JP2005238029A - Jet nozzle and jet method - Google Patents

Jet nozzle and jet method Download PDF

Info

Publication number
JP2005238029A
JP2005238029A JP2004048418A JP2004048418A JP2005238029A JP 2005238029 A JP2005238029 A JP 2005238029A JP 2004048418 A JP2004048418 A JP 2004048418A JP 2004048418 A JP2004048418 A JP 2004048418A JP 2005238029 A JP2005238029 A JP 2005238029A
Authority
JP
Japan
Prior art keywords
nozzle
injection
flow paths
fluid
discharge hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004048418A
Other languages
Japanese (ja)
Other versions
JP4452093B2 (en
Inventor
Akihiko Tanigaki
明彦 谷垣
Naoki Nakada
直樹 中田
Teruo Fujibayashi
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kyoritsu Gokin Co Ltd
Original Assignee
JFE Steel Corp
Kyoritsu Gokin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kyoritsu Gokin Co Ltd filed Critical JFE Steel Corp
Priority to JP2004048418A priority Critical patent/JP4452093B2/en
Publication of JP2005238029A publication Critical patent/JP2005238029A/en
Application granted granted Critical
Publication of JP4452093B2 publication Critical patent/JP4452093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jet nozzle capable of evenly treating a region to be treated even when a fluid is jetted against the region to be treated in an oblique direction to avoid an obstacle above the region to be treated. <P>SOLUTION: The jet nozzle comprises a recessed-groove-like ejection aperture 2 radially extending at the front end of a nozzle body 1, a confluence space 3 being contiguous to the ejection aperture 2, formed in the upstream direction, and crossing or rectangularly crossing the extension direction of the ejection aperture 2, and two passages 4 and 5 extending in the upstream direction from both sides of the confluence space 3 and having different inside diameters. The ratio between the two passage diameters is such that when the diameter of one passage is 100, that of the other passage is 40 to 90 . The two passages each may be composed of two or more passages. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、斜め方向から流体を噴射しても均一な噴霧パターンで被処理体(又は被噴射体)を処理できる噴射ノズルおよび噴射方法に関する。   The present invention relates to an injection nozzle and an injection method capable of processing an object to be processed (or an object to be injected) with a uniform spray pattern even when a fluid is injected from an oblique direction.

熱間圧延工程における鋼材の冷却には、鋼材の進行方向に対して幅方向に広がりを有する矩形状噴霧パターンを形成する噴射ノズルが利用されている。また、H型鋼などの異形鋼材の側壁(又は垂直壁面)を冷却する場合には、鋼材の進行方向に広がりを有する矩形状噴霧パターンを形成する噴射ノズルが利用されている。このような噴射ノズルでは、ノズル本体の先端部に半径方向に延びる細長の吐出孔を形成し、この吐出孔の延出方向を圧延鋼材の幅方向又は進行方向に向けて水を噴射している。   In order to cool the steel material in the hot rolling process, an injection nozzle that forms a rectangular spray pattern having a spread in the width direction with respect to the traveling direction of the steel material is used. Moreover, when cooling the side wall (or vertical wall surface) of deformed steel materials, such as H-shaped steel, the injection nozzle which forms the rectangular spray pattern which spreads in the advancing direction of steel materials is utilized. In such an injection nozzle, an elongated discharge hole extending in the radial direction is formed at the tip of the nozzle body, and water is injected with the extending direction of the discharge hole directed toward the width direction or the traveling direction of the rolled steel material. .

特開2001−269603号公報(特許文献1)には、ノズル本体に形成された流路と、この流路と連通し、かつ前記ノズル本体の先端部に半径方向に延びる長い流体噴射用溝とを備えた噴射ノズルであって、前記流路が、前記液体噴射用溝と連通する一対の分割流路で構成され、前記一対の分割流路を流れる流体が、前記液体噴射用溝側で互いに正面から衝突して流体噴射用溝から噴射するように、前記一対の分割流路の姿勢を設定した流体噴射ノズルが開示されている。この噴射ノズルでは、圧延鋼材の上方に噴射ノズルを配置し、噴射ノズルの流体噴射用溝から流体を下方へ噴射させることにより、前記液体噴射用溝側で流体を衝突させることができる。そのため、噴射パターンの幅方向および厚み方向での流量分布を均一化できるとともに、噴霧パターンの幅および厚みを大きくでき、少ない数の噴射ノズルで圧延鋼材を冷却できる。   Japanese Patent Application Laid-Open No. 2001-269603 (Patent Document 1) includes a flow path formed in a nozzle body, a long fluid ejection groove that communicates with the flow path and extends in the radial direction at the tip of the nozzle body. The flow path includes a pair of divided flow paths communicating with the liquid jet groove, and fluids flowing through the pair of divided flow paths are mutually connected on the liquid jet groove side. A fluid ejection nozzle in which the posture of the pair of divided flow paths is set so as to collide from the front and eject from the fluid ejection groove is disclosed. In this jet nozzle, the jet nozzle is disposed above the rolled steel material, and the fluid can be collided on the liquid jet groove side by jetting the fluid downward from the fluid jet groove of the jet nozzle. Therefore, the flow distribution in the width direction and the thickness direction of the injection pattern can be made uniform, the width and thickness of the spray pattern can be increased, and the rolled steel material can be cooled with a small number of injection nozzles.

しかし、圧延鋼材の冷却ゾーンの上部に障害物があると、圧延鋼材の冷却ゾーンの上部に噴射ノズルを取り付けることができない。そして、圧延鋼材の冷却ゾーンに対してノズル本体の軸線を傾斜させて斜め方向から水を噴射すると、噴射域では厚み方向での噴霧流量が不均一化し、厚み方向の中心からノズル側への偏心位置での噴霧流量が大きくなる。そのため、冷却ゾーンの上部に障害物がある場合、冷却ゾーンを均等かつ有効に冷却できなくなる。
特開2001−269603号公報(特許請求の範囲)
However, if there is an obstacle in the upper part of the cooling zone of the rolled steel material, the injection nozzle cannot be attached to the upper part of the cooling zone of the rolled steel material. And when the nozzle body axis is inclined with respect to the cooling zone of the rolled steel material and water is injected from an oblique direction, the spray flow rate in the thickness direction becomes uneven in the injection region, and the eccentricity from the center in the thickness direction toward the nozzle side The spray flow rate at the position increases. Therefore, when there is an obstacle at the upper part of the cooling zone, the cooling zone cannot be uniformly and effectively cooled.
JP 2001-269603 A (Claims)

従って、本発明の目的は、斜め方向から流体を噴射しても、被処理域を均等に処理できる噴射ノズル(又は噴射システム)および噴射方法(又は噴射流量を均一化する方法)を提供することにある。   Accordingly, an object of the present invention is to provide an injection nozzle (or an injection system) and an injection method (or a method for equalizing an injection flow rate) that can evenly treat a processing area even when fluid is injected from an oblique direction. It is in.

本発明の他の目的は、被処理域の上部に障害物があっても、簡単な構造で被処理域を均等に処理できる噴射ノズル(又は噴射システム)および噴射方法を提供することにある。   Another object of the present invention is to provide an injection nozzle (or an injection system) and an injection method capable of evenly processing a processing area with a simple structure even if there is an obstacle above the processing area.

本発明のさらに他の目的は、斜め方向から流体を噴射させても、噴霧域の幅方向および厚み方向の噴射流量を均一化できる方法を提供することにある。   Still another object of the present invention is to provide a method capable of equalizing the injection flow rate in the width direction and the thickness direction of the spray region even when the fluid is injected from an oblique direction.

本発明者らは、前記課題を達成するため鋭意検討した結果、流路径の異なる複数の流路から流体を供給して、吐出孔から噴射すると、被処理域に対して斜め方向から流体を噴射させても、噴射域の幅方向および厚み方向での噴射流量を均一化できることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have supplied fluid from a plurality of flow paths having different flow diameters and ejected the fluid from the discharge holes, and ejected the fluid from an oblique direction with respect to the processing area. Even if it was made to do, it discovered that the injection flow volume in the width direction and thickness direction of an injection area could be equalized, and completed this invention.

すなわち、本発明の噴射ノズルは、ノズル本体の軸線方向に形成された複数の流路と、これらの流路と連なって、先端部に半径方向に延びて形成された吐出孔とを備えている。このような噴射ノズルにおいて、前記複数の流路は、互いに異なる流路径を有する少なくとも2つの流路で構成されている。このような噴射ノズルでは、大きな流路径の流路を利用して流体の流量を増大できる。そして、大きな流路径の流路からの流体と小さな流路径の流路からの流体とを衝突合流又は混合させて、吐出孔から噴出させると、噴射域(又は被処理域)のうち大きな流路径の流路とは反対側の領域での噴射流量が大きくなる。そのため、複数の流路の流路径を調整して噴射域に対して斜め方向から流体を噴射すると、噴射域(又は被処理域)を均等な流量で処理できる。   That is, the injection nozzle of the present invention includes a plurality of flow paths formed in the axial direction of the nozzle body, and discharge holes formed in the distal end portion so as to extend in the radial direction, connected to the flow paths. . In such an injection nozzle, the plurality of flow paths are composed of at least two flow paths having different flow path diameters. In such an injection nozzle, the flow rate of the fluid can be increased by using a channel having a large channel diameter. When a fluid from a channel with a large channel diameter and a fluid from a channel with a small channel diameter are collided or mixed and ejected from a discharge hole, a large channel diameter in an ejection region (or a region to be treated) The injection flow rate in the region on the opposite side of the flow path becomes larger. Therefore, when the flow path diameters of the plurality of flow paths are adjusted and the fluid is ejected from an oblique direction with respect to the ejection area, the ejection area (or the area to be processed) can be processed with an equal flow rate.

なお、複数の流路と吐出孔との間には、複数の流路からの流体を合流させるための合流空間を形成してもよい。例えば、流路を互いに流路径の異なる2つの流路で構成し、2つの流路の隣接方向に延びる合流空間を形成し、合流空間の延出方向を吐出孔の延出方向に対して交差させると、複数の流路からの流体を合流空間で合流させて衝突混合でき、被処理域を均等な流量で処理できる。   A merging space for merging fluids from the plurality of channels may be formed between the plurality of channels and the discharge holes. For example, the flow path is composed of two flow paths having different flow path diameters to form a merge space extending in the adjacent direction of the two flow paths, and the extending direction of the merge space intersects the extending direction of the discharge hole. In this case, fluids from a plurality of flow paths can be merged in the merge space and collided and mixed, and the area to be treated can be processed at an equal flow rate.

前記2つの流路径の割合は、適当に選択でき、例えば、一方の流路径を100としたとき、他方の流路径は30〜90程度であってもよい。また、ノズル本体の先端部に半径方向に延びる凹溝状吐出孔を形成し、この凹溝状吐出孔を、ノズル本体の軸線方向に対して平行に又は傾斜して形成してもよい。   The ratio of the two channel diameters can be selected appropriately. For example, when one channel diameter is 100, the other channel diameter may be about 30 to 90. Further, a groove-shaped discharge hole extending in the radial direction may be formed at the tip of the nozzle body, and the groove-shaped discharge hole may be formed in parallel or inclined with respect to the axial direction of the nozzle body.

より具体的には、噴射ノズルは、ノズル本体の先端部に半径方向に延びて形成された凹溝状吐出孔と、この凹溝状吐出孔に連なって上流方向に形成され、かつ前記凹溝状吐出孔の延出方向に対して交差(又は直交)する方向に延びる合流空間(例えば、筒状、円筒状などの混合空間)と、この合流空間の両側部から上流方向に延び、かつ互いに内径の異なる2つの流路とを備えていてもよい。   More specifically, the ejection nozzle is formed in a groove-shaped discharge hole formed in the tip end portion of the nozzle body in the radial direction, and is formed in the upstream direction in connection with the groove-shaped discharge hole. A merge space (for example, a mixed space such as a cylinder or a cylinder) extending in a direction intersecting (or perpendicular to) the extending direction of the discharge port, and extending upstream from both sides of the merge space, and Two flow paths having different inner diameters may be provided.

本発明は、前記噴射ノズルで構成され、かつノズル本体の吐出孔から被噴射体に対して斜め方向に流体を噴射させるための噴射システムも包含する。この噴射システムでは、ノズル本体の軸線が被噴射体(又は被噴射域)に対して傾斜しているとともに、複数の流路のうち大きな流路径の流路が傾斜したノズル本体の内側に位置している。このようなシステムでは、被噴射体(又は被噴射域)に対して斜め方向から流体を噴射しても、前記と同様に、被噴射体(又は被噴射域)を均等に処理できる。   The present invention also includes an injection system that is configured by the injection nozzle and that injects fluid in an oblique direction with respect to the injection target from the discharge hole of the nozzle body. In this injection system, the axis of the nozzle main body is inclined with respect to the injection target (or injection target area), and the flow path having a large flow path diameter among the plurality of flow paths is positioned inside the inclined nozzle main body. ing. In such a system, even if the fluid is ejected from an oblique direction with respect to the ejected object (or the ejected area), the ejected object (or the ejected area) can be treated equally as described above.

さらに、本発明は、被噴射体の上方を回避して、前記噴霧ノズルのノズル本体の軸線を被噴射体に対して傾斜させるとともに、複数の流路のうち大きな流路径の流路を、傾斜したノズル本体の内側に位置させ、前記噴霧ノズルの複数の流路に対して流体(又は共通の流体)を供給し、吐出孔から被噴射体に対して斜め方向に流体を噴射させる方法も含む。この方法において、先端部での吐出孔の延出方向を被噴射体の進行方向又は幅方向に向けて流体を噴射させることができる。また、この方法では、流量分布を幅方向および厚み方向に均一化させて流体を噴射できる。   Furthermore, the present invention avoids the upper side of the injection target, inclines the axis of the nozzle body of the spray nozzle with respect to the injection target, and inclines the flow path having a large flow path diameter among the plurality of flow paths. And a method of supplying a fluid (or a common fluid) to the plurality of flow paths of the spray nozzle and ejecting the fluid in an oblique direction from the discharge hole to the ejected body. . In this method, the fluid can be ejected with the extending direction of the discharge hole at the tip portion directed toward the traveling direction or the width direction of the ejected body. In this method, the fluid can be ejected with the flow rate distribution made uniform in the width direction and the thickness direction.

さらに、本発明は、前記噴霧ノズルのノズル本体の軸線を被噴射体に対して傾斜させるとともに、複数の流路のうち大きな流路径の流路を、傾斜したノズル本体の内側に位置させ、前記噴霧ノズルの複数の流路に対して流体(又は共通の流体)を供給し、吐出孔から被噴射体に対して斜め方向に流体を噴射させることにより、噴射域において、流量分布を均一化させる方法も含む。この方法では、噴射域において、幅方向および厚み方向の流量分布も均一化できる。   Furthermore, the present invention is configured to incline the axis of the nozzle body of the spray nozzle with respect to the ejection target, and to place a channel having a large channel diameter among the plurality of channels inside the inclined nozzle body, By supplying a fluid (or a common fluid) to a plurality of flow paths of the spray nozzle and ejecting the fluid in an oblique direction with respect to the ejection target through the discharge hole, the flow rate distribution is made uniform in the ejection region. Also includes a method. In this method, the flow rate distribution in the width direction and the thickness direction can be made uniform in the injection region.

本発明では、複数の流路を流路径の異なる流路で構成するため、被処理域に対して斜め方向から流体を噴射しても、被処理域を均等に処理できる。また、被処理域の上部に障害物があっても、簡単な構造で被処理域を均等に処理できる。例えば、被処理域に対して斜め方向から流体を噴射させても、噴霧域の噴射流量(例えば、幅方向および厚み方向の噴霧流量)を均一化できる。   In the present invention, since the plurality of channels are configured with channels having different channel diameters, even if the fluid is ejected from an oblique direction with respect to the processing region, the processing region can be processed evenly. Moreover, even if there is an obstacle in the upper part of the processing area, the processing area can be processed uniformly with a simple structure. For example, even if the fluid is ejected from the oblique direction with respect to the treatment area, the spray flow rate (for example, the spray flow rate in the width direction and the thickness direction) in the spray region can be made uniform.

以下に、添付図面を参照しつつ本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

図1は本発明の噴射ノズルのノズル本体の一例を示す概略斜視図であり、図2は図1のノズル本体を示す概略横断面図である。図3は図1に示す噴射ノズルによる噴霧状態を示す模式図である。   FIG. 1 is a schematic perspective view showing an example of a nozzle body of an injection nozzle of the present invention, and FIG. 2 is a schematic cross-sectional view showing the nozzle body of FIG. FIG. 3 is a schematic view showing a spray state by the spray nozzle shown in FIG.

この例では、流体として水を噴射するための噴射ノズルが示されている。この噴射ノズルは、先端部に湾曲周面が形成された多角柱状部とこの多角柱状部から延びる円柱状部とを備えたノズル本体1と、このノズル本体の先端部の湾曲周面に沿って半径方向に延びて形成された凹溝状吐出孔(又は長細状吐出孔)2と、この吐出孔の上流側に連通して形成された合流空間(又は衝突混合空間)3と、この合流空間から上流方向に延出する2つの円筒状流路4,5とで構成されている。なお、ノズル本体1の上流方向の端部の外周面には、流体(この例では、水)の供給ユニットと連結又は接続するため、ネジ部6が形成されており、前記2つの流路4,5には、共通する流体(この例では、水)が供給される。すなわち、前記2つの流路4,5には、実質的に同じ速度で流体が供給される。   In this example, an injection nozzle for injecting water as a fluid is shown. The injection nozzle includes a nozzle body 1 including a polygonal columnar portion having a curved peripheral surface formed at a tip portion and a columnar portion extending from the polygonal columnar portion, and the curved peripheral surface of the tip portion of the nozzle body. A concave groove-like discharge hole (or elongated discharge hole) 2 formed extending in the radial direction, a merge space (or collision mixing space) 3 formed in communication with the upstream side of the discharge hole, and this merge It is comprised by the two cylindrical flow paths 4 and 5 extended in the upstream direction from space. A screw portion 6 is formed on the outer peripheral surface of the upstream end portion of the nozzle body 1 to be connected to or connected to a fluid (water in this example) supply unit. , 5 is supplied with a common fluid (in this example, water). That is, fluid is supplied to the two flow paths 4 and 5 at substantially the same speed.

前記合流空間3は、先端部での前記凹溝状吐出孔2の延出方向に対して直交する方向に延びた円筒状空間を形成している。また、2つの円筒状流路4,5は、それぞれ中心軸がノズル本体1の軸芯(中心軸線)から半径方向に等距離の位置にあり、かつ前記ノズル本体1の軸線方向に平行に形成されている。また、2つの円筒状流路4,5は前記円筒状合流空間3の両側部から上流方向に延びている。さらに、2つの円筒状流路4,5の流路径(内径)は、互いに異なっており、一方の流路4の内径を「100」とするとき、他方の流路5の内径は、60〜90(特に70〜80)程度に形成されている。なお、吐出孔2の半径方向の両側部の内壁は、ノズル本体1の上流方向へいくにつれて内方へ傾斜又は狭まって前記円筒状合流空間3の側壁に至っている。また、図2に示すように、横断面において前記吐出孔2は、ノズル本体1の中心軸線に対して傾斜して形成されている。すなわち、吐出孔2の上流端(合流空間との隣接域)は、ノズル本体1の略軸芯(中心軸)に位置しており、吐出孔2の開口端は、軸芯(中心軸)から外れて流路径の小さな流路5側に位置している。   The merge space 3 forms a cylindrical space extending in a direction orthogonal to the extending direction of the concave groove-like discharge hole 2 at the tip. Further, the two cylindrical flow paths 4 and 5 are formed so that the center axes are equidistant from the axis (center axis) of the nozzle body 1 in the radial direction and parallel to the axis direction of the nozzle body 1. Has been. The two cylindrical flow paths 4 and 5 extend in the upstream direction from both side portions of the cylindrical merge space 3. Further, the flow diameters (inner diameters) of the two cylindrical flow paths 4 and 5 are different from each other. When the inner diameter of one flow path 4 is “100”, the inner diameter of the other flow path 5 is 60 to It is formed in about 90 (especially 70-80). In addition, the inner walls on both sides in the radial direction of the discharge hole 2 are inclined or narrowed inward toward the upstream direction of the nozzle body 1 to reach the side wall of the cylindrical merge space 3. In addition, as shown in FIG. 2, the discharge hole 2 is formed to be inclined with respect to the central axis of the nozzle body 1 in the cross section. That is, the upstream end of the discharge hole 2 (the area adjacent to the merge space) is positioned at the substantially axial center (central axis) of the nozzle body 1, and the open end of the discharge hole 2 is from the axial center (central axis). It is located on the side of the channel 5 with a small channel diameter.

なお、この例では、2つの流路は、内径11〜13mmφ程度の第1の円筒状流路と、内径15〜17mmφの第2の円筒状流路とで構成されている。また、合流空間は、内径20〜25mmφ程度の円筒状空間で形成され、吐出孔は、幅6〜12mm、半径方向の長さ30〜40mm程度に形成されている。   In this example, the two flow paths are constituted by a first cylindrical flow path having an inner diameter of about 11 to 13 mmφ and a second cylindrical flow path having an inner diameter of 15 to 17 mmφ. Further, the merge space is formed by a cylindrical space having an inner diameter of about 20 to 25 mmφ, and the discharge holes are formed to have a width of 6 to 12 mm and a length in the radial direction of about 30 to 40 mm.

このような噴射ノズルでは、前記2つの流路4,5に流体(水など)を実質的に同じ流速で(又は共通する流体を)供給すると、流路径の小さな第2の流路よりも流路径の大きな第1の流路を流通する流体の流量が大きくなる。また、2つの流路4,5から供給された流体は、2つの流路4,5に案内されつつ合流空間3でノズル本体1の軸芯方向(半径方向)に流動して正面方向から互いに衝突し、衝突混合効率を向上できる。そのため、図3に示されるように、被噴射体(又は被噴射域)10に対してノズル本体1の軸線を角度θだけ傾斜させるとともに、2つの流路4,5のうち大きな流路径を有する第1の流路4を傾斜したノズル本体1の内側(狭角側又は角度が90°未満の側)に位置させて、合流空間3で流路4,5からの流体を衝突させて混合しつつ吐出孔2から噴射すると、吐出孔2の形状に応じて、厚みが大きく幅広又は広角の矩形状噴霧パターンを形成できる。特に、ノズル本体1の軸線を被噴射体(被噴射域又は被処理域)10に対して、例えば、30〜50°程度傾斜させ、2つの流路4,5のうち大きな流路径を有する第1の流路4を、傾斜したノズル本体1の内側(狭角側)に位置させて水を噴射すると、吐出孔2の延出方向(被噴射域に対して幅方向)に広角に広がり、吐出孔2の延出方向に対して直交する方向(被噴射域に対して縦方向)に大きな厚みを有する矩形状噴霧パターン、特に水の流量分布が均一な矩形状噴霧パターンを形成できる。従って、被噴射体(被噴射域又は被処理域)10の周囲(上方、下方や側方など)にノズルを取り付けるための障害物があったとしても、この障害物を避けてノズルを取り付け、被噴射体(被噴射域又は被処理域)10に対してノズル本体の軸線を傾斜させて斜め方向から流体(水)を噴射させても、被噴射体(被噴射域又は被処理域)10を均一に噴霧処理できる。   In such an injection nozzle, when a fluid (water or the like) is supplied to the two flow paths 4 and 5 at substantially the same flow rate (or a common fluid), the flow is larger than that of the second flow path having a small flow path diameter. The flow rate of the fluid flowing through the first flow path having a large path diameter increases. Further, the fluids supplied from the two flow paths 4 and 5 flow in the axial direction (radial direction) of the nozzle body 1 in the merge space 3 while being guided by the two flow paths 4 and 5, and each other from the front direction. Colliding and improving collision mixing efficiency. Therefore, as shown in FIG. 3, the axis of the nozzle body 1 is inclined by an angle θ with respect to the injection target (or injection target area) 10 and has a large channel diameter of the two channels 4 and 5. The first flow path 4 is positioned inside the inclined nozzle body 1 (narrow angle side or angle is less than 90 °), and the fluid from the flow paths 4 and 5 is collided and mixed in the merge space 3. When ejected from the discharge holes 2, a wide or wide-angle rectangular spray pattern can be formed according to the shape of the discharge holes 2. In particular, the axis of the nozzle body 1 is inclined about 30 to 50 ° with respect to the body to be ejected (injected area or to-be-processed area) 10, for example. 1 is positioned on the inner side (narrow angle side) of the inclined nozzle body 1 and water is ejected, it spreads in a wide angle in the extending direction of the discharge hole 2 (width direction with respect to the ejection area), A rectangular spray pattern having a large thickness in a direction orthogonal to the extending direction of the discharge holes 2 (longitudinal direction with respect to the jetted area), in particular, a rectangular spray pattern having a uniform water flow distribution can be formed. Therefore, even if there are obstacles for attaching the nozzle around the object (injection area or processing area) 10 (upper, lower, side, etc.), the nozzle is attached avoiding this obstacle, Even if the axis of the nozzle body is inclined with respect to the injection target (injection area or processing area) 10 and fluid (water) is injected from an oblique direction, the injection target (injection area or processing area) 10 Can be uniformly sprayed.

例えば、縦方向(又は垂直方向)に形成された側壁と、この側壁から横方向(又は水平方向)に延びる延出壁とを有するH型鋼材などの異形鋼材において、長手方向に延びる前記側壁を上方及び/又は下方から冷却する場合、前記吐出孔2の延出方向を鋼材の進行方向に向けて、鋼材の進行路の斜め上方及び/又は斜め下方でノズル本体の軸線を傾斜させ、2つの流路4,5のうち大きな流路径を有する第1の流路4を、傾斜したノズル本体1の内側(狭角側)に位置させて、流体(水)を噴射すると、鋼材の側壁の長手方向に広角に広がり、かつ側壁の縦方向に大きな厚みを有する矩形状噴霧パターンを形成できる。そのため、鋼材に対して斜め方向から流体(水)を噴射させても、鋼材の側壁を均一に噴霧処理できる。   For example, in a deformed steel material such as an H-shaped steel material having a side wall formed in the vertical direction (or vertical direction) and an extending wall extending in the horizontal direction (or horizontal direction) from the side wall, the side wall extending in the longitudinal direction is formed. When cooling from above and / or below, the direction of extension of the discharge hole 2 is directed to the traveling direction of the steel material, and the axis of the nozzle body is inclined obliquely above and / or obliquely below the traveling path of the steel material. When the first flow path 4 having a large flow path diameter among the flow paths 4 and 5 is positioned on the inner side (narrow angle side) of the inclined nozzle body 1 and fluid (water) is injected, the length of the side wall of the steel material is increased. A rectangular spray pattern having a wide angle in the direction and a large thickness in the vertical direction of the side wall can be formed. Therefore, even if fluid (water) is sprayed from an oblique direction to the steel material, the side wall of the steel material can be uniformly sprayed.

また、長手方向に延びる板状鋼材に対しては、前記吐出孔2の延出方向を鋼材の幅方向に向けて、2つの流路4,5のうち第1の流路4を、傾斜したノズル本体1の内側(狭角側)に位置させ、鋼材の進行路の斜め上方でノズル本体の軸線を傾斜させて流体(水)を噴射すると、鋼材の幅方向に広角に広がり、かつ鋼材の進行方向(又は長手方向)に大きな厚みを有する矩形状噴霧パターンで、鋼材を均一に噴霧処理できる。   Further, with respect to the plate-shaped steel material extending in the longitudinal direction, the first flow path 4 of the two flow paths 4 and 5 is inclined with the extending direction of the discharge hole 2 directed in the width direction of the steel material. When the fluid (water) is sprayed by inclining the axis of the nozzle body at an angle above the traveling path of the steel material and injecting fluid (water), the nozzle body 1 is widened in the width direction of the steel material, and the steel material The steel material can be uniformly sprayed with a rectangular spray pattern having a large thickness in the traveling direction (or longitudinal direction).

なお、ノズル本体は軸方向に延びる棒状体で形成でき、ノズル本体の形状は特に制限されない。ノズル本体の先端部に形成された前記吐出孔は、種々の形態の先端部に半径方向(径方向)に形成された吐出孔、例えば、半球面状又は膨出状などの湾曲先端部に沿って形成された湾曲スリット状吐出孔、平坦面や傾斜面などの平坦な先端部にスリット状に形成されたスリット状吐出孔などであってもよい。吐出孔は、通常、ノズル本体の先端部に半径方向に延びる凹溝状に形成されている。吐出孔の幅および長さや深さも特に制限されず、吐出孔の長手方向(又は延出方向)の両側部の側壁は、ノズル本体の軸線に平行に延びていてもよいが、幅方向への広角の噴霧パターンを得るためには、内方へ傾斜して(又は内方へいくにつれて狭まって)合流空間の内壁に延びているのが有利である。すなわち、吐出孔の内壁のうち半径方向の両端部の内壁は、上流方向に向かって直線的又は湾曲して狭まる先細状(V字状、U字状など)である場合が多い。   The nozzle body can be formed of a rod-like body extending in the axial direction, and the shape of the nozzle body is not particularly limited. The discharge hole formed in the tip portion of the nozzle body is along a discharge tip formed in the radial direction (radial direction) in the tip portion of various forms, for example, a curved tip portion such as a hemispherical shape or a bulging shape. It may be a curved slit-like discharge hole formed in the above manner, or a slit-like discharge hole formed in a slit shape at a flat tip such as a flat surface or an inclined surface. The discharge hole is usually formed in a groove shape extending in the radial direction at the tip of the nozzle body. The width, length, and depth of the discharge hole are not particularly limited, and the side walls on both sides in the longitudinal direction (or extending direction) of the discharge hole may extend in parallel to the axis of the nozzle body. In order to obtain a wide-angle spray pattern, it is advantageous to extend inwardly (or narrower as it goes inward) to the inner wall of the merge space. That is, the inner walls at both ends in the radial direction of the inner walls of the discharge holes are often tapered (V-shaped, U-shaped, etc.) narrowing linearly or curved toward the upstream direction.

先端部で半径方向に延びる吐出孔の内壁は、ノズル本体の中心軸線に対して平行に形成してもよく、開口端側にいくにつれて互いに対向する内壁の距離が狭まった先細状(V字状、U字状など)であってもよく、開口端側にいくにつれて互いに対向する内壁の距離が拡がる先拡がり状(V字状、U字状など)であってもよい。   The inner wall of the discharge hole extending in the radial direction at the tip may be formed parallel to the central axis of the nozzle body, and the taper shape (V-shape) in which the distance between the inner walls facing each other decreases toward the opening end side. Or a U-shape or the like, or a tip-expanded shape (V-shape, U-shape, etc.) in which the distance between the inner walls facing each other increases toward the opening end side.

さらに、吐出孔(横断面における吐出孔の延びる方向)がノズル本体の軸線に対して傾斜している場合、吐出孔の開口端が小さな流路径の流路側に傾斜している必要はなく、大きな流路径の流路側に傾斜していてもよい。さらに、吐出孔はノズル本体の軸線に対して傾斜している必要はなく、ノズル軸線に対して平行に延びていてもよい。なお、ノズル本体の軸線に対する吐出孔の傾斜角度は、例えば、0〜30°、好ましくは0〜25°、さらに好ましくは0〜20°程度であってもよい。ノズル本体の軸線に対する吐出孔の傾斜角度が大き過ぎると、被噴射体に対して斜め方向から噴霧しても、均一な噴霧流量を有する矩形状噴霧パターンを形成できない場合がある。   Furthermore, when the discharge hole (the direction in which the discharge hole extends in the cross section) is inclined with respect to the axis of the nozzle body, the opening end of the discharge hole does not need to be inclined toward the flow path having a small flow path diameter, and is large. You may incline to the flow path side of a flow path diameter. Furthermore, the discharge hole does not need to be inclined with respect to the axis of the nozzle body, and may extend in parallel to the nozzle axis. The inclination angle of the discharge hole with respect to the axis of the nozzle body may be, for example, 0 to 30 °, preferably 0 to 25 °, and more preferably about 0 to 20 °. If the inclination angle of the discharge hole with respect to the axis of the nozzle body is too large, there may be a case where a rectangular spray pattern having a uniform spray flow rate cannot be formed even when sprayed from an oblique direction with respect to the ejection target.

図4は本発明の他の噴射ノズルのノズル本体を示す概略横断面図である。この噴射ノズルは、先端部に凹溝状吐出孔12が形成されたノズル本体11と、このノズル本体の軸芯(中心軸)から半径方向にずれて軸線方向に平行に延びる第1の流路14および第2の流路15と、これらの流路と前記吐出孔12との間に形成された合流空間13とを備えている。また、ノズル本体の上流側の外周部には、前記と同様に、ネジ部16が形成されている。なお、前記と同様に、合流空間13は、2つの流路14,15の隣接方向に延びて円筒状に形成され、凹溝状吐出孔12は、この円筒状合流空間13の延出方向に対して直交する方向に延びている。そして、前記凹溝状吐出孔12は、ノズル本体11の軸線に対して傾斜することなく、ノズル本体11の軸芯位置において、ノズル本体11の軸線に対して平行に延びている。   FIG. 4 is a schematic cross-sectional view showing a nozzle body of another injection nozzle of the present invention. This injection nozzle includes a nozzle body 11 having a concave groove-like discharge hole 12 formed at the tip, and a first flow path that extends radially in parallel with the axial direction of the nozzle body from the axial center (center axis) of the nozzle body. 14 and the second flow path 15, and a merge space 13 formed between these flow paths and the discharge hole 12. In addition, a screw portion 16 is formed on the outer peripheral portion on the upstream side of the nozzle body in the same manner as described above. Similarly to the above, the merge space 13 is formed in a cylindrical shape extending in the adjacent direction of the two flow paths 14 and 15, and the concave groove-like discharge holes 12 are formed in the extending direction of the cylindrical merge space 13. It extends in a direction perpendicular to the direction. The groove-like discharge hole 12 extends parallel to the axis of the nozzle body 11 at the axial center position of the nozzle body 11 without being inclined with respect to the axis of the nozzle body 11.

このような噴射ノズルでも、前記と同様に、被噴射域に対してノズル本体を傾斜させて流体を噴射しても、合流空間で流体を衝突混合させ、吐出孔から広角の噴霧パターンで流体を噴射でき、被噴射域を均等に噴射処理できる。   Even in such an injection nozzle, as described above, even if the fluid is ejected by inclining the nozzle body with respect to the region to be ejected, the fluid is collided and mixed in the merging space, and the fluid is discharged in a wide-angle spray pattern from the discharge hole. Injection can be performed, and the injection region can be uniformly injected.

前記合流空間は、特に必要はないが、衝突混合効率を高めるため、通常、複数の流路の合流空間を形成する場合が多い。この合流空間の形態は、複数の流路からの流体を衝突させて混合できる限り特に制限されず、流路径の異なる少なくとも2つの流路が隣接する方向に形成する場合が多い。また、合流空間の延出方向は、吐出孔の延出方向に対して直交する必要はなく、交差していればよく、通常、ノズル本体の軸方向に対して交差又は直交している。また、合流空間は、円筒状空間に限らず、断面三角形や四角形などの断面多角形状、断面楕円状などの混合空間(又は筒状空間)であってもよい。なお、複数の流路からの流体を衝突混合させるため、前記合流空間は、通常、複数の流路(又は合流空間への複数の流路の吐出口)の隣接又は配列方向に延出している。   The joining space is not particularly necessary, but usually, a joining space of a plurality of flow paths is often formed in order to increase collision mixing efficiency. The form of this merging space is not particularly limited as long as fluids from a plurality of flow paths can collide and be mixed, and at least two flow paths with different flow path diameters are often formed in adjacent directions. Further, the extending direction of the merge space does not need to be orthogonal to the extending direction of the discharge holes, and may be crossed, and is usually crossed or orthogonal to the axial direction of the nozzle body. Further, the merge space is not limited to the cylindrical space, and may be a mixed space (or a cylindrical space) such as a polygonal cross section such as a triangular or quadrangular cross section or an elliptical cross section. In order to collide and mix fluids from a plurality of flow paths, the merge space usually extends adjacent to or in the arrangement direction of the plurality of flow paths (or the discharge ports of the plurality of flow paths to the merge space). .

複数の流路は、ノズル本体の軸線に対して傾斜していてもよいが、通常、ノズル本体の軸線方向に沿って形成する場合が多い。複数の流路の数は特に制限されず、2〜5程度であってもよいが、流路径の制御により噴射域での噴霧流量を容易に均一化できるため、複数の流路は、通常、互いに異なる流路径を有する少なくとも2つの流路(特に、互いに流路径の異なる2つの流路)で構成できる。なお、複数の流路を形成する場合、流路径の異なる複数の流路を、大きな流路径の流路から小さな流路径の流路の順にノズル本体の半径方向に形成してもよく、ランダムな順序で複数の流路をノズル本体の半径方向に形成してもよい。さらには、前記合流又は混合空間で流体が衝突可能である限り(又は混合空間に通じている限り)、複数の流路は、ノズル本体の半径方向に形成する必要はなく、必要であれば、ノズル本体の上流側端面で規則的に(例えば、三角形の頂点部などの所定のパターンで)又はランダムに形成してもよい。   The plurality of flow paths may be inclined with respect to the axis of the nozzle body, but are usually formed along the axial direction of the nozzle body. The number of the plurality of channels is not particularly limited and may be about 2 to 5, but since the spray flow rate in the injection region can be easily uniformed by controlling the channel diameter, the plurality of channels are usually It can be composed of at least two channels having different channel diameters (particularly, two channels having different channel diameters). When forming a plurality of flow paths, a plurality of flow paths having different flow path diameters may be formed in the radial direction of the nozzle body in order from a flow path having a larger flow path diameter to a flow path having a smaller flow path diameter. A plurality of flow paths may be formed in the radial direction of the nozzle body in order. Furthermore, as long as fluid can collide in the merged or mixed space (or as long as it communicates with the mixed space), the plurality of flow paths do not need to be formed in the radial direction of the nozzle body. It may be formed regularly (for example, in a predetermined pattern such as a vertex of a triangle) or randomly on the upstream end face of the nozzle body.

複数の流路の流路径は、流体の流量や圧力、被噴射体(又は被噴射域)の垂直軸に対するノズル本体の傾斜角度などに応じて、噴射域での流量密度を均一化可能な範囲で選択でき、複数の流路のうち最も流路径の大きな流路の流路径を「100」としたとき、他の流路の流路径は、10〜95(例えば、20〜90)、特に25〜85程度の範囲から選択できる。より具体的には、2つの流路径の割合は、噴霧パターンと噴霧流量の均一性などに応じて選択でき、通常、一方の流路の流路径を「100」としたとき、他方の流路の流路径は、例えば、30〜90、好ましくは40〜80、さらに好ましくは50〜80程度であり、通常、60〜80(例えば、70〜80)程度であってもよい。他方の流路の流路径が小さすぎたり大きすぎると、被噴射体に対してノズル本体の軸線を広い範囲で傾斜させつつ、均一な流量分布を有する矩形状噴霧パターンで被噴射体を効率よく噴霧処理できなくなる。   The flow path diameter of the plurality of flow paths is a range in which the flow density in the injection area can be made uniform according to the flow rate and pressure of the fluid, the inclination angle of the nozzle body with respect to the vertical axis of the injection target (or injection target area), etc. When the channel diameter of the channel having the largest channel diameter among the plurality of channels is “100”, the channel diameters of the other channels are 10 to 95 (for example, 20 to 90), particularly 25. It can be selected from a range of about ~ 85. More specifically, the ratio of the two flow path diameters can be selected in accordance with the spray pattern and the uniformity of the spray flow rate. Normally, when the flow path diameter of one flow path is “100”, the other flow path diameter is The diameter of the channel is, for example, 30 to 90, preferably 40 to 80, more preferably about 50 to 80, and usually about 60 to 80 (for example, 70 to 80). If the flow path diameter of the other flow path is too small or too large, the nozzle body axis is inclined over a wide range with respect to the spray target body, and the spray target body is efficiently arranged with a rectangular spray pattern having a uniform flow rate distribution. Can not be sprayed.

さらに、被噴射体(被処理域)に対するノズル本体の軸線の傾斜角度は、複数の流路(例えば、2つの流路)の流路径の割合、流路への流体の流量などに応じて、被噴射体(被処理域)の垂直軸に対して、15〜80°程度の範囲から選択でき、通常、15〜75°(20〜60°)、好ましくは30〜60°(例えば、35〜55°)程度であってもよい。被噴射体に対するノズル本体の軸線の傾斜角度が大きすぎたり小さすぎると、被噴射体の噴霧処理効率が低下したり、障害物を避けつつ、ノズルを取り付けることが困難な場合が多い。   Furthermore, the inclination angle of the axis of the nozzle body with respect to the ejected body (processing area) depends on the ratio of the flow path diameters of a plurality of flow paths (for example, two flow paths), the flow rate of fluid to the flow paths, and the like. It can select from the range of about 15-80 degrees with respect to the vertical axis | shaft of a to-be-injected body (processing area), Usually, 15-75 degrees (20-60 degrees), Preferably it is 30-60 degrees (for example, 35-35 degrees). 55 degrees). If the tilt angle of the axis of the nozzle body with respect to the ejected body is too large or too small, the spraying efficiency of the ejected body is often reduced, and it is often difficult to attach the nozzle while avoiding obstacles.

なお、被噴射体(被処理域)に対するノズル本体の距離(噴霧距離)は、流路への流体の流量、圧力などに応じて、50〜1000mm(例えば、50〜700mm)程度の範囲から選択でき、100〜400mm程度であってもよい。噴霧距離が長すぎたり短すぎると、均一な流量分布で被噴射体を効率よく噴霧処理できなくなる場合がある。   In addition, the distance (spray distance) of the nozzle body with respect to the injection target (treatment area) is selected from a range of about 50 to 1000 mm (for example, 50 to 700 mm) according to the flow rate, pressure, etc. of the fluid to the flow path. It may be about 100 to 400 mm. If the spray distance is too long or too short, the spray target may not be efficiently sprayed with a uniform flow rate distribution.

本発明の噴射ノズルは、複数の流路に対して流体を供給し、吐出孔から被噴射体に対して斜め方向に流体を噴射させることにより、角錐状の噴射パターンを形成できるとともに、角錐状噴霧パターンの被噴射域(又は矩形状被処理域)で流量分布を均一化できる。そのため、前記噴射ノズルを備えた本発明の噴霧システムでは、ノズル本体の吐出孔から被噴射体に対して斜め方向に流体を噴射させるための噴射システムや噴射方法として有用である。特に、本発明では、被噴射体(被噴射域又は被処理域)の上方に噴射ノズルを取り付けるための障害物があったとしても、被噴射体の上方を回避して、前記噴霧ノズルのノズル本体を取り付けるとともに、ノズル本体の軸線を被噴射体(被噴射域又は被処理域)に対して傾斜させて流体を噴射することにより、均一な流量分布で被噴射体(被噴射域又は被処理域)を噴霧処理できる。   The spray nozzle of the present invention can form a pyramid-shaped spray pattern by supplying a fluid to a plurality of flow paths and ejecting the fluid from the discharge holes in an oblique direction with respect to the ejected object. The flow rate distribution can be made uniform in the sprayed region (or rectangular region) of the spray pattern. Therefore, the spray system of the present invention provided with the spray nozzle is useful as a spray system or a spray method for spraying fluid in an oblique direction with respect to the ejected body from the discharge hole of the nozzle body. In particular, in the present invention, even if there is an obstacle for mounting the injection nozzle above the target body (the target area or the target area), the nozzle of the spray nozzle is avoided by avoiding the upper side of the target body. By attaching the main body and inclining the axis of the nozzle main body with respect to the injection target (the injection target area or the processing target area) and injecting the fluid, the target injection target (the injection target area or the processing target) with a uniform flow distribution Can be sprayed.

複数の流路のうち大きな流路径の流路は、傾斜したノズル本体の斜め内側などに位置していてもよいが、傾斜したノズル本体の内側に位置させると、被噴射域又は被処理域での流体の流量分布をさらに均一化できる。さらに、先端部での吐出孔の延出方向を被噴射体の幅方向(又は被処理体の流動又は移動方向に対して交差、特に直交する方向)に向けて流体を噴射させると、角錐状噴霧パターンによる被噴射域(矩形状噴射域)において、流量分布を幅方向および厚み方向に均一化させて流体を噴射できる。   Of the plurality of channels, a channel having a large channel diameter may be positioned obliquely inside the inclined nozzle body, but when positioned inside the inclined nozzle body, the injection region or the processing region The flow distribution of the fluid can be made more uniform. Furthermore, when the fluid is ejected in the direction in which the discharge hole extends at the tip portion in the width direction of the ejected object (or the direction intersecting, in particular perpendicular to, the flow or movement direction of the object to be treated), In the injection region (rectangular injection region) by the spray pattern, the fluid can be injected by making the flow rate distribution uniform in the width direction and the thickness direction.

なお、流体の種類は特に制限されず、被噴射体の種類などに応じて選択でき、液体(水、薬液、バインダー液など)、気体(空気、酸素、不活性ガスなど)などであってもよい。圧延鋼板などの加熱体を冷却する場合、流体として、通常、水が使用される。また、流体は各流路に個別に供給してもよいが、通常、共通の流体(1つの流体)として複数流路に供給する場合が多い。   Note that the type of fluid is not particularly limited, and can be selected according to the type of the ejected object, such as liquid (water, chemical liquid, binder liquid, etc.), gas (air, oxygen, inert gas, etc.), etc. Good. When a heating body such as a rolled steel sheet is cooled, water is usually used as a fluid. In addition, the fluid may be supplied individually to each flow path, but usually, it is often supplied to a plurality of flow paths as a common fluid (one fluid).

本発明は、圧延鋼板、燃焼又は焼却炉での加熱体の冷却、洗浄、薬液散布、粉体の噴霧造粒、消泡などの種々の分野に利用できる。特に、被噴射体(又は被処理体)の上部に枠体や遮蔽体などの障害物がある場合、被噴射体(又は被処理体)の流動又は移動(搬送)方向に対して上流又は下流方向から斜め方向に流体を噴射して、角錐状に噴霧し、矩形状噴霧パターンで噴霧処理するのに有用である。   INDUSTRIAL APPLICABILITY The present invention can be used in various fields such as rolled steel sheet, cooling of a heating body in a combustion or incinerator, cleaning, chemical solution spraying, powder spray granulation, and defoaming. In particular, when there is an obstacle such as a frame or a shield on the upper side of the target object (or target object), it is upstream or downstream with respect to the flow or movement (conveyance) direction of the target object (or target object). It is useful for spraying a fluid in an oblique direction from a direction, spraying it in a pyramid shape, and spraying with a rectangular spray pattern.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
図1に示すノズル本体として、中心軸から半径方向の距離12.5mmの位置に中心軸と平行に形成され、かつ内径16mmφおよび長さ60mmの第1の円筒状流路4と、中心軸から半径方向の距離14mmの位置に中心軸と平行に形成され、かつ内径12mmφおよび長さ60mmの第2の円筒状流路5と、これらの流路の隣接する方向に形成された内径23mmφの円筒状合流空間3と、この合流空間の延出方向に対して直交する方向に形成され、幅10mm、半径方向の湾曲長さ36mmの吐出孔2を有するノズル本体を用いた。
Example 1
As the nozzle body shown in FIG. 1, a first cylindrical channel 4 formed in parallel with the central axis at a radial distance of 12.5 mm from the central axis and having an inner diameter of 16 mmφ and a length of 60 mm, and the central axis A second cylindrical flow channel 5 formed in parallel with the central axis at a radial distance of 14 mm and having an inner diameter of 12 mmφ and a length of 60 mm, and a cylinder with an inner diameter of 23 mmφ formed in a direction adjacent to these channels. A nozzle main body having a discharge hole 2 which is formed in a direction perpendicular to the extending direction of the merge space 3 and the extending direction of the merge space and has a width of 10 mm and a radial bending length of 36 mm was used.

このノズル本体の軸線を垂直軸に対して40°の角度で傾斜させ、前記第1及び第2の流路に、圧力0.2MPa、流量198L/分の条件で水を供給し、ノズル本体の先端部から平面部への距離180mmで水を噴霧し、噴霧域での流量分布を調べた。なお、ノズルからの噴霧パターンは角錐状であり、噴霧域の形状は矩形状である。結果を図5及び図6に示す。   The axis of the nozzle body is inclined at an angle of 40 ° with respect to the vertical axis, and water is supplied to the first and second flow paths under conditions of a pressure of 0.2 MPa and a flow rate of 198 L / min. Water was sprayed at a distance of 180 mm from the tip part to the flat part, and the flow rate distribution in the spray area was examined. In addition, the spray pattern from a nozzle is a pyramid shape, and the shape of the spray area is a rectangular shape. The results are shown in FIGS.

図5に示されるように、噴霧域の幅方向の広角域(例えば、ノズルの先端部を中心として幅方向の距離−400mm〜+400mm)で流量分布が均一である。また、図6に示されるように、噴霧域の厚み方向(噴霧方向)において、流量のピーク位置が、ノズル先端部の中心位置から約+200〜220mmにシフトしているとともに、厚み方向においても流量分布がガウス分布に従って均一である。   As shown in FIG. 5, the flow rate distribution is uniform in the wide-angle region in the width direction of the spray region (for example, the distance in the width direction from −400 mm to +400 mm centering on the tip of the nozzle). Further, as shown in FIG. 6, the peak position of the flow rate is shifted to about +200 to 220 mm from the center position of the nozzle tip in the thickness direction (spray direction) of the spray region, and the flow rate is also measured in the thickness direction. The distribution is uniform according to the Gaussian distribution.

比較例1
第1の円筒状流路4及び第2の円筒状流路5に代えて、中心軸から半径方向の距離11mmの位置にそれぞれ内径11mmφおよび長さ60mmの2つの円筒状流路を形成する以外、実施例1と同様にしてノズル本体を得た。
Comparative Example 1
Instead of forming the first cylindrical flow channel 4 and the second cylindrical flow channel 5, two cylindrical flow channels each having an inner diameter of 11 mmφ and a length of 60 mm are formed at a radial distance of 11 mm from the central axis. In the same manner as in Example 1, a nozzle body was obtained.

そして、ノズル本体の軸線を垂直軸に対して40°の角度で傾斜させ、前記第1及び第2の流路に、圧力0.2MPa、流量135L/分の条件で水を供給し、ノズル本体の先端部から平面部への距離90mmで水を噴霧し、噴霧域での流量分布を調べた。結果を図7及び図8に示す。   Then, the axis of the nozzle body is inclined at an angle of 40 ° with respect to the vertical axis, and water is supplied to the first and second flow paths under conditions of a pressure of 0.2 MPa and a flow rate of 135 L / min. Water was sprayed at a distance of 90 mm from the tip to the flat surface, and the flow rate distribution in the spray area was examined. The results are shown in FIGS.

図7及び図8から明らかなように、噴霧域の幅方向では比較的均一な流量分布が得られたものの、厚み方向(噴霧方向)の噴霧流量においてはノズル本体側に高いピークを有し、流量分布が不均一であった。   As is clear from FIGS. 7 and 8, although a relatively uniform flow rate distribution was obtained in the width direction of the spray region, the spray flow rate in the thickness direction (spray direction) has a high peak on the nozzle body side, The flow distribution was uneven.

図1は本発明の噴射ノズルのノズル本体の一例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an example of a nozzle body of an injection nozzle according to the present invention. 図2は図1のノズル本体を示す概略横断面図である。FIG. 2 is a schematic cross-sectional view showing the nozzle body of FIG. 図3は図1に示す噴射ノズルによる噴霧状態を示す模式図である。FIG. 3 is a schematic view showing a spray state by the spray nozzle shown in FIG. 図4は本発明の他の噴射ノズルのノズル本体を示す概略横断面図である。FIG. 4 is a schematic cross-sectional view showing a nozzle body of another injection nozzle of the present invention. 図5は実施例1における幅方向の流量分布を示すグラフである。FIG. 5 is a graph showing the flow rate distribution in the width direction in the first embodiment. 図6は実施例1における厚み方向の流量分布を示すグラフである。FIG. 6 is a graph showing the flow rate distribution in the thickness direction in Example 1. 図7は比較例1における幅方向の流量分布を示すグラフである。FIG. 7 is a graph showing the flow rate distribution in the width direction in Comparative Example 1. 図8は比較例1における厚み方向の流量分布を示すグラフである。FIG. 8 is a graph showing the flow rate distribution in the thickness direction in Comparative Example 1.

符号の説明Explanation of symbols

1,11…ノズル本体
2,12…凹溝状吐出孔
3,13…合流空間
4,5,14,15…流路
DESCRIPTION OF SYMBOLS 1,11 ... Nozzle main body 2,12 ... Groove-shaped discharge hole 3,13 ... Merge space 4,5,14,15 ... Flow path

Claims (11)

ノズル本体の軸線方向に形成された複数の流路と、これらの流路と連なって、先端部に半径方向に延びて形成された吐出孔とを備えている噴射ノズルであって、前記複数の流路が、互いに異なる流路径を有する少なくとも2つの流路で構成されている噴射ノズル。   An injection nozzle comprising a plurality of flow paths formed in the axial direction of the nozzle body, and discharge holes formed extending in the radial direction at the distal end portion, connected to these flow paths, An injection nozzle in which a flow path is composed of at least two flow paths having different flow path diameters. 複数の流路と吐出孔との間に、複数の流路からの流体を合流させるための合流空間が形成されている請求項1記載の噴射ノズル。   The injection nozzle according to claim 1, wherein a joining space for joining fluids from the plurality of flow paths is formed between the plurality of flow paths and the discharge holes. 流路が互いに流路径の異なる2つの流路で構成されており、合流空間が2つの流路の隣接方向に延びているとともに、合流空間の延出方向が吐出孔の延出方向に対して交差している請求項2記載の噴射ノズル。   The flow path is composed of two flow paths having different flow path diameters, the merge space extends in the adjacent direction of the two flow paths, and the extension direction of the merge space is relative to the extension direction of the discharge holes. The injection nozzle according to claim 2, which intersects. 2つの流路径の割合が、一方の流路径を100としたとき、他方の流路径が30〜90である請求項1又は2記載の噴射ノズル。   The injection nozzle according to claim 1 or 2, wherein the ratio of the two channel diameters is 30 to 90 when the other channel diameter is 100. ノズル本体の先端部に半径方向に延びる凹溝状吐出孔が形成され、この凹溝状吐出孔が、ノズル本体の軸線方向に対して平行に又は傾斜して形成されている請求項1記載の噴射ノズル。   The groove-shaped discharge hole extending in the radial direction is formed at the tip of the nozzle body, and the groove-shaped discharge hole is formed in parallel or inclined with respect to the axial direction of the nozzle body. Injection nozzle. ノズル本体の先端部に半径方向に延びて形成された凹溝状吐出孔と、この凹溝状吐出孔に連なって上流方向に形成され、かつ前記凹溝状吐出孔の延出方向に対して交差又は直交する方向に延びる合流空間と、この合流空間の両側部から上流方向に延び、かつ互いに内径の異なる2つの流路とを備えている請求項1記載の噴射ノズル。   A groove-shaped discharge hole formed in the distal end portion of the nozzle body extending in the radial direction, and is formed in an upstream direction connected to the groove-shaped discharge hole, and with respect to the extending direction of the groove-shaped discharge hole. The injection nozzle according to claim 1, further comprising a merge space extending in a direction intersecting or orthogonal to each other and two flow paths extending in an upstream direction from both sides of the merge space and having different inner diameters. 請求項1記載の噴射ノズルで構成され、かつノズル本体の吐出孔から被噴射体に対して斜め方向に流体を噴射させるための噴射システムであって、ノズル本体の軸線が被噴射体に対して傾斜しているとともに、複数の流路のうち大きな流路径の流路が傾斜したノズル本体の内側に位置している噴射システム。   An injection system comprising the injection nozzle according to claim 1 and for injecting fluid in an oblique direction from the discharge hole of the nozzle main body to the injection target, wherein the axis of the nozzle main body is directed to the injection target An injection system that is inclined and has a flow path having a large flow diameter among a plurality of flow paths positioned inside the inclined nozzle body. 被噴射体の上方を回避して、請求項1記載の噴霧ノズルのノズル本体の軸線を被噴射体に対して傾斜させるとともに、複数の流路のうち大きな流路径の流路を、傾斜したノズル本体の内側に位置させ、前記噴霧ノズルの複数の流路に対して流体を供給し、吐出孔から被噴射体に対して斜め方向に流体を噴射させる方法。   The nozzle of the spray nozzle according to claim 1 is tilted with respect to the ejected body while avoiding the upper side of the ejected body, and the flow path having a larger flow path diameter among the plurality of flow paths is inclined. A method in which a fluid is supplied to a plurality of flow paths of the spray nozzle and is ejected in an oblique direction with respect to an object to be ejected from a discharge hole. 先端部での吐出孔の延出方向を被噴射体の幅方向に向けて流体を噴射させる請求項8記載の方法。   The method according to claim 8, wherein the fluid is ejected such that the direction in which the discharge hole extends at the tip portion is directed to the width direction of the ejected body. 流量分布を幅方向および厚み方向に均一化させて流体を噴射する請求項8又は9記載の方法。   The method according to claim 8 or 9, wherein the fluid is ejected with the flow rate distribution made uniform in the width direction and the thickness direction. 請求項1記載の噴霧ノズルのノズル本体の軸線を被噴射体に対して傾斜させるとともに、複数の流路のうち大きな流路径の流路を、傾斜したノズル本体の内側に位置させ、前記噴霧ノズルの複数の流路に対して流体を供給し、吐出孔から被噴射体に対して斜め方向に流体を噴射させることにより、噴射域において、流量分布を均一化させる方法。   The axis of the nozzle body of the spray nozzle according to claim 1 is tilted with respect to the injection target, and a channel having a large channel diameter among the plurality of channels is positioned inside the tilted nozzle body, and the spray nozzle A method of making the flow distribution uniform in the injection region by supplying fluid to the plurality of flow paths and injecting the fluid from the discharge holes in an oblique direction with respect to the injection target.
JP2004048418A 2004-02-24 2004-02-24 Injection nozzle and injection method Expired - Fee Related JP4452093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048418A JP4452093B2 (en) 2004-02-24 2004-02-24 Injection nozzle and injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048418A JP4452093B2 (en) 2004-02-24 2004-02-24 Injection nozzle and injection method

Publications (2)

Publication Number Publication Date
JP2005238029A true JP2005238029A (en) 2005-09-08
JP4452093B2 JP4452093B2 (en) 2010-04-21

Family

ID=35020328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048418A Expired - Fee Related JP4452093B2 (en) 2004-02-24 2004-02-24 Injection nozzle and injection method

Country Status (1)

Country Link
JP (1) JP4452093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150420A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Cooling method for steel material
CN103084421A (en) * 2013-01-25 2013-05-08 燕山大学 Spray cooling device with adjustable parameters of large cylinder shell heat after rolling
JP2017094243A (en) * 2015-11-19 2017-06-01 トヨタ自動車株式会社 Design method of injection nozzle for cooling
CN112074360A (en) * 2018-06-25 2020-12-11 日本制铁株式会社 Secondary cooling device and secondary cooling method for continuous casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150420A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Cooling method for steel material
CN103084421A (en) * 2013-01-25 2013-05-08 燕山大学 Spray cooling device with adjustable parameters of large cylinder shell heat after rolling
JP2017094243A (en) * 2015-11-19 2017-06-01 トヨタ自動車株式会社 Design method of injection nozzle for cooling
CN112074360A (en) * 2018-06-25 2020-12-11 日本制铁株式会社 Secondary cooling device and secondary cooling method for continuous casting
CN112074360B (en) * 2018-06-25 2022-03-18 日本制铁株式会社 Secondary cooling device and secondary cooling method for continuous casting

Also Published As

Publication number Publication date
JP4452093B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
KR101696587B1 (en) Secondary cooling method in continuous casting
JP5667295B2 (en) Fluid supply apparatus, thin plate cleaning system using the same, and method thereof
JP4936904B2 (en) Injection nozzle and spraying method using the same
JP2016172251A (en) Flat jet nozzle and usage of flat jet nozzle
JP2013063369A (en) Spray nozzle, spray nozzle device and spray method
JP2008018400A (en) Two fluid nozzle
JP6089006B2 (en) spray nozzle
JP6159711B2 (en) Liquid ejecting apparatus and liquid ejecting method
JP4452093B2 (en) Injection nozzle and injection method
JPH09220495A (en) Fluid injection nozzle
JP5405865B2 (en) Injection nozzle
JP5970202B2 (en) Oblique nozzle
JP2927746B2 (en) Injection nozzle
JP4447726B2 (en) Fluid injection nozzle
JP2011067781A (en) Deflector, and jetting nozzle using the same
JP5496761B2 (en) Two-fluid nozzle
JP2016087575A (en) Spray nozzle
JP4504641B2 (en) Spray nozzle and spraying method using the same
JP2003093926A (en) Fluid spray nozzle
KR102273574B1 (en) apparatus for oscillating fluid injection
JP2007237086A (en) Nozzle
JP2020171903A (en) Multi-hole nozzle and spray method
JP2008296197A (en) Nozzle
KR101704494B1 (en) High speed fluid spray nozzle and substrate treatment apparatus using same
JP2651308B2 (en) Liquid injection nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Ref document number: 4452093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees