JP2005238059A - Method and apparatus for cleaning electronic part - Google Patents

Method and apparatus for cleaning electronic part Download PDF

Info

Publication number
JP2005238059A
JP2005238059A JP2004049402A JP2004049402A JP2005238059A JP 2005238059 A JP2005238059 A JP 2005238059A JP 2004049402 A JP2004049402 A JP 2004049402A JP 2004049402 A JP2004049402 A JP 2004049402A JP 2005238059 A JP2005238059 A JP 2005238059A
Authority
JP
Japan
Prior art keywords
carbon dioxide
solid carbon
nozzle
cleaning
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004049402A
Other languages
Japanese (ja)
Inventor
Yuichi Momotsuka
雄一 百束
Mitsugi Maekawa
貢 前川
Tadao Tokushima
忠夫 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mediken Inc
Original Assignee
Mediken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediken Inc filed Critical Mediken Inc
Priority to JP2004049402A priority Critical patent/JP2005238059A/en
Publication of JP2005238059A publication Critical patent/JP2005238059A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for grinding and removing an attached substance such as an adhesive wax, a resist, or a bur used in the wafer process and mechanical working of a CPP-GMR (current perpendicular to plane-giant magneto resistive) head and TMR (tunneling magneto resistive) head to be used in the wafer process and mechanical working process for electronic parts, specially a next-generation HDD (hard disk drive). <P>SOLUTION: For cleaning the attached substance, an apparatus which has a nozzle for irradiating an object with fine carbon dioxide particles formed by adiabatic expansion of a liquid carbon oxide and coarse carbon dioxide particles formed by mechanical crushing of a dry ice, simultaneously or with a time lag, is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、IC薄膜工程及び機械加工を伴う電子部品の加工工程において電子部品に付着する付着物、特に接着剤やレジスト等の有機付着物を除去する方法及び装置に関するものである。   The present invention relates to a method and an apparatus for removing deposits adhering to electronic components, particularly organic deposits such as adhesives and resists, in an IC thin film process and an electronic component processing step involving machining.

半導体IC薄膜工程での有機付着物、例えばレジスト等は、酸素プラズマエッチング装置等により付着物を酸化することにより除去されてきた。   Organic deposits such as resists in the semiconductor IC thin film process have been removed by oxidizing the deposits with an oxygen plasma etching apparatus or the like.

また、MR(Magneto Resistive )及びGMR(Giant MR)ヘッド等の半導体薄膜プロセスより凹凸が大きく、ウェーハ厚みが3−5mmとシリコンに比較して厚い基板の切断研磨工程を必要とする磁気記録部品の付着物除去には、特許文献1に代表される液体炭酸ガスの断熱膨張による洗浄方法又は特許文献2に代表される固体炭酸ガスの機械粉砕による洗浄方法が使用されてきた。
米国特許第5766061号公報 特開平10−506060号公報
In addition, magnetic recording components that have larger irregularities than semiconductor thin film processes such as MR (Magneto Resistive) and GMR (Giant MR) heads, and that require a cutting and polishing step for a substrate having a wafer thickness of 3-5 mm, which is thicker than silicon. For the removal of deposits, a cleaning method by adiabatic expansion of liquid carbon dioxide gas represented by Patent Document 1 or a cleaning method by mechanical pulverization of solid carbon dioxide gas represented by Patent Document 2 has been used.
US Pat. No. 5,766,061 Japanese Patent Laid-Open No. 10-506060

従来型のMR及びGMRヘッドでは、構成される膜の厚みが100−1000A(オングストローム。以下同じ。)と厚いので、機械粉砕による固体炭酸ガスジェットも膜に与える機械損傷が小さいことから一部使用されてきた。   In conventional MR and GMR heads, the thickness of the composed film is as thick as 100-1000A (angstrom, the same applies hereinafter), so the solid carbon dioxide jet caused by mechanical crushing is also partially used because the mechanical damage to the film is small. It has been.

また、有機付着物が厚い場合、又は、凹凸が大きく機械噴射除去が難しい場合は、炭化水素を含む加温された溶剤中にディッピングして除去する方法も行われてきた。   Moreover, when organic deposits are thick, or when unevenness is large and mechanical spray removal is difficult, a method of removing by dipping in a heated solvent containing hydrocarbons has also been performed.

上記プラズマエッチングによる従来の洗浄方法の場合は、磁性材料、道電材料やアルミナセラミック等のシリコン半導体に比較して多種の材料の組合せで構成され、厚膜・薄膜工程を使用して凹凸アスペクトレイショの大きい磁気記録ヘッド等の製造工程には、プラズマエッチング工程は初期の一部のウェーハ工程にしか使用できない。
また、液体炭酸ガスの断熱膨張による炭酸ガス微粒子を使用したシステムでは、エッチング切削レートが極めて遅いため、加工に時間がかかりすぎていた。
次世代高密度記録に使用されるCPP(面直)―GMRヘッド、TMR(トンネル型磁気)ヘッドは、現行ヘッドに比較して構成膜厚が3−5Aと薄く、最大20層程度各種の材料を積層して使用されるため、処理に時間がかかると各層の膨張係数の差による熱歪で膜に欠陥が発生し、歩留まりが下がる。また、粒子サイズの大きな機械粉砕による固体炭酸ガスのジェットクリーニングでは、粒子の衝突エネルギーにより発生する機械応力及び静電気破壊により歩留まりが下がるため、なるべく処理時間を短縮することが求められていた。
さらに、炭化水素を含む加温された溶剤を用いる場合は、溶剤は発火する危険があるため、特別にデザインされた防爆対策を施した洗浄工程で除去作業が行われる。このため、溶剤加熱による多層膜の相互拡散による歩留まり低下及び防爆の対策のための特別な設備でラインに組み込むのが難しかった
In the case of the conventional cleaning method using plasma etching, it is composed of a combination of various materials compared to silicon materials such as magnetic materials, electro-active materials and alumina ceramics. In the manufacturing process of a magnetic recording head or the like having a large size, the plasma etching process can be used only for a part of the initial wafer process.
Further, in a system using carbon dioxide fine particles by adiabatic expansion of liquid carbon dioxide gas, the etching cutting rate is extremely slow, so that the processing takes too much time.
CPP (straight) -GMR heads and TMR (tunnel magnetic) heads used for next-generation high-density recording are as thin as 3-5A compared to current heads, with a maximum of 20 layers. Therefore, if processing takes time, a defect occurs in the film due to thermal strain due to the difference in the expansion coefficient of each layer, and the yield decreases. Further, in the solid carbon dioxide jet cleaning by mechanical pulverization with a large particle size, the yield is lowered due to mechanical stress generated by the collision energy of the particles and electrostatic breakdown, so that it is required to shorten the processing time as much as possible.
Further, when a heated solvent containing hydrocarbons is used, the solvent is likely to ignite, and therefore the removal operation is performed in a specially designed cleaning process with explosion-proof measures. For this reason, it was difficult to incorporate in a line with special equipment for yield reduction and explosion-proof measures due to mutual diffusion of multilayer films due to solvent heating.

本発明は、上記の問題点に鑑みてなされたものであり、その課題は電子部品の加工工程において電子部品に付着する付着物を効率的に除去する方法及び装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a method and an apparatus for efficiently removing deposits adhering to an electronic component in a processing step of the electronic component.

本発明は、断熱膨脹炭酸ガス及び機械切削固体ドライアイスの噴射実験の結果得られた下記の知見に基づいてなされた。
(a)液体炭酸ガスの断熱膨張により作られる炭酸ガス微粒子は、粒子の機械的運動エネルギーによる付着物のエッチング又は研削能力は極めて小さく,付着物の剥離クリーニング効果は主として付着物と回路基板との熱膨張の差による。
(b)剥離しかかった付着物を機械エネルギーにより除去するには、粒子の運動エネルギーが足りないので処理時間がかかるが、付着物の冷却効果は大きい。
(c)固体炭酸ガスの機械粉砕による粒子は、付着物と回路基板との膨張係数の差による剥離効果より粒子の運動エネルギーによる研削効果が大きい。
(d)機械粉砕による固体炭酸ガスは粒子サイズの制御が難しいため、長時間にわたって生産ラインで一様にエッチング研削する作業をすることがむつかしい。
(e)粒子の運動エンルギーによる積層薄膜の損傷を避けるためには、照射時間をなるべく短くしたい。
(f)固体炭酸ガス粗粒子はキャリアガスで運ばれるため、付着物の冷却効果が断熱膨張炭酸ガス微粒子より小さい。
The present invention has been made on the basis of the following knowledge obtained as a result of a spray experiment of adiabatic expanded carbon dioxide and machine-cut solid dry ice.
(A) Carbon dioxide fine particles produced by adiabatic expansion of liquid carbon dioxide have a very small ability to etch or grind the deposits due to the mechanical kinetic energy of the particles, and the delamination cleaning effect of the deposits is mainly between the deposits and the circuit board. Due to differences in thermal expansion.
(B) To remove the deposit that has been peeled off by mechanical energy, the kinetic energy of the particles is insufficient, and thus processing time is required, but the cooling effect of the deposit is large.
(C) Particles obtained by mechanical pulverization of solid carbon dioxide gas have a greater grinding effect due to the kinetic energy of the particles than the peeling effect due to the difference in expansion coefficient between the deposit and the circuit board.
(D) Since solid carbon dioxide by mechanical pulverization is difficult to control the particle size, it is difficult to perform etching grinding uniformly on a production line for a long time.
(E) In order to avoid damage to the laminated thin film due to the kinetic energy of particles, it is desirable to shorten the irradiation time as much as possible.
(F) Since the solid carbon dioxide coarse particles are carried by the carrier gas, the cooling effect of the deposit is smaller than that of the adiabatic expansion carbon dioxide fine particles.

上記課題を解決するため、本発明による洗浄方法は、液体炭酸ガスの断熱膨張により作られる炭酸ガス微粒子及び固体炭酸ガスの機械的粉砕により作られる固体炭酸ガス粗粒子を未完成の電子部品に同時又は時間差をおいて照射することにより前記電子部品から付着物を除去することを特徴としている。
上記方法により、液体炭酸ガスの断熱膨張により作られた炭酸ガス微粒子の照射により試料が冷却され、付着物と回路基板との温度差に基づく熱膨張係数の差により互いの密着力が下げられる。次に、機械粉砕により作られた運動エネルギーの大きな固体炭酸ガス粗粒子により付着物が剥離される。
In order to solve the above-mentioned problems, the cleaning method according to the present invention simultaneously applies carbon dioxide fine particles produced by adiabatic expansion of liquid carbon dioxide gas and solid carbon dioxide coarse particles produced by mechanical pulverization of solid carbon dioxide gas to an unfinished electronic component. Alternatively, the deposit is removed from the electronic component by irradiating with a time difference.
According to the above method, the sample is cooled by irradiation with carbon dioxide fine particles produced by adiabatic expansion of liquid carbon dioxide, and the mutual adhesion is reduced by the difference in thermal expansion coefficient based on the temperature difference between the deposit and the circuit board. Next, deposits are peeled off by solid carbon dioxide coarse particles having a large kinetic energy produced by mechanical pulverization.

液体炭酸ガスの断熱膨張により作られる固体炭酸ガス微粒子は、粒子サイズ5μm以下のものを、また、固体炭酸ガスの機械的粉砕により作られる固体炭酸ガス粗粒子は、粒子サイズ0.3−1.0mmのものを使用することが望ましい。
粒子サイズ5μmを越える場合は、粒子の機械運動エネルギーにより、多層膜が機械損傷を受ける。粒子サイズが0.3mm未満の場合は、運動エネルギーが小さいので研削能力が低いので、好ましくない。また、粒子サイズが1.0mmを越えた場合は、運動エネルギーが大きすぎ、多層膜が速やかに損傷されるので、好ましくない。
Solid carbon dioxide fine particles made by adiabatic expansion of liquid carbon dioxide have a particle size of 5 μm or less, and solid carbon dioxide coarse particles made by mechanical pulverization of solid carbon dioxide have a particle size of 0.3-1. It is desirable to use a 0 mm one.
When the particle size exceeds 5 μm, the multilayer film is mechanically damaged by the mechanical kinetic energy of the particles. When the particle size is less than 0.3 mm, the kinetic energy is small and the grinding ability is low. In addition, when the particle size exceeds 1.0 mm, the kinetic energy is too large and the multilayer film is quickly damaged, which is not preferable.

また、上記方法を使用するための電子部品洗浄装置は、液体炭酸ガス供給源と、固体炭酸ガスを粉砕してキャリアガスにより供給する装置と、前記液体炭酸ガスボンベの液体炭酸ガス供給口及び前記固体炭酸ガス粉砕供給装置の固体炭酸ガス粗粒子供給口に連結されて、断熱膨張による炭酸ガス微粒子と固体炭酸ガス粗粒子を同時又は時間差をつけて噴射するノズルと、前記ノズルの噴射口を臨ませ、その噴射方向に対向して加工試料を収容する処理室とを備えたことを特徴としている。   An electronic component cleaning apparatus for using the above method includes a liquid carbon dioxide supply source, a device for pulverizing and supplying solid carbon dioxide with a carrier gas, a liquid carbon dioxide supply port of the liquid carbon dioxide cylinder, and the solid Connected to the solid carbon dioxide coarse particle supply port of the carbon dioxide pulverization supply device, the nozzle for injecting carbon dioxide fine particles and solid carbon dioxide coarse particles by adiabatic expansion simultaneously or with a time difference is faced, and the nozzle injection port faces And a processing chamber for storing a processed sample facing the jet direction.

上記電子部品洗浄装置は、固体炭酸ガス粉砕供給装置から機械粉砕された固体炭酸ガス粗粒子をノズルに運搬するキャリアガスとして100−300kPaの乾燥空気、窒素又はアルゴンを使用することが望ましい。
キャリアガスの圧力が100kPa未満の場合は、粒子の運動エネルギーが小さくなるので、好ましくない。300kPaを越えた場合は、運動エネルギーが大きくなりすぎるので、好ましくない。キャリアガスに乾燥空気、窒素又はアルゴンを用いるのは、対象物の結露を避けるためである。
The electronic component cleaning device preferably uses 100 to 300 kPa of dry air, nitrogen or argon as a carrier gas for transporting the solid carbon dioxide coarse particles mechanically pulverized from the solid carbon dioxide pulverization supply device to the nozzle.
When the pressure of the carrier gas is less than 100 kPa, the kinetic energy of the particles becomes small, which is not preferable. If it exceeds 300 kPa, the kinetic energy becomes too large, which is not preferable. The reason why dry air, nitrogen or argon is used as the carrier gas is to avoid condensation of the object.

請求項1の方法発明によれば、固体炭酸ガス微粒子の照射により試料が冷却されて付着物と回路基板との温度差に基づく熱膨張係数の差により互いの密着力が下げられた状態で、機械粉砕により作られた運動エネルギーの大きな固体炭酸ガス粗粒子により付着物が剥離されるから、固体炭酸ガスのみによる除去や機械粉砕固体炭酸ガスのみによる除去よりも加工時間が著しく短縮され、かつ、歩留まりも向上する。そして、固体炭酸ガス粗粒子を用いて付着物を剥離するので、汚染物質除去の工程を必要としない。砥粒などの非消滅性材料を用いる場合は、試料面に粒子が残り、汚染物質除去の工程が必要とされる。   According to the method invention of claim 1, in a state where the sample is cooled by irradiation with the solid carbon dioxide fine particles and the mutual adhesion is reduced due to the difference in thermal expansion coefficient based on the temperature difference between the deposit and the circuit board, Since the deposits are peeled off by the solid carbon dioxide coarse particles with large kinetic energy produced by mechanical grinding, the processing time is significantly shortened compared to removal by solid carbon dioxide alone or removal by mechanical ground solid carbon dioxide alone, and Yield is also improved. And since a deposit | attachment is peeled using a solid carbon dioxide coarse particle, the process of a contaminant removal is not required. In the case of using a non-extinguishing material such as abrasive grains, particles remain on the sample surface, and a process of removing contaminants is required.

請求項2の方法発明によれば、液体炭酸ガスの断熱膨張により作られる固体炭酸ガス微粒子は粒子サイズ5μm以下のものを用いるので付着物の冷却効果が大きく、固体炭酸ガスの機械的粉砕により作られる固体炭酸ガス粗粒子は粒子サイズ0.3−1.0mmのものを使用するので、粒子の運動エネルギーによる研削効果が大きい。   According to the method invention of claim 2, since solid carbon dioxide fine particles produced by adiabatic expansion of liquid carbon dioxide are those having a particle size of 5 μm or less, the effect of cooling the deposits is large, and the solid carbon dioxide fine particles are produced by mechanical pulverization of solid carbon dioxide. Since the solid carbon dioxide coarse particles to be used have a particle size of 0.3 to 1.0 mm, the grinding effect due to the kinetic energy of the particles is large.

請求項3の装置発明によれば、上記方法発明を産業的に実施することができる。   According to the device invention of claim 3, the method invention can be industrially implemented.

請求項4の装置発明によれば、対象物上での結露が避けられるため、研削能力が増し、噴射時間が短縮されるので、電子部品多層膜へのダメージが小さくなる。したがって、低コストで効率的に試料の冷却と付着物除去を行うことができる。   According to the apparatus invention of claim 4, since condensation on the object can be avoided, the grinding ability is increased and the injection time is shortened, so that damage to the electronic component multilayer film is reduced. Therefore, it is possible to efficiently cool the sample and remove the deposits at low cost.

本発明方法は、極薄膜積層構造を使用する次世代のCPP−GMRヘッド及びTMRヘッドの製造工程において使用するのに特に適したものであるが、付着物除去対象物は特に限定されない。   The method of the present invention is particularly suitable for use in the manufacturing process of the next generation CPP-GMR head and TMR head using an ultra-thin film laminated structure, but the deposit removal target is not particularly limited.

本発明の一つの実施形態として、第一工程で断熱膨張による固体炭酸ガス微粒子を照射して試料を冷却し、剥離応力を生じさせ、次に第二工程として機械粉砕された粒子サイズの大きな固体炭酸ガス粗粒子を照射して付着物を除去することができる。また、別の実施形態としては、第一工程と第二工程を交互に繰り返して付着物を除去してもよい。これは、アスペクトレイショの大きな電子部品の場合は、凹凸下部の付着物には冷却効果と機械研削効果が及びにくいため、上部の付着物から順次除去することによる。また、加工物によっては、同時に噴射してもよい。
固体炭酸ガス微粒子及び固体炭酸ガス粗粒子を試料に向けて噴射する噴射ノズルは、2つの噴出口をもつことが望ましい。噴出口の一つは、液体炭酸ガスを断熱膨張させるための絞り弁を有する。また、第一・第二工程は空気中の水分による結露を避けるため、処理チャンバー内で乾燥雰囲気のもとで行われることが望ましい
また、前記工程は、生産用の場合、自動シーケンスプログラムに従って制御され,必要に応じて静電気対策のため除電設備を付加することが求められる。
As one embodiment of the present invention, a solid carbon dioxide fine particle by adiabatic expansion is irradiated in the first step to cool the sample, causing a peeling stress, and then mechanically pulverized solid having a large particle size as the second step. The deposits can be removed by irradiation with carbon dioxide coarse particles. Moreover, as another embodiment, the first step and the second step may be alternately repeated to remove the deposits. This is because, in the case of an electronic component having a large aspect ratio, the deposit on the lower part of the unevenness is less likely to have a cooling effect and a mechanical grinding effect, so that the deposit on the upper part is sequentially removed. Moreover, depending on a workpiece, you may inject simultaneously.
The injection nozzle that injects the solid carbon dioxide fine particles and the solid carbon dioxide coarse particles toward the sample preferably has two injection ports. One of the spouts has a throttle valve for adiabatic expansion of liquid carbon dioxide. In addition, the first and second steps are preferably performed in a dry atmosphere in the processing chamber in order to avoid condensation due to moisture in the air. Also, in the case of production, the steps are controlled according to an automatic sequence program. If necessary, it is necessary to add static eliminator as a countermeasure against static electricity.

続いて、本発明による洗浄方法の実施例を、同方法を使用する洗浄装置とともに図面を用いて説明する。
図1は本発明装置の全体構造図、図2は図1におけるノズルの拡大断面図、図3は試料に対する洗浄作用を説明する概念図である。
Subsequently, an example of the cleaning method according to the present invention will be described with reference to the drawings together with a cleaning apparatus using the method.
FIG. 1 is an overall structural view of the apparatus of the present invention, FIG. 2 is an enlarged sectional view of a nozzle in FIG. 1, and FIG. 3 is a conceptual diagram for explaining a cleaning action on a sample.

図1において、11は冷却用ガス供給源の一例としての液体炭酸ガスボンベ、13は固体炭酸ガス粉砕供給装置であり、この装置は固体炭酸ガスを収容する容器131とこの容器に収容されている固体炭酸ガスブロックを定量ずつ粉砕し、フィルターを経てキャリアガスで送り出す粉砕送出機132とを有している。15は連結管12,14により液体炭酸ガスボンベ11の供給口と固体炭酸ガス粉砕供給装置13の送出口に連結された噴射ノズル、16は処理チャンバーであり、加工試料17を収容し又は取出すことができ、噴射ノズル15がその噴射口を試料に向けてチャンバーに取付けてある。   In FIG. 1, 11 is a liquid carbon dioxide cylinder as an example of a cooling gas supply source, and 13 is a solid carbon dioxide pulverizing and supplying apparatus. This apparatus includes a container 131 for storing solid carbon dioxide gas and a solid stored in the container. A carbon dioxide gas block is pulverized by a fixed amount, and a pulverizing and feeding machine 132 for sending out the carrier gas through a filter. Reference numeral 15 denotes an injection nozzle connected to the supply port of the liquid carbon dioxide cylinder 11 and the delivery port of the solid carbon dioxide pulverization supply device 13 by connecting pipes 12 and 14, and 16 denotes a processing chamber, which accommodates or takes out the processed sample 17. The injection nozzle 15 is attached to the chamber with its injection port facing the sample.

図1に例示したノズル15は、好ましい実施例として図2に示すような複合ノズルが用いられている。このノズルは、内側に第1流路151を、外周側に第2流路152を有し、第1流路151の途中に絞り弁(断熱膨張ノズル)151aが形成されており、各流路の同一側の一端は外部に開放されている。そして、第1流路151の他端には連結管12が連結され、第2流路152には連結管14が連結されている。このノズルには、プログラムに従って各流路の流量及び時間を制御する制御装置(不図示)が添設されている。   As the nozzle 15 illustrated in FIG. 1, a composite nozzle as shown in FIG. 2 is used as a preferred embodiment. This nozzle has a first flow path 151 on the inner side and a second flow path 152 on the outer peripheral side, and a throttle valve (adiabatic expansion nozzle) 151a is formed in the middle of the first flow path 151. One end of the same side is open to the outside. The connecting pipe 12 is connected to the other end of the first flow path 151, and the connecting pipe 14 is connected to the second flow path 152. A control device (not shown) for controlling the flow rate and time of each flow path according to a program is attached to the nozzle.

上記構成において、液体炭酸ガスボンベ11の液体炭酸ガスは連結管12を介して噴射ノズル15に供給され、そのノズル15において断熱膨張されてパウダ状の固体炭酸ガス、すなわち、固体炭酸ガス微粒子P1になる。容器131内の固体炭酸ガスブロックは固体炭酸ガス粉砕供給装置13において機械的に切削粉砕され、かつ、所定のフイルターを通して、0.3ないし1.0mm程度に弁別されたもの、すなわち、固体炭酸ガス粗粒子P2がキャリアガス(搬送ガス)によりノズル15に送られる。固体炭酸ガス微粒子P1と固体炭酸ガス粗粒子P2の双方の供給量及び噴射時間はノズルに付帯する制御装置によりプログラムに従って制御される。加工試料及び噴射ノズルの噴射口は、処理チャンバー16内にセットされる。試料又はノズルはプログラムに従ってその動きが制御される。   In the above configuration, the liquid carbon dioxide gas in the liquid carbon dioxide cylinder 11 is supplied to the injection nozzle 15 through the connecting pipe 12, and is thermally expanded at the nozzle 15 to become powder-like solid carbon dioxide, that is, solid carbon dioxide fine particles P1. . The solid carbon dioxide block in the container 131 is mechanically cut and pulverized by the solid carbon dioxide pulverization and supply device 13 and discriminated to about 0.3 to 1.0 mm through a predetermined filter, that is, solid carbon dioxide gas. Coarse particles P2 are sent to the nozzle 15 by a carrier gas (carrier gas). The supply amount and injection time of both the solid carbon dioxide fine particles P1 and the solid carbon dioxide coarse particles P2 are controlled according to a program by a control device attached to the nozzle. The processing sample and the injection port of the injection nozzle are set in the processing chamber 16. The movement of the sample or nozzle is controlled according to the program.

上記のようにして、本装置においては、主としてノズル15の第1流路151から噴射される固体炭酸ガス微粒子P1により試料17が冷却され、付着物と基板の密着力が低下された後、第2流路152から噴射される固体炭酸ガス粗粒子P2の運動エネルギーにより付着物が機械的に除去される。   As described above, in this apparatus, after the sample 17 is cooled mainly by the solid carbon dioxide fine particles P1 ejected from the first flow path 151 of the nozzle 15 and the adhesion between the deposit and the substrate is reduced, The deposits are mechanically removed by the kinetic energy of the solid carbon dioxide coarse particles P2 ejected from the two flow paths 152.

これを図3に例示する加工物の場合について説明すると、図3において18はヘッド基板、19はヘッド基板ウェーハプロセスにおいて使用されたレジスト膜、20は基板18をCMP(ケミカルメカニカル)研磨機等の機械加工のために使用された基板固定用のワックス、P1,P2は入射された固体炭酸ガス微粒子及び固体炭酸ガス粗粒子、mは多層膜Lから剥離された付着物である。レジスト膜19は数ミクロンであるが、固定用ワックス20は数mm以上の厚みがある場合がある。ヘッドの製造工程では、固定用ワックスのみ又は固定用ワックスとウェーハプロセスレジストが同時に加工物上に存在する場合がある。   This will be described with reference to the case of the workpiece illustrated in FIG. 3. In FIG. 3, 18 is a head substrate, 19 is a resist film used in the head substrate wafer process, 20 is a substrate such as a CMP (chemical mechanical) polisher. Wax for fixing the substrate used for machining, P1 and P2 are incident solid carbon dioxide fine particles and solid carbon dioxide coarse particles, and m is a deposit peeled from the multilayer film L. Although the resist film 19 is several microns, the fixing wax 20 may have a thickness of several mm or more. In the head manufacturing process, only the fixing wax or the fixing wax and the wafer process resist may exist on the workpiece at the same time.

[比較例と実施例の比較]

Figure 2005238059
[Comparison between Comparative Example and Example]
Figure 2005238059

表1から明らかなように、本発明方法による場合は、加工時間は比較例2よりは若干長いが比較例1よりも格段に短く、歩留まりは比較例1とほぼ等しい好結果が得られる。   As is apparent from Table 1, in the case of the method of the present invention, the processing time is slightly longer than that of Comparative Example 2, but is significantly shorter than that of Comparative Example 1, and a good result is obtained that is almost equal to Comparative Example 1.

以上、本発明は通常の半導体製造工程とは異なる磁気記録ヘッド等アスペクトレイショの大きい薄膜及び厚膜製造工程を必要とする電子部品以外にCMP研磨等のための試料固定用ワックス等を使用する磁気記録用部品の洗浄研削に適しているが、用途はこれに限定されるものではない。   As described above, the present invention is a magnetic recording head that uses a sample fixing wax for CMP polishing, etc. in addition to an electronic component that requires a thin film and a thick film manufacturing process with a large aspect ratio, such as a magnetic recording head different from a normal semiconductor manufacturing process. Although suitable for cleaning grinding of recording parts, the application is not limited to this.

図1は本発明装置の全体構造図。FIG. 1 is an overall structural view of the apparatus of the present invention. 図1におけるノズルの拡大断面図。The expanded sectional view of the nozzle in FIG. 試料に対する洗浄作用を説明する概念図。The conceptual diagram explaining the washing | cleaning effect | action with respect to a sample.

符号の説明Explanation of symbols

11 液体炭酸ガスボンベ
13 固体炭酸ガス粉砕供給装置
15 噴射ノズル
16 処理チャンバー
17 試料
P1 固体炭酸ガス微粒子
P2 固体炭酸ガス粗粒子



DESCRIPTION OF SYMBOLS 11 Liquid carbon dioxide cylinder 13 Solid carbon dioxide grinding | pulverization supply apparatus 15 Injection nozzle 16 Processing chamber 17 Sample P1 Solid carbon dioxide fine particle P2 Solid carbon dioxide coarse particle



Claims (4)

液体炭酸ガスの断熱膨張により作られる固体炭酸ガス微粒子及び固体炭酸ガスの機械的粉砕により作られる固体炭酸ガス粗粒子を加工工程中の電子部品に同時又は時間差をおいて照射することにより前記電子部品から付着物を除去することを特徴とする電子部品の洗浄方法。   By irradiating solid carbon dioxide fine particles produced by adiabatic expansion of liquid carbon dioxide gas and solid carbon dioxide coarse particles produced by mechanical pulverization of solid carbon dioxide gas to the electronic components during the processing step simultaneously or with a time difference, the electronic components A method for cleaning an electronic component, characterized in that deposits are removed from the substrate. 液体炭酸ガスの断熱膨張により作られる固体炭酸ガス微粒子として粒子サイズ5μm以下のもの、及び固体炭酸ガスの機械的粉砕により作られる固体炭酸ガス粗粒子として粒子サイズ0.3−1.0mmのものを使用することを特徴とする請求項1に記載の電子部品の洗浄方法。   Solid carbon dioxide fine particles produced by adiabatic expansion of liquid carbon dioxide with a particle size of 5 μm or less, and solid carbon dioxide coarse particles produced by mechanical pulverization of solid carbon dioxide with a particle size of 0.3-1.0 mm The method for cleaning an electronic component according to claim 1, wherein the method is used. 液体炭酸ガス供給源と、固体炭酸ガスを粉砕してキャリアガスにより供給する装置と、前記液体炭酸ガスボンベの液体炭酸ガス供給口及び前記固体炭酸ガス粉砕供給装置の固体炭酸ガス粗粒子供給口に連結されて、断熱膨張による固体炭酸ガス微粒子と固体炭酸ガス粗粒子を同時又は時間差をつけて噴射するノズルと、前記ノズルの噴射口を臨ませ、その噴射方向に対向して加工試料を収容する処理室とを備えた電子部品洗浄装置。   Connected to a liquid carbon dioxide supply source, a device for pulverizing solid carbon dioxide and supplying it with carrier gas, a liquid carbon dioxide supply port of the liquid carbon dioxide cylinder, and a solid carbon dioxide coarse particle supply port of the solid carbon dioxide pulverization supply device A nozzle that injects solid carbon dioxide fine particles and solid carbon dioxide coarse particles by adiabatic expansion simultaneously or with a time difference, and a process in which a processing sample is accommodated facing the injection direction of the nozzle. An electronic component cleaning device comprising a chamber. 固体炭酸ガス粉砕供給装置から機械粉砕された固体炭酸ガス粗粒子をノズルに運搬するキャリアガスとして100−300kPaの乾燥空気、窒素又はアルゴンを使用することを特徴とする請求項4に記載の電子部品洗浄装置。
5. The electronic component according to claim 4, wherein 100-300 kPa of dry air, nitrogen, or argon is used as a carrier gas for conveying solid carbon dioxide coarse particles mechanically pulverized from a solid carbon dioxide pulverization supply device to a nozzle. Cleaning device.
JP2004049402A 2004-02-25 2004-02-25 Method and apparatus for cleaning electronic part Withdrawn JP2005238059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049402A JP2005238059A (en) 2004-02-25 2004-02-25 Method and apparatus for cleaning electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049402A JP2005238059A (en) 2004-02-25 2004-02-25 Method and apparatus for cleaning electronic part

Publications (1)

Publication Number Publication Date
JP2005238059A true JP2005238059A (en) 2005-09-08

Family

ID=35020358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049402A Withdrawn JP2005238059A (en) 2004-02-25 2004-02-25 Method and apparatus for cleaning electronic part

Country Status (1)

Country Link
JP (1) JP2005238059A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184393A (en) * 2006-01-06 2007-07-19 Sekisui Chem Co Ltd Apparatus and method of processing periphery of substrate
JP2017500212A (en) * 2013-10-22 2017-01-05 トーソー エスエムディー,インク. Optimized textured surface and optimization method
WO2020096091A1 (en) * 2018-11-09 2020-05-14 주식회사 그리너지 Surface treatment method for lithium metal negative electrode, surface-treated lithium metal negative electrode, and lithium metal battery comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184393A (en) * 2006-01-06 2007-07-19 Sekisui Chem Co Ltd Apparatus and method of processing periphery of substrate
JP4704916B2 (en) * 2006-01-06 2011-06-22 積水化学工業株式会社 Substrate outer periphery processing apparatus and method
JP2017500212A (en) * 2013-10-22 2017-01-05 トーソー エスエムディー,インク. Optimized textured surface and optimization method
US10792788B2 (en) 2013-10-22 2020-10-06 Tosoh Smd, Inc. Optimized textured surfaces and methods of optimizing
WO2020096091A1 (en) * 2018-11-09 2020-05-14 주식회사 그리너지 Surface treatment method for lithium metal negative electrode, surface-treated lithium metal negative electrode, and lithium metal battery comprising same

Similar Documents

Publication Publication Date Title
US8292698B1 (en) On-line chamber cleaning using dry ice blasting
TWI814814B (en) Substrate processing system and substrate processing method
TWI837149B (en) Substrate processing system and substrate processing method
JP4954728B2 (en) Gate valve cleaning method and substrate processing system
JP4519199B2 (en) Wafer recycling method and wafer recycling apparatus
JP5993731B2 (en) Peeling device, peeling system and peeling method
JP6622140B2 (en) Chuck table mechanism and transfer method
US9721801B2 (en) Apparatus and a method for treating a substrate
TWI446472B (en) Manufacturing method of substrate mounting table
KR101005983B1 (en) Method for regenerating apparatus for plasma treatment, method for regenerating member inside container for plasma treatment, and apparatus for plasma treatment
JP2005238059A (en) Method and apparatus for cleaning electronic part
KR101060744B1 (en) Wafer processing method and wafer processing apparatus
JP2009113145A (en) Chuck table mechanism of polishing device
JP4403578B2 (en) Substrate processing apparatus and substrate processing method
US20200198090A1 (en) Cmp apparatus and method of performing ceria-based cmp process
JP7154697B2 (en) Workpiece processing method
JP2004223639A (en) Thin film structure object machining device
JP5679183B2 (en) Hard substrate grinding method
JP2011031359A (en) Polishing tool, polishing device, and polishing machining method
JP2003045835A (en) Method of manufacturing semiconductor device
JP7490311B2 (en) Polishing apparatus and polishing method
US20220148892A1 (en) Apparatus and method of substrate edge cleaning and substrate carrier head gap cleaning
JP2004356244A (en) Planarization method and equipment
JP2003243345A (en) Polishing device
JP2019201149A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501