JP2005239547A - Infrared-cutting hard glass - Google Patents
Infrared-cutting hard glass Download PDFInfo
- Publication number
- JP2005239547A JP2005239547A JP2005153960A JP2005153960A JP2005239547A JP 2005239547 A JP2005239547 A JP 2005239547A JP 2005153960 A JP2005153960 A JP 2005153960A JP 2005153960 A JP2005153960 A JP 2005153960A JP 2005239547 A JP2005239547 A JP 2005239547A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- infrared
- ratio
- present
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 83
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 5
- 239000005388 borosilicate glass Substances 0.000 abstract description 16
- 239000003638 chemical reducing agent Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 12
- 239000002184 metal Substances 0.000 abstract description 12
- 239000000843 powder Substances 0.000 abstract description 9
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 229910052708 sodium Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 64
- 238000010521 absorption reaction Methods 0.000 description 21
- 238000002834 transmittance Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 239000005365 phosphate glass Substances 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000006552 photochemical reaction Methods 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 2
- 206010040925 Skin striae Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000006066 glass batch Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
- C03C3/115—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
- C03C3/118—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、本発明は、硬質ガラスであってかつ赤外領域に吸収特性を持つ硬質赤外線カットガラスに関するものである。 The present invention relates to a hard infrared cut glass that is hard glass and has absorption characteristics in the infrared region.
従来からガラスによる熱線吸収には、Fe2+イオンによる赤外部の吸収特性が利用されている。Fe2+は波長1.1μm付近に吸収の中心を有し、特にガラス中で安定にFe2+を形成する燐酸系ガラスが、熱線吸収用フィルタ等に使用されている。この種の燐酸系ガラスは、多量にFeOを含有し、しかも可視部に吸収を生じない特性的に優れた熱線吸収性を示すが、ガラス構造的に化学的耐久性がわるく、溶融時の粘性が低いため複雑な形状に成形するのが難しいこともあって、窓ガラスや容器あるいはガラス管としては使用しにくく、実際の用途はフィルタ等の狭い範囲に限られていた。 Conventionally, absorption characteristics in the infrared region by Fe 2+ ions have been used for heat ray absorption by glass. Fe 2+ has an absorption center in the vicinity of a wavelength of 1.1 μm, and phosphate glass that forms Fe 2+ stably in glass is used for heat ray absorbing filters and the like. This type of phosphate glass contains a large amount of FeO, and exhibits excellent heat ray absorption characteristics that do not cause absorption in the visible region, but has poor chemical durability in terms of glass structure and viscosity at the time of melting. Therefore, it is difficult to form into a complicated shape because it is low, and it is difficult to use as a window glass, a container, or a glass tube, and the actual application is limited to a narrow range such as a filter.
このため、ソーダ石灰系ガラスを基礎ガラスとして熱線吸収特性を与える方法が開発され、このガラスを使用することによって、熱線吸収特性をもった照明用ランプバルブや各種容器の製造も可能になった。特公昭59-3418号公報に開示されたこの方法は、ガラスの鉄分含有量、清澄剤及び還元剤の成分と使用量を選択することにより、可視部に吸収の少ない熱線吸収ガラスを得るものである。 For this reason, a method for imparting heat ray absorption characteristics using soda-lime-based glass as a basic glass has been developed, and by using this glass, it has become possible to manufacture lighting lamp bulbs and various containers having heat ray absorption characteristics. This method disclosed in Japanese Examined Patent Publication No. 59-3418 is to obtain a heat-absorbing glass with little absorption in the visible region by selecting the iron content of the glass, the fining agent and the reducing agent components and the amount used. is there.
一方、光化学反応を利用した化学プラントにおいて、反応を効率的に行わせるため、反応容器内の反応液に光源を浸漬させる方法がとられている。光源としては、化学反応に必要とされる光の波長にもよるが、水銀ランプ、HIDランプ、キセノンランプ等が使用される。このような化学プラント用光源では、光源の大型化に伴ってランプの発熱量が増大するため、ランプを冷却する必要があり、反応液とランプの間を隔絶するガラス製の水冷管を使用し、水冷管内に冷却水を循環させて光化学反応に必要な光放射を遮ることなく光源の冷却が行われている。水冷管の材質としては、反応液に対して十分な耐蝕性があり、温度上昇に対しても耐熱強度が要求されるので、耐熱性、化学的耐久性、光透過性に優れた硼珪酸系ガラスが使用されている。 On the other hand, in a chemical plant using a photochemical reaction, a method of immersing a light source in a reaction solution in a reaction vessel is used in order to perform the reaction efficiently. As the light source, a mercury lamp, an HID lamp, a xenon lamp, or the like is used, depending on the wavelength of light required for the chemical reaction. In such light sources for chemical plants, the calorific value of the lamp increases as the size of the light source increases, so it is necessary to cool the lamp, and glass water-cooled tubes that isolate the reaction solution from the lamp are used. The cooling of the light source is performed without interrupting the light radiation necessary for the photochemical reaction by circulating cooling water in the water-cooled tube. The water-cooled tube material has sufficient corrosion resistance to the reaction solution, and heat resistance is required for temperature rise, so borosilicate system with excellent heat resistance, chemical durability and light transmission Glass is used.
上記化学プラント用光源の水冷管を用いた冷却水による効果は、伝熱によるランプ外管の温度上昇を防止するのみで、ランプからの輻射熱をカットするまでには至らず、反応液の不必要な温度上昇をもたらす要因となることがわかった。したがって、水冷管に赤外線吸収特性をもったガラスを用いれば、温度上昇の原因となる熱線を効果的に遮断して水冷効果とも合せ反応収率の向上に寄与できる。 The effect of the cooling water using the water-cooled tube of the chemical plant light source only prevents the temperature rise of the lamp outer tube due to heat transfer, it does not cut the radiant heat from the lamp, and no reaction solution is required. It turned out to be a factor that brings about a temperature rise. Therefore, if glass having infrared absorption characteristics is used for the water-cooled tube, it is possible to effectively block the heat rays that cause the temperature rise and contribute to the improvement of the reaction yield together with the water-cooling effect.
しかしながら、上記燐酸系ガラス、ソーダ石灰系ガラス等の軟質ガラスは、反応液に対する耐蝕性や耐熱強度の点で不十分なため、このような用途への適用は困難である。他方、現在水冷管に使用されている硼珪酸系ガラスに赤外線吸収特性を付与することも考えられたが、次のような理由により赤外線のみを効果的にカットできる硼珪酸系ガラスは得られていない。 However, soft glasses such as the phosphate glass and soda lime glass are insufficient in terms of the corrosion resistance and heat resistance strength against the reaction solution, and are difficult to apply to such applications. On the other hand, it was also considered to impart infrared absorption characteristics to the borosilicate glass currently used in water-cooled tubes, but borosilicate glass capable of effectively cutting only infrared rays has been obtained for the following reasons. Absent.
一般にガラス中の鉄分は、Fe2+またはFe3+の形で存在し、次のような平衡関係を有している。 In general, iron in glass exists in the form of Fe 2+ or Fe 3+ and has the following equilibrium relationship.
この平衡は溶融雰囲気、ガラス組成、溶融温度、溶融時間等によって左右される。硼珪酸系ガラスの場合、その基本成分に多量の酸性成分を含有しているため、ガラス中に含まれるFe3+に対してFe2+の比率を大きくすることは難しく、したがって燐酸系ガラスのように可視域での透過率を高く保ったまま赤外域をシャープカットすることはできなかった。このため単に硼珪酸系ガラスにFeを添加したのみでは、上記水冷管の場合、光化学反応に必要な波長域にまで吸収が及び、反応効率の低下をまねく問題があった。 This equilibrium depends on the melting atmosphere, glass composition, melting temperature, melting time and the like. In the case of borosilicate glass, since the basic component contains a large amount of acidic components, it is difficult to increase the ratio of Fe 2+ to Fe 3+ contained in the glass. Thus, it was impossible to sharply cut the infrared region while keeping the transmittance in the visible region high. Therefore, simply adding Fe to the borosilicate glass has a problem that the water-cooled tube has absorption up to the wavelength range necessary for the photochemical reaction, and the reaction efficiency is lowered.
本発明はこのような事情を考慮してなされたもので、耐熱性、化学的耐久性に優れた硬質ガラスであって赤外線シャープカット性を合せ持ったガラスを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hard glass excellent in heat resistance and chemical durability and having infrared sharp cutting properties.
本発明は上記目的を達成するために、硼珪酸系ガラスにFe2O3を含有させるとともに強い還元性の条件下で溶融することによって、ガラス中に含まれるFe2+の比率を大きくすることを可能としたものである。 In order to achieve the above object, the present invention increases the ratio of Fe 2+ contained in the glass by adding Fe 2 O 3 to the borosilicate glass and melting it under strong reducing conditions. Is possible.
すなわち、本発明は質量百分率で、SiO2 50〜80%,Al2O3 0.5〜10%,全Fe含量をFe2O3として0.1〜5%,Na2O+K2O+Li2O 1〜12%,B2O3 8〜20%,CaO+MgO+BaO+ZnO+Sb2O3 0.5〜20%,F
0.1〜3%からなる組成を有し、ガラス中のFe2+/Fe3+の比率を3〜25とした硬質赤外線カットガラスである。
That is, the present invention is by mass percentage, SiO 2 50~80%, Al 2 O 3 0.5~10%, 0.1~5% of the total Fe content as Fe 2 O 3, Na 2 O + K 2 O + Li 2 O 1~12%, B 2 O 3 8~20 %, CaO + MgO + BaO + ZnO + Sb 2 O 3 0.5~20%, F
It is a hard infrared cut glass having a composition of 0.1 to 3% and a ratio of Fe 2+ / Fe 3+ in the glass of 3 to 25.
本発明のガラスは、質量百分率で、SiO2 50〜80%,Al2O3 0.5〜10%,Fe2O3 0.1〜5%,Na2O+K2O+Li2O 1〜12%,B2O3 5〜20%,CaO+MgO+BaO+ZnO+Sb2O3 0.5〜20%,F
0.1〜3%からなる基礎ガラスバッチ中に、還元剤としてガラス構成元素の金属粉末を0.1〜1%添加してガラス中のFe3+をFe2+に還元し、Fe2+/Fe3+の比率を3〜25とする製造方法により得られる。
Glass of the present invention, by mass percentage, SiO 2 50~80%, Al 2 O 3 0.5~10%, Fe 2 O 3 0.1~5%, Na 2 O + K 2 O + Li 2
In a basic glass batch comprising 0.1 to 3%, 0.1 to 1% of metal powder of a glass constituent element is added as a reducing agent to reduce Fe 3+ in the glass to Fe 2+ , and Fe 2+ / Fe 3+ ratio is 3 to 25.
さらに、本発明の硬質赤外線カットガラスは、ZnOを必須成分として含有するものである。 Furthermore, the hard infrared cut glass of the present invention contains ZnO as an essential component.
本発明の硬質赤外線カットガラスは、熱膨脹係数が32〜60×10-7/Kである。 The hard infrared cut glass of the present invention has a thermal expansion coefficient of 32 to 60 × 10 −7 / K.
また、前記金属粉末が、Si,Zn,Al,Sbのいずれか1種または2種以上である硬質赤外線カットガラスの製造方法である。 Moreover, it is a manufacturing method of the hard infrared cut glass whose said metal powder is any 1 type or 2 types or more of Si, Zn, Al, and Sb.
上記ガラスは、熱膨張係数を32〜60×10-7/Kとする硼珪酸系ガラスであるため、耐熱性、化学的耐久性に優れる。また全Fe含量をFe2O3として0.1〜5質量%含有し、Fe2+/Fe3+の比率を3〜25としてあるため、Fe2+による優れた赤外線シャープカット性が得られる。 Since the glass is a borosilicate glass having a thermal expansion coefficient of 32 to 60 × 10 −7 / K, it is excellent in heat resistance and chemical durability. Further, since the total Fe content is 0.1 to 5% by mass as Fe 2 O 3 and the ratio of Fe 2+ / Fe 3+ is 3 to 25, an excellent infrared sharp cutting property by Fe 2+ can be obtained. .
次に本発明のガラス組成を上記範囲に限定した理由を説明する。 Next, the reason why the glass composition of the present invention is limited to the above range will be described.
SiO2はガラスの主成分であり、ガラスネットワーク構造の形成に必要不可欠な成分であるが、50%未満ではネットワーク構造が不十分となり耐水性が劣化する。また80%を越えると溶融性が悪くなる。好ましくは60〜76%の範囲である。 SiO 2 is a main component of glass and is an indispensable component for forming a glass network structure, but if it is less than 50%, the network structure becomes insufficient and the water resistance deteriorates. On the other hand, if it exceeds 80%, the meltability deteriorates. Preferably it is 60 to 76% of range.
Al2O3はガラスの化学的耐久性を向上させる効果があるが、0.5%未満ではその効果が得られず、10%を越えると脈理等のガラス不良を生じやすくするので好ましくない。好ましくは1〜9%である。 Al 2 O 3 has the effect of improving the chemical durability of the glass, but if it is less than 0.5%, the effect cannot be obtained, and if it exceeds 10%, glass defects such as striae are liable to occur, which is not preferable. . Preferably it is 1 to 9%.
Na2O、K2O、Li2Oのアルカリ金属酸化物は、ガラスの粘性を下げ、溶融を促進させるが、その合量が1%未満ではその効果は得られず、12%を越えるとガラスの熱膨脹係数が60×10-7/Kを越え、また化学的耐久性が劣化する。 Alkali metal oxides of Na 2 O, K 2 O and Li 2 O reduce the viscosity of the glass and promote melting, but if the total amount is less than 1%, the effect cannot be obtained, and if it exceeds 12% The coefficient of thermal expansion of glass exceeds 60 × 10 −7 / K, and the chemical durability is deteriorated.
CaO、MgO、BaO、ZnO、Sb2O3などの金属酸化物は、その存在により溶融性を改善し、熱膨脹係数を調整し、化学的耐久性を向上させる効果があるが、その合量が0.5%未満ではこれらの効果は期待できず、20%を越えると結晶が発生しやすくなる。好ましくは3〜17%の範囲である。 Metal oxides such as CaO, MgO, BaO, ZnO, and Sb 2 O 3 have the effect of improving the meltability, adjusting the thermal expansion coefficient, and improving the chemical durability due to their presence. If it is less than 0.5%, these effects cannot be expected, and if it exceeds 20%, crystals tend to be generated. Preferably it is 3 to 17% of range.
B2O3は熱膨張係数を大きくすることなく溶融性を改善することができるが、5%未満ではその効果が得られず、20%を越えると化学的耐久性が悪くなる。好ましくは8〜18%の範囲である。 B 2 O 3 can improve the meltability without increasing the thermal expansion coefficient, but if it is less than 5%, the effect cannot be obtained, and if it exceeds 20%, the chemical durability is deteriorated. Preferably it is 8 to 18% of range.
Fはガラスの溶融助剤として作用するが、0.1%未満ではその効果は期待できず、3%を越えると溶融炉の耐火物への浸蝕性が強くなり、溶融炉の寿命を縮めるほかガラスが結晶を析出するようになるので好ましくない。 F acts as a glass melting aid, but if it is less than 0.1%, its effect cannot be expected. If it exceeds 3%, the erosion resistance of the melting furnace becomes stronger and the life of the melting furnace is shortened. This is not preferable because glass precipitates crystals.
Fe2O3はガラスに赤外線吸収特性を与えるために加えられ、Fe3+が還元剤の作用によりFe2+となって赤外線吸収特性を持つようになるが、0.1%未満では十分な赤外線吸収効果が得られず、5%を越えると可視域の吸収が大きくなり光透過材料としては適さなくなる。好ましくは0.2〜2%、より好ましくは0.3〜0.8%である。 Fe 2 O 3 is added to give infrared absorption characteristics to the glass, and Fe 3+ becomes Fe 2+ by the action of the reducing agent and has infrared absorption characteristics, but less than 0.1% is sufficient Infrared absorption effect cannot be obtained, and if it exceeds 5%, the absorption in the visible region is increased, making it unsuitable as a light transmitting material. Preferably it is 0.2 to 2%, More preferably, it is 0.3 to 0.8%.
熱膨張係数は、要求される耐熱強度を満たし、ガラスの成形性等を考慮すると32〜60×10-7/Kであることが好ましく、より好ましくは45〜55×10-7/Kの範囲である。 The thermal expansion coefficient satisfies the required heat resistance strength, and is preferably 32 to 60 × 10 −7 / K, more preferably in the range of 45 to 55 × 10 −7 / K in consideration of glass moldability and the like. It is.
上記のとおり赤外線吸収特性はFe2+イオンによって与えられるので、Fe2+/Fe3+の比が高いほど赤外線のシャープカット性は良くなるが、Fe2+/Fe3+の比が25を越えると還元鉄が析出するので好ましくない。一方、Fe2+/Fe3+の比が3未満では赤外線シャープカット性がなくなり、十分な熱線吸収効果が得られない。Fe2+/Fe3+の比の好ましい範囲は10〜20である。 Since the infrared absorption characteristics as described above are given by Fe 2+ ions, the ratio of Fe 2+ / Fe 3+ is the better sharp cut of higher infrared, the ratio of Fe 2+ / Fe 3+ is 25 If it exceeds, reduced iron precipitates, which is not preferable. On the other hand, if the ratio of Fe 2+ / Fe 3+ is less than 3, the infrared sharp cutting property is lost and a sufficient heat ray absorption effect cannot be obtained. A preferable range of the ratio of Fe 2+ / Fe 3+ is 10-20.
次に上記ガラスの製造方法についてその作用を述べる。上述のように硼珪酸系ガラスはその基本成分に多量の酸性成分を含有しているため、燐酸系ガラス等では十分な還元作用が得られる澱粉等の弱い還元剤ではガラス中に含まれるFe3+に対してFe2+の比率を大きくすることは難しく、燐酸系ガラスのように可視域での透過率を高く保ったまま赤外域をシャープカットするのは困難であった。そこで本発明では、硼珪酸系ガラスに比較的多めのFe2O3を含有させるとともに、還元剤としてガラス構成元素を金属粉末の状態で0.1〜1%添加して使用している。この金属粉末は、溶融ガラス中で酸化されてガラス構成成分となり、この過程で強い還元作用を及ぼす。これによってFe3+に対してFe2+の比率を大きくすることが可能となり、硼珪酸系ガラスでありながら赤外線シャープカット性を合せ持つガラスが得られた。金属粉末の添加量は、0.1%未満では硼珪酸系ガラスに対しては還元作用が不十分で、赤外域に充分な熱線吸収特性が得られず、1%を越えて添加すると、還元雰囲気がより強くなり着色剤としてのFe2O3が
還元されて黒色の金属鉄が析出するので好ましくない。
Next, the operation of the glass manufacturing method will be described. As described above, since borosilicate glass contains a large amount of acidic components in its basic components, Fe 3 contained in the glass is used in weak reducing agents such as starch that can provide a sufficient reducing action in phosphate glass. it is difficult to increase the ratio of Fe 2+ relative to +, it has been difficult to sharp cut the infrared range while maintaining a high transmittance in the visible region as phosphoric acid-based glass. Therefore, in the present invention, a relatively large amount of Fe 2 O 3 is contained in the borosilicate glass, and a glass constituent element is added as a reducing agent in the form of metal powder in an amount of 0.1 to 1%. This metal powder is oxidized in molten glass to become a glass component, and exerts a strong reducing action in this process. This makes it possible to increase the ratio of Fe 2+ to Fe 3+ , and a glass having both infrared sharp-cut properties while being a borosilicate glass. If the addition amount of the metal powder is less than 0.1%, the reducing action is insufficient for borosilicate glass, and sufficient heat ray absorption characteristics cannot be obtained in the infrared region. This is not preferable because the atmosphere becomes stronger and Fe 2 O 3 as a colorant is reduced to deposit black metallic iron.
また、本発明では還元剤として用いる金属粉末をガラス構成元素の金属成分から選択使用するようにしているので、強い還元作用が得られると同時に還元剤がガラスに対して不要な影響を与えない利点がある。したがって上記組成のガラスに対しては、Si,Zn,Al,Sbを用いることが好ましい。これらの金属は、それぞれSiO2、ZnO、Al2O3、Sb2O3となってガラス中に取り込まれる。 Further, in the present invention, the metal powder used as the reducing agent is selected and used from the metal component of the glass constituent element, so that a strong reducing action can be obtained and at the same time the reducing agent has no unnecessary influence on the glass. There is. Therefore, Si, Zn, Al, and Sb are preferably used for the glass having the above composition. These metals are incorporated into glass as SiO 2 , ZnO, Al 2 O 3 , and Sb 2 O 3 , respectively.
以上のように本発明のガラスは、耐熱性、化学的耐久性に優れた硬質ガラスでありながら、ガラス中のFe2+比を高めたことにより優れた可視透過率と赤外線シャープカット性を有する。 As described above, the glass of the present invention is a hard glass excellent in heat resistance and chemical durability, and has an excellent visible transmittance and infrared sharp cut property by increasing the Fe 2+ ratio in the glass. .
以下、本発明の実施例について説明する。表1に質量百分率で示したガラス組成が得られるように各原料を調合し、これに表2に同じく質量百分率で示す還元剤を混合する。次に、これらの原料バッチをそれぞれ1lの耐火物るつぼに収容し、1400〜1420℃で約8時間、クローズドポット状態で溶融した後、金属型中に流し込んで徐冷したものを板状にスライスして、厚さ2mmに研磨した試料を作成した。本発明のガラスは、消泡性が良く、困難なくポット溶融が可能であった。これとは別に表1に示す組成の燐酸系ガラスを溶融し、実施例と同様の試料を作成して比較例とした。 Examples of the present invention will be described below. Each raw material is prepared so that the glass composition shown by the mass percentage in Table 1 is obtained, and the reducing agent shown by the mass percentage in Table 2 is mixed therewith. Next, each of these raw material batches is placed in a 1 liter refractory crucible, melted in a closed pot state at 1400-1420 ° C. for about 8 hours, and then poured into a metal mold and slowly cooled into slices. Thus, a sample polished to a thickness of 2 mm was prepared. The glass of the present invention had good antifoaming properties and could be melted in a pot without difficulty. Separately, a phosphate glass having the composition shown in Table 1 was melted, and a sample similar to the example was prepared as a comparative example.
得られた試料について、分光透過率を測定し、波長535nmおよび1100nmの透過率を表2に示した。また実施例No.3とNo.6の試料については、図1に従来水冷管に使用されていた赤外線吸収特性を持たない硼珪酸系ガラスの特性と合わせて分光透過率曲線を示す。 With respect to the obtained sample, the spectral transmittance was measured, and the transmittances at wavelengths of 535 nm and 1100 nm are shown in Table 2. In addition, Example No. 3 and no. For the sample No. 6, a spectral transmittance curve is shown in FIG. 1 together with the characteristics of the borosilicate glass having no infrared absorption characteristics conventionally used in water-cooled tubes.
また、それぞれのガラスについて湿式分析の有機溶媒抽出法により全Fe含量およびFe3+含量を測定し、全Fe含量からFe3+含量を差引いてFe2+含量を求めた。この結果に基づきFe2+/Fe3+の比を算出し、これも表2に示した。 Further, for each glass, the total Fe content and the Fe 3+ content were measured by an organic solvent extraction method of wet analysis, and the Fe 2+ content was determined by subtracting the Fe 3+ content from the total Fe content. Based on this result, the ratio Fe 2+ / Fe 3+ was calculated and is also shown in Table 2.
さらに各試料を温度80℃、湿度95%の雰囲気に1000時間放置する恒温恒湿試験を行い、ガラス表面の性状変化により評価した結果を「耐候性」として表1に示す。 Furthermore, Table 1 shows the results of a constant temperature and humidity test in which each sample is left in an atmosphere of 80 ° C. and 95% humidity for 1000 hours and evaluated by changes in the properties of the glass surface as “weather resistance”.
表1および表2からわかるように、本発明の実施例ガラスは、Fe2O3の含有量というよりもFe2+/Fe3+の比に依存して535nmにおける透過率が高くなっており、可視域において十分高い透過率を維持したまま1100nmにおいては透過率が低く抑えられている。ちなみに実施例No.1のガラスに還元剤を添加しないで溶融したガラスは、Fe2+/Fe3+の比が0.3となり、多量のFe分によってガラスが黄褐色に着色され赤外域の吸収が十分得られないまま全域の透過率が低下してしまった。また図1に示すように本実施例のガラスは、可視域で従来の硼珪酸系ガラスと同等の透過率を維持したまま近赤外域から赤外域での透過率が急激に低下している。 As can be seen from Tables 1 and 2, the glass according to the present invention has a higher transmittance at 535 nm depending on the ratio of Fe 2+ / Fe 3+ rather than the content of Fe 2 O 3. The transmittance is kept low at 1100 nm while maintaining a sufficiently high transmittance in the visible range. Incidentally, Example No. Glass melted without adding a reducing agent to glass No. 1 has a ratio of Fe 2+ / Fe 3+ of 0.3, and the glass is colored yellowish brown due to a large amount of Fe, so that sufficient absorption in the infrared region is obtained. The transmittance of the entire area has declined without it. Also, as shown in FIG. 1, the transmittance of the glass of this example rapidly decreases from the near infrared region to the infrared region while maintaining the same transmittance as that of the conventional borosilicate glass in the visible region.
以上のことから本発明の方法によって得られるガラスは、強い還元剤の作用によりガラス中のFe2+が増加した結果、赤外線のシャープカット特性が得られていることがわかる。なお上記実施例においては還元剤として各金属粉末を1種ずつ添加した例を示したが、これら金属粉末を2種以上混合使用しても同様の効果が得られた。 From the above, it can be seen that the glass obtained by the method of the present invention has infrared sharp-cut characteristics as a result of an increase in Fe 2+ in the glass due to the action of a strong reducing agent. In the above embodiment, an example was shown in which one type of each metal powder was added as a reducing agent, but the same effect was obtained even when two or more types of these metal powders were used in combination.
また、表1に示した恒温恒湿試験の結果、比較例のガラスは表面が白濁したようになり光透過材料としては使用不能な状態になったのに対し、実施例のガラスはいずれも外観上ほとんど変化なく、「◎」のものに比べて「○」のもので若干透過率の低下が見られた程度であり、耐候性上なんら問題のないものであった。 Moreover, as a result of the constant temperature and humidity test shown in Table 1, the glass of the comparative example became cloudy on the surface and became unusable as a light transmissive material, whereas the glasses of the examples were all appearances. There was almost no change, and a slight decrease in the transmittance was observed for the “◯” compared to the “◎”, and there was no problem in terms of weather resistance.
なお本発明のガラスは、熱膨張係数のみならずその他の物性においても従来の硼珪酸系ガラスと変わることなく、様々な成形加工が可能であり、水冷管の成形も従来同様に行うことができる。したがって本発明のガラスを光化学プラントの水冷管として使用した場合には、反応に必要な波長域の光を遮ることなく光源ランプからの輻射熱が遮断され、光源に起因する反応液の不要な温度上昇が防止できる。また水冷管以外にも赤外線吸収特性を要求される種種の用途に使用でき、従来用いられていた燐酸系ガラスやソーダ石灰系ガラスに比べて優れた耐久性、耐熱性を示す。 The glass of the present invention can be formed in various ways without changing from the conventional borosilicate glass in terms of not only the thermal expansion coefficient but also other physical properties, and the water-cooled tube can be formed in the same manner as before. . Therefore, when the glass of the present invention is used as a water-cooled tube of a photochemical plant, the radiant heat from the light source lamp is blocked without blocking light in the wavelength region necessary for the reaction, and an unnecessary temperature rise of the reaction solution caused by the light source Can be prevented. In addition to water-cooled tubes, it can be used for various applications that require infrared absorption characteristics, and exhibits superior durability and heat resistance compared to phosphoric acid-based glass and soda-lime-based glass that have been used conventionally.
1 従来の硼珪酸系ガラスの分光透過率曲線
2 本発明の実施例No.3のガラスの分光透過率曲線
3 本発明の実施例No.6のガラスの分光透過率曲線
1 Spectral transmittance curve of conventional borosilicate glass 2 Example No. of the present invention Spectral transmittance curve of the glass of 3 No. 3 of the present invention. Spectral transmittance curve of 6 glass
Claims (4)
0.1〜3%からなる組成を有し、ガラス中のFe2+/Fe3+の比率が3〜25であることを特徴とする硬質赤外線カットガラス。 By mass percentage, SiO 2 50~80%, Al 2 O 3 0.5~10%, 0.1~5% of the total Fe content as Fe 2 O 3, Na 2 O + K 2 O + Li 2 O 1~12%, B 2 O 3 8-20%, CaO + MgO + BaO + ZnO + Sb 2 O 3 0.5-20%, F
A hard infrared cut glass having a composition of 0.1 to 3% and a Fe2 + / Fe3 + ratio of 3 to 25 in the glass.
0.1〜3%からなる組成を有し、ガラス中のFe2+/Fe3+の比率が3〜25であることを特徴とする硬質赤外線カットガラス。 By mass percentage, SiO 2 50~80%, Al 2 O 3 0.5~10%, 0.1~5% of the total Fe content as Fe 2 O 3, Na 2 O + K 2 O + Li 2 O 1~12%, B 2 O 3 5-20%, MgO + BaO + ZnO + Sb 2 O 3 0.5-20%, F
A hard infrared cut glass having a composition of 0.1 to 3% and a Fe2 + / Fe3 + ratio of 3 to 25 in the glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005153960A JP4442900B2 (en) | 2005-05-26 | 2005-05-26 | Hard infrared cut glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005153960A JP4442900B2 (en) | 2005-05-26 | 2005-05-26 | Hard infrared cut glass |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06865395A Division JP3778457B2 (en) | 1995-03-01 | 1995-03-01 | Manufacturing method of hard infrared cut glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005239547A true JP2005239547A (en) | 2005-09-08 |
JP4442900B2 JP4442900B2 (en) | 2010-03-31 |
Family
ID=35021670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005153960A Expired - Lifetime JP4442900B2 (en) | 2005-05-26 | 2005-05-26 | Hard infrared cut glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4442900B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016534020A (en) * | 2013-09-16 | 2016-11-04 | ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG | Method for producing iron-doped silica glass |
CN110981190A (en) * | 2019-12-11 | 2020-04-10 | 福耀玻璃工业集团股份有限公司 | Colored thin glass and laminated glass |
WO2022131274A1 (en) * | 2020-12-18 | 2022-06-23 | Agc株式会社 | Borosilicate glass, laminated glass, and window glass for vehicle |
-
2005
- 2005-05-26 JP JP2005153960A patent/JP4442900B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016534020A (en) * | 2013-09-16 | 2016-11-04 | ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG | Method for producing iron-doped silica glass |
CN110981190A (en) * | 2019-12-11 | 2020-04-10 | 福耀玻璃工业集团股份有限公司 | Colored thin glass and laminated glass |
CN110981190B (en) * | 2019-12-11 | 2021-11-19 | 福耀玻璃工业集团股份有限公司 | Colored thin glass and laminated glass |
WO2022131274A1 (en) * | 2020-12-18 | 2022-06-23 | Agc株式会社 | Borosilicate glass, laminated glass, and window glass for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP4442900B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100847618B1 (en) | High transmission glass plates and method for manufacturing the same | |
CN101190827B (en) | Glass article and method for making thereof | |
JP4786781B2 (en) | Neodymium glass for tungsten-halogen lamp envelopes and filters | |
JP4209544B2 (en) | Colored glass | |
JP2005320234A (en) | Lithium aluminosilicate flat float glass with high thermal stability capable of being chemically or thermally tempered | |
JP5026982B2 (en) | Glass article and method for producing the same | |
JP7120339B2 (en) | UV-absorbing glass article | |
JPH07187707A (en) | Borosilicate glass having high transmittance in ultraviolet region, low expansibility and high chemical stability, its production and its use | |
JPWO2012057232A1 (en) | Glass plate and method for producing the same | |
JP7138139B2 (en) | Li2O-Al2O3-SiO2-based crystallized glass | |
JP2002137935A (en) | Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp | |
JP3778457B2 (en) | Manufacturing method of hard infrared cut glass | |
JP4442900B2 (en) | Hard infrared cut glass | |
JP2000290038A (en) | Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp | |
JP2019189521A (en) | Phosphate glass with improved weather resistance | |
JP2003160354A (en) | Highly transparent glass plate and method of manufacturing the highly transparent glass plate | |
WO2018155105A1 (en) | Optical glass | |
JPWO2016039252A1 (en) | UV-absorbing glass article | |
JPWO2016039251A1 (en) | UV-absorbing glass article | |
JP4756430B2 (en) | Glass for electric lamp and manufacturing method thereof | |
KR20230066267A (en) | Li2O-Al2O3-SiO2 based crystallized glass | |
JP3669019B2 (en) | Dark gray glass | |
JP4767456B2 (en) | Glass composition for lighting | |
JP7409636B2 (en) | Multi-component oxide glass, optical element, optical fiber, and method for producing multi-component oxide glass | |
JP4756429B2 (en) | Compact fluorescent lamp glass and manufacturing method thereof. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050622 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A681 Effective date: 20050622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100108 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140122 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |