JP3778457B2 - Manufacturing method of hard infrared cut glass - Google Patents

Manufacturing method of hard infrared cut glass Download PDF

Info

Publication number
JP3778457B2
JP3778457B2 JP06865395A JP6865395A JP3778457B2 JP 3778457 B2 JP3778457 B2 JP 3778457B2 JP 06865395 A JP06865395 A JP 06865395A JP 6865395 A JP6865395 A JP 6865395A JP 3778457 B2 JP3778457 B2 JP 3778457B2
Authority
JP
Japan
Prior art keywords
glass
infrared
reducing agent
ratio
infrared cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06865395A
Other languages
Japanese (ja)
Other versions
JPH08239237A (en
Inventor
隆雄 大森
久和 上村
Original Assignee
旭テクノグラス株式会社
日本無線硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テクノグラス株式会社, 日本無線硝子株式会社 filed Critical 旭テクノグラス株式会社
Priority to JP06865395A priority Critical patent/JP3778457B2/en
Publication of JPH08239237A publication Critical patent/JPH08239237A/en
Application granted granted Critical
Publication of JP3778457B2 publication Critical patent/JP3778457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Description

【0001】
【産業上の利用分野】
本発明は、硬質ガラスであってかつ赤外領域に吸収特性を持つ硬質赤外線カットガラスとその製造方法に関するものである。
【0002】
【従来の技術】
従来からガラスによる熱線吸収には、Fe2+イオンによる赤外部の吸収特性が利用されている。Fe2+は波長1.1μm付近に吸収の中心を有し、特にガラス中で安定にFe2+を形成する燐酸系ガラスが、熱線吸収用フィルタ等に使用されている。この種の燐酸系ガラスは、多量にFeOを含有し、しかも可視部に吸収を生じない特性的に優れた熱線吸収性を示すが、ガラス構造的に化学的耐久性がわるく、溶融時の粘性が低いため複雑な形状に成形するのが難しいこともあって、窓ガラスや容器あるいはガラス管としては使用しにくく、実際の用途はフィルタ等の狭い範囲に限られていた。
【0003】
このため、ソーダ石灰系ガラスを基礎ガラスとして熱線吸収特性を与える方法が開発され、このガラスを使用することによって、熱線吸収特性をもった照明用ランプバルブや各種容器の製造も可能になった。特公昭59-3418号公報に開示されたこの方法は、ガラスの鉄分含有量、清澄剤及び還元剤の成分と使用量を選択することにより、可視部に吸収の少ない熱線吸収ガラスを得るものである。
【0004】
一方、光化学反応を利用した化学プラントにおいて、反応を効率的に行わせるため、反応容器内の反応液に光源を浸漬させる方法がとられている。光源としては、化学反応に必要とされる光の波長にもよるが、水銀ランプ、HIDランプ、キセノンランプ等が使用される。このような化学プラント用光源では、光源の大型化に伴ってランプの発熱量が増大するため、ランプを冷却する必要があり、反応液とランプの間を隔絶するガラス製の水冷管を使用し、水冷管内に冷却水を循環させて光化学反応に必要な光放射を遮ることなく光源の冷却が行われている。水冷管の材質としては、反応液に対して十分な耐蝕性があり、温度上昇に対しても耐熱強度が要求されるので、耐熱性、化学的耐久性、光透過性に優れた硼珪酸系ガラスが使用されている。
【0005】
【発明が解決しようとする課題】
上記化学プラント用光源の水冷管を用いた冷却水による効果は、伝熱によるランプ外管の温度上昇を防止するのみで、ランプからの輻射熱をカットするまでには至らず、反応液の不必要な温度上昇をもたらす要因となることがわかった。したがって、水冷管に赤外線吸収特性をもったガラスを用いれば、温度上昇の原因となる熱線を効果的に遮断して水冷効果とも合わせ反応収率の向上に寄与できる。
【0006】
しかしながら、上記燐酸系ガラス、ソーダ石灰系ガラス等の軟質ガラスは、反応液に対する耐蝕性や耐熱強度の点で不十分なため、このような用途への適用は困難である。他方、現在水冷管に使用されている硼珪酸系ガラスに赤外線吸収特性を付与することも考えられたが、次のような理由により赤外線のみを効果的にカットできる硼珪酸系ガラスは得られていない。
【0007】
一般にガラス中の鉄分は、Fe2+またはFe3+の形で存在し、次のような平衡関係を有している。
【0008】
【化1】

Figure 0003778457
【0009】
この平衡は溶融雰囲気、ガラス組成、溶融温度、溶融時間等によって左右される。硼珪酸系ガラスの場合、その基本成分に多量の酸性成分を含有しているため、ガラス中に含まれるFe3+に対してFe2+の比率を大きくすることは難しく、したがって燐酸系ガラスのように可視域での透過率を高く保ったまま赤外域をシャープカットすることはできなかった。このため単に硼珪酸系ガラスにFeを添加したのみでは、上記水冷管の場合、光化学反応に必要な波長域にまで吸収が及び、反応効率の低下をまねく問題があった。
【0010】
本発明はこのような事情を考慮してなされたもので、耐熱性、化学的耐久性に優れた硬質ガラスであって赤外線シャープカット性を合せ持ったガラスとその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するために、硼珪酸系ガラスにFe23を含有させるとともに強い還元性の条件下で溶融することによって、ガラス中に含まれるFe2+の比率を大きくすることを可能としたものである。
【0012】
すなわち本発明は、硼珪酸系ガラスの基礎ガラスバッチ中に、Fe 2 3 を0.1〜5質量%含有させるとともに、還元剤としてガラス構成元素の金属粉末を0.1〜1質量%添加してガラス中のFe 3+ をFe 2+ に還元し、ガラス中のFe 2+ /Fe 3+ の比率を3〜25とする製造方法である。ここで得られる硼珪酸系ガラスの熱膨張係数は32〜60×10 -7 /Kである。
【0013】
また、本発明は、質量百分率で、SiO2 50〜80%,Al23 0.5〜10%,Fe23 0.1〜5%,Na2O+K2O+Li2O 1〜12%,B23 5〜20%,CaO+MgO+BaO+ZnO+Sb23 0.5〜20%,F
0.1〜3%からなる基礎ガラスバッチ中に、還元剤としてガラス構成元素の金属粉末を0.1〜1%添加してガラス中のFe3+をFe2+に還元し、Fe2+/Fe3+の比率を3〜25とする製造方法である
【0014】
また、前記金属粉末が、Si,Zn,Al,Sbのいずれか1種または2種以上であることを特徴とする硬質赤外線カットガラスの製造方法である。
【0015】
【作用】
上記ガラスは、熱膨張係数を32〜60×10-7/Kとする硼珪酸系ガラスであるため、耐熱性、化学的耐久性に優れる。また基礎ガラスバッチ中に、Fe 2 3 を0.1〜5質量%含有させ、還元剤としてガラス構成元素の金属粉末を0.1〜1質量%添加してガラス中のFe 3+ をFe 2+ に還元し、ガラス中のFe2+/Fe3+の比率を3〜25としてあるため、Fe2+による優れた赤外線シャープカット性が得られる。
【0016】
次に本発明のガラス組成を上記範囲に限定した理由を説明する。
【0017】
SiO2はガラスの主成分であり、ガラスネットワーク構造の形成に必要不可欠な成分であるが、50%未満ではネットワーク構造が不十分となり耐水性が劣化する。また80%を越えると溶融性が悪くなる。好ましくは60〜76%の範囲である。
【0018】
Al23はガラスの化学的耐久性を向上させる効果があるが、0.5%未満ではその効果が得られず、10%を越えると脈理等のガラス不良を生じやすくするので好ましくない。好ましくは1〜9%である。
【0019】
Na2O、K2O、Li2Oのアルカリ金属酸化物は、ガラスの粘性を下げ、溶融を促進させるが、その合量が1%未満ではその効果は得られず、12%を越えるとガラスの熱膨脹係数が60×10-7/Kを越え、また化学的耐久性が劣化する。
【0020】
CaO、MgO、BaO、ZnO、Sb23などの金属酸化物は、その存在により溶融性を改善し、熱膨脹係数を調整し、化学的耐久性を向上させる効果があるが、その合量が0.5%未満ではこれらの効果は期待できず、20%を越えると結晶が発生しやすくなる。好ましくは3〜17%の範囲である。
【0021】
23は熱膨張係数を大きくすることなく溶融性を改善することができるが、5%未満ではその効果が得られず、20%を越えると化学的耐久性が悪くなる。好ましくは8〜18%の範囲である。
【0022】
Fはガラスの溶融助剤として作用するが、0.1%未満ではその効果は期待できず、3%を越えると溶融炉の耐火物への浸蝕性が強くなり、溶融炉の寿命を縮めるほかガラスが結晶を析出するようになるので好ましくない。
【0023】
Fe23はガラスに赤外線吸収特性を与えるために加えられ、Fe3+が還元剤の作用によりFe2+となって赤外線吸収特性を持つようになるが、0.1%未満では十分な赤外線吸収効果が得られず、5%を越えると可視域の吸収が大きくなり光透過材料としては適さなくなる。好ましくは0.2〜2%、より好ましくは0.3〜0.8%である。
【0024】
熱膨張係数は、要求される耐熱強度を満たし、ガラスの成形性等を考慮すると32〜60×10-7/Kであることが好ましく、より好ましくは45〜55×10-7/Kの範囲である。
【0025】
上記のとおり赤外線吸収特性はFe2+イオンによって与えられるので、Fe2+/Fe3+の比が高いほど赤外線のシャープカット性は良くなるが、Fe2+/Fe3+の比が25を越えると還元鉄が析出するので好ましくない。一方、Fe2+/Fe3+の比が3未満では赤外線シャープカット性がなくなり、十分な熱線吸収効果が得られない。Fe2+/Fe3+の比の好ましい範囲は10〜20である。
【0026】
次に本発明の製造方法についてその作用を述べる。上述のように硼珪酸系ガラスはその基本成分に多量の酸性成分を含有しているため、燐酸系ガラス等では十分な還元作用が得られる澱粉等の弱い還元剤ではガラス中に含まれるFe3+に対してFe2+の比率を大きくすることは難しく、燐酸系ガラスのように可視域での透過率を高く保ったまま赤外域をシャープカットするのは困難であった。そこで本発明では、硼珪酸系ガラスに比較的多めのFe23を含有させるとともに、還元剤としてガラス構成元素を金属粉末の状態で0.1〜1%添加して使用している。この金属粉末は、溶融ガラス中で酸化されてガラス構成成分となり、この過程で強い還元作用を及ぼす。これによってFe3+に対してFe2+の比率を大きくすることが可能となり、硼珪酸系ガラスでありながら赤外線シャープカット性を合せ持つガラスが得られた。金属粉末の添加量は、0.1%未満では硼珪酸系ガラスに対しては還元作用が不十分で、赤外域に充分な熱線吸収特性が得られず、1%を越えて添加すると、還元雰囲気がより強くなり着色剤としてのFe23が還元されて黒色の金属鉄が析出するので好ましくない。
【0027】
また、本発明では還元剤として用いる金属粉末をガラス構成元素の金属成分から選択使用するようにしているので、強い還元作用が得られると同時に還元剤がガラスに対して不要な影響を与えない利点がある。したがって上記組成のガラスに対しては、Si,Zn,Al,Sbを用いることが好ましい。これらの金属は、それぞれSiO2 、ZnO、Al2 3 、Sb2 3 となってガラス中に取り込まれる。
【0028】
【実施例】
以下、本発明の実施例について説明する。表1に質量百分率で示したガラス組成が得られるように各原料を調合し、これに表2に同じく質量百分率で示す還元剤を混合する。次に、これらの原料バッチをそれぞれ1lの耐火物るつぼに収容し、1400〜1420℃で約8時間、クローズドポット状態で溶融した後、金属型中に流し込んで徐冷したものを板状にスライスして、厚さ2mmに研磨した試料を作成した。本発明のガラスは、消泡性が良く、困難なくポット溶融が可能であった。これとは別に表1に示す組成の燐酸系ガラスを溶融し、実施例と同様の試料を作成して比較例とした。
【0029】
得られた試料について、分光透過率を測定し、波長535nmおよび1100nmの透過率を表2に示した。また実施例No.3とNo.6の試料については、図1に従来水冷管に使用されていた赤外線吸収特性を持たない硼珪酸系ガラスの特性と合わせて分光透過率曲線を示す。
【0030】
また、それぞれのガラスについて湿式分析の有機溶媒抽出法により全Fe含量およびFe3+含量を測定し、全Fe含量からFe3+含量を差引いてFe2+含量を求めた。この結果に基づきFe2+/Fe3+の比を算出し、これも表2に示した。
【0031】
さらに各試料を温度80℃、湿度95%の雰囲気に1000時間放置する恒温恒湿試験を行い、ガラス表面の性状変化により評価した結果を「耐候性」として表1に示す。
【0032】
【表1】
Figure 0003778457
【表2】
Figure 0003778457
【0033】
表1および表2からわかるように、本発明の実施例ガラスは、Fe23の含有量というよりもFe2+/Fe3+の比に依存して535nmにおける透過率が高くなっており、可視域において十分高い透過率を維持したまま1100nmにおいては透過率が低く抑えられている。ちなみに実施例No.1のガラスに還元剤を添加しないで溶融したガラスは、Fe2+/Fe3+の比が0.3となり、多量のFe分によってガラスが黄褐色に着色され赤外域の吸収が十分得られないまま全域の透過率が低下してしまった。また図1に示すように本実施例のガラスは、可視域で従来の硼珪酸系ガラスと同等の透過率を維持したまま近赤外域から赤外域での透過率が急激に低下している。
【0034】
以上のことから本発明の方法によって得られるガラスは、強い還元剤の作用によりガラス中のFe2+が増加した結果、赤外線のシャープカット特性が得られていることがわかる。なお上記実施例においては還元剤として各金属粉末を1種ずつ添加した例を示したが、これら金属粉末を2種以上混合使用しても同様の効果が得られた。
【0035】
また、表1に示した恒温恒湿試験の結果、比較例のガラスは表面が白濁したようになり光透過材料としては使用不能な状態になったのに対し、実施例のガラスはいずれも外観上ほとんど変化なく、「◎」のものに比べて「○」のもので若干透過率の低下が見られた程度であり、耐候性上なんら問題のないものであった。
【0036】
なお本発明のガラスは、熱膨張係数のみならずその他の物性においても従来の硼珪酸系ガラスと変わることなく、様々な成形加工が可能であり、水冷管の成形も従来同様に行うことができる。したがって本発明のガラスを光化学プラントの水冷管として使用した場合には、反応に必要な波長域の光を遮ることなく光源ランプからの輻射熱が遮断され、光源に起因する反応液の不要な温度上昇が防止できる。また水冷管以外にも赤外線吸収特性を要求される種種の用途に使用でき、従来用いられていた燐酸系ガラスやソーダ石灰系ガラスに比べて優れた耐久性、耐熱性を示す。
【0037】
【発明の効果】
本発明の製造方法によれば、ガラス構成元素の金属粉末を還元剤として使用しているので、硼珪酸系ガラスに対しても強い還元作用が得られ、これによってFe3+に対してFe2+の比率を大きくすることが可能となり、赤外線シャープカット性を有するガラスが得られる。還元剤として添加されるSi,Zn,Al,Sb等の金属粉末は、ガラス構成成分としてガラス中に吸収され、ガラスに対して不要な影響を与えない利点もある。
【図面の簡単な説明】
【図1】本発明の実施例の試料ガラスと従来の硼珪酸系ガラスの分光透過率を示す曲線図である。
【符号の説明】
1 従来の硼珪酸系ガラスの分光透過率曲線
2 本発明の実施例No.3のガラスの分光透過率曲線
3 本発明の実施例No.6のガラスの分光透過率曲線[0001]
[Industrial application fields]
The present invention relates to a hard infrared cut glass which is hard glass and has absorption characteristics in the infrared region, and a method for producing the same.
[0002]
[Prior art]
Conventionally, absorption characteristics in the infrared region by Fe 2+ ions have been used for heat ray absorption by glass. Fe 2+ has an absorption center in the vicinity of a wavelength of 1.1 μm, and phosphate glass that forms Fe 2+ stably in glass is used for heat ray absorbing filters and the like. This type of phosphate glass contains a large amount of FeO, and exhibits excellent heat ray absorption characteristics that do not cause absorption in the visible region, but has poor chemical durability in terms of glass structure and viscosity at the time of melting. Therefore, it is difficult to form into a complicated shape because it is low, and it is difficult to use as a window glass, a container, or a glass tube, and the actual application is limited to a narrow range such as a filter.
[0003]
For this reason, a method for imparting heat ray absorption characteristics using soda-lime-based glass as a basic glass has been developed, and by using this glass, it has become possible to manufacture lighting lamp bulbs and various containers having heat ray absorption characteristics. This method disclosed in Japanese Examined Patent Publication No. 59-3418 is to obtain a heat-absorbing glass with little absorption in the visible region by selecting the iron content of the glass, the fining agent and the reducing agent components and the amount used. is there.
[0004]
On the other hand, in a chemical plant using a photochemical reaction, a method of immersing a light source in a reaction solution in a reaction vessel is used in order to perform the reaction efficiently. As the light source, a mercury lamp, an HID lamp, a xenon lamp, or the like is used, depending on the wavelength of light required for the chemical reaction. In such light sources for chemical plants, the calorific value of the lamp increases as the size of the light source increases, so it is necessary to cool the lamp, and glass water-cooled tubes that isolate the reaction solution from the lamp are used. The cooling of the light source is performed without interrupting the light radiation necessary for the photochemical reaction by circulating cooling water in the water-cooled tube. The water-cooled tube material has sufficient corrosion resistance to the reaction solution, and heat resistance is required for temperature rise, so borosilicate system with excellent heat resistance, chemical durability and light transmission Glass is used.
[0005]
[Problems to be solved by the invention]
The effect of the cooling water using the water-cooled tube of the chemical plant light source only prevents the temperature rise of the lamp outer tube due to heat transfer, it does not cut the radiant heat from the lamp, and no reaction solution is required. It turned out to be a factor that brings about a temperature rise. Therefore, if glass having infrared absorption characteristics is used for the water-cooled tube, it is possible to effectively block the heat rays that cause the temperature rise and contribute to the improvement of the reaction yield together with the water-cooling effect.
[0006]
However, soft glasses such as the phosphate glass and soda lime glass are insufficient in terms of the corrosion resistance and heat resistance strength against the reaction solution, and are difficult to apply to such applications. On the other hand, it was also considered to impart infrared absorption characteristics to the borosilicate glass currently used in water-cooled tubes, but borosilicate glass capable of effectively cutting only infrared rays has been obtained for the following reasons. Absent.
[0007]
In general, iron in glass exists in the form of Fe 2+ or Fe 3+ and has the following equilibrium relationship.
[0008]
[Chemical 1]
Figure 0003778457
[0009]
This equilibrium depends on the melting atmosphere, glass composition, melting temperature, melting time and the like. In the case of borosilicate glass, since the basic component contains a large amount of acidic components, it is difficult to increase the ratio of Fe 2+ to Fe 3+ contained in the glass. Thus, it was impossible to sharply cut the infrared region while keeping the transmittance in the visible region high. Therefore, simply adding Fe to the borosilicate glass has a problem that the water-cooled tube has absorption up to the wavelength range necessary for the photochemical reaction, and the reaction efficiency is lowered.
[0010]
The present invention has been made in view of such circumstances, and an object thereof is to provide a glass having excellent heat resistance and chemical durability and having both infrared sharp cutting properties and a method for producing the same. And
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention increases the ratio of Fe 2+ contained in the glass by adding Fe 2 O 3 to the borosilicate glass and melting it under strong reducing conditions. Is possible.
[0012]
That is, according to the present invention, 0.1 to 5% by mass of Fe 2 O 3 is contained in a basic glass batch of borosilicate glass, and 0.1 to 1% by mass of a metal powder of a glass constituent element is added as a reducing agent. Then, Fe 3+ in the glass is reduced to Fe 2+ and the ratio of Fe 2+ / Fe 3+ in the glass is set to 3 to 25. The thermal expansion coefficient of the borosilicate glass obtained here is 32 to 60 × 10 −7 / K.
[0013]
Further, the present invention is the mass percentage, SiO 2 50~80%, Al 2 O 3 0.5~10%, Fe 2 O 3 0.1~5%, Na 2 O + K 2 O + Li 2 O 1~12% , B 2 O 3 5-20%, CaO + MgO + BaO + ZnO + Sb 2 O 3 0.5-20%, F
In a basic glass batch comprising 0.1 to 3%, 0.1 to 1% of metal powder of a glass constituent element is added as a reducing agent to reduce Fe 3+ in the glass to Fe 2+ , and Fe 2+ / a ratio of Fe 3+ is a manufacturing method of a 3 to 25.
[0014]
The metal powder is one or more of Si, Zn, Al, and Sb, or a method for producing a hard infrared cut glass.
[0015]
[Action]
Since the glass is a borosilicate glass having a thermal expansion coefficient of 32 to 60 × 10 −7 / K, it is excellent in heat resistance and chemical durability. Further , 0.1 to 5% by mass of Fe 2 O 3 is contained in the basic glass batch, and 0.1 to 1% by mass of metal powder of a glass constituent element is added as a reducing agent, and Fe 3+ in the glass is added to Fe. Since it is reduced to 2+ and the ratio of Fe 2+ / Fe 3+ in the glass is 3 to 25, the excellent infrared sharp-cut property by Fe 2+ can be obtained.
[0016]
Next, the reason why the glass composition of the present invention is limited to the above range will be described.
[0017]
SiO 2 is a main component of glass and is an indispensable component for forming a glass network structure, but if it is less than 50%, the network structure becomes insufficient and the water resistance deteriorates. On the other hand, if it exceeds 80%, the meltability deteriorates. Preferably it is 60 to 76% of range.
[0018]
Al 2 O 3 has the effect of improving the chemical durability of the glass, but if it is less than 0.5%, the effect cannot be obtained, and if it exceeds 10%, glass defects such as striae are liable to occur, which is not preferable. . Preferably it is 1 to 9%.
[0019]
Alkali metal oxides of Na 2 O, K 2 O and Li 2 O reduce the viscosity of the glass and promote melting, but if the total amount is less than 1%, the effect cannot be obtained, and if it exceeds 12% The coefficient of thermal expansion of glass exceeds 60 × 10 −7 / K, and the chemical durability is deteriorated.
[0020]
Metal oxides such as CaO, MgO, BaO, ZnO, and Sb 2 O 3 have the effect of improving the meltability, adjusting the thermal expansion coefficient, and improving the chemical durability due to their presence. If it is less than 0.5%, these effects cannot be expected, and if it exceeds 20%, crystals tend to be generated. Preferably it is 3 to 17% of range.
[0021]
B 2 O 3 can improve the meltability without increasing the thermal expansion coefficient, but if it is less than 5%, the effect cannot be obtained, and if it exceeds 20%, the chemical durability is deteriorated. Preferably it is 8 to 18% of range.
[0022]
F acts as a glass melting aid, but if it is less than 0.1%, its effect cannot be expected. If it exceeds 3%, the erosion resistance of the melting furnace becomes stronger and the life of the melting furnace is shortened. This is not preferable because glass precipitates crystals.
[0023]
Fe 2 O 3 is added to give infrared absorption characteristics to the glass, and Fe 3+ becomes Fe 2+ by the action of the reducing agent and has infrared absorption characteristics, but less than 0.1% is sufficient Infrared absorption effect cannot be obtained, and if it exceeds 5%, the absorption in the visible region is increased, making it unsuitable as a light transmitting material. Preferably it is 0.2 to 2%, More preferably, it is 0.3 to 0.8%.
[0024]
The thermal expansion coefficient satisfies the required heat resistance strength, and is preferably 32 to 60 × 10 −7 / K, more preferably in the range of 45 to 55 × 10 −7 / K in consideration of glass moldability and the like. It is.
[0025]
Since the infrared absorption characteristics as described above are given by Fe 2+ ions, the ratio of Fe 2+ / Fe 3+ is the better sharp cut of higher infrared, the ratio of Fe 2+ / Fe 3+ is 25 If it exceeds, reduced iron precipitates, which is not preferable. On the other hand, if the ratio of Fe 2+ / Fe 3+ is less than 3, the infrared sharp cutting property is lost and a sufficient heat ray absorption effect cannot be obtained. A preferable range of the ratio of Fe 2+ / Fe 3+ is 10-20.
[0026]
Next, the operation of the manufacturing method of the present invention will be described. As described above, since borosilicate glass contains a large amount of acidic components in its basic components, Fe 3 contained in the glass is used in weak reducing agents such as starch that can provide a sufficient reducing action in phosphate glass. it is difficult to increase the ratio of Fe 2+ relative to +, it has been difficult to sharp cut the infrared range while maintaining a high transmittance in the visible region as phosphoric acid-based glass. Therefore, in the present invention, a relatively large amount of Fe 2 O 3 is contained in the borosilicate glass, and a glass constituent element is added as a reducing agent in the form of metal powder in an amount of 0.1 to 1%. This metal powder is oxidized in molten glass to become a glass component, and exerts a strong reducing action in this process. This makes it possible to increase the ratio of Fe 2+ to Fe 3+ , and a glass having both infrared sharp-cut properties while being a borosilicate glass. If the addition amount of the metal powder is less than 0.1%, the reducing action is insufficient for borosilicate glass, and sufficient heat ray absorption characteristics cannot be obtained in the infrared region. This is not preferable because the atmosphere becomes stronger and Fe 2 O 3 as a colorant is reduced to deposit black metallic iron.
[0027]
Further, in the present invention, the metal powder used as the reducing agent is selected and used from the metal component of the glass constituent element, so that a strong reducing action can be obtained and at the same time the reducing agent has no unnecessary influence on the glass. There is. Therefore, Si, Zn, Al, and Sb are preferably used for the glass having the above composition. These metals are incorporated into glass as SiO 2 , ZnO, Al 2 O 3 , and Sb 2 O 3 , respectively.
[0028]
【Example】
Examples of the present invention will be described below. Each raw material is prepared so that the glass composition shown by the mass percentage in Table 1 is obtained, and the reducing agent shown by the mass percentage in Table 2 is mixed therewith. Next, each of these raw material batches is placed in a 1 liter refractory crucible, melted in a closed pot state at 1400-1420 ° C. for about 8 hours, and then poured into a metal mold and slowly cooled into slices. Thus, a sample polished to a thickness of 2 mm was prepared. The glass of the present invention had good antifoaming properties and could be melted in a pot without difficulty. Separately, a phosphate glass having the composition shown in Table 1 was melted, and a sample similar to the example was prepared as a comparative example.
[0029]
With respect to the obtained sample, the spectral transmittance was measured, and the transmittances at wavelengths of 535 nm and 1100 nm are shown in Table 2. In addition, Example No. 3 and no. For the sample No. 6, a spectral transmittance curve is shown in FIG. 1 together with the characteristics of the borosilicate glass having no infrared absorption characteristics conventionally used in water-cooled tubes.
[0030]
Further, for each glass, the total Fe content and the Fe 3+ content were measured by an organic solvent extraction method of wet analysis, and the Fe 2+ content was determined by subtracting the Fe 3+ content from the total Fe content. Based on this result, the ratio Fe 2+ / Fe 3+ was calculated and is also shown in Table 2.
[0031]
Furthermore, Table 1 shows the results of a constant temperature and humidity test in which each sample is left in an atmosphere of 80 ° C. and 95% humidity for 1000 hours and evaluated by changes in the properties of the glass surface as “weather resistance”.
[0032]
[Table 1]
Figure 0003778457
[Table 2]
Figure 0003778457
[0033]
As can be seen from Tables 1 and 2, the glass according to the present invention has a higher transmittance at 535 nm depending on the ratio of Fe 2+ / Fe 3+ rather than the content of Fe 2 O 3. The transmittance is kept low at 1100 nm while maintaining a sufficiently high transmittance in the visible range. Incidentally, Example No. Glass melted without adding a reducing agent to glass No. 1 has a ratio of Fe 2+ / Fe 3+ of 0.3, and the glass is colored yellowish brown due to a large amount of Fe, so that sufficient absorption in the infrared region is obtained. The transmittance of the entire area has declined without it. Also, as shown in FIG. 1, the transmittance of the glass of this example rapidly decreases from the near infrared region to the infrared region while maintaining the same transmittance as that of the conventional borosilicate glass in the visible region.
[0034]
From the above, it can be seen that the glass obtained by the method of the present invention has infrared sharp-cut characteristics as a result of an increase in Fe 2+ in the glass due to the action of a strong reducing agent. In the above embodiment, an example was shown in which one type of each metal powder was added as a reducing agent, but the same effect was obtained even when two or more types of these metal powders were used in combination.
[0035]
Moreover, as a result of the constant temperature and humidity test shown in Table 1, the glass of the comparative example became cloudy on the surface and became unusable as a light transmissive material, whereas the glasses of the examples were all appearances. There was almost no change, and a slight decrease in the transmittance was observed for the “◯” compared to the “◎”, and there was no problem in terms of weather resistance.
[0036]
The glass of the present invention can be formed in various ways without changing from the conventional borosilicate glass in terms of not only the thermal expansion coefficient but also other physical properties, and the water-cooled tube can be formed in the same manner as before. . Therefore, when the glass of the present invention is used as a water-cooled tube of a photochemical plant, the radiant heat from the light source lamp is blocked without blocking light in the wavelength region necessary for the reaction, and an unnecessary temperature rise of the reaction solution caused by the light source Can be prevented. In addition to water-cooled tubes, it can be used for various applications that require infrared absorption characteristics, and exhibits superior durability and heat resistance compared to phosphoric acid-based glass and soda-lime-based glass that have been used conventionally.
[0037]
【The invention's effect】
According to the production method of the present invention, since the metal powder of the glass constituent element is used as a reducing agent, a strong reducing action can be obtained even with respect to the borosilicate glass, whereby Fe 2 relative to Fe 3+ It becomes possible to increase the ratio of + , and a glass having infrared sharp cutting properties can be obtained. Metal powders such as Si, Zn, Al, and Sb added as a reducing agent are absorbed in the glass as a glass constituent component, and have an advantage of not causing unnecessary influence on the glass.
[Brief description of the drawings]
FIG. 1 is a curve diagram showing spectral transmittances of a sample glass of an example of the present invention and a conventional borosilicate glass.
[Explanation of symbols]
1 Spectral transmittance curve of conventional borosilicate glass 2 Example No. of the present invention Spectral transmittance curve of the glass of 3 No. 3 of the present invention. Spectral transmittance curve of 6 glass

Claims (3)

硼珪酸系ガラスの基礎ガラスバッチ中に、Fe23を0.1〜5質量%含有させるとともに、還元剤としてガラス構成元素の金属粉末を0.1〜1質量%添加してガラス中のFe3+をFe2+に還元し、ガラス中のFe2+/Fe3+の比率を3〜25とすることを特徴とする硬質赤外線カットガラスの製造方法。In the basic glass batch of borosilicate glass, 0.1 to 5% by mass of Fe 2 O 3 is contained, and 0.1 to 1% by mass of a metal powder of a glass constituent element is added as a reducing agent. A method for producing a hard infrared cut glass, wherein Fe 3+ is reduced to Fe 2+ and the ratio of Fe 2+ / Fe 3+ in the glass is 3 to 25. 質量百分率で、SiO2 50〜80%,Al23 0.5〜10%,Fe23 0.1〜5%,Na2O+K2O+Li2O 1〜12%,B23 5〜20%,CaO+MgO+BaO+ZnO+Sb23 0.5〜20%,F
0.1〜3%からなる基礎ガラスバッチ中に、還元剤としてガラス構成元素の金属粉末を0.1〜1%添加してガラス中のFe3+をFe2+に還元し、Fe2+/Fe3+の比率を3〜25とすることにより赤外線吸収特性のあるガラスを得ることを特徴とする硬質赤外線カットガラスの製造方法。
By mass percentage, SiO 2 50-80%, Al 2 O 3 0.5-10%, Fe 2 O 3 0.1-5%, Na 2 O + K 2 O + Li 2 O 1-12%, B 2 O 3 5 -20%, CaO + MgO + BaO + ZnO + Sb 2 O 3 0.5-20%, F
In a basic glass batch comprising 0.1 to 3%, 0.1 to 1% of metal powder of a glass constituent element is added as a reducing agent to reduce Fe 3+ in the glass to Fe 2+ , and Fe 2+ A method for producing a hard infrared cut glass, wherein a glass having infrared absorption characteristics is obtained by setting the ratio of / Fe 3+ to 3 to 25.
前記金属粉末が、Si,Zn,Al,Sbのいずれか1種または2種以上であることを特徴とする請求項1または2記載の硬質赤外線カットガラスの製造方法。The method for producing a hard infrared cut glass according to claim 1 or 2 , wherein the metal powder is one or more of Si, Zn, Al, and Sb.
JP06865395A 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass Expired - Lifetime JP3778457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06865395A JP3778457B2 (en) 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06865395A JP3778457B2 (en) 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005153960A Division JP4442900B2 (en) 2005-05-26 2005-05-26 Hard infrared cut glass

Publications (2)

Publication Number Publication Date
JPH08239237A JPH08239237A (en) 1996-09-17
JP3778457B2 true JP3778457B2 (en) 2006-05-24

Family

ID=13379885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06865395A Expired - Lifetime JP3778457B2 (en) 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass

Country Status (1)

Country Link
JP (1) JP3778457B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497591B2 (en) * 1998-09-11 2010-07-07 Hoya株式会社 Glass composition, substrate for information recording medium and information recording medium using the same
WO2016042679A1 (en) * 2014-09-19 2016-03-24 貞雅 禹 Manganese oxide-containing glass
JP7022367B2 (en) * 2017-09-27 2022-02-18 日本電気硝子株式会社 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
CN108314317B (en) * 2018-01-30 2020-06-23 威海畅享海天新材料科技有限公司 Glass tube and manufacturing method thereof
CN110981190B (en) * 2019-12-11 2021-11-19 福耀玻璃工业集团股份有限公司 Colored thin glass and laminated glass
WO2022131274A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Borosilicate glass, laminated glass, and window glass for vehicle
EP4180401A3 (en) * 2021-10-19 2023-08-02 Schott Ag Glass, glass article, method of making the glass, use of the glass and flash lamp comprising the glass

Also Published As

Publication number Publication date
JPH08239237A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
CN101190827B (en) Glass article and method for making thereof
KR100847618B1 (en) High transmission glass plates and method for manufacturing the same
US6673729B2 (en) Glass ceramic
US7141521B2 (en) Flat float glass
JP4786781B2 (en) Neodymium glass for tungsten-halogen lamp envelopes and filters
JP4209544B2 (en) Colored glass
JPH07187707A (en) Borosilicate glass having high transmittance in ultraviolet region, low expansibility and high chemical stability, its production and its use
JP7120339B2 (en) UV-absorbing glass article
JPWO2007052666A1 (en) Glass article and method for producing the same
JP2023071830A (en) Li2O-Al2O3-SiO2-based crystallized glass
JP3778457B2 (en) Manufacturing method of hard infrared cut glass
JP4442900B2 (en) Hard infrared cut glass
JP2000290038A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
US5610107A (en) Blue high silica glass
JPS61136936A (en) Glass composition
JPWO2016039251A1 (en) UV-absorbing glass article
JPH0274536A (en) Hard glass for press molding
JPH10316450A (en) Batch composition for producing soda lime silica-based copper red glass and production of the glass
JP3669019B2 (en) Dark gray glass
JP4626934B2 (en) LCD protective glass
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
CN114014538A (en) Silicate glass and preparation method and application thereof
JPS6316348B2 (en)
JPWO2016039252A1 (en) UV-absorbing glass article
JP7409636B2 (en) Multi-component oxide glass, optical element, optical fiber, and method for producing multi-component oxide glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term