JP2020171903A - Multi-hole nozzle and spray method - Google Patents

Multi-hole nozzle and spray method Download PDF

Info

Publication number
JP2020171903A
JP2020171903A JP2019076461A JP2019076461A JP2020171903A JP 2020171903 A JP2020171903 A JP 2020171903A JP 2019076461 A JP2019076461 A JP 2019076461A JP 2019076461 A JP2019076461 A JP 2019076461A JP 2020171903 A JP2020171903 A JP 2020171903A
Authority
JP
Japan
Prior art keywords
nozzle body
nozzle
injection port
supply path
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019076461A
Other languages
Japanese (ja)
Other versions
JP7202647B2 (en
Inventor
揺平 青木
Yohei Aoki
揺平 青木
茂睦 細谷
Shigemutsu Hosoya
茂睦 細谷
夕介 荻野
Yusuke Ogino
夕介 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Gokin Co Ltd
Original Assignee
Kyoritsu Gokin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Gokin Co Ltd filed Critical Kyoritsu Gokin Co Ltd
Priority to JP2019076461A priority Critical patent/JP7202647B2/en
Publication of JP2020171903A publication Critical patent/JP2020171903A/en
Application granted granted Critical
Publication of JP7202647B2 publication Critical patent/JP7202647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Abstract

To provide a multi-hole nozzle which is useful for spraying or injecting a fluid in a circumferential direction without adopting a rolling mechanism, and a spray method.SOLUTION: A multi-hole nozzle comprises: a nozzle body 1 having a closed tip; a plurality of slit injection ports (or spray holes, discharge holes) 3a to 3f for injecting a fluid, which are formed in a peripheral wall of the nozzle body 1; and a plurality feed passages 2a to 2f for feeding the fluid to the above injection ports respectively, which are formed in the nozzle body 1. A length (depth from the injection port) D from a terminal end of the feed passage 2a to 2f to a center axis of the injection port 3a to 3f is so formed as to be constant, and also a length Ld from an intersection point of the center axis of the feed passage 2a to 2f and the injection port to the injection port 3a to 3f is so formed as to be constant. In addition, a length L1 to L3 from a starting end of the feed passage 2a to 2f to the intersection point is so formed as to be longer than the length Ld of the injection port.SELECTED DRAWING: Figure 1

Description

本発明は、流体を周方向に均一に噴霧又は噴射し、断面中空部材などの内壁などを流体で処理するのに有用な多孔ノズル及び噴霧方法(又は噴射方法)に関する。 The present invention relates to a perforated nozzle and a spraying method (or spraying method) useful for uniformly spraying or spraying a fluid in the circumferential direction and treating an inner wall such as a hollow cross-section member with the fluid.

噴霧ノズルは、通常、中空筒状のノズル本体と、このノズル本体の先端部に形成された吐出孔とを備えており、ノズル本体に液体を供給することにより、先端部の吐出孔から液体を被処理体に噴霧している。しかし、このような噴霧ノズルは、液体の噴霧域がノズル先端部の吐出孔の形態などにより制限され、広範囲に亘り液体を噴霧することができない。噴霧ノズルとして、周方向に液体を噴霧するノズルも知られている。 The spray nozzle usually includes a hollow tubular nozzle body and a discharge hole formed at the tip of the nozzle body. By supplying the liquid to the nozzle body, the liquid is discharged from the discharge hole at the tip. It is sprayed on the object to be treated. However, in such a spray nozzle, the spray area of the liquid is limited by the shape of the discharge hole at the tip of the nozzle, and the liquid cannot be sprayed over a wide range. As a spray nozzle, a nozzle that sprays a liquid in the circumferential direction is also known.

例えば、特開平5-4057号公報(特許文献1)には、防錆ワックスが供給される供給孔を有するノズル本体にワックス吐出用開口部を形成し、前記ノズル本体の外側に前記開口部を位置させて回転自在に回転筒を装着し、この回転筒に、ワックスの流出圧力により前記回転筒を回転させるためのワックス吐出口を形成した吹き付用回転ノズルが記載されている。この文献には、ノズル本体の内壁に、長手方向に延びる2つのスリット開口部を形成し、このスリット開口部を通じて、ノズル本体の外周面にワックスを流出させるため、回転筒に、軸方向及び周方向に互いに位置をずらして複数のワックス吐出口(丸孔の吐出口と、長軸方向が互いに異なる2つの長孔状の吐出口)を形成し、これらの吐出口から吐出するワックスの吐出圧により回転筒をノズル本体の外周部で回転させることが記載され、回転筒とノズル本体との間をOリングでシールすることも記載されている。 For example, in Japanese Patent Application Laid-Open No. 5-4057 (Patent Document 1), a wax ejection opening is formed in a nozzle body having a supply hole for supplying rust-preventive wax, and the opening is provided outside the nozzle body. A rotary nozzle for spraying is described in which a rotary cylinder is mounted so as to be positioned and rotatable, and a wax discharge port for rotating the rotary cylinder by the outflow pressure of wax is formed on the rotary cylinder. In this document, two slit openings extending in the longitudinal direction are formed on the inner wall of the nozzle body, and wax flows out to the outer peripheral surface of the nozzle body through the slit openings, so that the rotating cylinder has an axial direction and a circumference. A plurality of wax discharge ports (a round hole discharge port and two elongated hole-shaped discharge ports having different major axis directions) are formed by shifting their positions in the directions, and the discharge pressure of wax discharged from these discharge ports. It is described that the rotary cylinder is rotated around the outer peripheral portion of the nozzle body, and that the rotary cylinder and the nozzle body are sealed with an O-ring.

特開2017−104777号公報(特許文献2)には、液供給管の先端に取り付けられる給液軸管と、この給液軸管の外周部に回転可能に配置された回転体と、前記給液軸管の先端に固定され、かつ前記回転体を回転自在に支持する軸受材とを備え、前記給液軸管が長さ方向の中央部で通路を閉じて流路の終端を形成し、この終端に近接する通路の周壁に旋回流を発生させる複数の液噴出口を設け、前記回転体の中央部の内周面に前記液噴出口と対向する中央環状溝を設け、前記回転体の両端部を前記給液軸管と前記軸受材とに回転自在に外嵌保持させ、前記中央環状溝の周壁に、長さ方向及び周方向に間隔をおいて噴口を形成した回転式スプレーノズルが記載されている。 Japanese Patent Application Laid-Open No. 2017-104777 (Patent Document 2) describes a liquid supply shaft tube attached to the tip of the liquid supply pipe, a rotating body rotatably arranged on the outer periphery of the liquid supply shaft pipe, and the above-mentioned supply. A bearing material which is fixed to the tip of the liquid shaft tube and rotatably supports the rotating body is provided, and the liquid supply shaft pipe closes the passage at the central portion in the length direction to form the end of the flow path. A plurality of liquid jets for generating a swirling flow are provided on the peripheral wall of the passage close to the end, and a central annular groove facing the liquid jet is provided on the inner peripheral surface of the central portion of the rotating body. A rotary spray nozzle in which both ends are rotatably fitted and held on the liquid supply shaft tube and the bearing material, and nozzles are formed on the peripheral wall of the central annular groove at intervals in the longitudinal direction and the circumferential direction. Are listed.

しかし、これらの回転式ノズルでは、オリフィス部(噴射口)を回転しながら噴霧するため、連結部にクリアランスが必要となる。そのため、液漏れを防止できず、液体を有効に噴霧に利用できないだけでなく、少量噴霧には適していない。一方、液漏れを防止するためには、回転機構と周方向への噴霧機構とが必要となり、構造が複雑化する。 However, in these rotary nozzles, since the orifice portion (injection port) is sprayed while rotating, a clearance is required at the connecting portion. Therefore, it is not possible to prevent liquid leakage, the liquid cannot be effectively used for spraying, and it is not suitable for spraying a small amount. On the other hand, in order to prevent liquid leakage, a rotating mechanism and a spraying mechanism in the circumferential direction are required, which complicates the structure.

特開平5-4057号公報(請求項1、[0010]、図1〜図4)JP-A-5-4057 (Claim 1, [0010], FIGS. 1 to 4) 特開2017−104777号公報(特許請求の範囲、図1及び図4)JP-A-2017-104777 (Claims, FIGS. 1 and 4)

従って、本発明の目的は、流体を周方向に噴霧又は噴射するのに有用な多孔ノズル(又は噴霧ノズル)及び噴霧方法(又は処理方法)を提供することにある。 Therefore, an object of the present invention is to provide a porous nozzle (or spray nozzle) and a spray method (or treatment method) useful for spraying or spraying a fluid in the circumferential direction.

本発明の他の目的は、回転機構を採用することなく、簡単な構造で漏れを確実に防止しつつ、流体を周方向に均一に噴霧又は噴射するのに有用な多孔ノズル(又は噴霧ノズル)及び噴霧方法を提供することにある。 Another object of the present invention is a perforated nozzle (or spray nozzle) useful for spraying or injecting a fluid uniformly in the circumferential direction while reliably preventing leakage with a simple structure without adopting a rotation mechanism. And to provide a spraying method.

本発明のさらに他の目的は、少量であっても液体を有効に噴霧可能な多孔ノズル及び噴霧方法を提供することにある。 Yet another object of the present invention is to provide a porous nozzle and a spraying method capable of effectively spraying a liquid even in a small amount.

本発明者らは、前記課題を達成するため鋭意検討した結果、回転機構を採用することなく、先端部が閉塞した中空のノズル本体において、円周方向に間隔をおいて、かつ軸方向の位置を異にして多段に複数の噴射口を形成することも検討した。しかし、このようなノズルでも、圧力損失が生じるためか、各噴射口からの液体の流量を均一にできず、液体を周方向に均一に噴霧することができなかった。特に、少量の液体を均一に噴霧できなかった。このような知見に基づいて、さらに検討した結果、円柱状の棒体に、周方向に間隔をおいて、軸方向に延び、かつ終端部が閉じた複数の供給路(又は流入路)を形成し、前記棒体の周壁に、これらの流入路に連通させてスリット状噴射口(又は吐出孔)を周方向に形成すると、前記流入路に導入した流体をスリット状噴射口から噴射又は噴霧でき、断面中空部材などの中空部の内壁を均一に処理できることを見いだし、本発明を完成した。 As a result of diligent studies to achieve the above-mentioned problems, the present inventors have conducted a position in the axial direction at intervals in the circumferential direction in a hollow nozzle body having a closed tip without adopting a rotation mechanism. It was also examined to form a plurality of injection ports in multiple stages with different values. However, even with such a nozzle, the flow rate of the liquid from each injection port could not be made uniform, probably because pressure loss occurred, and the liquid could not be sprayed uniformly in the circumferential direction. In particular, a small amount of liquid could not be sprayed uniformly. As a result of further studies based on such findings, a plurality of supply paths (or inflow paths) extending in the axial direction and having closed ends are formed in the columnar rod body at intervals in the circumferential direction. Then, when a slit-shaped injection port (or discharge hole) is formed on the peripheral wall of the rod body in the circumferential direction by communicating with these inflow paths, the fluid introduced into the inflow path can be injected or sprayed from the slit-shaped injection port. The present invention has been completed by finding that the inner wall of a hollow portion such as a hollow member having a cross section can be uniformly treated.

すなわち、本発明の多孔ノズルは、ノズル本体の先端部が閉じられ;ノズル本体の周壁に形成され、流体を噴射するための複数の噴射口(又は噴霧孔、吐出孔)と;前記ノズル本体に形成され、これらの噴射口に流体を供給するための流路とを備えている。そして、前記流路は、前記複数の噴射口に、それぞれ、流体を供給するための複数の供給路で形成されている。すなわち、複数の供給路は、それぞれ複数の噴射口と連通しており、互いに分離し独立して形成されている。このようなノズルでは、前記複数の供給路が、それぞれ、複数の噴射口に連通しているため、各供給路で流体の圧力損失が生じることなく、周壁に形成された複数の噴射口から流体を周方向に噴霧又は噴射できる。 That is, in the perforated nozzle of the present invention, the tip of the nozzle body is closed; a plurality of injection ports (or spray holes, discharge holes) formed on the peripheral wall of the nozzle body for injecting a fluid; It is formed and includes a flow path for supplying a fluid to these injection ports. The flow path is formed by a plurality of supply paths for supplying a fluid to the plurality of injection ports. That is, the plurality of supply paths communicate with each of the plurality of injection ports, and are separated from each other and formed independently. In such a nozzle, since the plurality of supply paths communicate with each of the plurality of injection ports, the fluid is transmitted from the plurality of injection ports formed on the peripheral wall without causing pressure loss of the fluid in each supply path. Can be sprayed or sprayed in the circumferential direction.

複数の噴射口は、ノズル本体の適所、例えば、ノズル本体の円柱状又は円錐状の周壁に形成してもよい。複数の噴射口は、ノズル本体の周壁の少なくとも周方向に間隔をおいて、例えば、周方向に等間隔に形成してもよい。さらに、複数の噴射口は、ノズル本体の周方向にいくにつれて、ノズル本体の軸方向に周期的に又は規則的に間隔をおいて形成してもよい。 The plurality of injection ports may be formed at appropriate locations on the nozzle body, for example, on the columnar or conical peripheral wall of the nozzle body. The plurality of injection ports may be formed at least in the circumferential direction of the peripheral wall of the nozzle body, for example, at equal intervals in the circumferential direction. Further, the plurality of injection ports may be formed at periodic or regular intervals in the axial direction of the nozzle body as it goes in the circumferential direction of the nozzle body.

さらに、噴射口は、供給路の終端部(先端部)よりも上流部(又は上流側)に形成してもよい。すなわち、供給路は、ノズル本体の軸方向に、噴射口よりもノズル先端部側に直線的に延びて形成してもよい。このような形態では、供給路のうち噴射口から終端部に至る流路又は空間を乱流空間として機能させることができ、供給路からの流体を噴射口から均一に噴射又は噴霧できる。 Further, the injection port may be formed at an upstream portion (or upstream side) of the terminal portion (tip portion) of the supply path. That is, the supply path may be formed so as to extend linearly toward the tip of the nozzle from the injection port in the axial direction of the nozzle body. In such a form, the flow path or space from the injection port to the terminal portion of the supply path can function as a turbulent flow space, and the fluid from the supply path can be uniformly injected or sprayed from the injection port.

さらに、前記噴射口は、長軸が周方向に向いたスリット状の形態、例えば、ノズル本体の周方向に延びる細長孔状に形成され、この細長孔状噴射口のうち、ノズル軸方向において互いに対向する両内壁の少なくとも一方の内壁がノズル軸方向に膨らんで湾曲していてもよい。 Further, the injection ports are formed in a slit-like shape in which the long axis faces in the circumferential direction, for example, in the shape of elongated holes extending in the circumferential direction of the nozzle body, and among the elongated hole-shaped injection ports, each other in the nozzle axial direction. At least one of the two inner walls facing each other may be bulged and curved in the axial direction of the nozzle.

供給路の中心軸線は、通常、噴射口の中心軸線(前記供給路に対応する噴射口の中心軸線)に対して交差部で交差しており、前記噴射口は、前記のように、供給路の終端部よりも上流部に形成してもよい。さらに、各供給路において、前記供給路の始端部から前記交差部に至る長さは、前記供給路の交差部(供給路の中心軸線と噴射口の中心軸線とが交差する分岐部)から噴射口に至る長さよりも大きく形成してもよく、前記供給路の終端部から前記交差部(前記噴射口の中心軸線)に至る長さ(供給路の底部又は最奥部から噴射口の中心軸線に至る距離;又は噴射口の中心軸線からの供給路の深さ)は、各供給路において、ほぼ一定又は同じであってもよい。 The central axis of the supply path usually intersects the central axis of the injection port (the central axis of the injection port corresponding to the supply path) at an intersection, and the injection port is the supply path as described above. It may be formed upstream of the terminal portion of. Further, in each supply path, the length from the start end portion of the supply path to the intersection is injected from the intersection of the supply paths (the branch portion where the central axis of the supply path and the central axis of the injection port intersect). It may be formed larger than the length to reach the mouth, and the length from the end of the supply path to the intersection (the central axis of the injection port) (the central axis of the injection port from the bottom or the innermost part of the supply path). The distance to (or the depth of the supply path from the central axis of the injection port) may be substantially constant or the same in each supply path.

より具体的には、多孔ノズルは、中実の棒体の周方向に間隔をおいて棒体の軸方向に延び、かつ終端部が閉塞して形成された複数の供給路と、前記棒体の周壁に、前記供給路に連通して形成され、周方向に延びるスリット状噴射口(噴霧孔又は吐出孔)とを備えていてもよい。 More specifically, the perforated nozzle has a plurality of supply paths formed by extending in the axial direction of the rod body at intervals in the circumferential direction of the solid rod body and having a closed end portion, and the rod body. The peripheral wall may be provided with a slit-shaped injection port (spray hole or discharge hole) formed in communication with the supply path and extending in the circumferential direction.

本発明の前記多孔ノズルは、種々の部材に流体を噴霧又は噴射して処理するために有用である。例えば、前記多孔ノズルは、少なくとも湾曲又は屈曲した内壁を有する部材のうち、前記内壁に流体としての処理剤を噴霧して処理するのに利用でき、前記処理部材は、部分的に開放されていてもよい中空部を有する部材であってもよい。このような中空状内壁を有する部材であっても、前記多孔ノズルを用いて流体を前記中空状内壁に噴霧し、前記中空状内壁を処理することができる。 The perforated nozzle of the present invention is useful for spraying or injecting a fluid onto various members for processing. For example, the perforated nozzle can be used to spray a treatment agent as a fluid on the inner wall of a member having at least a curved or bent inner wall, and the treatment member is partially open. It may be a member having a hollow portion. Even with such a member having a hollow inner wall, the fluid can be sprayed onto the hollow inner wall using the perforated nozzle to treat the hollow inner wall.

本発明では、ノズル本体の周壁に形成された複数の噴射口に、複数の供給路から、それぞれ、流体を供給可能であるため、圧力損失を抑制しつつ、流体を周方向に均一に噴射又は噴霧できる。さらに、ノズル本体を形成する棒体の周方向に間隔をおいて軸方向に延びる複数の供給路を形成し、前記棒体の周壁に、それぞれの供給路に至る噴射口を形成すればよいため、回転機構を採用することなく、簡単な構造の多孔ノズルを形成できる。特に、漏れを確実に防止しつつ、流体を周方向に均一に噴霧又は噴射できる。さらには、少量の液体(又は処理剤)であっても有効かつ均一に噴霧できる。 In the present invention, since the fluid can be supplied from the plurality of supply paths to the plurality of injection ports formed on the peripheral wall of the nozzle body, the fluid can be uniformly injected in the circumferential direction while suppressing the pressure loss. Can be sprayed. Further, it is sufficient to form a plurality of supply paths extending in the axial direction at intervals in the circumferential direction of the rod body forming the nozzle body, and to form injection ports leading to the respective supply paths on the peripheral wall of the rod body. , A porous nozzle with a simple structure can be formed without adopting a rotation mechanism. In particular, the fluid can be sprayed or jetted uniformly in the circumferential direction while reliably preventing leakage. Furthermore, even a small amount of liquid (or treatment agent) can be effectively and uniformly sprayed.

図1は、本発明のノズル本体の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the nozzle body of the present invention. 図2は、図1のノズル本体を備えた多孔ノズルを示す概略斜視図である。FIG. 2 is a schematic perspective view showing a perforated nozzle provided with the nozzle body of FIG. 図3は、本発明のノズル本体の他の例を示し、図3(A)はノズル本体の概略断面図であり、図3(B)は噴射口に沿って周方向に展開した仮想の部分展開図である。FIG. 3 shows another example of the nozzle body of the present invention, FIG. 3 (A) is a schematic cross-sectional view of the nozzle body, and FIG. 3 (B) is a virtual portion developed in the circumferential direction along the injection port. It is a development view. 図4は、本発明のノズル本体のさらに他の例を示し、噴射口に沿って周方向に展開した仮想の部分展開図である。FIG. 4 shows still another example of the nozzle body of the present invention, and is a virtual partially developed view developed in the circumferential direction along the injection port. 図5は、比較例1で用いたノズルを示す概略斜視図である。FIG. 5 is a schematic perspective view showing the nozzle used in Comparative Example 1. 図6は、実施例1での噴霧状態を示す写真である。FIG. 6 is a photograph showing the spray state in Example 1. 図7は、比較例1での噴霧状態を示す写真である。FIG. 7 is a photograph showing the spray state in Comparative Example 1.

以下に、必要に応じて、添付図面を参照しつつ本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, if necessary.

図1は、本発明のノズル本体の一例を示す概略断面図であり、図2は、図1のノズル本体を備えた多孔ノズルを示す概略斜視図である。 FIG. 1 is a schematic cross-sectional view showing an example of a nozzle body of the present invention, and FIG. 2 is a schematic perspective view showing a porous nozzle provided with the nozzle body of FIG.

多孔ノズルは、周方向に等間隔に形成された複数のスリット状噴射口から流体を均一に噴射又は噴霧するためのノズル本体(又はノズル本体部)1と、このノズル本体の上流端部に形成され、前記噴射口3a〜3fに液体を供給するためのアダプター(又はアダプター部、経大部)5とを備えており、ノズル本体(又はノズル本体部)1とアダプター(又はアダプター部)5とは一体化している。この例では、ノズル本体1とアダプター5とが分離して図示されているが、単一の円柱体を切削加工して、ノズル本体1に対応するノズル本体部と、アダプター5に対応するアダプター部とを形成し、ノズル本体部とアダプター部とが一体化したノズルを形成している。 The perforated nozzle is formed at the nozzle body (or nozzle body) 1 for uniformly injecting or spraying the fluid from a plurality of slit-shaped injection ports formed at equal intervals in the circumferential direction, and at the upstream end of the nozzle body. It is provided with an adapter (or an adapter portion, a large portion) 5 for supplying a liquid to the injection ports 3a to 3f, and is provided with a nozzle body (or nozzle body portion) 1 and an adapter (or adapter portion) 5. Is integrated. In this example, the nozzle body 1 and the adapter 5 are shown separately, but a single cylinder is machined to form a nozzle body corresponding to the nozzle body 1 and an adapter portion corresponding to the adapter 5. And, and the nozzle body and the adapter are integrated to form a nozzle.

前記ノズル本体1は、周方向に等間隔で、円柱体1aの一方の端面から直線的に軸方向に延び、円柱体1aの他方の端面に貫通することなく閉塞して(又は終端部が閉じて)形成された複数の供給路(この例では、6つの供給路又は管状流入路)2a〜2fと、これらの供給路に対応して、前記円柱体1aの周壁に周方向に等間隔に形成され、前記供給路と連通したスリット状噴射口(長軸が周方向に向いた6つの噴射口)3a〜3fとを備えており、外周方向に噴霧するため、各供給路の中心軸線と、この供給路に対応する噴射口の中心軸線とは直交して交差部(又は分岐部)で交差している。 The nozzle body 1 extends linearly from one end face of the cylinder 1a in the axial direction at equal intervals in the circumferential direction, and is closed (or the end portion is closed) without penetrating the other end face of the cylinder 1a. (In this example, six supply paths or tubular inflow paths) 2a to 2f, and corresponding to these supply paths, at equal intervals in the circumferential direction on the peripheral wall of the cylindrical body 1a. It is provided with slit-shaped injection ports (six injection ports whose major axes are oriented in the circumferential direction) 3a to 3f, which are formed and communicate with the supply path, and since spraying is performed in the outer peripheral direction, the central axis of each supply path is provided. , It intersects at an intersection (or a branch) orthogonal to the central axis of the injection port corresponding to this supply path.

前記複数の供給路(管状流入路)2a〜2fは、第1の供給路群2a〜2cと第2の供給路群2d〜2fとが隣接して形成されており、第1及び第2の供給路群では、それぞれ、供給路(管状流入路)の長さが周方向(又は時計方向)にいくにつれて順次に大きく形成されている。すなわち、第1及び第2の供給路群のうち最も長い流路2c,2fには、最も短い流路2a,2dが隣接している。このような形態で複数の供給路(管状流入路)2a〜2fを形成することにより、ノズル本体1を中心として、周方向に液体を均一に噴霧している。 The plurality of supply paths (tubular inflow paths) 2a to 2f are formed so that the first supply path groups 2a to 2c and the second supply path groups 2d to 2f are adjacent to each other, and the first and second supply paths are formed. In each of the supply paths, the length of the supply path (tubular inflow path) is formed to be larger in order toward the circumferential direction (or clockwise direction). That is, the shortest flow paths 2a and 2d are adjacent to the longest flow paths 2c and 2f of the first and second supply paths. By forming a plurality of supply paths (tubular inflow paths) 2a to 2f in such a form, the liquid is uniformly sprayed in the circumferential direction around the nozzle body 1.

複数の噴射口3a〜3fの軸方向の位置も、複数の供給路2a〜2fの長さに対応して、周方向にいくにつれて順次に軸方向に周期的又は規則的に間隔をおいて形成されている。より具体的には、噴射口3a〜3fは、前記供給路2a〜2fの終端部よりも上流部に形成されており、前記供給路2a〜2fの終端部から前記噴射口3a〜3fの中心軸線への長さ(交差部に至る長さ、又は噴射口からの深さ)Dはほぼ同じ又は一定に形成され、供給路2a〜2fの終端部(深部)に撹拌空間(乱流空間又は凹部)4a〜4fを形成している。また、前記供給路2a〜2fの前記交差部(供給路の中心軸線と噴射口の中心軸線との交点)から噴射口3a〜3fに至る長さLdもほぼ同じ又は一定に形成されている。さらに、液体を噴射口3a〜3fから安定して噴霧するため、各供給路2a〜2fにおいて、前記供給路2a〜2fの始端部から前記交差部(供給路の中心軸線と噴射口の中心軸線との交点)に至る長さ(又は円柱体1aの一方の端面に位置する始端部から、供給路の中心軸線と噴射口の中心軸線との交点(交差部)に至る長さ)L1〜L3は、前記供給路の前記交差部から噴射口に至る長さLdよりも大きく形成されている。 The axial positions of the plurality of injection ports 3a to 3f are also formed at periodic or regular intervals in the axial direction in the circumferential direction, corresponding to the lengths of the plurality of supply paths 2a to 2f. Has been done. More specifically, the injection ports 3a to 3f are formed upstream of the terminal portions of the supply paths 2a to 2f, and are centered from the terminal portions of the supply paths 2a to 2f to the center of the injection ports 3a to 3f. The length to the axis (the length to the intersection or the depth from the injection port) D is formed to be substantially the same or constant, and the stirring space (turbulent space or deep part) at the end (deep part) of the supply paths 2a to 2f is formed. Recessed portions) 4a to 4f are formed. Further, the length Ld from the intersection of the supply paths 2a to 2f (the intersection of the central axis of the supply path and the central axis of the injection port) to the injection ports 3a to 3f is also formed to be substantially the same or constant. Further, in order to stably spray the liquid from the injection ports 3a to 3f, in each of the supply paths 2a to 2f, from the start end of the supply paths 2a to 2f to the intersection (the central axis of the supply path and the central axis of the injection port). (Or the length from the start end located on one end face of the cylinder 1a to the intersection (intersection) between the central axis of the supply path and the central axis of the injection port) L1 to L3 Is formed to be larger than the length Ld from the intersection of the supply passage to the injection port.

なお、周方向にいくにつれて順次に軸方向に間隔をおいて形成された複数の噴射口3a〜3fは、ノズル本体1の軸線を中心として放射状の位置関係で位置している。また、複数の噴射口3a〜3fは、ノズル本体1の軸線方向から見たとき、互いに隣接するスリット状噴射口3a〜3fの両側部は周方向において重複しており、スリット状噴射口3a〜3fは、ノズル本体1の周方向に延びる細長孔状に形成され、この細長孔状噴射口のうち、ノズル軸方向において互いに対向する両内壁がノズル軸方向に膨らんで湾曲している。このような形態で形成された複数のスリット状噴射口3a〜3fにより、周方向に均一な噴霧分布で液体を噴霧している。 The plurality of injection ports 3a to 3f formed at intervals in the axial direction sequentially in the circumferential direction are located in a radial positional relationship with the axis of the nozzle body 1 as the center. Further, when the plurality of injection ports 3a to 3f are viewed from the axial direction of the nozzle body 1, both side portions of the slit-shaped injection ports 3a to 3f adjacent to each other overlap in the circumferential direction, and the slit-shaped injection ports 3a to 3f overlap. The 3f is formed in the shape of an elongated hole extending in the circumferential direction of the nozzle body 1, and of the elongated hole-shaped injection port, both inner walls facing each other in the nozzle axial direction are bulged and curved in the nozzle axial direction. The liquid is sprayed with a uniform spray distribution in the circumferential direction by the plurality of slit-shaped injection ports 3a to 3f formed in such a form.

このような多孔ノズル(噴霧ノズル)では、アダプター5(ノズル本体1と一体化したアダプター)から液体を供給して各供給路2a〜2fに分配でき、各供給路2a〜2fでは流体が流路に沿って流動するとともに、供給路2a〜2fの最深部の撹拌空間4a〜4fで撹拌又は乱流化できる。さらに、複数の噴射口3a〜3fが軸方向及び周方向に位置を変えて形成されているため、ノズル本体1を中心として複数の噴射口3a〜3fから液体などの流体を周方向に均一に噴霧できる。 In such a perforated nozzle (spray nozzle), the liquid can be supplied from the adapter 5 (the adapter integrated with the nozzle body 1) and distributed to the respective supply paths 2a to 2f, and the fluid flows through the respective supply paths 2a to 2f. It can be agitated or turbulent in the agitation space 4a to 4f at the deepest part of the supply paths 2a to 2f while flowing along the water. Further, since the plurality of injection ports 3a to 3f are formed by changing the positions in the axial direction and the circumferential direction, the fluid such as a liquid is uniformly flown in the circumferential direction from the plurality of injection ports 3a to 3f centering on the nozzle body 1. Can be sprayed.

なお、ノズル本体とアダプターとは一体化できればよく、単一の棒体を加工して、ノズル本体に対応するノズル本体部とアダプターに対応するアダプター部とを形成し、一体化したノズルとしてもよい。また、ノズルは、ノズル本体と、このノズル本体の上流端部に装着可能なアダプターとを備えていてもよく、ノズル本体に対するアダプターの装着形態は、螺合を利用した螺合形態に制限されず、ノズル本体とアダプターとの間はOリングなどの封止部材で封止してもよい。このように、本明細書において、「ノズル本体」及び「アダプター」は、一体化していてもよく、互いに分離していてもよい。そのため、「ノズル本体」及び「アダプター」は、それぞれ、「ノズル本体部」及び「アダプター部」と同義に用いることができる。さらに、アダプター(又はアダプター部)は、流体をノズル本体(又はノズル本体部)に供給又は導入する機能を有するため、アダプター(又はアダプター部)は、流体導入部ということもできる。また、アダプター(又はアダプター部、経大部)にシリンダーやネジ機構などの前進動及び/又は後退動機構を取り付け、ノズル本体を前進動及び/又は後退動可能としてもよい。そのため、アダプター(又はアダプター部、経大部)は操作部ということもできる。 It is sufficient that the nozzle body and the adapter can be integrated, and a single rod body may be processed to form a nozzle body portion corresponding to the nozzle body and an adapter portion corresponding to the adapter to form an integrated nozzle. .. Further, the nozzle may include a nozzle body and an adapter that can be attached to the upstream end of the nozzle body, and the attachment form of the adapter to the nozzle body is not limited to the screwing form using screwing. , The nozzle body and the adapter may be sealed with a sealing member such as an O-ring. As described above, in the present specification, the "nozzle body" and the "adapter" may be integrated or separated from each other. Therefore, the "nozzle body" and the "adapter" can be used synonymously with the "nozzle body" and the "adapter", respectively. Further, since the adapter (or the adapter portion) has a function of supplying or introducing the fluid to the nozzle body (or the nozzle body portion), the adapter (or the adapter portion) can also be referred to as a fluid introduction portion. Further, a forward movement and / or backward movement mechanism such as a cylinder or a screw mechanism may be attached to the adapter (or the adapter portion or the economic portion) to enable the nozzle body to move forward and / or backward. Therefore, the adapter (or the adapter part, the economic part) can be said to be the operation part.

ノズル本体(アダプターも含む)は、複数の供給路及び噴射口が形成可能である限り、円柱状に限らず、多角柱状、円錐状、多角錐状、円錐台状、多角錐台状などの形態を有していてもよい。ノズル本体は、棒状体、例えば、円柱体、円錐体、円錐円柱体、特に円柱体の形態を有している場合が多い。複数の噴射口は、円柱状又は円錐円柱状のノズル本体の周壁、通常、ノズル本体の円柱状又は円錐状の周壁に形成されている。なお、ノズル本体の先端部は、閉じられており、供給路(流入路)を通じて、ノズル本体の周壁に形成された噴射口に流体が供給され、噴射口から流体が噴霧又は噴射される。 The nozzle body (including the adapter) is not limited to a columnar shape as long as a plurality of supply paths and injection ports can be formed, and has a shape such as a polygonal columnar shape, a conical shape, a polygonal pyramid shape, a truncated cone shape, and a truncated cone shape. May have. The nozzle body often has the form of a rod-shaped body, for example, a cylinder, a cone, a cone cylinder, particularly a cylinder. The plurality of injection ports are formed on the peripheral wall of the nozzle body having a columnar or conical columnar shape, usually on the cylindrical or conical peripheral wall of the nozzle body. The tip of the nozzle body is closed, and the fluid is supplied to the injection port formed on the peripheral wall of the nozzle body through the supply path (inflow path), and the fluid is sprayed or injected from the injection port.

多孔ノズルは、前記ノズル本体に形成され、噴射口に連通して流体を供給可能な流路(流入路)を備えており、この流路は、複数の噴射口(噴霧孔又は吐出孔)に、それぞれ、流体を供給するための複数の供給路(流入路又は導入路)で形成されている。すなわち、複数の供給路(流入路又は導入路)は、互いに分離して、それぞれ、複数の噴射口と連通している。 The perforated nozzle is formed in the nozzle body and includes a flow path (inflow path) capable of communicating with the injection port to supply a fluid, and this flow path is provided in a plurality of injection ports (spray hole or discharge hole). Each is formed by a plurality of supply paths (inflow path or introduction path) for supplying a fluid. That is, the plurality of supply paths (inflow path or introduction path) are separated from each other and communicate with the plurality of injection ports.

複数の供給路は、ノズル本体(円柱体など)の一方の端面から、周方向に間隔をおいて軸方向に延びて形成すればよく、周方向に等間隔に軸方向に延びて形成する場合が多い。複数の供給路は、ノズル本体(円柱体など)の端面の中心域において周方向に間隔をおいて軸方向に形成してもよく、通常、外周域において周方向に間隔をおいて軸方向に形成する場合が多い。 The plurality of supply paths may be formed from one end surface of the nozzle body (cylindrical body, etc.) so as to extend in the axial direction at equal intervals in the circumferential direction, and may be formed so as to extend in the axial direction at equal intervals in the circumferential direction. There are many. The plurality of supply paths may be formed axially at intervals in the circumferential direction in the central region of the end face of the nozzle body (cylindrical body, etc.), and are usually formed axially at intervals in the circumferential direction in the outer peripheral region. Often formed.

複数の供給路の長さは、ノズル本体の軸方向の噴射口の位置と関連付けて同一又は異なっていてもよく、前記のように、周方向にいくにつれて順次に大きく(又は深く)又は小さく(又は浅く)形成してもよい。好ましい態様では、周方向に均一かつ幅広に流体を噴霧するため、複数の供給路の長さは、周方向にいくにつれて規則的に又は周期的に異なっていてもよく;周方向にいくにつれて長さの異なる複数の供給路(又は流路群)が、周方向に規則的に又は周期的に形成されていてもよい。例えば、噴射口の軸方向の位置と関連付けて、長さの異なる一対の供給路(一対の流路群)を、周方向に順次に隣接させて形成してもよく;周方向にいくにつれて長さの異なる複数の供給路(例えば、順次に長さが大きな複数の供給路)で形成された供給路群を、周方向に順次に隣接させて(すなわち、複数の供給路群で)形成してもよく、このような複数の供給路群は、階段状の軌跡上において、多段状に昇降する形態で形成してもよく;全周に亘り周方向にいくにつれて順次に長さが大きくなる又は小さくなる複数の供給路(例えば、螺旋状の軌跡上に等間隔に形成された複数の供給路)を形成してもよい。通常、ノズル本体の周方向にいくにつれてノズル本体の軸方向の長さの異なる複数の供給路(前記長さの異なる一対の供給路を含む)を、ノズル本体の周方向に周期的に又は規則的に形成する場合が多い。なお、供給路の断面形状は、特に制限されないが、通常、円形状である場合が多い。また、供給路は、必要であれば、ノズル本体の軸方向に対して湾曲又は傾斜して延びていてもよいが、通常、ノズル本体の軸方向に沿って直線的に延びて形成されている。 The lengths of the plurality of supply paths may be the same or different in relation to the position of the injection port in the axial direction of the nozzle body, and as described above, the lengths are gradually increased (or deeper) or smaller (or deeper) or smaller (or deeper) in the circumferential direction. Or shallow) may be formed. In a preferred embodiment, the lengths of the plurality of supply paths may be regularly or periodically different in the circumferential direction to spray the fluid uniformly and widely in the circumferential direction; A plurality of supply paths (or flow paths) having different sizes may be formed regularly or periodically in the circumferential direction. For example, a pair of supply paths (a pair of flow paths) of different lengths may be formed sequentially adjacent to each other in the circumferential direction in association with the axial position of the injection port; the length increases in the circumferential direction. A group of supply paths formed by a plurality of supply paths having different lengths (for example, a plurality of supply paths having a large length in sequence) are sequentially adjacent to each other in the circumferential direction (that is, a plurality of supply path groups). Alternatively, such a plurality of supply path groups may be formed in a form of ascending and descending in a multi-step manner on a stepped locus; the length gradually increases in the circumferential direction over the entire circumference. Alternatively, a plurality of smaller supply paths (for example, a plurality of supply paths formed at equal intervals on a spiral locus) may be formed. Normally, a plurality of supply paths (including the pair of supply paths having different lengths) having different axial lengths of the nozzle body are periodically or regularly arranged in the circumferential direction of the nozzle body. In many cases, it is formed as a target. The cross-sectional shape of the supply path is not particularly limited, but it is usually circular in many cases. Further, if necessary, the supply path may be curved or inclined with respect to the axial direction of the nozzle body, but is usually formed so as to extend linearly along the axial direction of the nozzle body. ..

各供給路にはそれぞれ噴射口(噴霧孔、吐出孔又はノズルオリフィス)が形成され、噴射口(噴霧孔、吐出孔又はノズルオリフィス)は、ノズル本体の周壁から外向きに形成され、噴射口の中心軸線と、供給路(前記噴射口に対応する供給路)の中心軸線とは、交差部(又は分岐部)で交差しており、通常、噴射口の中心軸線と供給路の中心軸線とは直交して交差する場合が多い。 Each supply path is formed with an injection port (spray hole, discharge hole or nozzle orifice), and the injection port (spray hole, discharge hole or nozzle orifice) is formed outward from the peripheral wall of the nozzle body to form the injection port. The central axis and the central axis of the supply path (the supply path corresponding to the injection port) intersect at an intersection (or a branch portion), and usually, the central axis of the injection port and the central axis of the supply path are It often intersects at right angles.

噴射口の位置は、前記供給路と連通して、流体を周方向に噴霧可能であればよく、軸方向の位置を考慮せずに、周方向の位置だけを考慮すると、複数の噴射口は、例えば、ノズル本体の周方向に間隔をおいて形成してもよく、周方向の噴射口の間隔は、同一又は異なっていてもよく、通常、ノズル本体の周方向に等間隔に形成される。例えば、複数の噴射口の中心軸は、ノズル本体の中心軸を中心として、放射状の位置関係、すなわち、周方向に等間隔な位置に形成してもよい。 The position of the injection port may be such that the fluid can be sprayed in the circumferential direction by communicating with the supply path, and if only the position in the circumferential direction is considered without considering the position in the axial direction, the plurality of injection ports may be located. For example, they may be formed at intervals in the circumferential direction of the nozzle body, and the intervals of the injection ports in the circumferential direction may be the same or different, and are usually formed at equal intervals in the circumferential direction of the nozzle body. .. For example, the central axes of the plurality of injection ports may be formed in a radial positional relationship with the central axis of the nozzle body as the center, that is, at positions evenly spaced in the circumferential direction.

一方、周方向の位置を考慮せずに、軸方向の位置を考慮すると、噴射口は、例えば、軸方向の位置を同じくして、周方向に間隔をおいて形成してもよく、通常、軸方向の位置を異にして、周方向に間隔をおいて形成する場合が多い。 On the other hand, if the axial position is taken into consideration without considering the circumferential position, the injection ports may be formed, for example, at the same axial position and at intervals in the circumferential direction. In many cases, they are formed at different positions in the axial direction and at intervals in the circumferential direction.

複数の噴射口は、軸方向の位置を変えずに、周方向に間隔をおいて形成してもよいが、周方向に流体をさらに均一に噴霧するためには、周方向及び軸方向の双方の方向に間隔をおいて形成する場合が多い。好ましい形態では、複数の噴射口(オリフィス)は、ノズル本体の軸方向に間隔をおいて多段に、かつ周方向に間隔をおいて(又は等間隔に)形成してもよい。すなわち、複数の噴射口(噴霧孔又はノズルオリフィス)は、ノズル本体の周方向にいくにつれてノズル本体の軸方向の位置を異にして(又は間隔をおいて)形成される。特に、複数の噴射口は、ノズル本体の周方向に等間隔であって、ノズル本体の軸方向に間隔をおいて形成する場合が多い。周方向にいくにつれて、例えば、周方向に隣接する複数の噴射口は、ノズル本体の周方向にいくにつれて、ノズル本体の軸方向に間隔をおいて(軸方向の位置を異にして)、互い違いに(又は周方向の仮想線に対して軸方向に交互に位置する千鳥状の形態で)、若しくは上流方向又は下流方向に順次に昇降する階段状の形態で点在して形成してもよい。 The plurality of injection ports may be formed at intervals in the circumferential direction without changing the positions in the axial direction, but in order to spray the fluid more uniformly in the circumferential direction, both the circumferential direction and the axial direction may be formed. It is often formed at intervals in the direction of. In a preferred embodiment, the plurality of injection ports (orifices) may be formed in multiple stages at intervals in the axial direction of the nozzle body and at intervals (or at equal intervals) in the circumferential direction. That is, the plurality of injection ports (spray holes or nozzle orifices) are formed at different positions (or at intervals) in the axial direction of the nozzle body as they go in the circumferential direction of the nozzle body. In particular, the plurality of injection ports are often formed at equal intervals in the circumferential direction of the nozzle body and at intervals in the axial direction of the nozzle body. As it goes in the circumferential direction, for example, a plurality of injection ports adjacent to each other in the circumferential direction are staggered at intervals in the axial direction of the nozzle body (with different axial positions) as they go in the circumferential direction of the nozzle body. (Or in a staggered form that alternates axially with respect to the imaginary line in the circumferential direction), or may be interspersed in a stepped form that sequentially rises and falls in the upstream or downstream direction. ..

具体的には、図3に示されるように、ノズル本体11の複数の供給路は、長さが大きな供給路12aと、長さが小さな供給路12bとが周方向に交互に隣接して軸方向に延びて形成され、これらの供給路12a,12bの終端部から所定の距離Dのノズル本体11の側壁には、スリット状噴射口13a,13bが開口している。これらのスリット状噴射口13a,13bは、噴射口の配置形態を説明するための仮想の展開図である図3(B)に示されるように、円周方向の仮想線を中心として軸方向に交互に位置し、千鳥状の配置形態を示している。すなわち、終端部から一定の距離Dの位置で噴射口13a,13bと連通し、長さの異なる一対の供給路(長さが大きな供給路12a及び長さが小さな供給路12b)が周方向に順次に隣接させて複数の供給路を形成してもよい。 Specifically, as shown in FIG. 3, in the plurality of supply paths of the nozzle body 11, the supply path 12a having a large length and the supply path 12b having a small length are alternately adjacent to each other in the circumferential direction. Slit-shaped injection ports 13a and 13b are opened on the side wall of the nozzle body 11 which is formed so as to extend in the direction and has a predetermined distance D from the end portions of these supply paths 12a and 12b. These slit-shaped injection ports 13a and 13b are axially centered on a virtual line in the circumferential direction, as shown in FIG. 3B, which is a virtual development view for explaining an arrangement form of the injection ports. They are located alternately and show a staggered arrangement. That is, a pair of supply paths having different lengths (a long supply path 12a and a short supply path 12b) communicate with the injection ports 13a and 13b at a certain distance D from the terminal portion in the circumferential direction. A plurality of supply paths may be formed so as to be adjacent to each other in sequence.

仮想の展開図である図4に示す例では、ノズル本体21の複数の供給路は、最も長さが大きな供給路22aと、この最も長さが大きな供給路22aから周方向に離れるにつれて順次に長さが小さくなる(最も長さが大きな供給路22aに向かって順次に長さが大きくなる)複数の供給路22b,22cとを備えており、これらの複数の供給路22a,22b,22cは供給路群を形成しており、この供給路群は、周方向に隣接して、全周に亘る複数の供給路(環状の軌跡上において、周方向に間隔をおいて形成された複数の供給路)を形成している。各供給路に連通する噴射口23a,23b,23cは、前記と同様に、複数の供給路22a,22b,22cの終端部から一定の距離の位置で開口しており、湾曲した山形状又は波形状の軌跡上に周方向に間隔をおいて位置し、昇降する階段状の形態で点在している。すなわち、複数の噴射口23a,23b,23cは、最も長さが大きな供給路22aを中心として、ノズル本体21の周方向にいくにつれて、ノズル本体21の軸方向に間隔をおいて、山形状又は波形状の軌跡上に点在する形態を有している。 In the example shown in FIG. 4, which is a virtual development view, the plurality of supply paths of the nozzle body 21 are sequentially separated from the supply path 22a having the longest length and the supply path 22a having the longest length in the circumferential direction. A plurality of supply paths 22b, 22c having a smaller length (the length gradually increases toward the supply path 22a having the largest length) are provided, and the plurality of supply paths 22a, 22b, 22c are provided. A supply path group is formed, and the supply path group is adjacent to the circumferential direction and has a plurality of supply paths over the entire circumference (a plurality of supplies formed at intervals in the circumferential direction on the circular locus). Road) is formed. The injection ports 23a, 23b, 23c communicating with each supply path are opened at a certain distance from the end portions of the plurality of supply paths 22a, 22b, 22c as described above, and have a curved mountain shape or a wave. They are located on the locus of the shape at intervals in the circumferential direction, and are scattered in a step-like shape that goes up and down. That is, the plurality of injection ports 23a, 23b, 23c have a mountain shape or a mountain shape or a mountain shape at intervals in the axial direction of the nozzle body 21 as they go in the circumferential direction of the nozzle body 21 centering on the supply path 22a having the largest length. It has a form scattered on a wavy locus.

なお、供給路群の数及び長さは特に制限されず、例えば、供給路群の数は、2〜10程度であってもよく、供給路群は、長さの異なる複数の供給路(例えば、長さの大きな第1の供給路と、長さの小さな第3の供給路との2つの供給路;この2つの供給路に加えて、中間的な長さの第2の供給路を備えた3つの供給路などの長さの異なる複数の供給路)を備えていてもよく、長さの異なる複数の供給路を1セットとして周方向に周期的又は規則的に配置してもよい。また、長さの異なる複数の供給路(1セットの供給路)の配置状態は、周方向に流体を均一に噴霧可能であればよく、例えば、周方向に、同じ長さの供給路(例えば、第2の供給路など)を隣接させてもよく;第1の供給路、第2の供給路、第3の供給路の配置のように、順次に長さが異なっていてもよく;第1の供給路と第2の供給路との間に第3の供給路が介在する形態などであってもよい。 The number and length of the supply path groups are not particularly limited. For example, the number of supply path groups may be about 2 to 10, and the supply path groups may include a plurality of supply paths having different lengths (for example,). , A first supply channel with a large length and a third supply path with a small length; in addition to these two supply channels, a second supply path with an intermediate length is provided. A plurality of supply paths having different lengths such as three supply paths) may be provided, or a plurality of supply paths having different lengths may be arranged periodically or regularly in the circumferential direction as one set. Further, the arrangement state of a plurality of supply paths (one set of supply paths) having different lengths may be such that the fluid can be sprayed uniformly in the circumferential direction, for example, supply paths having the same length in the circumferential direction (for example). , 2nd supply channels, etc.); may be sequentially different in length, such as the arrangement of the 1st supply path, the 2nd supply path, the 3rd supply path; A third supply path may be interposed between the first supply path and the second supply path.

複数の噴射口の形態は、前記スリット状噴射口に限らず、種々の形態、例えば、断面円形状、楕円形状、矩形状などであってもよい。好ましい噴射口の形態は、ノズル本体の周方向に延びる細長孔状の形態であってもよく、細長孔状噴射口のうち、ノズル軸方向において互いに対向する両内壁の少なくとも一方の内壁はノズル軸方向に膨らんで湾曲していてもよい。 The form of the plurality of injection ports is not limited to the slit-shaped injection port, and may be various forms such as a circular cross section, an elliptical shape, and a rectangular shape. The preferred form of the injection port may be an elongated hole-like form extending in the circumferential direction of the nozzle body, and among the elongated hole-shaped injection ports, at least one inner wall of both inner walls facing each other in the nozzle axis direction is the nozzle shaft. It may bulge in the direction and be curved.

さらに、噴射口の深さ(半径方向の長さ)は、前記供給路に通じていればよく、前記供給路の中心軸線などに至る深さであってもよく、前記供給路を横断していてもよい。 Further, the depth (radial length) of the injection port may be a depth that leads to the supply path, may reach the central axis of the supply path, or the like, and crosses the supply path. You may.

なお、各供給路には、軸方向に間隔をおいて複数の噴射口を形成してもよいが、複数の噴射口を軸方向に間隔をおいて形成すると、軸方向において流体の圧力降下が生じ、均一に噴霧できない場合がある。そのため、通常、1つの供給路には、1対1の関係で、単一の噴射口を形成する場合が多い。すなわち、供給路と噴射口とは同数に形成されている。 In addition, although a plurality of injection ports may be formed in each supply path at intervals in the axial direction, if a plurality of injection ports are formed at intervals in the axial direction, the pressure drop of the fluid in the axial direction may occur. It may occur and may not be sprayed uniformly. Therefore, in many cases, a single injection port is usually formed in one supply path in a one-to-one relationship. That is, the supply passage and the injection port are formed in the same number.

前記噴射口は、前記供給路の適所、例えば、終端部(最深部)に連通して形成してもよいが、供給路の終端部(先端部)よりも上流部に形成するのが好ましい。すなわち、供給路を、噴射口よりもノズル先端部側に延びて形成すると、供給路と噴射口との交差部の下流に空間部(又は凹部)を形成でき、この空間部を乱流生成部として機能させることができる。そのため、噴射口から流体を均一に噴霧できる。 The injection port may be formed so as to communicate with an appropriate position of the supply path, for example, a terminal portion (deepest portion), but it is preferably formed in an upstream portion of the terminal portion (tip portion) of the supply path. That is, if the supply path is formed so as to extend toward the tip of the nozzle from the injection port, a space portion (or a recess) can be formed downstream of the intersection between the supply path and the injection port, and this space portion is formed as a turbulence generation unit. Can function as. Therefore, the fluid can be sprayed uniformly from the injection port.

なお、供給路の終端部と交差部(噴射口入り口)との距離(供給路の終端部から噴射口の中心軸線への長さ(噴射口からの深さ)D)は、各供給路において同一又は異なっていてもよく、前記距離Dの異なる供給路を、周方向に規則的又は周期的に配置してもよく、隣接した形態、ノズル本体の中心軸を中心として対称の形態で配置してもよい。例えば、複数の供給路の長さが同じであっても又は異なっていても、周方向に前記距離(又は深さ)Dが規則的又は周期的に異なっていてもよい。前記距離Dは、各供給路においてほぼ同一である場合が多い。 The distance between the end of the supply path and the intersection (injection port entrance) (the length from the end of the supply path to the central axis of the injection port (depth from the injection port) D) is determined in each supply path. The supply paths having the same or different distances D may be arranged regularly or periodically in the circumferential direction, and may be arranged in an adjacent form or symmetrically with respect to the central axis of the nozzle body. You may. For example, the lengths of the plurality of supply paths may be the same or different, and the distance (or depth) D may be different in the circumferential direction regularly or periodically. The distance D is often substantially the same in each supply path.

前記供給路の始端部から前記交差部に至る長さL(L1〜L3)は、前記供給路の交差部から噴射口に至る長さLdと同等又は小さくてもよいが、前記供給路の交差部から噴射口に至る長さLdよりも大きくすることにより、流体を周方向に安定して噴霧できる。前記供給路の始端部から前記交差部に至る長さLは、供給路の交差部から噴射口に至る長さLdに対して、例えば、2〜50倍、好ましくは3〜30倍、さらに好ましくは5〜20倍程度であってもよい。 The length L (L1 to L3) from the start end of the supply path to the intersection may be equal to or smaller than the length Ld from the intersection of the supply paths to the injection port, but the intersection of the supply paths. By making the length from the portion to the injection port larger than Ld, the fluid can be stably sprayed in the circumferential direction. The length L from the start end of the supply path to the intersection is, for example, 2 to 50 times, preferably 3 to 30 times, more preferably 3 to 30 times the length Ld from the intersection of the supply path to the injection port. May be about 5 to 20 times.

代表的なノズル本体は、円柱状などの中実の棒体(棒状体)に、周方向に間隔をおいて棒体の軸方向に延び、かつ終端部が閉塞した複数の供給路が形成され、前記棒体の周壁に、前記供給路に連通して、周方向に延びるスリット状噴射口が形成されている。すなわち、円柱状などの中実棒体の一方の端面(例えば、外周域)において、周方向に間隔をおいて軸方向に延びる複数の供給路(例えば、長さの異なる複数の供給路)を穿設し、中実棒体の周壁のうち各供給路に対応する周壁を切除(例えば、V字状にカット)することにより噴射口を形成できる。 In a typical nozzle body, a plurality of supply paths extending in the axial direction of the rod body at intervals in the circumferential direction and having a closed end portion are formed on a solid rod body (rod-shaped body) such as a columnar body. , A slit-shaped injection port extending in the circumferential direction is formed on the peripheral wall of the rod body so as to communicate with the supply path. That is, on one end surface (for example, the outer peripheral region) of a solid rod such as a columnar body, a plurality of supply paths (for example, a plurality of supply paths having different lengths) extending in the axial direction at intervals in the circumferential direction are provided. An injection port can be formed by drilling and cutting (for example, cutting into a V shape) the peripheral wall corresponding to each supply path among the peripheral walls of the solid rod body.

本発明の多孔ノズル(特に、少なくともノズル本体)は、セラニミック製やプラスチック製などであってもよいが、通常、金属製である場合が多い。 The perforated nozzle (particularly, at least the nozzle body) of the present invention may be made of ceramic or plastic, but is usually made of metal in many cases.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

[実施例1]
図1及び図2に示すノズル(噴射口(オリフィス)数:6、供給路(流路)数:6、各供給路(流路)の内径:1mm、L1=2.5mm,L2=6.5mm,L3=10.5mm,Ld=1.5mm(外周から断面円形の供給路(直径1mmφ)の中心軸線までの距離),D=1.0mm,材質:SUS303)を用いて、水に圧力0.3MPaをかけて噴霧し、各噴射口における流量を実測した。表1にトータル流量(各噴射口における流量の合計)、各噴射口における流量、各噴射口における流量のばらつき(各噴射口の流量/流量の平均値)、および標準偏差を示し、図6に噴霧状態を撮影した写真を示す。なお、ノズルは、単一の円柱体を加工して、ノズル本体1に対応するノズル本体部と、アダプター5に対応するアダプター部とを形成して、一体化したノズルとして作製した。
[Example 1]
Nozzles shown in FIGS. 1 and 2 (number of injection ports (orifices): 6, number of supply paths (flow paths): 6, inner diameter of each supply path (flow path): 1 mm, L1 = 2.5 mm, L2 = 6. Pressure on water using 5 mm, L3 = 10.5 mm, Ld = 1.5 mm (distance from the outer circumference to the central axis of a supply path with a circular cross section (diameter 1 mmφ)), D = 1.0 mm, material: SUS303) The spray was applied at 0.3 MPa, and the flow rate at each injection port was measured. Table 1 shows the total flow rate (total flow rate at each injection port), the flow rate at each injection port, the variation in the flow rate at each injection port (the average value of the flow rate / flow rate at each injection port), and the standard deviation. The photograph which took the spraying state is shown. The nozzle was manufactured as an integrated nozzle by processing a single cylindrical body to form a nozzle body portion corresponding to the nozzle body 1 and an adapter portion corresponding to the adapter 5.

[比較例1]
図5に示すノズル、すなわち、内径2mmの1つの供給路(流路)32をノズル本体31の中心軸に沿って形成し、周方向に間隔をおき(又は対向させて)、かつ軸方向の間隔をおいて多段に噴射口33a〜33cを形成する以外は図1及び図2と同様のノズル(噴射口数:6、供給数:1、供給路の内径:2mm、材質:SUS303)を用いた以外は、実施例と同様にして各噴射口における流量を測定した。表1に、トータル流量(各噴射口における流量の合計)、各噴射口における流量、各噴射口における流量のばらつき(各噴射口の流量/流量の平均値)、および標準偏差を示し、図7に噴霧状態を撮影した写真を示す。
[Comparative Example 1]
The nozzle shown in FIG. 5, that is, one supply path (flow path) 32 having an inner diameter of 2 mm is formed along the central axis of the nozzle body 31, spaced in the circumferential direction (or opposed to each other), and axially. Nozzles similar to those in FIGS. 1 and 2 (number of injection ports: 6, number of supplies: 1, inner diameter of supply path: 2 mm, material: SUS303) were used except that injection ports 33a to 33c were formed in multiple stages at intervals. Except for the above, the flow rate at each injection port was measured in the same manner as in the examples. Table 1 shows the total flow rate (total flow rate at each injection port), the flow rate at each injection port, the variation in the flow rate at each injection port (the average value of the flow rate / flow rate at each injection port), and the standard deviation. Shows a photograph of the sprayed state.

表1、図6及び7から明らかなように、実施例1のノズルを用いると、比較例1のノズルに比べて、各噴射口における流量のばらつきを大きく低減でき、ノズルの中心軸線に対して周方向に均一に噴霧できることが分かった。 As is clear from Tables 1, 6 and 7, when the nozzle of Example 1 is used, the variation in the flow rate at each injection port can be significantly reduced as compared with the nozzle of Comparative Example 1, and the variation with respect to the central axis of the nozzle can be significantly reduced. It was found that it can be sprayed uniformly in the circumferential direction.

本発明の多孔ノズルは、ノズル本体の中心軸線に対して周方向に均一に流体を噴射(又は噴霧)できるため、冷却噴霧、流体による処理などの種々の用途に利用でき、流体(処理剤)、例えば、液体(例えば、水、アルコール類などの有機溶剤、防錆ワックスなどの防錆剤、コーティング剤、塗料、洗浄液、エッチング剤などの液体)を噴霧または塗布する用途などに好適に使用できる。特に、少なくとも湾曲又は屈曲した内壁(又は内面)を有し、ノズルが挿入可能(又は進退動可能な)な部材、例えば、中空筒状、中空多角状、袋状、箱状などの中空部を有する部材(例えば、自動車部品などの機械部品など)、断面形状が湾曲又は屈曲した部材(例えば、断面C字状、∪字状、コ字状、く字状などの部分的に開放(例えば、側壁が開放)されている部材に適用でき、このような部材の少なくとも湾曲又は屈曲した内壁又は内面を処理するのに適している。特に、中空状内壁を処理するのに適している。 Since the porous nozzle of the present invention can uniformly inject (or spray) a fluid in the circumferential direction with respect to the central axis of the nozzle body, it can be used for various purposes such as cooling spraying and treatment with a fluid, and is a fluid (treatment agent). , For example, it can be suitably used for spraying or applying a liquid (for example, an organic solvent such as water or alcohol, a rust preventive agent such as rust preventive wax, a coating agent, a paint, a cleaning liquid, a liquid such as an etching agent). .. In particular, a member having at least a curved or bent inner wall (or inner surface) and into which a nozzle can be inserted (or moved back and forth), for example, a hollow portion such as a hollow cylinder, a hollow polygon, a bag, or a box. Partially open members (for example, mechanical parts such as automobile parts) and members having a curved or bent cross section (for example, C-shaped cross section, ∪-shaped, U-shaped, doglegged) (for example, It can be applied to members with open side walls) and is suitable for treating at least curved or bent inner walls or inner surfaces of such members, especially for treating hollow inner walls.

本発明の方法は、少量の流体であっても、液漏れを抑制しつつ均一に噴霧できるため、被処理面に対して膜厚の薄い塗膜を形成することも容易であり、このような用途(例えば、サイドシルやフェンダーなどの自動車部品に対する防錆ワックスの塗布など)に適用してもよい。 Since the method of the present invention can uniformly spray even a small amount of fluid while suppressing liquid leakage, it is easy to form a coating film having a thin film thickness on the surface to be treated. It may be applied to applications (for example, application of rust preventive wax to automobile parts such as side sills and fenders).

なお、ノズル本体を移動機構により移動させながら、前記処理剤(流体)を前記内壁(又は内面)に噴霧して処理してもよい。 The treatment agent (fluid) may be sprayed onto the inner wall (or inner surface) while the nozzle body is moved by the moving mechanism.

1…ノズル本体
2a〜2f…供給路
3a〜3f…噴射口

1 ... Nozzle body 2a to 2f ... Supply path 3a to 3f ... Injection port

Claims (10)

ノズル本体の先端部が閉じられ;ノズル本体の周壁に形成され、流体を噴射するための複数の噴射口と;前記ノズル本体に形成され、これらの噴射口に流体を供給するための流路とを備えた多孔ノズルであって、前記流路が、前記複数の噴射口に、それぞれ、流体を供給するための複数の供給路で形成されている多孔ノズル。 The tip of the nozzle body is closed; a plurality of injection ports formed on the peripheral wall of the nozzle body to inject fluid; and a flow path formed in the nozzle body to supply fluid to these injection ports. A perforated nozzle comprising the above, wherein the flow path is formed by a plurality of supply paths for supplying a fluid to the plurality of injection ports. ノズル本体の円柱状又は円錐状の周壁に複数の噴射口が形成されている請求項1記載の多孔ノズル。 The perforated nozzle according to claim 1, wherein a plurality of injection ports are formed on a columnar or conical peripheral wall of the nozzle body. 複数の噴射口が、ノズル本体の周壁の少なくとも周方向に間隔をおいて形成されている請求項1又は2記載の多孔ノズル。 The porous nozzle according to claim 1 or 2, wherein a plurality of injection ports are formed at least in the circumferential direction of the peripheral wall of the nozzle body. 複数の噴射口が、ノズル本体の周方向にいくにつれて、ノズル本体の軸方向に周期的に又は規則的に間隔をおいて形成されている請求項1〜3のいずれかに記載の多孔ノズル。 The porous nozzle according to any one of claims 1 to 3, wherein a plurality of injection ports are formed at periodic or regular intervals in the axial direction of the nozzle body as the plurality of injection ports move in the circumferential direction of the nozzle body. 供給路の終端部よりも上流部に噴射口が形成されている請求項1〜4のいずれかに記載の多孔ノズル。 The perforated nozzle according to any one of claims 1 to 4, wherein an injection port is formed in an upstream portion of a terminal portion of a supply path. 噴射口が、ノズル本体の周方向に延びる細長孔状に形成され、この細長孔状噴射口のうち、ノズル軸方向において互いに対向する両内壁の少なくとも一方の内壁がノズル軸方向に膨らんで湾曲している請求項1〜5のいずれかに記載の多孔ノズル。 The injection port is formed in an elongated hole shape extending in the circumferential direction of the nozzle body, and of the elongated hole-shaped injection port, at least one inner wall of both inner walls facing each other in the nozzle axial direction bulges and curves in the nozzle axial direction. The porous nozzle according to any one of claims 1 to 5. 供給路の中心軸線と、この供給路に対応する噴射口の中心軸線とが交差部で交差しており、前記噴射口が、前記供給路の終端部よりも上流部に噴射口が形成されており、各供給路において、前記供給路の始端部から前記交差部に至る長さが、前記供給路の交差部から噴射口に至る長さよりも大きく、前記供給路の終端部から前記交差部に至る長さが、各供給路においてほぼ同じである請求項1〜6のいずれかに記載の多孔ノズル。 The central axis of the supply path and the central axis of the injection port corresponding to the supply path intersect at an intersection, and the injection port is formed at an upstream portion of the end portion of the supply path. In each supply path, the length from the start end of the supply path to the intersection is larger than the length from the intersection of the supply paths to the injection port, and from the end of the supply path to the intersection. The porous nozzle according to any one of claims 1 to 6, wherein the length to reach is substantially the same in each supply path. 中実の棒体に、周方向に間隔をおいて棒体の軸方向に延びる複数の供給路が形成され、前記棒体の周壁に、前記供給路に連通して、周方向に延びるスリット状噴射口が形成されている請求項1〜7のいずれかに記載の多孔ノズル。 A plurality of supply paths extending in the axial direction of the bar are formed on the solid rod at intervals in the circumferential direction, and a slit shape extending in the circumferential direction is formed on the peripheral wall of the rod so as to communicate with the supply path. The porous nozzle according to any one of claims 1 to 7, wherein an injection port is formed. 少なくとも湾曲又は屈曲した内壁を有する部材のうち、前記内壁に流体としての処理剤を噴霧して処理する方法であって、請求項1〜8のいずれかに記載の多孔ノズルを用いて流体を前記内壁に噴霧し、前記内壁を処理する方法。 A method of spraying a treatment agent as a fluid onto the inner wall of a member having at least a curved or bent inner wall, wherein the fluid is treated by using the porous nozzle according to any one of claims 1 to 8. A method of treating the inner wall by spraying on the inner wall. 部材が中空状内壁を有し、この中空状内壁を処理する請求項9記載の方法。
9. The method of claim 9, wherein the member has a hollow inner wall and the hollow inner wall is treated.
JP2019076461A 2019-04-12 2019-04-12 Porous nozzle and spraying method Active JP7202647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076461A JP7202647B2 (en) 2019-04-12 2019-04-12 Porous nozzle and spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076461A JP7202647B2 (en) 2019-04-12 2019-04-12 Porous nozzle and spraying method

Publications (2)

Publication Number Publication Date
JP2020171903A true JP2020171903A (en) 2020-10-22
JP7202647B2 JP7202647B2 (en) 2023-01-12

Family

ID=72829956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076461A Active JP7202647B2 (en) 2019-04-12 2019-04-12 Porous nozzle and spraying method

Country Status (1)

Country Link
JP (1) JP7202647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155852A (en) * 2022-07-18 2022-10-11 深圳市倍耐德材料科技有限公司 Spraying method and equipment for separant for aluminum profile extrusion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553567U (en) * 1978-10-09 1980-04-10
JPS6074751U (en) * 1983-10-28 1985-05-25 日産自動車株式会社 painting nozzle
JP2006167531A (en) * 2004-12-14 2006-06-29 Ntn Corp Spraying nozzle
JP2010221121A (en) * 2009-03-23 2010-10-07 Kyoritsu Gokin Co Ltd Jetting nozzle
JP2013081887A (en) * 2011-10-07 2013-05-09 Maeda Corp Fluid ejection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553567U (en) * 1978-10-09 1980-04-10
JPS6074751U (en) * 1983-10-28 1985-05-25 日産自動車株式会社 painting nozzle
JP2006167531A (en) * 2004-12-14 2006-06-29 Ntn Corp Spraying nozzle
JP2010221121A (en) * 2009-03-23 2010-10-07 Kyoritsu Gokin Co Ltd Jetting nozzle
JP2013081887A (en) * 2011-10-07 2013-05-09 Maeda Corp Fluid ejection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155852A (en) * 2022-07-18 2022-10-11 深圳市倍耐德材料科技有限公司 Spraying method and equipment for separant for aluminum profile extrusion
CN115155852B (en) * 2022-07-18 2023-09-22 深圳市倍耐德材料科技有限公司 Spraying method and equipment for isolating agent for aluminum profile extrusion

Also Published As

Publication number Publication date
JP7202647B2 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
CA2963894C (en) Atomizer nozzle
JP6174446B2 (en) Nozzle for supplying biological material, in particular cells, medical device equipped with such nozzle, use of nozzle, fluid mixing method and device
JP6959076B2 (en) Equipment for rotating the fluid inside the spray nozzle Assembly and coating equipment including such equipment
KR100328887B1 (en) Liquid coater
JP4971708B2 (en) Two-fluid nozzle
JP6210857B2 (en) Micro bubble nozzle for air spray
US20060283985A1 (en) Ultra-fine spray-jetting nozzle
FI111054B (en) Nozzle for coating surfaces
US10369579B1 (en) Multi-orifice nozzle for droplet atomization
JPH09220495A (en) Fluid injection nozzle
JP6159711B2 (en) Liquid ejecting apparatus and liquid ejecting method
JP2020171903A (en) Multi-hole nozzle and spray method
WO2015133338A1 (en) Film formation device
JP4936904B2 (en) Injection nozzle and spraying method using the same
JP7293125B2 (en) Mixing chamber and handpiece
US11278923B2 (en) Spraying apparatus
JP4239879B2 (en) Micro-mist generation method and apparatus
JP2002224592A (en) Nozzle
JP2013180320A (en) Orthorhombic nozzle
JP2010221121A (en) Jetting nozzle
JP4452093B2 (en) Injection nozzle and injection method
JP4504641B2 (en) Spray nozzle and spraying method using the same
JP3709433B2 (en) spray nozzle
JP5035498B2 (en) Mist injection nozzle
JP2003093926A (en) Fluid spray nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7202647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150