高強度鋼では、所定量のMo,VおよびTiを複合添加しているため、粒界が強化され、しかも拡散性水素のトラップ能力に優れたものとなり、さらにCr,Mo,TiおよびV量が上記(1)式を満足することによって冷間加工性と酸性環境下における耐遅れ破壊特性との両立を実現できる。しかしCr量を0.5%以下まで低減すると却って冷間加工性を悪化させる。そこでCr量は0.5%超とする。好ましくは0.52%以上であり、より好ましくは0.55%以上である。しかしCr量が過剰になると、上記(1)式の関係を満足したとしても酸性環境下における耐遅れ破壊特性向上効果が阻害されるため、Cr量の上限は0.95%とする。好ましくは0.80%以下であり、より好ましくは0.75%以下である。
Cr: More than 0.5%, 0.95% or less In the high-strength steel of the present invention, a predetermined amount of Mo, V and Ti are added in combination, so that the grain boundaries are strengthened and the trapping ability of diffusible hydrogen is excellent. Further, when the Cr, Mo, Ti and V contents satisfy the above formula (1), it is possible to realize both cold workability and delayed fracture resistance in an acidic environment. However, if the Cr content is reduced to 0.5% or less, the cold workability is worsened. Therefore, the Cr content is over 0.5%. Preferably it is 0.52% or more, more preferably 0.55% or more. However, if the amount of Cr is excessive, the effect of improving delayed fracture resistance in an acidic environment is hindered even if the relationship of the above formula (1) is satisfied, so the upper limit of Cr amount is 0.95%. Preferably it is 0.80% or less, More preferably, it is 0.75% or less.

Mo:1.3〜2.2%
Moは、焼入性向上元素であり、しかも析出硬化型元素であるため強度確保のために有用である。またMoは粒界強化作用を有しており、上述した如くCrやTi,Vと併せてバランス良く添加することにより酸性環境下における耐遅れ破壊特性を向上させる。よって本発明では、Moは1.3%以上含有させる。好ましくは1.35%以上、より好ましくは1.45%以上である。しかしMoが過剰になると冷間加工性が低下する。そのためMoは2.2%以下とする。好ましくは2.20%以下、より好ましくは2.0%以下、さらに好ましくは1.80%以下である。
Mo: 1.3-2.2%
Mo is a hardenability improving element and is a precipitation hardening type element, so it is useful for securing strength. Mo has a grain boundary strengthening action, and improves the delayed fracture resistance in an acidic environment by adding it in a well-balanced manner together with Cr, Ti, and V as described above. Therefore, in the present invention, Mo is contained by 1.3% or more. Preferably it is 1.35% or more, more preferably 1.45% or more. However, when Mo becomes excessive, cold workability will fall. Therefore, Mo is 2.2% or less. Preferably it is 2.20% or less, More preferably, it is 2.0% or less, More preferably, it is 1.80% or less.

Ti:0.05〜0.15%およびV:0.1〜0.50%
Tiの添加量は、析出硬化作用および水素トラップ量等の観点から0.05%以上とする。好ましくは0.05%を超えて含有するのがよく、より好ましくは0.060%以上、より好ましくは0.070%以上である。またVの添加量も、析出硬化作用及び水素トラップ能等の観点から0.1%以上とする。好ましくは0.12%以上である。
Ti: 0.05 to 0.15% and V: 0.1 to 0.50%
The amount of Ti added is 0.05% or more from the viewpoint of precipitation hardening action, hydrogen trap amount, and the like. Preferably it is contained in excess of 0.05%, more preferably 0.060% or more, more preferably 0.070% or more. Further, the amount of V added is also set to 0.1% or more from the viewpoint of precipitation hardening action and hydrogen trapping ability. Preferably it is 0.12% or more.

しかしTiやVを過剰添加すると、冷間加工性が著しく低下する。さらには鋼の溶製時に生成するTiやVの巨大炭化物が焼入れの加熱の際に十分に固溶せず、鋼の靭性を劣化させる。そのため熱負荷が加わる環境下における耐遅れ破壊特性も低下させることがある。そこでTi量は0.15%以下とする。好ましくは0.10%以下、より好ましくは0.08%以下である。またV量は0.50%以下とする。好ましくは0.4%以下、より好ましくは0.3%以下である。   However, when Ti or V is excessively added, the cold workability is remarkably lowered. Furthermore, the Ti and V giant carbides produced during the melting of the steel do not dissolve sufficiently during the heating of the quenching and deteriorate the toughness of the steel. For this reason, the delayed fracture resistance in an environment where a thermal load is applied may be lowered. Therefore, the Ti content is 0.15% or less. Preferably it is 0.10% or less, More preferably, it is 0.08% or less. V amount is 0.50% or less. Preferably it is 0.4% or less, More preferably, it is 0.3% or less.

Al:0.5%以下
Alは、脱酸剤として添加されるために鋼中に残存しており、さらには錆の緻密化による耐食性の向上作用をも期待できる元素であるため積極的に残存させる場合もある。Al量の下限は特に限定されないが、脱酸剤としての利用を考慮すると現実的には0%超であり、耐食性向上作用を発揮させる観点からすれば、0.01%以上とすることが好ましく、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。但し、Alの残存量が増大するにつれて酸化物系介在物量が増加し、耐遅れ破壊特性が低下し易くなる。そのためAl量は0.5%以下とする。好ましくは0.3%以下、より好ましくは0.1%以下、さらに好ましくは0.05%以下、特に好ましくは0.050%以下である。
Al: 0.5% or less When Al is added as a deoxidizer, it remains in the steel. Furthermore, since it is an element that can also be expected to improve the corrosion resistance by densification of rust, it remains actively. There is also. Although the lower limit of the amount of Al is not particularly limited, it is practically more than 0% when considering use as a deoxidizer, and from the viewpoint of exerting an effect of improving corrosion resistance, it is preferably 0.01% or more, more Preferably it is 0.02% or more, more preferably 0.03% or more. However, as the remaining amount of Al increases, the amount of oxide inclusions increases, and the delayed fracture resistance tends to deteriorate. Therefore, the Al content is 0.5% or less. Preferably it is 0.3% or less, More preferably, it is 0.1% or less, More preferably, it is 0.05% or less, Most preferably, it is 0.050% or less.

N:0.02%以下
Nは、遅れ破壊特性に対して有害であり、極力少なくすることが望ましいため、N量は0.02%以下とする。好ましくは0.015%以下、より好ましくは0.010%以下、さらに好ましくは0.007%以下、特に好ましくは0.005%以下である。最も好ましくは0%であるが、現実的にはN量が0%となることはない。
N: 0.02% or less N is harmful to delayed fracture characteristics, and it is desirable to reduce it as much as possible. Therefore, the N content is 0.02% or less. Preferably it is 0.015% or less, More preferably, it is 0.010% or less, More preferably, it is 0.007% or less, Most preferably, it is 0.005% or less. Most preferably, it is 0%, but in reality, the N amount never becomes 0%.

本発明に係る高強度鋼の残部は、Feおよび不可避不純物[例えば、O(酸素)など]からなるが、更に他の元素としては、
(a)耐食性向上元素として、Ni:1.0%以下(0%を含まない)および/またはCu:1%以下(0%を含まない)、
(b)微細炭窒化物形成元素として、Zr、WおよびNbよりなる群から選択される1種以上を合計で0.5%以下(0%を含まない)、
(c)B:0.003%以下(0%を含まない)、
等を含むものであってもよい。この様な範囲を規定した理由を下記に示す。
The balance of the high-strength steel according to the present invention is composed of Fe and inevitable impurities [for example, O (oxygen), etc.].
(A) As a corrosion resistance improving element, Ni: 1.0% or less (not including 0%) and / or Cu: 1% or less (not including 0%),
(B) As a fine carbonitride-forming element, a total of one or more selected from the group consisting of Zr, W and Nb is 0.5% or less (excluding 0%),
(C) B: 0.003% or less (excluding 0%),
Etc. may be included. The reason for specifying such a range is shown below.

Ni:1.0%以下(0%を含まない)
Niは、鋼の靭性および焼入性を高める作用を有すると共に、耐食性を向上して水素浸入を抑制するため、積極的に添加することが望ましい元素である。Niを積極添加する場合(即ち、0%超とする場合)は、含有量を0.1%以上とすることが好ましく、より好ましくは0.2%以上、さらに好ましくは0.3%以上である。しかしNiを過剰に添加すると効果が飽和してコストアップを招くだけでなく、冷間加工性を却って低下させる。従ってNiを積極添加する場合であってもその上限は1.0%とする。より好ましくは0.6%以下、さらに好ましくは0.55%以下、特に好ましくは0.50%以下である。
Ni: 1.0% or less (excluding 0%)
Ni is an element that is desirably added positively in order to increase the toughness and hardenability of the steel and improve corrosion resistance and suppress hydrogen intrusion. When Ni is positively added (that is, when it exceeds 0%), the content is preferably 0.1% or more, more preferably 0.2% or more, and further preferably 0.3% or more. However, if Ni is added excessively, the effect is saturated and not only the cost is increased, but also cold workability is decreased. Therefore, even when Ni is positively added, the upper limit is made 1.0%. More preferably, it is 0.6% or less, more preferably 0.55% or less, and particularly preferably 0.50% or less.

Cu:1%以下(0%を含まない)
Cuは、鋼の耐食性を高め、耐遅れ破壊特性に悪影響をおよぼす水素の浸入を抑制するのに有用であるため、積極的に添加するのが望ましい元素である。Cuを積極的に添加する場合(即ち、0%超とする場合)は、含有量を0.1%以上とすることが好ましく、より好ましくは0.3%以上である。しかしCuを過剰に添加すると効果が飽和するだけでなく、鋼の靭性を却って低下させる。よってCuを積極添加する場合であってもその上限は1%とする。より好ましくは0.7%以下、さらに好ましくは0.6%以下である。
Cu: 1% or less (excluding 0%)
Cu is an element that is desirably added positively because it is useful for enhancing the corrosion resistance of steel and suppressing the intrusion of hydrogen, which adversely affects delayed fracture resistance. When Cu is positively added (that is, when it is more than 0%), the content is preferably 0.1% or more, more preferably 0.3% or more. However, when Cu is added excessively, not only the effect is saturated, but also the toughness of the steel is reduced. Therefore, even when Cu is positively added, the upper limit is made 1%. More preferably, it is 0.7% or less, More preferably, it is 0.6% or less.

Zr、WおよびNbよりなる群から選択される元素を合計で0.5%以下(0%を含まない)
Zr、WおよびNbは、上記Tiと同様に、微細な炭窒化物を形成し、耐遅れ破壊特性の向上に寄与するため、積極的に添加するのが望ましい。またこれらの元素の窒化物や炭化物は、結晶粒の微細化に有効である。Zr、WおよびNbを積極的に添加する場合(即ち、0%超とする場合)には、これら元素の添加量はいずれも0.03%以上とすることが好ましく、より好ましくは0.05%以上である。しかしZr、WおよびNbを過剰に添加すると、耐遅れ破壊特性や靭性を阻害する。よってZr、WおよびNbを積極的に添加する場合は、添加量の合計を0.5%以下とすることが好ましく、より好ましくは0.3%以下、さらに好ましくは0.1%以下である。
0.5% or less in total of elements selected from the group consisting of Zr, W and Nb (excluding 0%)
Zr, W and Nb, like Ti, form fine carbonitrides and contribute to the improvement of delayed fracture resistance, so it is desirable to add them positively. In addition, nitrides and carbides of these elements are effective for refining crystal grains. When Zr, W, and Nb are positively added (that is, when the content is more than 0%), the addition amount of these elements is preferably 0.03% or more, more preferably 0.05% or more. . However, when Zr, W and Nb are added excessively, delayed fracture resistance and toughness are hindered. Therefore, when Zr, W and Nb are positively added, the total addition amount is preferably 0.5% or less, more preferably 0.3% or less, and further preferably 0.1% or less.

B:0.003%以下(0%を含まない)
Bは、焼入性や焼入れ焼戻し後の靭性、疲労特性などを向上させるのに有用であるため、積極的に添加するのが望ましい元素である。Bを積極添加する場合(即ち、0%超とする場合)には、含有量を0.0005%以上とすることが好ましく、より好ましくは0.0010%以上である。しかしBを過剰に添加すると、却って靭性を阻害するため、Bを積極添加する場合であってもその上限は0.003%とする。より好ましくは0.0025%以下であり、さらに好ましくは0.0020%以下程度である。
B: 0.003% or less (excluding 0%)
B is an element desirably added positively because it is useful for improving hardenability, toughness after quenching and tempering, fatigue characteristics, and the like. When B is positively added (that is, when it exceeds 0%), the content is preferably 0.0005% or more, more preferably 0.0010% or more. However, if B is added excessively, the toughness is adversely affected, so even if B is positively added, the upper limit is made 0.003%. More preferably, it is 0.0025% or less, More preferably, it is about 0.0020% or less.

上記化学成分を有する鋼は、球状化焼鈍後における冷間加工性に優れているため、種々の形態に簡便に加工できる。例えば、熱間加工(例えば、熱間圧延など)した後、球状化焼鈍処理し、次いで冷間加工(例えば、冷間伸線や冷間鍛造など)すれば種々の部品の形状に簡便に加工できる。本発明に係る高強度鋼は冷間加工性に優れているため、冷間加工時に金型工具寿命を劣化させることなく、歩留まり高く加工できる。なお、上記冷間加工として例示した冷間伸線と冷間鍛造は、いずれか一方を採用して行なってもよいし、両方を組み合わせて行なってもよい。また、上記球状化焼鈍と冷間加工の間で、被膜処理(例えば、酸洗や潤滑被膜処理など)を施すのも好ましい態様である。   Since the steel having the above chemical components is excellent in cold workability after spheroidizing annealing, it can be easily processed into various forms. For example, after hot working (for example, hot rolling), spheroidizing annealing treatment, and then cold working (for example, cold drawing, cold forging, etc.), various shapes of parts can be easily processed. it can. Since the high-strength steel according to the present invention is excellent in cold workability, it can be processed with a high yield without deteriorating the tool life during cold working. Note that the cold wire drawing and the cold forging exemplified as the cold working may be performed by adopting either one or a combination of both. It is also a preferable aspect that a film treatment (for example, pickling or lubricating film treatment) is performed between the spheroidizing annealing and the cold working.

冷間加工にて得られた加工品は、焼入れ・焼戻しすることによって高強度の鋼部品が得られる。なお、上記化学成分を有する鋼は、潜在的に高強度性と耐遅れ破壊特性に優れているが、これら高強度性と耐遅れ破壊特性を有効に発揮する種々の高強度鋼部品を製造するには、焼入れ条件と焼戻し条件を適切に設定する必要がある。   High-strength steel parts can be obtained by quenching and tempering the processed product obtained by cold working. Although steels having the above chemical components are potentially excellent in high strength and delayed fracture resistance, various high strength steel parts that effectively exhibit these high strength and delayed fracture resistance are manufactured. Therefore, it is necessary to appropriately set quenching conditions and tempering conditions.

即ち上記鋼は、MoやV、Tiなどの析出硬化型元素を所定量含有しているため、焼入れ加熱時には析出硬化型元素を固溶させ、焼戻し時には微細炭化物として析出させる必要がある。またMoやV、Tiの微細炭化物は、強度向上のみならず、耐遅れ破壊特性の向上にも有用である。さらに所定の耐遅れ破壊特性を達成するには、焼入れ時に結晶粒が粗大化するのを防止しなければならない。   That is, since the steel contains a predetermined amount of precipitation hardening type elements such as Mo, V, and Ti, it is necessary to make the precipitation hardening type element form a solid solution during quenching heating and to precipitate as fine carbides during tempering. Further, fine carbides of Mo, V, and Ti are useful not only for improving strength but also for improving delayed fracture resistance. Furthermore, in order to achieve a predetermined delayed fracture resistance, the crystal grains must be prevented from coarsening during quenching.

こうした観点から、具体的には、焼入れ時の加熱温度を890〜960℃とする。焼入れ温度が低すぎると、析出硬化型元素が鋼中に充分に固溶せず、焼戻しをしても充分な炭化物析出量を確保できず、引張強度が低下する。さらには焼入れ前の組織が球状化組織であるため、加熱不足になると球状化炭化物が溶け残り、この点からも引張強度が低下する。一方、焼入れ温度が高すぎると、結晶粒が粗大化して耐遅れ破壊特性が劣化する。好ましい加熱温度は900℃以上(より好ましくは910℃以上、さらに好ましくは920℃以上)、950℃以下(より好ましくは945℃以下、さらに好ましくは940℃以下)である。   From such a viewpoint, specifically, the heating temperature during quenching is set to 890 to 960 ° C. If the quenching temperature is too low, the precipitation hardening type element is not sufficiently dissolved in the steel, and even if tempering is performed, a sufficient amount of precipitated carbide cannot be secured, and the tensile strength is lowered. Furthermore, since the structure before quenching is a spheroidized structure, the spheroidized carbide remains undissolved when heating is insufficient, and the tensile strength also decreases from this point. On the other hand, if the quenching temperature is too high, the crystal grains become coarse and the delayed fracture resistance deteriorates. Preferred heating temperatures are 900 ° C. or higher (more preferably 910 ° C. or higher, more preferably 920 ° C. or higher) and 950 ° C. or lower (more preferably 945 ° C. or lower, more preferably 940 ° C. or lower).

焼入れ後の焼戻し条件としては、焼戻し時の加熱温度は550℃以上とする。焼戻し温度が低すぎると、析出硬化型元素が微細炭化物として充分に析出せず、引張強度が高くならない。特にMoやTi、Vの微細炭化物が充分に析出しないと、耐遅れ破壊特性も低下することとなる。好ましい焼戻し温度は570℃以上(好ましくは580℃以上、さらに好ましくは600℃以上)である。焼戻し温度の上限は特に限定されないが、一般的には650℃以下程度とすることが好ましく、より好ましくは625℃以下程度である。   As tempering conditions after quenching, the heating temperature during tempering is 550 ° C. or higher. If the tempering temperature is too low, the precipitation hardening type element does not sufficiently precipitate as fine carbides, and the tensile strength does not increase. In particular, if the fine carbides of Mo, Ti, and V are not sufficiently precipitated, the delayed fracture resistance is also deteriorated. A preferable tempering temperature is 570 ° C. or higher (preferably 580 ° C. or higher, more preferably 600 ° C. or higher). The upper limit of the tempering temperature is not particularly limited, but generally it is preferably about 650 ° C. or less, more preferably about 625 ° C. or less.

なお上記焼入れ時の加熱温度と焼戻し時の加熱温度以外の条件は、析出硬化型元素の特性を考慮して適宜設定すればよいが、例えば、以下の範囲から選択できる。   The conditions other than the heating temperature at the time of quenching and the heating temperature at the time of tempering may be appropriately set in consideration of the characteristics of the precipitation hardening element, and can be selected from the following ranges, for example.

[焼入れ条件]
加熱後の保持時間:10分以上(例えば、20分以上)、1時間以下(例えば、40分以下)
冷却条件:油冷、水冷または空冷
[焼戻し条件]
加熱後の保持時間:30分以上(例えば、70分以上)、3時間以下(例えば、2時間以下)
冷却条件:油冷、水冷または空冷
[Hardening conditions]
Holding time after heating: 10 minutes or more (for example, 20 minutes or more), 1 hour or less (for example, 40 minutes or less)
Cooling conditions: oil cooling, water cooling or air cooling [tempering conditions]
Holding time after heating: 30 minutes or more (for example, 70 minutes or more), 3 hours or less (for example, 2 hours or less)
Cooling conditions: oil cooling, water cooling or air cooling

上述のようにして得られた高強度鋼部品は、引張強さに優れているだけでなく、オーステナイト結晶粒も粗大化していないため、高負荷応力下や高温下での耐遅れ破壊特性にも優れており、下記に示す物性を有する。   The high-strength steel parts obtained as described above are not only excellent in tensile strength, but also austenite crystal grains are not coarsened, so that they are also resistant to delayed fracture under high load stress and high temperature. Excellent and has the following physical properties.

[引張強さ]
本発明に係る高強度鋼部品は、引張強さが1300N/mm以上の部品である。なかでも1400N/mm以上のものを好ましく用いることができ、より好ましくは1500N/mm以上、さらに好ましくは1600N/mm以上である。
[Tensile strength]
The high-strength steel part according to the present invention is a part having a tensile strength of 1300 N / mm 2 or more. Among them 1400 N / mm 2 or more of can be used, more preferably 1500 N / mm 2 or more, further preferably 1600 N / mm 2 or more.

[オーステナイト結晶粒度番号]
本発明に係る高強度鋼部品のオーステナイト結晶粒度番号は9以上である。なかでも10以上のものを好ましく用いることが好ましく、より好ましくは11以上である。
[Austenite grain size number]
The high-strength steel part according to the present invention has an austenite grain size number of 9 or more. Of these, those of 10 or more are preferably used, more preferably 11 or more.

[酸性環境下における耐遅れ破壊特性]
HClを用いてpH3.0に調整した水溶液にNaClを添加して得られる5質量%NaCl水溶液に、試験片を浸漬させた状態でクロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定する。またNaCl水溶液に浸漬させることなく大気中でクロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定する。測定されたEとEの値から下記(3)式で遅れ破壊特性値αを算出し、この値αが0.50以下のものを本発明に係る高強度鋼部品とする。
遅れ破壊特性値α=(1−E/E)×100 …(3)
[Delayed fracture resistance in acidic environment]
The SSRT test was conducted at a crosshead speed of 2 × 10 −3 mm / min with a test piece immersed in a 5 mass% NaCl aqueous solution obtained by adding NaCl to an aqueous solution adjusted to pH 3.0 using HCl. measuring the elongation E 1 by performing. Further, the elongation E 0 is measured by performing an SSRT test in the air at a crosshead speed of 2 × 10 −3 mm / min without being immersed in an aqueous NaCl solution. The delayed fracture characteristic value α is calculated from the measured values of E 1 and E 0 by the following equation (3), and the one having this value α of 0.50 or less is used as the high strength steel part according to the present invention.
Delayed fracture characteristic value α = (1−E 1 / E 0 ) × 100 (3)

[熱負荷が加わる環境下における耐遅れ破壊特性]
80℃の蒸留水に試験片を浸漬させた状態でクロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定する。また、蒸留水に浸漬させることなく試験片を大気中でクロスヘッド速度を2×10−3mm/分としてSSRT試験を行なうことにより伸びEを測定する。測定されたEとEの値から下記(4)式で遅れ破壊特性値βを算出し、この値βが0.50以下のものを本発明に係る高強度鋼部品とする。
遅れ破壊特性値β=(1−E/E)×100 …(4)
[Delayed fracture resistance under heat load]
By performing SSRT test crosshead speed of 2 × 10 -3 mm / min in a state where the test piece was immersed in distilled water 80 ° C. to measure the elongation E 2. Further, the elongation E 0 is measured by performing an SSRT test with the crosshead speed of 2 × 10 −3 mm / min in the air without immersing the sample in distilled water. A delayed fracture characteristic value β is calculated from the measured values of E 2 and E 0 by the following equation (4), and a component having this value β of 0.50 or less is defined as a high strength steel part according to the present invention.
Delayed fracture characteristic value β = (1−E 2 / E 0 ) × 100 (4)

本発明の高強度鋼部品によれば、高強度であるにも拘わらず酸性環境下であっても耐遅れ破壊特性に優れている。また本発明の高強度部品は、熱負荷が加わる環境であっても耐遅れ破壊特性に優れている。そのため例えばボルトとしても、使用に制約を受けることなく、幅広い範囲に用いることができる。   According to the high-strength steel part of the present invention, it has excellent delayed fracture resistance even in an acidic environment despite its high strength. The high-strength component of the present invention is excellent in delayed fracture resistance even in an environment where a thermal load is applied. Therefore, for example, a bolt can be used in a wide range without being restricted in use.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

下記表1〜2に示す化学成分を含有する供試鋼を熱間加工することにより線材(直径:12mm)を製造した。なお、下記表1と2には、上記(1)式の中辺の値(即ち、上記複合添加量Xの値)および(2)式の左辺の値を算出して併せて示す。   Wires (diameter: 12 mm) were manufactured by hot working test steels containing chemical components shown in Tables 1 and 2 below. In Tables 1 and 2 below, the value of the middle side of the formula (1) (that is, the value of the composite addition amount X) and the value of the left side of the formula (2) are shown together.

Figure 2005240086
Figure 2005240086

Figure 2005240086
Figure 2005240086

得られた線材を740℃に加熱して5時間保持した後、650℃まで徐冷(冷却速度:約10℃/hr程度)し、次いで大気放冷することによって球状化焼鈍した。   The obtained wire was heated to 740 ° C. and held for 5 hours, and then gradually cooled to 650 ° C. (cooling rate: about 10 ° C./hr), and then allowed to cool to the atmosphere for spheroidizing annealing.

球状化焼鈍して得られた線材を切断し、切削加工することにより、直径:10mm×高さ:15mmの圧縮試験片を製造し、下記に示す条件で冷間加工性を評価した。   By cutting and cutting the wire obtained by spheroidizing annealing, a compression test piece having a diameter of 10 mm × height: 15 mm was produced, and cold workability was evaluated under the following conditions.

[冷間加工性]
上記圧縮試験片を、その両端面を拘束しながら圧縮し、圧下率70%とするのに必要な応力(変形抵抗)を測定した。変形抵抗は小さいほど冷間加工性に優れている。測定された変形抵抗を下記表3〜4に示す。なお、変形抵抗は900N/mm以下の場合を合格(判定:○)、900N/mmを超える場合を不合格(判定:×)として評価した。
[Cold workability]
The compression test piece was compressed while restraining both end faces thereof, and the stress (deformation resistance) necessary to obtain a rolling reduction of 70% was measured. The smaller the deformation resistance, the better the cold workability. The measured deformation resistance is shown in Tables 3 to 4 below. The deformation resistance was evaluated as acceptable (determination: ◯) when 900 N / mm 2 or less, and as unacceptable (determination: x) when exceeding 900 N / mm 2 .

また、上記球状化焼鈍処理して得られた線材を下記表3〜4に示す条件で焼入れ(加熱後の保持時間:30分、冷却条件は水冷)・焼戻し(加熱後の保持時間:90分、冷却条件は水冷)した。   Moreover, the wire obtained by the spheroidizing annealing treatment was quenched (retention time after heating: 30 minutes, cooling condition was water cooling) and tempering (retention time after heating: 90 minutes) under the conditions shown in Tables 3 to 4 below. The cooling conditions were water cooling).

得られた焼入れ焼戻し鋼のオーステナイト結晶粒度番号を、JIS G 0551「鋼のオーステナイト結晶粒度試験方法」に準拠して測定した。測定されたオーステナイト結晶粒度番号を下記表3〜4に示す。   The austenite grain size number of the obtained quenched and tempered steel was measured according to JIS G 0551 “Austenite grain size test method for steel”. The measured austenite grain size numbers are shown in Tables 3 to 4 below.

次に、上記焼入れ焼戻し鋼を切断し、切削加工することにより、JIS Z2201の14A号試験片を製造した。この試験片を用いて引張強さを測定し、測定結果を下記表3〜4に示す。なお、引張強さが1300N/mm以上の場合を合格(判定:○)、1300N/mm未満の場合を不合格(判定:×)として評価した。 Next, the quenched and tempered steel was cut and cut to produce a JIS Z2201 No. 14A test piece. The tensile strength was measured using this test piece, and the measurement results are shown in Tables 3 to 4 below. The case where the tensile strength was 1300 N / mm 2 or more was evaluated as acceptable (determination: ◯), and the case where the tensile strength was less than 1300 N / mm 2 was evaluated as unacceptable (determination: x).

次に、上記焼入れ焼戻し鋼を切断し、切削加工することにより、図3に示す遅れ破壊試験片を製造した。この遅れ破壊試験片を用いて上記手順で「酸性環境下における耐遅れ破壊特性」と「熱負荷が加わる環境下における耐遅れ破壊特性」を調べた。算出された遅れ破壊特性値αとβを下記表3〜4に示す。なお、遅れ破壊特性値αまたはβは、0.50を超えるものを不合格(判定:×)、0.50以下のものを合格(判定:○)とした。   Next, the quenched and tempered steel was cut and cut to produce a delayed fracture test piece shown in FIG. Using this delayed fracture specimen, the “delayed fracture resistance in an acidic environment” and the “delayed fracture resistance in an environment where a thermal load is applied” were examined by the above procedure. The calculated delayed fracture characteristic values α and β are shown in Tables 3 to 4 below. For the delayed fracture characteristic value α or β, a value exceeding 0.50 was regarded as unacceptable (judgment: x), and a value of 0.50 or less was regarded as acceptable (determination: ◯).

Figure 2005240086
Figure 2005240086

Figure 2005240086
Figure 2005240086

表3および4から明らかな様に、No.1〜29は、本発明で規定する要件を満足する例であり、変形抵抗が小さく、冷間加工性に優れている。また遅れ破壊特性値αが小さく、酸性環境下における遅れ破壊特性に優れている。さらに耐遅れ破壊特性値βも小さく、熱負荷が加わる環境であっても耐遅れ破壊特性に優れている。   As apparent from Tables 3 and 4, Nos. 1 to 29 are examples that satisfy the requirements defined in the present invention, have low deformation resistance, and are excellent in cold workability. Further, the delayed fracture characteristic value α is small, and the delayed fracture characteristic is excellent in an acidic environment. Further, the delayed fracture resistance value β is small, and the delayed fracture resistance value is excellent even in an environment where a thermal load is applied.

一方No.30〜52は本発明で規定する何れかの要件を満足しない例であり、所望の効果が得られていない。即ちNo.30はC量が少ない例であり、引張強度が確保できていない。No.31はC量が多い例であり、変形抵抗が大きくなり、冷間加工性が悪化している。また、鋼の靭性が劣化するために酸性環境下における耐遅れ破壊特性も低下している。No.32はMn量が少ない例であり、強度を確保できていない。No.33はMn量が多い例であり、冷間加工性が悪く、しかも酸性環境下における耐遅れ破壊特性にも劣る。No.34はP量とS量が多い例であり、酸性環境下における耐遅れ破壊特性に劣る。No.36とNo.37はCr量が少ない例であり、変形抵抗が大きくなり、冷間加工性が悪い。No.38とNo.39はCr量が多い例であり、耐遅れ破壊特性が悪い。No.40〜46は、Cr,Mo,TiおよびV量のバランスが悪く、これらの含有量が本発明で規定する上記(1)式を満足しない例であり、(1)式の中辺の値が本発明で規定する範囲よりも小さいため、冷間加工時の変形抵抗が大きくなり過ぎて冷間加工性が悪い。No.47,53〜55は、Cr,Mo,TiおよびV量のバランスが悪く、本発明で規定する上記(1)式を満足しない例であり、(1)式の中辺の値が本発明で規定する範囲よりも大きいため、耐遅れ破壊特性が劣悪となる。No.48〜51は、TiとV量のバランスが悪く、上記(2)式を満足しない例であり、(2)式の左辺の値が本発明で規定する範囲よりも小さいため熱負荷時の遅れ破壊特性が悪い。No.52は、TiとV量のバランスが悪いため、耐遅れ破壊特性が悪い。   On the other hand, Nos. 30 to 52 are examples that do not satisfy any of the requirements defined in the present invention, and a desired effect is not obtained. That is, No. 30 is an example in which the amount of C is small, and the tensile strength cannot be secured. No. 31 is an example in which the amount of C is large, the deformation resistance increases, and the cold workability deteriorates. In addition, since the toughness of steel deteriorates, the delayed fracture resistance in an acidic environment also decreases. No. 32 is an example in which the amount of Mn is small, and the strength cannot be secured. No. 33 is an example in which the amount of Mn is large, the cold workability is poor, and the delayed fracture resistance in an acidic environment is also inferior. No. 34 is an example having a large amount of P and S, and is inferior in delayed fracture resistance in an acidic environment. No. 36 and No. 37 are examples in which the amount of Cr is small, deformation resistance increases, and cold workability is poor. No. 38 and No. 39 are examples with a large amount of Cr and have poor delayed fracture resistance. Nos. 40 to 46 are examples in which the balance of Cr, Mo, Ti, and V amounts is poor, and these contents do not satisfy the above formula (1) defined in the present invention. Since the value is smaller than the range defined in the present invention, the deformation resistance at the time of cold working becomes too large and the cold workability is poor. Nos. 47 and 53 to 55 are examples in which the balance of Cr, Mo, Ti, and V amount is poor and the above formula (1) defined in the present invention is not satisfied. Since it is larger than the range specified in the invention, the delayed fracture resistance is inferior. Nos. 48 to 51 are examples in which the balance between Ti and V amount is poor and the above formula (2) is not satisfied, and the value on the left side of formula (2) is smaller than the range defined in the present invention, so that the heat load The delayed fracture characteristics are poor. No. 52 has poor delayed fracture resistance due to the poor balance between Ti and V content.

なお、No.35は参考例であり、Ni量が多いため冷間加工性が悪くなっている。   In addition, No. 35 is a reference example, and cold workability is deteriorated due to a large amount of Ni.

複合添加量Xと、測定された部品の変形抵抗または遅れ破壊特性値αとの関係を示すグラフである。It is a graph which shows the relationship between the composite addition amount X and the measured deformation resistance or delayed fracture characteristic value α of a part. TiとVの比([Ti]/[V])と、遅れ破壊特性値βとの関係を示すグラフである。It is a graph which shows the relationship between ratio ([Ti] / [V]) of Ti and V, and delayed fracture characteristic value (beta). 遅れ破壊試験に用いた試験片の概略図である。It is the schematic of the test piece used for the delayed fracture test.

Claims (6)

質量%で(以下、同じ)、
C :0.30〜0.6%、
Si:0.2%以下、
Mn:0.1〜0.8%、
P :0.02%以下、
S :0.02%以下、
Cr:0.5%超、0.95%以下、
Mo:1.3〜2.2%、
Ti:0.05〜0.15%、
V :0.1〜0.50%、
Al:0.5%以下および
N :0.02%以下、
を満たし、残部がFeおよび不可避不純物からなる鋼であり、
各成分が下記(1)式および(2)式を満足することを特徴とする冷間加工性および耐遅れ破壊特性に優れた高強度鋼。
0.3≦10×{exp(0.4×[Cr])/〔exp(2×[Mo])+exp(92×[Ti]×[V])〕}≦0.6 …(1)
[Ti]/[V]≧0.1 …(2)
式中、[Cr],[Mo],[Ti],[V]は、それぞれ鋼中に含まれるCr量(質量%),Mo量(質量%),Ti量(質量%)およびV量(質量%)を示す。
% By mass (hereinafter the same),
C: 0.30 to 0.6%,
Si: 0.2% or less,
Mn: 0.1 to 0.8%
P: 0.02% or less,
S: 0.02% or less,
Cr: more than 0.5%, 0.95% or less,
Mo: 1.3-2.2%,
Ti: 0.05 to 0.15%,
V: 0.1-0.50%,
Al: 0.5% or less and N: 0.02% or less,
And the balance is a steel composed of Fe and inevitable impurities,
A high-strength steel excellent in cold workability and delayed fracture resistance, characterized in that each component satisfies the following formulas (1) and (2).
0.3 ≦ 10 × {exp (0.4 × [Cr]) / [exp (2 × [Mo]) + exp (92 × [Ti] × [V])]} ≦ 0.6 (1)
[Ti] / [V] ≧ 0.1 (2)
In the formula, [Cr], [Mo], [Ti], and [V] are the amount of Cr (mass%), Mo (mass%), Ti (mass%), and V ( Mass%).
更に、他の元素として、
Ni:1.0%以下(0%を含まない)および/またはCu:1%以下(0%を含まない)を含むものである請求項1に記載の高強度鋼。
Furthermore, as other elements,
The high-strength steel according to claim 1, which contains Ni: 1.0% or less (not including 0%) and / or Cu: 1% or less (not including 0%).
更に、他の元素として、Zr、WおよびNbよりなる群から選択される元素を合計で0.5%以下(0%を含まない)を含むものである請求項1または2に記載の高強度鋼。   The high-strength steel according to claim 1 or 2, further comprising a total of 0.5% or less (not including 0%) of elements selected from the group consisting of Zr, W and Nb as other elements. 更に、他の元素として、B:0.003%以下(0%を含まない)を含むものである請求項1〜3のいずれかに記載の高強度鋼。   The high-strength steel according to any one of claims 1 to 3, further comprising B: 0.003% or less (not including 0%) as another element. 請求項1〜4のいずれかに記載の鋼を熱間圧延した後、球状化焼鈍し、次いで所定の形状に冷間加工し、該冷間加工された鋼を加熱温度890〜960℃で焼入れし、次いで加熱温度550℃以上で焼戻し処理することによって得られる耐遅れ破壊特性に優れた高強度鋼部品。   After hot rolling the steel according to any one of claims 1 to 4, spheroidizing annealing, then cold working into a predetermined shape, and quenching the cold worked steel at a heating temperature of 890-960 ° C Then, a high strength steel part having excellent delayed fracture resistance obtained by tempering at a heating temperature of 550 ° C. or higher. 請求項1〜4のいずれかに示される成分組成を有すると共に、下記(a)〜(d)に示す特性を有する耐遅れ破壊特性に優れた高強度鋼部品。
(a)引張強さ:1300N/mm以上
(b)オーステナイト結晶粒度番号:9以上
(c)pH3.0の5質量%NaCl水溶液に試験片を浸漬させた状態でクロスヘッド速度を2×10−3mm/分として低歪み速度試験を行なうことにより伸びEを測定し、また、NaCl水溶液に浸漬させることなく大気中で行なう以外は前記浸漬させた場合と同様にして低歪み速度試験を行なうことにより伸びEを測定し、測定されたEとEの値から下記(3)式で算出される遅れ破壊特性値αが0.50以下
遅れ破壊特性値α=(1−E/E)×100 …(3)
(d)上記(c)においてNaCl水溶液の代わりに、80℃の蒸留水を用いる以外は同じ条件で伸びEを測定し、また、上記(c)と同様に蒸留水に浸漬させることなく大気中で伸びEを測定し、測定されたEとEの値から下記(4)式で算出される遅れ破壊特性値βが0.50以下
遅れ破壊特性値β=(1−E/E)×100 …(4)
A high-strength steel part having the component composition shown in any one of claims 1 to 4 and excellent in delayed fracture resistance having the characteristics shown in the following (a) to (d).
(A) Tensile strength: 1300 N / mm 2 or more (b) Austenite grain size number: 9 or more (c) A crosshead speed of 2 × 10 with a test piece immersed in a 5 mass% NaCl aqueous solution having a pH of 3.0 the low strain rate test measures the elongation E 1 by performing a -3 mm / min, also a non-performed in the atmosphere in the same way as in is the dipping low strain rate testing without immersion in NaCl solution the elongation E 0 was measured by performing, measured E 1 and E (3) below from a value of 0 delayed fracture characteristic value calculated by the equation alpha is 0.50 or less delayed fracture property value alpha = (1-E 1 / E 0 ) × 100 (3)
(D) Elongation E 2 is measured under the same conditions except that 80 ° C. distilled water is used in place of the NaCl aqueous solution in (c) above, and the atmosphere is not immersed in distilled water as in (c) above. The elongation E 0 is measured in the sample, and the delayed fracture characteristic value β calculated by the following equation (4) from the measured values of E 2 and E 0 is 0.50 or less. Delayed fracture characteristic value β = (1−E 2 / E 0 ) × 100 (4)
JP2004050086A 2004-02-25 2004-02-25 High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance Expired - Fee Related JP4332446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050086A JP4332446B2 (en) 2004-02-25 2004-02-25 High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050086A JP4332446B2 (en) 2004-02-25 2004-02-25 High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2005240086A true JP2005240086A (en) 2005-09-08
JP4332446B2 JP4332446B2 (en) 2009-09-16

Family

ID=35022125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050086A Expired - Fee Related JP4332446B2 (en) 2004-02-25 2004-02-25 High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP4332446B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177683A (en) * 2005-12-27 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Fuel injection pipe and method for manufacturing same
JP2011047010A (en) * 2009-08-27 2011-03-10 Kobe Steel Ltd High strength bolt having improved delayed fracture resistance, and method for producing the same
JP2017066521A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Machine construction component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177683A (en) * 2005-12-27 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Fuel injection pipe and method for manufacturing same
JP4619286B2 (en) * 2005-12-27 2011-01-26 臼井国際産業株式会社 Fuel injection pipe and manufacturing method thereof
JP2011047010A (en) * 2009-08-27 2011-03-10 Kobe Steel Ltd High strength bolt having improved delayed fracture resistance, and method for producing the same
JP2017066521A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Machine construction component

Also Published As

Publication number Publication date
JP4332446B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP6027302B2 (en) High strength tempered spring steel
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
EP3202937A1 (en) Steel for bolts, and bolt
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
EP3050987B1 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt
CN109790602B (en) Steel
JP2016204752A (en) Case-hardened steel and production method thereof
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP7200627B2 (en) High-strength bolt steel and its manufacturing method
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance
JP4952708B2 (en) Martensitic stainless steel and method for producing the same
JP2019218584A (en) bolt
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JP4315049B2 (en) Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof
JP5030695B2 (en) High carbon steel excellent in break separation and production method thereof
JP3875605B2 (en) High strength steel with excellent cold workability and delayed fracture resistance
JP7270420B2 (en) Hot forged non-heat treated parts, manufacturing method thereof, and steel materials for hot forged non-heat treated parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4332446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees