JP2005237062A - Terminal structure of superconductive cable and super conductive cable line - Google Patents

Terminal structure of superconductive cable and super conductive cable line Download PDF

Info

Publication number
JP2005237062A
JP2005237062A JP2004040614A JP2004040614A JP2005237062A JP 2005237062 A JP2005237062 A JP 2005237062A JP 2004040614 A JP2004040614 A JP 2004040614A JP 2004040614 A JP2004040614 A JP 2004040614A JP 2005237062 A JP2005237062 A JP 2005237062A
Authority
JP
Japan
Prior art keywords
conductor
superconducting
superconducting cable
terminal structure
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004040614A
Other languages
Japanese (ja)
Other versions
JP4096360B2 (en
Inventor
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004040614A priority Critical patent/JP4096360B2/en
Publication of JP2005237062A publication Critical patent/JP2005237062A/en
Application granted granted Critical
Publication of JP4096360B2 publication Critical patent/JP4096360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Electric Cable Installation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized terminal structure of a superconductive cable that can further reduce a Joule loss and heat intrusion, and the superconductive cable conduit equipped with the terminal structure. <P>SOLUTION: The small-sized terminal structure comprises: a conductor 20 electrically connected to the end of the superconductive cable 100 (cable core 102); a bushing 21 containing the conductor 20; and a low-temperature tank 22 into which the connection side of the cable of the conductor 10 is accommodated. The terminal structure further comprises a power changer 25 that changes the magnitude of a voltage applied to the superconductive cable 100 or a voltage applied to the conductor 20 between the end of a lead 114 and the conductor 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、常温側と極低温側との間に配置される超電導ケーブルの端末構造、及びこの端末構造を具える超電導ケーブル線路に関するものである。特に、超電導ケーブルによる大容量送電を可能とする小型な超電導ケーブルの端末構造に関するものである。   The present invention relates to a terminal structure of a superconducting cable disposed between a room temperature side and a cryogenic side, and a superconducting cable line having the terminal structure. In particular, the present invention relates to a terminal structure of a small superconducting cable that enables large-capacity power transmission using a superconducting cable.

超電導ケーブルの端末構造として、例えば、図6に示す構造のものが知られている(特許文献1参照)。図6は、従来の超電導ケーブルの端末構造を示す概略構成図である。この端末構造は、超電導ケーブル100の端部と、極低温にあるケーブル100と常温側との間で電気的導通をとる導体部110aと、導体部110aの一端側(ケーブル100との接続側)を収納する低温槽111と、低温槽111の外周を覆う真空容器112と、真空容器112の常温側に突設される碍管113とを具える。   As a terminal structure of a superconducting cable, for example, a structure shown in FIG. 6 is known (see Patent Document 1). FIG. 6 is a schematic configuration diagram showing a terminal structure of a conventional superconducting cable. This terminal structure is composed of an end portion of the superconducting cable 100, a conductor portion 110a that is electrically connected between the cable 100 at an extremely low temperature and the normal temperature side, and one end side of the conductor portion 110a (connection side to the cable 100). A low-temperature tank 111 for storing the container, a vacuum vessel 112 covering the outer periphery of the low-temperature vessel 111, and a soot tube 113 protruding from the room temperature side of the vacuum vessel 112.

超電導ケーブル100は、超電導導体を有するケーブルコア102を具えており、図6に示す構成では、コア102に導電性のリード部114が接続され、このリード部114及びジョイント部115を介して、超電導導体と導体部110aとが電気的に接続される。導体部110aは、通常、銅やアルミニウムなどの常電導材料にて形成され、低温槽111から真空容器112の断熱層112aを介して碍管113に亘って配置される。導体部110aは、FRPなどの絶縁材からなるブッシング110bに内蔵される。低温槽111には、リード部114の一端側(導体部110aとの接続側(図6では左方側))と、導体部110の一端側(超電導導体との接続側(同下方側))とを冷却する液体窒素などの冷媒が満たされる。碍管113は、導体部110aの他端側(図6では上方側)が収納され、絶縁油などの絶縁流体113aが充填される。なお、リード部114の外周は、リード部冷媒槽116が配置され、その外周には、リード部真空容器117が配置される。   The superconducting cable 100 includes a cable core 102 having a superconducting conductor. In the configuration shown in FIG. 6, a conductive lead 114 is connected to the core 102, and the superconducting cable is connected to the core 102 via the lead 114 and the joint 115. The conductor and the conductor portion 110a are electrically connected. The conductor portion 110a is usually formed of a normal conductive material such as copper or aluminum, and is disposed from the low-temperature vessel 111 through the heat insulating layer 112a of the vacuum vessel 112 to the soot tube 113. The conductor portion 110a is built in a bushing 110b made of an insulating material such as FRP. In the cryogenic bath 111, one end side of the lead portion 114 (the connection side with the conductor portion 110a (the left side in FIG. 6)) and one end side of the conductor portion 110 (the connection side with the superconducting conductor (the same lower side)) A refrigerant such as liquid nitrogen is cooled. The soot tube 113 accommodates the other end side (the upper side in FIG. 6) of the conductor portion 110a and is filled with an insulating fluid 113a such as insulating oil. A lead part refrigerant tank 116 is disposed on the outer periphery of the lead part 114, and a lead part vacuum vessel 117 is disposed on the outer periphery thereof.

特開2002-238144号公報JP 2002-238144 JP

しかし、上記従来の端末構造では、ジュール損及び常温側から極低温側への侵入熱の双方の低減を図ろうとすると、小型化することが困難であるという問題がある。   However, the conventional terminal structure has a problem that it is difficult to reduce the size when trying to reduce both the Joule loss and the intrusion heat from the normal temperature side to the extremely low temperature side.

超電導ケーブルは、液体窒素などの冷媒により極低温(例えば、約77K)に冷却することで超電導導体部分を超電導状態として抵抗を小さくし、大電流送電を可能にする。一方、超電導ケーブル線路の外部にある電力機器は常温で利用されているため、超電導ケーブルの端部において極低温から常温に引き出して、電力機器などに電力の供給が行われる。従って、超電導ケーブルと常温側とを接続する導体部は、超電導ケーブルと同等の電力を常温側に供給するべく、大電流が流されることになる。このとき、常電導材料で形成される導体部は、超電導導体と比較して抵抗が大きいため、大電流を流す場合、ジュール損が非常に大きくなる。   The superconducting cable is cooled to an extremely low temperature (for example, about 77 K) with a refrigerant such as liquid nitrogen, thereby making the superconducting conductor portion in a superconducting state and reducing the resistance, thereby enabling large current transmission. On the other hand, since the power equipment outside the superconducting cable line is used at room temperature, power is supplied to the power equipment and the like by drawing it from the cryogenic temperature to room temperature at the end of the superconducting cable. Therefore, a large current flows through the conductor portion connecting the superconducting cable and the normal temperature side so as to supply electric power equivalent to that of the superconducting cable to the normal temperature side. At this time, since the conductor portion formed of the normal conducting material has a larger resistance than the superconducting conductor, the Joule loss becomes very large when a large current flows.

導体部において大電流の通電によるジュール損を低減するには、導体部の断面積(外径)を大きくして、抵抗を小さくすることが考えられる。しかし、導体部の断面積の大型化、大径化に伴って、常温側から極低温側への熱侵入が大きくなり、極低温側において超電導状態を十分に維持できない恐れがある。そこで、超電導状態を十分に維持するべく、上記熱侵入を低減する必要がある。しかし、例えば、低温槽に大型の冷凍機などを配置するなどして冷却能力を高めると、端末構造の大型化に加えて、高い冷却能力を維持するためのエネルギーが過大となり、超電導ケーブルを利用する効果が小さくなる。また、大型冷凍機を設置せず、導体部の長さを熱絶縁に十分な長さとする、即ち、長尺化すると、導体部の断面積の大型化に加えて長さをも大きくなるため、上記の場合と同様に端末構造が大型化して、実用的な大きさにすることが困難である。更に、導体部の長尺化により熱侵入を低減してもジュール損が増大するため、送電ロスの低減効果が小さくなる。   In order to reduce Joule loss due to energization of a large current in the conductor part, it is conceivable to increase the cross-sectional area (outer diameter) of the conductor part to reduce the resistance. However, as the cross-sectional area of the conductor portion increases in size and diameter, heat penetration from the room temperature side to the cryogenic side increases, and the superconducting state may not be sufficiently maintained on the cryogenic temperature side. Therefore, it is necessary to reduce the heat intrusion in order to sufficiently maintain the superconducting state. However, if the cooling capacity is increased by, for example, placing a large refrigerator in the low-temperature tank, the energy required to maintain a high cooling capacity will be excessive in addition to the increase in the size of the terminal structure, and superconducting cables will be used. The effect to do becomes small. Also, without installing a large refrigerator, the length of the conductor part is sufficient for thermal insulation, that is, when the length is increased, the length of the conductor part is increased in addition to an increase in the cross-sectional area of the conductor part. As in the case described above, the terminal structure is enlarged and it is difficult to make it practical. Furthermore, even if heat penetration is reduced by increasing the length of the conductor portion, the Joule loss increases, so the effect of reducing power transmission loss is reduced.

加えて、導体部の断面積を大型化、大径化した場合、それに伴ってブッシングの外径も大きくなる。このとき、低温槽に配されるブッシングの一端側は、冷媒による冷却時の収縮応力が大きくなり割れ易くなるなどといった機械的強度面の問題もある。   In addition, when the cross-sectional area of the conductor portion is increased in size and increased in diameter, the outer diameter of the bushing increases accordingly. At this time, the one end side of the bushing disposed in the low-temperature tank has a problem in terms of mechanical strength such that the shrinkage stress at the time of cooling by the refrigerant becomes large and the crack becomes easy to break.

超電導ケーブルの端末構造は、設置箇所のスペースの制限などからより小型であることが望まれる。そこで、本発明の主目的は、ジュール損及び熱侵入によるロスを低減しながらより小型な超電導ケーブルの端末構造を提供することにある。また、本発明の他の目的は、上記超電導ケーブルの端末構造を具える超電導ケーブル線路を提供することにある。   The terminal structure of the superconducting cable is desired to be smaller due to the limitation of the space at the installation location. Therefore, a main object of the present invention is to provide a smaller superconducting cable terminal structure while reducing Joule loss and loss due to heat penetration. Another object of the present invention is to provide a superconducting cable line having the terminal structure of the superconducting cable.

本発明は、一つのブッシングに内蔵される導体部ひとつ当たりに流れる電流量を小さくすることで上記目的を達成する。   The present invention achieves the above object by reducing the amount of current that flows per conductor portion built in one bushing.

(分流方式)
導体部に流れる電流量を小さくする手法として、一つは、導体部を複数具え、超電導ケーブルに流れる電流を各導体部に分流させることを提案する。即ち、本発明は、冷媒にて冷却される超電導導体を有する超電導ケーブルの端末構造である。この端末構造には、前記超電導導体の端部と電気的に接続される複数の導体部と、これら導体部ごとに導体部を内蔵する複数のブッシングと、これら導体部の超電導導体との接続側が収納される低温槽とを具えることを特徴とする。
(Diversion method)
As a technique for reducing the amount of current flowing through the conductor portion, one suggests that a plurality of conductor portions are provided and the current flowing through the superconducting cable is divided into each conductor portion. That is, the present invention is a terminal structure of a superconducting cable having a superconducting conductor cooled by a refrigerant. In this terminal structure, there are a plurality of conductor portions electrically connected to the end portions of the superconducting conductor, a plurality of bushings containing a conductor portion for each conductor portion, and a connection side of the conductor portions to the superconducting conductor. It is characterized by comprising a cryogenic bath to be stored.

一つの導体部で大電流を流して、ジュール損を低減するべく抵抗を小さくするために導体部の断面積(外径)を大きくすると、熱絶縁を考慮して導体部を長くせざるを得ない。すると、ジュール損が増大してしまう。これに対し、本発明では、複数の導体部を並列に配置して、超電導ケーブルに流れる大電流を各導体部に分流させることで、ブッシングに内蔵される導体部一つ当たりに流れる電流を小さくして、ジュール損の低減を図る。ジュール損は、電流値の2乗に比例するため、電流値を小さくすることで、ジュール損の低減を図ることができる。従って、ブッシングに内蔵される導体部の断面積を過度に大きくする必要がないため、結果として熱絶縁に必要な長さを小さくする、具体的には、実用的な大きさとすることができる。また、上記導体部を短尺化することで、ジュール損をより低減することができる。   If a large current is passed through one conductor and the cross-sectional area (outer diameter) of the conductor is increased in order to reduce resistance in order to reduce Joule loss, the conductor must be lengthened in consideration of thermal insulation. Absent. Then, Joule loss will increase. On the other hand, in the present invention, a plurality of conductor portions are arranged in parallel, and a large current flowing in the superconducting cable is shunted to each conductor portion, thereby reducing the current flowing per conductor portion built in the bushing. Thus, the joule loss is reduced. Since the Joule loss is proportional to the square of the current value, the Joule loss can be reduced by reducing the current value. Therefore, it is not necessary to excessively increase the cross-sectional area of the conductor portion incorporated in the bushing, and as a result, the length necessary for thermal insulation can be reduced, specifically, a practical size. Moreover, Joule loss can be reduced more by shortening the said conductor part.

(電圧変化方式)
導体部に流れる電流量を小さくする別の手法として、超電導ケーブルに印加される電圧又は導体部に印加される電圧を変化させることを提案する。即ち、本発明は、冷媒にて冷却される超電導導体を有する超電導ケーブルの端末構造であって、前記超電導導体の端部と電気的に接続される導体部と、前記導体部を内蔵するブッシングとを具える。そして、前記超電導導体の端部と導体部との間に配置されて、超電導ケーブルに印加される電圧又は導体部に印加される電圧を大きさが異なる電圧に変化する電力変化機器と、前記導体部の電力変化機器との接続側及び電力変化機器が収納される低温槽とを具える構成を提案する。
(Voltage change method)
As another method for reducing the amount of current flowing through the conductor, it is proposed to change the voltage applied to the superconducting cable or the voltage applied to the conductor. That is, the present invention is a terminal structure of a superconducting cable having a superconducting conductor cooled by a refrigerant, a conductor part electrically connected to an end of the superconducting conductor, a bushing incorporating the conductor part, With And a power changing device that is disposed between the end portion of the superconducting conductor and the conductor portion and changes a voltage applied to the superconducting cable or a voltage applied to the conductor portion to a voltage having a different magnitude, and the conductor The structure which comprises the connection side with the electric power change apparatus of a part and the low-temperature tank in which an electric power change apparatus is accommodated is proposed.

電力は、電圧と電流との積で表わされる。従って、電力の大きさをそのままにして電流を変化させるには、電圧を変化させることが有効である。そこで、本発明では、超電導ケーブルに印加される電圧、又は導体部に印加される電圧を大きさが異なる電圧に変化可能な電力変化機器を具える。この電力変化機器は、送電方向に応じて適宜選択するとよく、例えば、大電流が流れる超電導ケーブルから常温側に送電を行う場合、電力変化機器は電圧を大きくできるものとし、同ケーブルに印加される電圧を電力変化機器で上げることで、同ケーブルに送電される電力量をそのままにして、ブッシングに内蔵される導体部に流れる電流を小さくして常温側に送電することができる。一方、常温側から超電導ケーブルに送電を行う場合、ブッシングに内蔵される導体部は、高電圧で電流値が小さい状態で送電を行う。そのため、電力変化機器は、電圧を小さくできるものとすることで、導体部に送電される電力量をそのままにして、超電導ケーブルに流れる電流を大きくすることができる。即ち、電圧変化方式では、ブッシングに内蔵される導体部において高電圧、小電流状態で送電し、超電導ケーブルにおいて小電圧、大電流状態で送電する構成である。ブッシングに内蔵される導体部には高電圧が印加されるため、導体部の断面積を小さくしても十分な電流を流すことができる。従って、この方式は、ブッシングに内蔵される導体部の断面積を小さくすることができ、熱絶縁に必要な距離をも小さくすることができるため、この導体部をより短尺化することができ、上記分流方式と比較して更に送電ロスを低減することが可能である。   Power is expressed as the product of voltage and current. Therefore, it is effective to change the voltage in order to change the current without changing the magnitude of the electric power. Therefore, the present invention includes a power changing device capable of changing the voltage applied to the superconducting cable or the voltage applied to the conductor to a voltage having a different magnitude. This power changing device may be appropriately selected according to the direction of power transmission. For example, when power is transmitted from a superconducting cable through which a large current flows to the room temperature side, the power changing device can increase the voltage and is applied to the cable. By raising the voltage with the power changing device, the amount of power transmitted to the cable can be kept as it is, and the current flowing through the conductor part built in the bushing can be reduced and transmitted to the room temperature side. On the other hand, when power is transmitted from the room temperature side to the superconducting cable, the conductor portion built in the bushing transmits power with a high voltage and a small current value. Therefore, the power change device can reduce the voltage, and can increase the current flowing in the superconducting cable while maintaining the amount of power transmitted to the conductor. That is, in the voltage change method, power is transmitted in a high voltage and small current state in a conductor portion built in the bushing, and power is transmitted in a small voltage and large current state in a superconducting cable. Since a high voltage is applied to the conductor part built in the bushing, a sufficient current can be passed even if the cross-sectional area of the conductor part is reduced. Therefore, this method can reduce the cross-sectional area of the conductor portion built in the bushing, and can also reduce the distance required for thermal insulation, so this conductor portion can be further shortened, It is possible to further reduce power transmission loss as compared with the diversion method.

以下、本発明をより詳しく説明する。
本発明において超電導ケーブルは、超電導導体を有するケーブルコアを1本具える単相超電導ケーブルでもよいし、同ケーブルコアを複数具える多相超電導ケーブルでもよい。後者の場合、例えば、3本のケーブルコアを撚り合わせて断熱管に収納された三心一括型の三相超電導ケーブルが挙げられる。公知の単相超電導ケーブル、多相超電導ケーブルでもよい。
Hereinafter, the present invention will be described in more detail.
In the present invention, the superconducting cable may be a single-phase superconducting cable having one cable core having a superconducting conductor or a multiphase superconducting cable having a plurality of the cable cores. In the latter case, for example, a three-core three-phase superconducting cable in which three cable cores are twisted and accommodated in a heat insulating tube can be used. A known single-phase superconducting cable or multiphase superconducting cable may be used.

超電導導体は、例えば、Bi2223系超電導材料からなる線材を螺旋状に巻回することで形成するとよく、単層でも多層でもよい。多層とする場合、層間絶縁層を設けてもよい。層間絶縁層は、クラフト紙などの絶縁紙やPPLP(登録商標)などの半合成絶縁紙を巻回して設けることが挙げられる。超電導導体の外周には、PPLP(登録商標)などの半合成絶縁紙やクラフト紙などの絶縁紙を巻回して形成した電気絶縁層を具える。電気絶縁層の外周には、上記超電導導体と同様に構成したシールド層を具えてもよい。   The superconducting conductor may be formed, for example, by spirally winding a wire made of a Bi2223 superconducting material, and may be a single layer or a multilayer. In the case of a multilayer structure, an interlayer insulating layer may be provided. The interlayer insulating layer may be provided by winding insulating paper such as kraft paper or semi-synthetic insulating paper such as PPLP (registered trademark). The outer periphery of the superconducting conductor is provided with an electrically insulating layer formed by winding semi-synthetic insulating paper such as PPLP (registered trademark) or insulating paper such as kraft paper. A shield layer configured similarly to the superconducting conductor may be provided on the outer periphery of the electrical insulating layer.

超電導ケーブルでは、超電導導体が超電導状態を維持できるように、液体窒素などの冷媒により冷却する。従って、本発明端末構造において超電導ケーブルの端部は、例えば、冷媒が充填される低温槽に収納し、その外周は、断熱層を具える真空容器に配置するとよい。低温槽や真空容器は、強度に優れるステンレスなどの金属で構成することが好ましい。従来の真空容器や低温槽と同様の構成としてもよい。冷媒は、加圧状態で循環させてもよい。   In the superconducting cable, the superconducting conductor is cooled by a refrigerant such as liquid nitrogen so that the superconducting conductor can maintain the superconducting state. Therefore, in the terminal structure of the present invention, the end portion of the superconducting cable may be housed in a low-temperature tank filled with a refrigerant, for example, and the outer periphery thereof may be disposed in a vacuum container having a heat insulating layer. The cryostat and the vacuum vessel are preferably made of a metal such as stainless steel having excellent strength. It is good also as a structure similar to the conventional vacuum vessel and a low-temperature tank. The refrigerant may be circulated in a pressurized state.

超電導ケーブルの端部と後述する導体部との接続は、直接的に行ってもよいし、同端部にリード部を接続し、このリード部に導体部を接続させて間接的に行ってもよい。前者の場合、超電導ケーブルの端部を冷却する低温槽に導体部の一端側(同端部との接続側)を収納してもよい。後者の場合、導体部の一端側(超電導ケーブルとの接続側)を収納する低温槽と同端部を収納する低温槽とを別に配置してもよい。導体部用に別途低温槽を設けた場合、この低温槽も断熱層を具える真空容器内に配置するとよい。リード部は、銅、銅合金、アルミニウム、アルミニウム合金などの常電導材料により形成したものが利用できる。リード部の外周には、エポキシユニットや補強絶縁紙などの絶縁材を配置し、冷媒を満たしたリード部冷媒槽に収納してもよい。リード部冷媒槽は、断熱層を具えるリード部真空容器内に配置してもよい。   The connection between the end portion of the superconducting cable and the conductor portion described later may be performed directly, or may be performed indirectly by connecting a lead portion to the end portion and connecting the conductor portion to the lead portion. Good. In the former case, one end side of the conductor portion (connection side to the same end portion) may be housed in a low temperature bath that cools the end portion of the superconducting cable. In the latter case, a low-temperature bath that houses one end side (connection side to the superconducting cable) of the conductor portion and a low-temperature bath that houses the same end portion may be arranged separately. In the case where a separate low temperature bath is provided for the conductor portion, this low temperature bath may also be disposed in a vacuum vessel having a heat insulating layer. As the lead portion, a lead portion formed of a normal conductive material such as copper, copper alloy, aluminum, or aluminum alloy can be used. An insulating material such as an epoxy unit or reinforced insulating paper may be disposed on the outer periphery of the lead portion, and stored in a lead portion refrigerant tank filled with a refrigerant. You may arrange | position a lead part refrigerant | coolant tank in the lead part vacuum vessel which provides a heat insulation layer.

本発明では、超電導ケーブルの端部に導体部を接続して、極低温側と常温側との間の電力送電を行う。導体部は、超電導ケーブルの超電導導体と電気的導通をとることが可能なものであればよく、同ケーブルに使用される冷媒温度、例えば、冷媒として液体窒素を用いる場合、液体窒素の温度近傍においても電気的抵抗が小さい金属、例えば、銅やアルミニウム(共に、77Kの比抵抗ρ=2×10-7Ω・cm)などといった常電導材料にて形成することが挙げられる。この導体部は、絶縁機能を有するブッシングに内蔵させる。ブッシングは、絶縁材から形成してもよいし、ステンレスなどの金属筒の外周に絶縁材を具えた構成としてもよい。例えば、前者の場合、ブッシングは、導体部と一体に形成してもよい。後者の場合、金属筒の内側に導体部を挿通配置してもよい。絶縁材は、絶縁性樹脂、例えば、エチレンプロピレンゴムなどの絶縁ゴム材料、強化繊維プラスチック(FRP)などが挙げられる。FRPは、絶縁性能がより高くて好ましい。 In the present invention, a conductor is connected to the end of the superconducting cable to perform power transmission between the cryogenic temperature side and the room temperature side. The conductor portion only needs to be capable of taking electrical continuity with the superconducting conductor of the superconducting cable. The temperature of the refrigerant used in the cable, for example, when liquid nitrogen is used as the refrigerant, near the temperature of liquid nitrogen. In other words, it may be formed of a normal conductive material such as a metal having a small electrical resistance, such as copper or aluminum (both having a specific resistance ρ = 2 × 10 −7 Ω · cm of 77K). This conductor is incorporated in a bushing having an insulating function. The bushing may be formed from an insulating material, or may be configured such that an insulating material is provided on the outer periphery of a metal cylinder such as stainless steel. For example, in the former case, the bushing may be formed integrally with the conductor portion. In the latter case, the conductor portion may be inserted and arranged inside the metal cylinder. Examples of the insulating material include an insulating resin, for example, an insulating rubber material such as ethylene propylene rubber, and reinforced fiber plastic (FRP). FRP is preferable because it has higher insulation performance.

上記導体部は、超電導ケーブルの端部に接続される一端側が低温側に配置され、他端側が常温側に配置される。導体部の低温側に配置される一端側は、低温槽内に配置し、常温側に配置される他端側は、碍管内などに配置する。碍管内には、絶縁油やSF6ガスなどの絶縁流体を充填させる。即ち、導体部は、低温槽から真空容器内の断熱層を経て碍管に亘って配置する。 One end side of the conductor portion connected to the end portion of the superconducting cable is disposed on the low temperature side, and the other end side is disposed on the normal temperature side. One end side arranged on the low temperature side of the conductor part is arranged in the low temperature bath, and the other end side arranged on the normal temperature side is arranged in the soot tube. Fill the pipe with an insulating fluid such as insulating oil or SF 6 gas. That is, the conductor portion is arranged from the low temperature tank through the heat insulating layer in the vacuum vessel and over the soot tube.

分流方式において、超電導ケーブルの超電導導体(又はリード部)と導体部との接続は、例えば、導電性材料にて形成した分岐接続部を介して行うことが挙げられる。分岐接続部は、超電導導体(又はリード部)の端部と、導体部とを取り付け可能なものであれば特に構成は問わない。導電性材料は、超電導材料、常電導材料のいずれでもよく、常電導材料の場合、銅やアルミニウムなどが好ましい。   In the shunting method, the connection between the superconducting conductor (or the lead portion) of the superconducting cable and the conductor portion can be performed, for example, via a branch connection portion formed of a conductive material. The branch connection portion is not particularly limited as long as the end portion of the superconducting conductor (or the lead portion) and the conductor portion can be attached. The conductive material may be either a superconductive material or a normal conductive material. In the case of a normal conductive material, copper, aluminum, or the like is preferable.

電圧変化方式では、超電導ケーブルの端末と導体部との間に、同ケーブルに印加される電圧、又は導体部に印加される電圧の大きさを変化可能な電力変化機器を具える。常温側から超電導ケーブルに向かって送電する場合、電力変化機器は、導体に印加される電圧の大きさを変化させる、具体的には、電圧の大きさを小さくできるものを用いるとよい。超電導ケーブルから常温側に向かって送電する場合、電力変化機器は、超電導ケーブルに印加される電圧の大きさを変化させる、具体的には、電圧の大きさを大きくできるものを用いるとよい。   In the voltage change method, a power change device capable of changing the voltage applied to the cable or the magnitude of the voltage applied to the conductor is provided between the terminal of the superconducting cable and the conductor. When power is transmitted from the normal temperature side toward the superconducting cable, it is preferable to use a power changing device that changes the magnitude of the voltage applied to the conductor, specifically, a voltage that can be reduced. When power is transmitted from the superconducting cable toward the room temperature side, the power changing device may change the voltage applied to the superconducting cable, specifically, a device capable of increasing the voltage.

また、電力変化機器は、常温側、超電導ケーブルの送電の種類(交流送電、直流送電)に応じて適宜選択するとよく、電圧の大きさを変化可能な機能、具体的には、変圧機能及び周波数変換機能の少なくとも一方を具えるものを利用するとよい。例えば、導体部又は超電導ケーブルに印加される交流電圧を大きさが異なる交流電圧又は直流電圧に変化可能なもの、即ち、AC/AC機器(変圧器)、AC/DC変換器、導体部又は超電導ケーブルに印加される直流電圧を大きさが異なる交流電圧又は直流電圧に変化可能なもの、即ち、DC/AC変換器、DC/DC変換器が挙げられる。表1に線路パターンと電力変化機器の例を示す。   In addition, the power change device may be appropriately selected according to the normal temperature side, the type of power transmission of the superconducting cable (AC power transmission, DC power transmission), and the function capable of changing the magnitude of the voltage, specifically, the transformation function and frequency. It is good to use what has at least one of the conversion functions. For example, the AC voltage applied to the conductor part or superconducting cable can be changed to an AC voltage or DC voltage of different magnitude, i.e. AC / AC equipment (transformer), AC / DC converter, conductor part or superconductivity Examples include a DC voltage applied to a cable that can be changed to an AC voltage or a DC voltage having different magnitudes, that is, a DC / AC converter and a DC / DC converter. Table 1 shows examples of line patterns and power change devices.

Figure 2005237062
Figure 2005237062

表1に示す各線路パターンは、左方の常温側Aから超電導ケーブルを介して右方の常温側Bに向けて送電を行う線路を示す。表1に示すような左方の常温側Aから超電導ケーブルを介して右方の常温側Bに向けて送電を行う線路において、常温側Aと超電導ケーブルとの間のみ、或いは超電導ケーブルと常温側Bとの間のみに電力変化機器を具えていてもよいし、表1に示すように常温側Aと超電導ケーブルとの間、及び超電導ケーブルと常温側Bとの間の双方に電力変化機器を具えてもよい。前者の場合、例えば、線路パターン4では、常温側Aと超電導ケーブルとの間のみに電力変化機器を具えてもよいし、線路パターン5では、超電導ケーブルと常温側Bとの間のみに電力変化機器を具えてもよい。後者において、例えば、表1に示す線路パターン1のように常温側A、B及び超電導ケーブルの双方が交流送電を行う線路の場合、電力変化機器は、変圧器(AC/AC機器)とし、常温側Aから超電導ケーブル側に送電を行う際に導体部に印加される電圧を小さくし、超電導ケーブル側から常温側Bに送電を行う際に超電導ケーブルに印加される電圧を大きくするとよい。また、常温側Bの送電の種類と超電導ケーブルの送電の種類とが異なる場合、例えば、線路パターン2のように常温側A及び超電導ケーブル:交流送電、常温側B:直流送電の場合、常温側Aと常温側Bに配置する電力変化機器はそれぞれ別の種類のもの(常温側A:AC/AC機器、常温側B:AC/DC変換器)を利用するとよい。   Each line pattern shown in Table 1 indicates a line that transmits power from the room temperature side A on the left side to the room temperature side B on the right side through a superconducting cable. In the line that transmits power from the room temperature side A on the left side to the room temperature side B on the right side via the superconducting cable as shown in Table 1, only between the room temperature side A and the superconducting cable, or between the superconducting cable and the room temperature side Power change equipment may be provided only between B and power change equipment as shown in Table 1 between room temperature side A and the superconducting cable, and between the superconducting cable and room temperature side B. It may be provided. In the former case, for example, the line pattern 4 may include a power changing device only between the room temperature side A and the superconducting cable, and the line pattern 5 may change the power only between the superconducting cable and the room temperature side B. Equipment may be provided. In the latter case, for example, in the case where both the room temperature sides A and B and the superconducting cable perform AC transmission like the line pattern 1 shown in Table 1, the power change device is a transformer (AC / AC device), The voltage applied to the conductor portion when power is transmitted from the side A to the superconducting cable side may be reduced, and the voltage applied to the superconducting cable may be increased when power is transmitted from the superconducting cable side to the room temperature side B. Also, if the type of power transmission on room temperature side B is different from the type of power transmission on superconducting cable, for example, room temperature side A and superconducting cable: AC transmission, room temperature side B: room temperature side in case of DC transmission It is recommended to use different types of power change devices to be placed on A and room temperature side B (room temperature side A: AC / AC equipment, room temperature side B: AC / DC converter).

特に、表1に示す線路パターン3〜6のように超電導ケーブルが直流送電を行う場合、交流の場合よりも送電ロスを低減することができるため、更に低損失化を実現できて好ましい。このとき、常温側Aに配置される電力変換機器は、導体部に印加される交流電圧或いは直流電圧を大きさが異なる直流電圧に変化できるもの、具体的にはAC/DC変換器、DC/DC変換器、常温側Bに配置される電力変換機器は、超電導ケーブルに印加される直流電圧を大きさが異なる直流電圧に変化できるもの、具体的には、DC/AC変換器、DC/DC変換器を用いる。   In particular, when the superconducting cable performs DC power transmission as in the line patterns 3 to 6 shown in Table 1, the power transmission loss can be reduced more than in the case of AC, and therefore it is preferable because the loss can be further reduced. At this time, the power conversion device arranged on the room temperature side A is capable of changing the AC voltage or DC voltage applied to the conductor part to a DC voltage having a different magnitude, specifically, an AC / DC converter, DC / DC The DC converter, the power conversion device placed on the room temperature side B, can change the DC voltage applied to the superconducting cable to a DC voltage of a different magnitude, specifically a DC / AC converter, DC / DC Use a transducer.

AC/AC機器は、ACを直接ACに変換する交流直接変換としてもよいし、ACを一旦DCに変換し再度ACに変換する交流間接変換としてもよい。DC/DC変換器も同様に、DCを直接DCに変換する直流直接変換としてもよいし、DCを一旦ACに変換し再度DCに変換する直流間接変換としてもよい。また、これら電力変化機器は、超電導材料で形成された超電導機器でもよいし、常電導材料で形成された常電導機器でもよく、公知のものを利用してもよい。常電導機器の場合、超電導機器に比較して構成が容易であり、設備コストの削減にもなる。   The AC / AC device may be AC direct conversion that directly converts AC to AC, or AC indirect conversion that temporarily converts AC to DC and then converts it to AC again. Similarly, the DC / DC converter may be direct DC conversion for directly converting DC to DC, or direct current indirect conversion for once converting DC to AC and then converting to DC again. Further, these power change devices may be superconducting devices formed of a superconducting material, normal conducting devices formed of a normal conducting material, or known devices may be used. In the case of a normal conducting device, the configuration is easier than that of a superconducting device, and the equipment cost can be reduced.

上記電力変化機器及び導体部の電力変化機器との接続側は、低温槽に配置する。低温槽は、超電導ケーブルの端部(又はリード部の端部)を共に収納する場合、同ケーブルを冷却する液体窒素などの冷媒を充填するとよい。このとき、電力変化機器として超電導機器を利用する場合、超電導ケーブルの端部の冷却に用いられる冷媒を電力変化機器の冷却にも用いることができ、電力変化機器用の冷却機構を別途設ける必要がなく、冷却システムの効率化を図ることができる。   The connection side of the power change device and the power change device of the conductor portion is disposed in a low temperature bath. In the case where the end of the superconducting cable (or the end of the lead) is housed together, the cryostat is preferably filled with a refrigerant such as liquid nitrogen that cools the cable. At this time, when using a superconducting device as the power changing device, the refrigerant used for cooling the end of the superconducting cable can also be used for cooling the power changing device, and it is necessary to provide a cooling mechanism for the power changing device separately. Therefore, the efficiency of the cooling system can be improved.

電力変化機器として、常電導機器を利用する場合、電力変化機器及び導体部の電力変化機器との接続側を収納する低温槽(以下、中温度槽と呼ぶ)と超電導ケーブルの端部を収納する低温槽(以下、冷媒槽と呼ぶ)とを別に設けると共に、超電導ケーブルの端部を冷却する冷媒の温度超常温未満の温度範囲に中温度槽を制御して、常電導機器をこの中温度槽に配置するとよい。従って、例えば、冷媒槽は、液体窒素などの液体冷媒を充填する液体冷媒層とし、中温度槽は、窒素ガスなどの気体冷媒を充填する気体冷媒層としてもよい。また、超電導状態を維持できる温度の液体冷媒を冷媒槽に、冷媒槽に充填した液体冷媒よりも温度の高い液体冷媒を中温度槽にそれぞれ充填してもよい。超電導ケーブルの端部を冷却する冷媒温度超常温未満の温度範囲に中温度槽内を制御するべく、冷媒槽と中温度槽との間は、断熱層を介在させて両槽を完全に分離させた状態、即ち、二段階の断熱構造とすることが好ましい。また、冷媒槽に配置される超電導ケーブルと、中温度槽に配置される電力変化機器とを個別に点検、整備、交換といったメンテナンスを行うことが可能なため、メンテナンス性がよく好ましい。中温度槽も、ステンレスなどの強度に優れる金属にて形成することが好ましい。   When using a normal conducting device as a power changing device, a low temperature bath (hereinafter referred to as an intermediate temperature bath) that houses the connection side of the power changing device and the power changing device of the conductor part and a superconducting cable end are stored. A low-temperature tank (hereinafter referred to as a refrigerant tank) is provided separately, and the medium-temperature tank is controlled to a temperature range below the normal temperature of the refrigerant that cools the end of the superconducting cable, and the normal conductive equipment is placed in the medium-temperature tank. It is good to arrange in. Therefore, for example, the refrigerant tank may be a liquid refrigerant layer filled with a liquid refrigerant such as liquid nitrogen, and the intermediate temperature tank may be a gas refrigerant layer filled with a gas refrigerant such as nitrogen gas. Further, a liquid refrigerant having a temperature capable of maintaining the superconducting state may be filled in the refrigerant tank, and a liquid refrigerant having a higher temperature than the liquid refrigerant filled in the refrigerant tank may be filled in the intermediate temperature tank. In order to control the inside of the intermediate temperature tank to a temperature range below the normal temperature of the refrigerant that cools the end of the superconducting cable, the two tanks are completely separated by interposing a heat insulating layer between the refrigerant tank and the intermediate temperature tank. It is preferable to have a two-stage heat insulation structure. In addition, maintenance such as inspection, maintenance, and replacement of the superconducting cable disposed in the refrigerant tank and the power change device disposed in the intermediate temperature tank can be performed individually, and thus maintainability is preferable. The medium temperature bath is also preferably formed of a metal having excellent strength such as stainless steel.

(分流及び電圧変化方式)
上記分流方式と電圧変化方式とを組み合わせて利用してもよい。例えば、超電導ケーブル線路において、超電導ケーブルの一端側に分流方式を構築し、他端側に電圧変化方式を構築してもよい。具体的には、例えば、表1に示すような常温側Aから超電導ケーブルを介して常温側Bに向けて送電を行う線路において、常温側Aと超電導ケーブルとの間において、分流方式を構築し、超電導ケーブルと常温側Bとの間において、電圧変化方式を構築してもよいし、常温側Aと超電導ケーブルとの間において、電圧変化方式を構築し、超電導ケーブルと常温側Bとの間において、分流方式を構築してもよい。また、超電導ケーブルの一端側のみで分流方式と電圧変化方式との双方を構築してもよい。即ち、上記電力変化機器を分流方式においても配置してもよい。具体的には、例えば、複数の導体部と超電導ケーブルの端部とを分岐接続部にて接続する場合、同ケーブルの端部と分岐接続部との間に上記電力変化機器を配置する構成が挙げられる。この構成により、例えば、超電導ケーブルから常温側に送電を行う場合、電力変化機器にて電圧を大きくすることで、導体部に送電する電流を小さくできると共に、この電流を更に複数の導体部に分流するため、各導体部に流れる電流がより小さくなる。従って、各導体部の断面積(外径)の更なる小面積化、かつ導体部の長さの更なる短尺化を図ることができる。従って、端末構造の更なる小型化を実現する。
(Diversion and voltage change method)
A combination of the shunt method and the voltage change method may be used. For example, in a superconducting cable line, a shunt system may be constructed on one end side of the superconducting cable and a voltage change system may be constructed on the other end side. Specifically, for example, in a line that transmits power from the room temperature side A to the room temperature side B via the superconducting cable as shown in Table 1, a shunting method is constructed between the room temperature side A and the superconducting cable. A voltage change method may be established between the superconducting cable and the normal temperature side B, or a voltage change method may be established between the normal temperature side A and the superconducting cable, between the superconducting cable and the normal temperature side B. In this case, a diversion system may be constructed. Moreover, you may construct | assemble both a shunting system and a voltage change system only by the one end side of a superconducting cable. That is, the power changing device may be arranged in a shunting method. Specifically, for example, when connecting a plurality of conductor portions and the end portion of a superconducting cable at a branch connection portion, the configuration in which the power changing device is arranged between the end portion of the cable and the branch connection portion is as follows. Can be mentioned. With this configuration, for example, when power is transmitted from the superconducting cable to the room temperature side, the current transmitted to the conductor portion can be reduced by increasing the voltage in the power change device, and this current is further divided into a plurality of conductor portions. Therefore, the current flowing through each conductor portion becomes smaller. Therefore, the area of the cross-sectional area (outer diameter) of each conductor portion can be further reduced, and the length of the conductor portion can be further shortened. Therefore, further miniaturization of the terminal structure is realized.

上記本発明端末構造は、常温にて利用される電気機器や常電導ケーブルなどに接続される超電導ケーブル線路の終端部に構築することが適する。   The terminal structure of the present invention is suitably constructed at the terminal end of a superconducting cable line connected to an electric device or normal conducting cable used at room temperature.

本発明端末構造は、超電導ケーブルの端部において分流構造、及び電圧変化構造の少なくとも一方をとることで、同ケーブルによる大電流送電を可能にすると共に、同ケーブルの端部に接続される導体部一つあたりに流れる電流を小さくすることができる。そのため、ジュール損及び侵入熱の低減を実現すると共に、導体部を短尺化して実用的な大きさの端末構造を提供することができる。特に、電圧変化構造とする場合、更に断面積(外径)をも小さくできるため、導体部の更なる小型化を実現することができる。従って、超電導ケーブルの供給電力を低減することなく、端末構造自体を小型化することができる。   The terminal structure of the present invention enables at least one of a shunt structure and a voltage change structure at the end of the superconducting cable to enable large-current power transmission through the cable and a conductor portion connected to the end of the cable. The current flowing per one can be reduced. Therefore, while reducing Joule loss and intrusion heat, it is possible to provide a terminal structure with a practical size by shortening the conductor portion. In particular, in the case of the voltage change structure, the cross-sectional area (outer diameter) can be further reduced, so that further miniaturization of the conductor portion can be realized. Therefore, the terminal structure itself can be reduced in size without reducing the power supplied to the superconducting cable.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(分流方式)
図1(A)は、本発明超電導ケーブルの端末構造を示す概略構成図であり、同ケーブルに流れる電流を分流させて複数の導体部に供給する例を示し、同(B)は分岐接続部の構造の概略を示す部分拡大図である。以下、図面において同一符号は、同一物を示す。この端末構造の基本的構造は、図6に示す従来の超電導ケーブルの端末構造と同様である。即ち、超電導ケーブルに具える超電導導体(図1では省略)の端部と電気的に接続される導体部10と、導体部10を内蔵するブッシング11と、導体部10の超電導導体との接続側(図1では下方側)が収納される低温槽12と、低温槽12の外周を覆う真空容器13と、真空容器13の常温側に配置される碍管14とを具える。本発明の特徴とするところは、上記導体部10を複数並列に具える点にある。以下、詳しく説明する。
(Diversion method)
FIG. 1 (A) is a schematic configuration diagram showing the terminal structure of the superconducting cable of the present invention, showing an example in which current flowing through the cable is shunted and supplied to a plurality of conductor parts, and FIG. 1 (B) is a branch connection part. It is the elements on larger scale showing the outline of the structure. Hereinafter, the same reference numerals in the drawings denote the same items. The basic structure of this terminal structure is the same as the terminal structure of the conventional superconducting cable shown in FIG. That is, the conductor 10 electrically connected to the end of the superconducting conductor (not shown in FIG. 1) included in the superconducting cable, the bushing 11 incorporating the conductor 10, and the connection side of the conductor 10 to the superconducting conductor 1 (lower side in FIG. 1), a vacuum vessel 13 covering the outer periphery of the low-temperature vessel 12, and a soot tube 14 disposed on the room temperature side of the vacuum vessel 13. A feature of the present invention is that a plurality of the conductor portions 10 are provided in parallel. This will be described in detail below.

本例で用いた超電導ケーブル100は、図5に示すようなケーブルコア102を3本撚り合わせて断熱管101に収納された三心一括型の三相超電導ケーブルである。断熱管101は、外管101aと内管101bとからなる二重管の間に断熱材(図示せず)が配置され、かつ二重管内が真空引きされた構成である。各ケーブルコア102は、中心から順にフォーマ200、超電導導体201、電気絶縁層202、シールド層203、保護層204を具える。超電導導体201は、フォーマ200上に超電導線材を多層に螺旋状に巻回して構成される。電気絶縁層202は、半合成絶縁紙を巻回して構成される。シールド層203は、電気絶縁層202上に超電導導体201と同様の超電導線材を螺旋状に巻回して構成される。このシールド層203には、定常時、超電導導体201に流れる電流と逆向きでほぼ同じ大きさの電流が誘起される。この誘導電流により生じる磁場にて、超電導導体201から生じる磁場を打ち消し合い、ケーブルコア102外部への漏れ磁場をほぼゼロにすることができる。内管101bと各ケーブルコア102とで囲まれる空間103が通常、冷媒の流路となる。断熱管101の外周には、ポリ塩化ビニルからなる防食層104が設けられている。なお、以下の実施例についても図5に示す三相超電導ケーブルを利用している。   The superconducting cable 100 used in this example is a three-core one-phase superconducting cable in which three cable cores 102 as shown in FIG. The heat insulating tube 101 has a structure in which a heat insulating material (not shown) is disposed between the double tubes composed of the outer tube 101a and the inner tube 101b, and the inside of the double tube is evacuated. Each cable core 102 includes a former 200, a superconducting conductor 201, an electrical insulating layer 202, a shield layer 203, and a protective layer 204 in order from the center. The superconducting conductor 201 is formed by spirally winding a superconducting wire on the former 200 in multiple layers. The electrical insulating layer 202 is configured by winding semi-synthetic insulating paper. The shield layer 203 is configured by spirally winding a superconducting wire similar to the superconducting conductor 201 on the electrical insulating layer 202. In the shield layer 203, a current of almost the same magnitude is induced in the opposite direction to the current flowing in the superconducting conductor 201 in a steady state. With the magnetic field generated by the induced current, the magnetic field generated from the superconducting conductor 201 can be canceled and the leakage magnetic field to the outside of the cable core 102 can be made almost zero. A space 103 surrounded by the inner tube 101b and each cable core 102 is usually a refrigerant flow path. An anticorrosion layer 104 made of polyvinyl chloride is provided on the outer periphery of the heat insulating tube 101. The following examples also use the three-phase superconducting cable shown in FIG.

上記超電導ケーブル100を外部の電気機器や常電導ケーブルなどと接続する場合、ケーブル端部においてケーブルコア毎(相毎)に分岐して、端末構造を形成する。図1は、1本のケーブルコアにおける端末構造を示しており、三相超電導ケーブルの場合、このような端末構造が他に2つ形成される。本例では、分岐させた各ケーブルコアの端部にアルミニウム製のリード部114をそれぞれ接続している。リード部114の外周には、絶縁機能と機械的強度とを有するエポキシユニット114aを配置すると共に、クラフト紙などの絶縁材114bを配置させている。そして、リード部114の超電導ケーブルとの接続側を液体窒素などの冷媒116aを充填させたリード部冷媒槽116に収納させ、リード部冷媒槽116は、リード部真空容器117に収納させている。リード部真空容器117は、真空容器13と接続させており、真空容器117の端面と低温槽12の端面との間には、FRP製の固定治具118を配置している。   When the superconducting cable 100 is connected to an external electric device, a normal conducting cable, or the like, a terminal structure is formed by branching for each cable core (each phase) at the cable end. FIG. 1 shows a terminal structure in one cable core. In the case of a three-phase superconducting cable, two other such terminal structures are formed. In this example, aluminum lead portions 114 are respectively connected to the ends of the branched cable cores. An epoxy unit 114a having an insulating function and mechanical strength is disposed on the outer periphery of the lead portion 114, and an insulating material 114b such as kraft paper is disposed. The lead portion 114 is connected to the superconducting cable in the lead portion refrigerant tank 116 filled with a refrigerant 116a such as liquid nitrogen, and the lead portion refrigerant tank 116 is contained in the lead portion vacuum vessel 117. The lead part vacuum vessel 117 is connected to the vacuum vessel 13, and a fixing jig 118 made of FRP is disposed between the end surface of the vacuum vessel 117 and the end surface of the cryostat 12.

リード部114の導体部10との接続側は、低温槽12に収納させている。低温槽12は、ステンレスにて形成し、同様にステンレスにて形成した真空容器13内に収納させている。低温槽12と真空容器13との間には、断熱層13aを具える。低温槽12内は、液体窒素などの冷媒12aを循環させる構成である。各導体部10に対し、それぞれ別個の低温槽に配置してもよいが、容器構成を簡素化するべく、本例では、複数の導体部10を一つの低温槽12に収納する構成とした。   The connecting side of the lead part 114 to the conductor part 10 is housed in the low temperature bath 12. The low-temperature tank 12 is made of stainless steel and is housed in a vacuum vessel 13 that is also made of stainless steel. A heat insulating layer 13a is provided between the low-temperature tank 12 and the vacuum vessel 13. In the low-temperature tank 12, a refrigerant 12a such as liquid nitrogen is circulated. Each conductor 10 may be arranged in a separate low temperature bath, but in this example, a plurality of conductors 10 are stored in one low temperature bath 12 in order to simplify the container configuration.

そして、リード部の端部と複数の導体部10とは、分岐接続部15を介して接続させている。本例において分岐接続部15は、図1(B)に示すようにリード部114に接続されるブロック部15aと、ブロック部15aと各導体部10とを接続する連結部15bとを具える構成である。ブロック部15aは、銅製のブロック状部材を用いており、リード部114との接続箇所に取付部15cを具える。連結部15bは、銅製の編組材からなり、リード部114との接続箇所及び導体部10との接続箇所にそれぞれ取付部15dを具える。可撓性のある編組材を用いることで、ブロック部15aへの取付作業、導体部10への取付作業が行い易く、また、導体部10やリード部114などの熱伸縮を吸収することができる。本例では、ボルトなどの締め付け金具によりリード部114とブロック部15a、ブロック部15aと各導体部10を接続している。   The end portion of the lead portion and the plurality of conductor portions 10 are connected via the branch connection portion 15. In this example, the branch connection portion 15 includes a block portion 15a connected to the lead portion 114 as shown in FIG. 1 (B), and a connecting portion 15b that connects the block portion 15a and each conductor portion 10. It is. The block portion 15a uses a copper block-like member, and includes a mounting portion 15c at a connection location with the lead portion 114. The connecting part 15b is made of a braided material made of copper, and includes attachment parts 15d at connection points with the lead part 114 and connection parts with the conductor part 10, respectively. By using a flexible braided material, the attachment work to the block part 15a and the attachment work to the conductor part 10 can be easily performed, and the thermal expansion and contraction of the conductor part 10 and the lead part 114 can be absorbed. . In this example, the lead part 114 and the block part 15a, and the block part 15a and each conductor part 10 are connected by fastening metal fittings such as bolts.

各導体部10はそれぞれ、液体窒素の温度近傍において電気的抵抗が小さい銅にて形成した。また、各導体部10はそれぞれ、異なるブッシング11の内側に配置している。ブッシング11は、ステンレス製の筒状体の外周に絶縁性に優れるFRPからなる絶縁材を具える構成である。ブッシング11の上端(常温側に配置される端部)には、銅製の上部シールド11aを設けている。これら導体部10及びブッシング11は、低温槽12から断熱層13aを介して碍管14に亘って配置され、導体部10の一端側が上記分岐接続部15に接続される。なお、碍管14には、絶縁油などの絶縁流体14aを充填させている。   Each conductor 10 was formed of copper having a small electrical resistance near the temperature of liquid nitrogen. In addition, each conductor portion 10 is disposed inside a different bushing 11. The bushing 11 is configured to include an insulating material made of FRP having excellent insulating properties on the outer periphery of a stainless steel cylindrical body. An upper shield 11a made of copper is provided at the upper end of the bushing 11 (the end disposed on the room temperature side). The conductor part 10 and the bushing 11 are arranged from the low-temperature tank 12 through the heat insulating layer 13a to the soot pipe 14, and one end side of the conductor part 10 is connected to the branch connection part 15. Note that the soot tube 14 is filled with an insulating fluid 14a such as insulating oil.

本例に示す端末構造では、上記導体部10を複数(図1に示す例では4本)具えており、これらを並列に配置させている。この構成により、超電導ケーブルに大電流が流れており、この電流量と同等の電流量を常温側に供給する場合、同ケーブルからの電流は、分岐接続部15を介して各導体部10にそれぞれ分流され、一つの導体部10に流れる電流量を小さくできるため、ジュール損の低減を実現する。従って、各導体部10の断面積(外径)を過度に大きくする必要がなく、常温側から極低温側への熱侵入を低減し、導体部10において熱絶縁に必要とされる長さを小さくすることができ、導体部10を従来よりも短くしても十分に熱絶縁性を維持することが可能である。このように本発明は、超電導ケーブルに流れる電流量と同等の電流量を供給することができながら、端末構造を小型化しても、熱絶縁性能を低下させることがなく、ジュール損などの送電ロスも小さくすることを実現する。なお、複数の導体部10に流れる電流を合わせると、超電導ケーブルに流れる電流量と同等の電流量となり、常温側に同ケーブルに流れる電流量と同等量を供給することができる。   The terminal structure shown in this example includes a plurality of the conductor portions 10 (four in the example shown in FIG. 1), and these are arranged in parallel. With this configuration, a large current flows through the superconducting cable, and when a current amount equivalent to this current amount is supplied to the room temperature side, the current from the cable is sent to each conductor portion 10 via the branch connection portion 15. Since the amount of current that is shunted and flows through one conductor portion 10 can be reduced, a reduction in Joule loss is realized. Therefore, it is not necessary to excessively increase the cross-sectional area (outer diameter) of each conductor part 10, reducing heat penetration from the normal temperature side to the cryogenic temperature side, and reducing the length required for thermal insulation in the conductor part 10. Even if the conductor portion 10 is made shorter than the conventional one, it is possible to maintain sufficient thermal insulation. As described above, the present invention can supply a current amount equivalent to the amount of current flowing through the superconducting cable, and even if the terminal structure is downsized, the thermal insulation performance is not deteriorated, and the power transmission loss such as Joule loss is reduced. To make it smaller. When the currents flowing through the plurality of conductors 10 are combined, the current amount is equal to the current amount flowing through the superconducting cable, and the same amount as the current flowing through the cable can be supplied to the room temperature side.

また、常温側から超電導ケーブル側に送電を行う場合、各導体部10に流れる電流が分岐接続部15にて集められることで、同ケーブルへの電流を大きくすることができる。このように本発明端末構造は、超電導ケーブルにおいて大電流を流し、異なるブッシング11にそれぞれ内蔵される各導体部10においてそれぞれ小電流を流す構成である。   In addition, when power is transmitted from the normal temperature side to the superconducting cable side, the current flowing through each conductor 10 is collected by the branch connection 15 so that the current to the cable can be increased. As described above, the terminal structure of the present invention is configured such that a large current flows in the superconducting cable and a small current flows in each of the conductor portions 10 incorporated in the different bushings 11.

この例では、多相超電導ケーブルを示したが、単相超電導ケーブルでも利用できる。この点は、以下の実施例についても同様である。また、この例では、導体部を4本としたが、超電導ケーブルに流れる電流量に応じて適宜変更するとよい。更に、この例では、ケーブルコアの端部にリード部114を接続させた構成としているが、同端部を分岐接続部15に連結する構成としてもよい。このとき、ケーブルコアの端部を低温槽12に収納するとよい。この点も、以下の実施例についても同様である。   In this example, a multiphase superconducting cable is shown, but a single-phase superconducting cable can also be used. This also applies to the following examples. In this example, the number of conductors is four, but may be changed as appropriate according to the amount of current flowing through the superconducting cable. Furthermore, in this example, the lead portion 114 is connected to the end portion of the cable core, but the end portion may be connected to the branch connection portion 15. At this time, the end of the cable core may be stored in the low-temperature tank 12. This also applies to the following embodiments.

(電圧変化方式1)
上記実施例1では、超電導ケーブルに流れる電流を分流させることで、導体部を短尺化する構成を説明した。この例では、超電導ケーブルに印加される電圧、又は導体部に印加される電圧の大きさを変化させることで導体部に流れる電流を小さくし、導体部の断面積の小型化、短尺化を実現する構成を説明する。図2は、本発明超電導ケーブルの端末構造を示す概略構成図であり、同ケーブルの端部と導体部との間に電圧の大きさを変化させる電力変化機器を具える例を示す。
(Voltage change method 1)
In the first embodiment, the configuration in which the conductor portion is shortened by dividing the current flowing through the superconducting cable has been described. In this example, by changing the voltage applied to the superconducting cable or the voltage applied to the conductor, the current flowing through the conductor is reduced, and the cross-sectional area of the conductor is reduced and shortened. The structure to perform is demonstrated. FIG. 2 is a schematic configuration diagram showing the terminal structure of the superconducting cable of the present invention, and shows an example including a power changing device that changes the magnitude of voltage between an end portion of the cable and a conductor portion.

図2に示す端末構造は、基本的構成は図1に示す超電導ケーブルの端末構造と同様であり、超電導ケーブル100(ケーブルコア102)の端部と電気的に接続される導体部20と、導体部20を内蔵するブッシング21と、導体部20の同ケーブルとの接続側が収納される低温槽22と、低温槽22の外周を覆うと共に断熱層23aを有する真空容器23と、真空容器23の常温側に配置される碍管24とを具える。即ち、本例に示す超電導ケーブルの端末構造は、図6に示す従来の超電導ケーブルの端末構造と同様に導体部20を一つ具える構成である。導体部20及びブッシング21の各構成は、実施例1と同様であり、ブッシング21の上端には銅製の上部シールド21aを設けている。ケーブルコア102の端部には、実施例1と同様にリード部114を設けている。そして、本発明の特徴とするところは、リード部114の端部と導体部20との間に超電導ケーブル100に印加される電圧の大きさを変化する電力変化機器25を具える点にある。以下、この点を詳しく説明する。   The basic structure of the terminal structure shown in FIG. 2 is the same as the terminal structure of the superconducting cable shown in FIG. 1, and a conductor part 20 electrically connected to the end of the superconducting cable 100 (cable core 102), and a conductor A bushing 21 containing the part 20, a low-temperature tank 22 in which the connection side of the conductor part 20 to the same cable is housed, a vacuum container 23 covering the outer periphery of the low-temperature tank 22 and having a heat insulating layer 23a, and the room temperature of the vacuum container 23 And a side tube 24 arranged on the side. That is, the terminal structure of the superconducting cable shown in this example is configured to include one conductor portion 20 as in the terminal structure of the conventional superconducting cable shown in FIG. Each configuration of the conductor part 20 and the bushing 21 is the same as that of the first embodiment, and an upper shield 21a made of copper is provided at the upper end of the bushing 21. A lead part 114 is provided at the end of the cable core 102 as in the first embodiment. A feature of the present invention is that a power changing device 25 that changes the magnitude of the voltage applied to the superconducting cable 100 is provided between the end portion of the lead portion 114 and the conductor portion 20. Hereinafter, this point will be described in detail.

本例において電力変化機器25は、超電導ケーブルに印加される交流電圧を交流電圧に昇圧可能なAC/AC機器を用いた。また、電力変化機器25は、超電導材料にて形成された超電導機器とし、低温槽22に配置させることで、リード部114の電力変化機器25との接続側や導体部20の電力変化機器25との接続側の冷却に用いる液体窒素などの冷媒22aを電力変化機器25の冷却にも利用することができる。電力変化機器を構成する一対のコイルにおいて導体部20と接続されるコイルは、一端を導体部20に接続し、他端を接地しており、リード部114と接続されるコイルは、一端をリード部114に接続し、他端を超電導ケーブル100のアース(図示せず)に接続している。   In this example, the power changing device 25 is an AC / AC device capable of boosting an AC voltage applied to the superconducting cable to an AC voltage. In addition, the power changing device 25 is a superconducting device formed of a superconducting material and is disposed in the low-temperature tank 22, so that the power changing device 25 on the connection side of the lead portion 114 with the power changing device 25 and the conductor portion 20 The refrigerant 22a such as liquid nitrogen used for cooling on the connection side can also be used for cooling the power changing device 25. In the pair of coils constituting the power change device, the coil connected to the conductor part 20 has one end connected to the conductor part 20 and the other end grounded, and the coil connected to the lead part 114 leads one end. The other end is connected to the ground (not shown) of the superconducting cable 100.

超電導ケーブルに供給される電力は、電圧と電流との積で表わされる。そのため、超電導ケーブル100から常温側に送電するにあたり、上記電力変化機器25によりケーブル100に印加される電圧を昇圧させることで、導体部20への電流を小さくすることができる。従って、導体部20でのジュール損を低減できるため、実施例1と同様に導体部20の長さを短くできる。加えて、導体部20には、高電圧が加えられるため、導体部20の断面積(外径)を小さくしても十分電流を流すことができる。そのため、導体部20の断面積の小面積化をも実現することが可能である。従って、導体部20を従来よりも細く短くしても、十分に熱絶縁性を維持できる。また、導体部20の小面積化によりブッシング21をも小さくすることができるため、冷却時の割れなどを低減することができる。なお、導体部20は、電流量が小さくても電圧が高いため、超電導ケーブル100に供給される電力量と同等とすることができる。このように本発明は、超電導ケーブルの電力量と同等の電力量を供給することができながら、端末構造をより小型化しても、熱絶縁性能を低下させることがなく、ジュール損などの送電ロスをも小さくすることができる。   The power supplied to the superconducting cable is represented by the product of voltage and current. Therefore, when power is transmitted from the superconducting cable 100 to the normal temperature side, the voltage applied to the cable 100 by the power changing device 25 is boosted, so that the current to the conductor portion 20 can be reduced. Accordingly, since the Joule loss in the conductor portion 20 can be reduced, the length of the conductor portion 20 can be shortened as in the first embodiment. In addition, since a high voltage is applied to the conductor portion 20, a sufficient current can flow even if the cross-sectional area (outer diameter) of the conductor portion 20 is reduced. For this reason, it is possible to reduce the cross-sectional area of the conductor portion 20. Therefore, even if the conductor part 20 is made thinner and shorter than before, sufficient thermal insulation can be maintained. Further, since the bushing 21 can be reduced by reducing the area of the conductor portion 20, it is possible to reduce cracks during cooling. In addition, since the voltage of the conductor portion 20 is high even if the amount of current is small, it can be made equal to the amount of power supplied to the superconducting cable 100. As described above, the present invention can supply the same amount of power as that of the superconducting cable, and even if the terminal structure is further downsized, the thermal insulation performance is not deteriorated and the transmission loss such as Joule loss can be achieved. Can also be reduced.

この例では、電力変化機器として、昇圧可能な交流直接変換機器を用いたが、超電導ケーブル及び常温側の送電の種類(直流又は交流)、送電方向(超電導ケーブルから常温側への送電、又は常温側から超電導ケーブルへの送電の場合)に応じて適宜変更するとよい。具体的には、送電の種類によって、交流間接変換機器、DC/DC変換器(直流直接変換機器、又は直流間接変換機器)、AC/DC変換器、DC/AC変換器のいずれかを利用するとよい。また、超電導ケーブルから常温側への送電の場合、超電導ケーブルに印加される電圧を大きくできるもの、常温側から超電導ケーブルへの送電の場合、導体部に印加される電圧を小さくできるなものを利用するとよい。この点は、後述する実施例についても同様である。更に、本例では、電力変化機器として超電導機器を利用したが、常電導材料にて形成した常電導機器を利用してもよい。常電導機器を低温槽に配置する場合、常電導材料は、銅やアルミニウムなどの液体冷媒温度においても抵抗の低い材料を用いることが好ましい。   In this example, an AC direct conversion device capable of boosting was used as the power change device, but the type of power transmission on the superconducting cable and the room temperature side (DC or AC), power transmission direction (power transmission from the superconducting cable to the room temperature side, or room temperature) It may be changed as appropriate according to the case of power transmission from the side to the superconducting cable. Specifically, depending on the type of power transmission, either an AC indirect conversion device, a DC / DC converter (DC direct conversion device or DC indirect conversion device), AC / DC converter, or DC / AC converter is used. Good. Also, when transmitting power from the superconducting cable to the room temperature side, use a voltage that can increase the voltage applied to the superconducting cable, and when transmitting power from the room temperature side to the superconducting cable, use a cable that can decrease the voltage applied to the conductor. Good. This also applies to the embodiments described later. Furthermore, in this example, a superconducting device is used as the power changing device, but a normal conducting device formed of a normal conducting material may be used. In the case where the normal conducting device is arranged in a low temperature bath, it is preferable to use a material having a low resistance even at a liquid refrigerant temperature such as copper or aluminum as the normal conducting material.

(電圧変化方式2)
上記電圧変化方式1では、真空容器23内に低温槽22のみを具える場合を示したが、リード部114を収納する低温槽と、導体部20の電力変化機器25との接続側及び電力変化機器25を収納する低温槽とを別個に具え、各低温槽の温度を変化させてもよい。図3は、本発明超電導ケーブルの端末構造を示す概略構成図であり、電力変化機器を中温度槽に具える例を示す。
(Voltage change method 2)
In the voltage change method 1, the case where the vacuum vessel 23 is provided with only the low temperature chamber 22 is shown, but the connection side of the low temperature chamber for storing the lead portion 114 and the power change device 25 of the conductor portion 20 and the power change It is possible to provide a separate cryostat for storing the device 25 and change the temperature of each cryostat. FIG. 3 is a schematic configuration diagram showing a terminal structure of the superconducting cable of the present invention, and shows an example in which a power change device is provided in an intermediate temperature bath.

図3に示す端末構造は、基本的構成は図2に示す超電導ケーブルの端末構造と同様であり、超電導ケーブルの端部に接続されるリード部114、リード部114と電気的に接続される導体部20、導体部20とリード部114とに接続される電力変化機器26、導体部20の電力変化機器26との接続側及び電力変化機器26を収納する低温槽(中温度槽)30、中温度槽30を収納する真空容器23、真空容器23の常温側に突設される碍管24を具える。本発明の特徴とするところは、超電導ケーブルを冷却する冷媒の温度超常温未満の温度範囲に中温度槽30の温度を制御すると共に、真空容器23内にリード部114を収納する低温槽(冷媒槽)31を具える点にある。以下、この点を中心に説明する。   The basic structure of the terminal structure shown in FIG. 3 is the same as the terminal structure of the superconducting cable shown in FIG. 2, and the lead part 114 connected to the end of the superconducting cable and the conductor electrically connected to the lead part 114 Portion 20, power changing device 26 connected to conductor portion 20 and lead portion 114, connection side of conductor portion 20 to power changing device 26 and low temperature bath (medium temperature bath) 30 for storing power changing device 26, medium A vacuum vessel 23 for storing the temperature vessel 30 and a soot tube 24 protruding from the room temperature side of the vacuum vessel 23 are provided. The feature of the present invention is that the temperature of the intermediate temperature tank 30 is controlled within a temperature range that is lower than the normal temperature of the refrigerant that cools the superconducting cable, and a low-temperature tank (refrigerant) that houses the lead part 114 in the vacuum vessel 23. It has a tank 31). Hereinafter, this point will be mainly described.

本例において冷媒槽31は、液体冷媒を充填させた液体冷媒層31aとし、中温度槽30は、気体冷媒を充填させた気体冷媒層30aとしている。冷媒槽31と中温度槽30との間は、断熱層23aとしており、冷媒槽31から中温度槽30への熱侵入を抑制する構成である。   In this example, the refrigerant tank 31 is a liquid refrigerant layer 31a filled with a liquid refrigerant, and the intermediate temperature tank 30 is a gas refrigerant layer 30a filled with a gas refrigerant. A space between the refrigerant tank 31 and the intermediate temperature tank 30 is a heat insulating layer 23a, which suppresses heat intrusion from the refrigerant tank 31 to the intermediate temperature tank 30.

本例において中温度槽30及び冷媒槽31は、強度に優れるステンレスにて形成した。気体冷媒層30aには、窒素ガスを充填しており、冷媒槽31に充填させている液体冷媒(液体窒素、例えば、約77K)よりも温度が高く常温よりも温度が低い状態を維持できるように、中温度槽30に温度調節装置(図示せず)を接続させている。この温度調節装置によって気体冷媒層30aの温度制御を行うことにより、例えば、中温度槽30の気体冷媒を約170K(約-100℃)に制御することができる。また、真空容器23内に温度の異なる中温度槽30と冷媒槽31とを具えることで、温度勾配を設けることができる。なお、本例では、中温度槽30の冷媒として気体冷媒を用いたが、気体でなくてもよい。   In this example, the intermediate temperature tank 30 and the refrigerant tank 31 are made of stainless steel having excellent strength. The gas refrigerant layer 30a is filled with nitrogen gas so that the temperature is higher than the liquid refrigerant (liquid nitrogen, for example, about 77K) filled in the refrigerant tank 31, and can be maintained at a temperature lower than normal temperature. In addition, a temperature adjusting device (not shown) is connected to the intermediate temperature bath 30. By controlling the temperature of the gas refrigerant layer 30a with this temperature adjusting device, for example, the gas refrigerant in the intermediate temperature tank 30 can be controlled to about 170K (about -100 ° C). Further, by providing the intermediate temperature tank 30 and the refrigerant tank 31 having different temperatures in the vacuum vessel 23, a temperature gradient can be provided. In this example, a gas refrigerant is used as the refrigerant of the intermediate temperature tank 30, but it may not be a gas.

そして、本例では、超電導ケーブルに印加される電圧を昇圧する電力変化機器26(この例ではAC/AC機器)を中温度槽30に配置させている。中温度槽30は、超電導状態を維持する温度である必要がない。そのため、電力変化機器26は、常電導材料からなる常電導機器を利用することができる。常電導機器は、電力変化機器25のような超電導機器と比較して、超電導状態を維持するための冷媒が不要であり、冷媒コストを低減することができる。   In this example, the power changing device 26 (AC / AC device in this example) that boosts the voltage applied to the superconducting cable is disposed in the intermediate temperature bath 30. The intermediate temperature bath 30 does not have to be a temperature that maintains the superconducting state. Therefore, the power change device 26 can use a normal conductive device made of a normal conductive material. Compared to a superconducting device such as the power change device 25, the normal conducting device does not require a refrigerant for maintaining the superconducting state, and can reduce the refrigerant cost.

リード部114と電力変化機器26との接続は、銅製の部材32にて行い、この部材32の断熱層23aに配置される箇所には、電気的絶縁をとるべく外周に電気絶縁層33を設けている。   The lead portion 114 and the power change device 26 are connected by a copper member 32, and an electrical insulating layer 33 is provided on the outer periphery of the member 32 at a place where it is disposed on the heat insulating layer 23a. ing.

(分流及び電圧変化方式1)
上記実施例1と上記実施例2とを組み合わせた構成としてもよい。図4は、本発明超電導ケーブルの端末構造において、超電導ケーブルの端部(リード部の端部)と導体部との接続部分を示す概略構成図である。なお、図4では、低温槽、真空容器を省略している。
(Diversion and voltage change method 1)
The configuration of the first embodiment and the second embodiment may be combined. FIG. 4 is a schematic configuration diagram showing a connection portion between the end portion of the superconducting cable (end portion of the lead portion) and the conductor portion in the terminal structure of the superconducting cable of the present invention. In FIG. 4, the cryogenic bath and the vacuum vessel are omitted.

一つの導体部40に流れる電流量を更に小さくする方法として、複数の導体部40を具えることに加えて、超電導ケーブルに印加される電圧又は導体部に印加される電圧の大きさを変化する電力変化機器27を具える構成が挙げられる。例えば、図4に示すようにリード部114の端部と分岐接続部15との間に電力変化機器27を配置し、超電導ケーブルに印加される電圧を昇圧させて電流を小さくし、この電流を分岐接続部15を介して各導体部40にそれぞれ分流させる構成としてもよい。電力変化機器27により超電導ケーブルに印加される電圧を昇圧して導体部40への電流を小さくすることに加えて、更に小さくなった電流を複数の導体部40にて分流することで、各導体部40に流れる電流をより小さくすることができる。従って、導体部40の断面積(外径)及び長さをより小さくすることができ、導体部40の更なる小型化を実現する。   As a method of further reducing the amount of current flowing through one conductor portion 40, in addition to providing a plurality of conductor portions 40, the voltage applied to the superconducting cable or the magnitude of the voltage applied to the conductor portion is changed. A configuration including the power changing device 27 can be given. For example, as shown in FIG. 4, a power change device 27 is disposed between the end of the lead part 114 and the branch connection part 15, and the voltage applied to the superconducting cable is boosted to reduce the current. A configuration may be adopted in which each of the conductor portions 40 is diverted via the branch connection portion 15. In addition to increasing the voltage applied to the superconducting cable by the power changing device 27 to reduce the current to the conductor portion 40, each of the conductors can be divided by dividing the reduced current through the plurality of conductor portions 40. The current flowing through the portion 40 can be further reduced. Therefore, the cross-sectional area (outer diameter) and length of the conductor part 40 can be further reduced, and the conductor part 40 can be further reduced in size.

(分流及び電圧変化方式2)
超電導ケーブルの一端側に実施例1の端末構造を具え、他端側に実施例2の端末構造を具える線路を構築してもよい。例えば、常温側Xから超電導ケーブルを介して常温側Yに向けて送電を行う線路において、常温側Xと超電導ケーブルとの間に実施例1の端末構造を構築し、超電導ケーブルと常温側Yとの間に実施例2の端末構造を構築する。このとき、常温側Xから送電を行うと、常温側では、各導体部にそれぞれ電流が分流されて流れるため、導体部一つ当たりに流れる電流を小電流とすることができる。そして、超電導ケーブル部分では、各導体部に流れる電流が分岐接続部にて集められるため、大電流を流すことができる。超電導ケーブルから常温側Yに向かっては、電力変化機器によって、ケーブルに印加される電圧が大きくなることで、電流値が小さくされ、常温側Yの導体部に小電流を流すことができる。
(Diversion and voltage change method 2)
A line having the terminal structure of Example 1 on one end side of the superconducting cable and the terminal structure of Example 2 on the other end side may be constructed. For example, in a line that transmits power from room temperature side X to room temperature side Y via a superconducting cable, the terminal structure of Example 1 is constructed between room temperature side X and the superconducting cable, and the superconducting cable and room temperature side Y In the meantime, the terminal structure of Example 2 is constructed. At this time, if power is transmitted from the room temperature side X, the current flows separately to each conductor part on the room temperature side, so that the current flowing per conductor part can be reduced. And in a superconducting cable part, since the electric current which flows into each conductor part is collected in a branch connection part, a large current can be sent. From the superconducting cable toward the room temperature side Y, the voltage applied to the cable is increased by the power changing device, so that the current value is reduced, and a small current can flow through the conductor portion on the room temperature side Y.

本発明端末構造は、超電導ケーブルの終端部の形成に好適であり、単相超電導ケーブル、多相超電導ケーブルのいずれにも利用することができる。また、交流線路、直流線路のいずれにも利用することができる。   The terminal structure of the present invention is suitable for forming a terminal portion of a superconducting cable, and can be used for either a single-phase superconducting cable or a multiphase superconducting cable. Further, it can be used for either an AC line or a DC line.

(A)は、本発明超電導ケーブルの端末構造を示す概略構成図であり、同ケーブルに流れる電流を分流させて複数の導体部に供給する例を示し、(B)は、分岐接続部の概略構造を示す部分拡大図である。(A) is a schematic configuration diagram showing the terminal structure of the superconducting cable of the present invention, showing an example in which a current flowing through the cable is shunted and supplied to a plurality of conductor parts, (B) is an outline of a branch connection part It is the elements on larger scale which show a structure. 本発明超電導ケーブルの端末構造を示す概略構成図であり、同ケーブルの端部と導体部との間に電圧を変化させる電力変化機器を具える例を示す。It is a schematic block diagram which shows the terminal structure of this invention superconducting cable, and shows the example which provides the electric power change apparatus which changes a voltage between the edge part and conductor part of the cable. 本発明超電導ケーブルの端末構造を示す概略構成図であり、電力変化機器を中温度槽に具える例を示す。It is a schematic block diagram which shows the terminal structure of this invention superconducting cable, and shows the example which equips an intermediate temperature tank with an electric power change apparatus. 本発明超電導ケーブルの端末構造において、超電導ケーブルの端部と導体部との接続部分を示す概略構成図である。In the terminal structure of the superconducting cable of this invention, it is a schematic block diagram which shows the connection part of the edge part and conductor part of a superconducting cable. 三心一括型の三相超電導ケーブルの概略を示す断面構成図である。It is a cross-sectional block diagram which shows the outline of a three-core package type three-phase superconducting cable. 従来の超電導ケーブルの端末構造を示す概略構成図である。It is a schematic block diagram which shows the terminal structure of the conventional superconducting cable.

符号の説明Explanation of symbols

10,20,40 導体部 11,21,41 ブッシング 11a,21a 上部シールド
12,22 低温槽 12a,22a 冷媒 13a,23a 断熱層 13,23 真空容器
14,24 碍管 14a 絶縁流体 15 分岐接続部 15a ブロック部
15b 連結部 15c,15d 取付部 25〜27 電力変化機器 30 中温度槽
30a 気体冷媒層 31 冷媒槽 31a 液体冷媒層 32 銅製の部材
33 電気絶縁層
100 超電導ケーブル 101 断熱管 101a 外管 101b 内管
102 ケーブルコア 103 空間 104 防食層
110a 導体部 110b ブッシング 111 低温槽 112 真空容器
112a 断熱層 113 碍管 113a 絶縁流体 114 リード部
114a エポキシユニット 114b 絶縁材 115 ジョイント部
116 リード部冷媒槽 116a 液体冷媒 117 リード部真空容器
118 固定治具
200 フォーマ 201 超電導導体 202 電気絶縁層 203 シールド層
204 保護層
10, 20, 40 Conductor 11, 21, 41 Bushing 11a, 21a Upper shield
12,22 Cryogenic tank 12a, 22a Refrigerant 13a, 23a Heat insulation layer 13,23 Vacuum container
14,24 Steel pipe 14a Insulating fluid 15 Branch connection 15a Block
15b Connecting part 15c, 15d Mounting part 25 to 27 Power change device 30 Medium temperature chamber
30a Gas refrigerant layer 31 Refrigerant tank 31a Liquid refrigerant layer 32 Copper component
33 Electrical insulation layer
100 Superconducting cable 101 Heat insulation pipe 101a Outer pipe 101b Inner pipe
102 Cable core 103 Space 104 Anticorrosion layer
110a Conductor 110b Bushing 111 Cryogenic bath 112 Vacuum vessel
112a Heat insulation layer 113 Steel pipe 113a Insulating fluid 114 Lead
114a Epoxy unit 114b Insulation material 115 Joint
116 Reed refrigerant tank 116a Liquid refrigerant 117 Lead vacuum container
118 Fixing jig
200 Former 201 Superconducting conductor 202 Electrical insulation layer 203 Shield layer
204 Protective layer

Claims (9)

冷媒にて冷却される超電導導体を有する超電導ケーブルの端末構造であって、
前記超電導導体の端部と電気的に接続される複数の導体部と、
これら導体部ごとに導体部を内蔵する複数のブッシングと、
これら導体部の超電導導体との接続側が収納される低温槽とを具えることを特徴とする超電導ケーブルの端末構造。
A superconducting cable terminal structure having a superconducting conductor cooled by a refrigerant,
A plurality of conductor portions electrically connected to the ends of the superconducting conductor;
A plurality of bushings each including a conductor portion for each conductor portion;
A terminal structure of a superconducting cable, comprising a low-temperature tank in which a connection side of the conductor portion to the superconducting conductor is housed.
冷媒にて冷却される超電導導体を有する超電導ケーブルの端末構造であって、
前記超電導導体の端部と電気的に接続される導体部と、
前記導体部を内蔵するブッシングと、
前記超電導導体の端部と導体部との間に配置されて、導体部に印加される電圧、又は超電導ケーブルに印加される電圧を大きさが異なる電圧に変化する電力変化機器と、
前記導体部の電力変化機器との接続側及び電力変化機器が収納される低温槽とを具えることを特徴とする超電導ケーブルの端末構造。
A superconducting cable terminal structure having a superconducting conductor cooled by a refrigerant,
A conductor portion electrically connected to an end portion of the superconducting conductor;
A bushing incorporating the conductor portion;
A power change device that is arranged between the end portion of the superconducting conductor and the conductor portion, and that changes the voltage applied to the conductor portion, or the voltage applied to the superconducting cable to a voltage having a different magnitude;
A terminal structure of a superconducting cable, comprising a connection side of the conductor portion with a power change device and a low-temperature bath in which the power change device is accommodated.
超電導ケーブルは、直流送電ケーブルであり、
電力変化機器は、導体部に印加される交流電圧或いは直流電圧、又は超電導ケーブルに印加される直流電圧を大きさが異なる直流電圧に変化することを特徴とする請求項2に記載の超電導ケーブルの端末構造。
A superconducting cable is a direct current transmission cable,
3. The superconducting cable according to claim 2, wherein the power changing device changes an AC voltage or a DC voltage applied to the conductor portion, or a DC voltage applied to the superconducting cable into a DC voltage having a different magnitude. Terminal structure.
複数の導体部と超電導導体の端部とを接続する分岐接続部を具え、
電力変化機器は、超電導導体の端部と前記分岐接続部との間に配置されることを特徴とする請求項2又は3に記載の超電導ケーブルの端末構造。
Comprising a branch connecting portion for connecting a plurality of conductor portions and the end portion of the superconducting conductor;
4. The terminal structure of a superconducting cable according to claim 2, wherein the power changing device is disposed between an end portion of the superconducting conductor and the branch connection portion.
電力変化機器は、超電導材料で形成された超電導機器であることを特徴とする請求項2〜4のいずれかに記載の超電導ケーブルの端末構造。   5. The terminal structure of a superconducting cable according to claim 2, wherein the power change device is a superconducting device formed of a superconducting material. 電力変化機器は、常電導材料で形成された常電導機器であることを特徴とする請求項2〜4のいずれかに記載の超電導ケーブルの端末構造。   5. The terminal structure of a superconducting cable according to claim 2, wherein the power change device is a normal conductive device formed of a normal conductive material. 低温槽は、超電導ケーブルの端部を冷却する冷媒温度超常温未満の温度範囲に制御されていることを特徴とする請求項2〜6のいずれかに記載の超電導ケーブルの端末構造。   7. The terminal structure of a superconducting cable according to any one of claims 2 to 6, wherein the low temperature bath is controlled in a temperature range in which the end portion of the superconducting cable is cooled to a temperature range that is higher than a refrigerant temperature that is less than room temperature. 請求項1〜7のいずれかに記載の超電導ケーブルの端末構造を具えることを特徴とする超電導ケーブル線路。   A superconducting cable line comprising the terminal structure of the superconducting cable according to any one of claims 1 to 7. 超電導ケーブルの一端側に請求項1に記載の端末構造を具え、同他端側に請求項2に記載の端末構造を具えることを特徴とする超電導ケーブル線路。   A superconducting cable line comprising the terminal structure according to claim 1 at one end of the superconducting cable and the terminal structure according to claim 2 at the other end.
JP2004040614A 2004-02-17 2004-02-17 Superconducting cable terminal structure and superconducting cable line Expired - Fee Related JP4096360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040614A JP4096360B2 (en) 2004-02-17 2004-02-17 Superconducting cable terminal structure and superconducting cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040614A JP4096360B2 (en) 2004-02-17 2004-02-17 Superconducting cable terminal structure and superconducting cable line

Publications (2)

Publication Number Publication Date
JP2005237062A true JP2005237062A (en) 2005-09-02
JP4096360B2 JP4096360B2 (en) 2008-06-04

Family

ID=35019468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040614A Expired - Fee Related JP4096360B2 (en) 2004-02-17 2004-02-17 Superconducting cable terminal structure and superconducting cable line

Country Status (1)

Country Link
JP (1) JP4096360B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140912A (en) * 2007-11-14 2009-06-25 Sumitomo Electric Ind Ltd Terminal connection structure of superconducting cable
JP2010521796A (en) * 2007-03-21 2010-06-24 エヌコーテー ケーブルス ウルテラ アクティーゼルスカブ Termination device
JP2015091162A (en) * 2013-11-05 2015-05-11 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable
EP3065243A1 (en) * 2015-03-05 2016-09-07 Nexans Termination unit for a superconducting cable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521796A (en) * 2007-03-21 2010-06-24 エヌコーテー ケーブルス ウルテラ アクティーゼルスカブ Termination device
US8624109B2 (en) 2007-03-21 2014-01-07 Nkt Cables Ultera A/S Termination unit
US9331468B2 (en) 2007-03-21 2016-05-03 Nkt Cables Ultera A/S Termination unit
JP2009140912A (en) * 2007-11-14 2009-06-25 Sumitomo Electric Ind Ltd Terminal connection structure of superconducting cable
JP2015091162A (en) * 2013-11-05 2015-05-11 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable
EP3065243A1 (en) * 2015-03-05 2016-09-07 Nexans Termination unit for a superconducting cable
US9735562B2 (en) 2015-03-05 2017-08-15 Nexans Termination unit for a superconducting cable

Also Published As

Publication number Publication date
JP4096360B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP4609121B2 (en) Superconducting cable line
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
KR101309688B1 (en) Electricity transmission cooling system
JP4835821B2 (en) Superconducting cable
CN108475907B (en) Energy transmission device for a vehicle
US20090197769A1 (en) Electric power feed structure for superconducting apparatus
WO2006011358A1 (en) Superconductive cable line
US11430584B2 (en) Device for DC current transmission and cooling method
WO2006085409A1 (en) Intermediate joint structure of superconductive cable
JP2005253204A (en) Terminal structure of polyphase superconducting cable
AU2008318277A1 (en) High voltage saturated core fault current limiter
JP2005093383A (en) Operation method of superconductive cable and superconductive cable system
JP2012120435A (en) Terminal connection structure of superconducting cable
JP4374613B2 (en) Intermediate connection structure of superconducting cable
JP4730583B2 (en) Superconducting cable line
US20110177954A1 (en) Superconducting electricity transmission system
JP4096360B2 (en) Superconducting cable terminal structure and superconducting cable line
WO2006098069A1 (en) Superconductive cable and dc power transmission using the superconductive cable
Gerhold et al. Cryogenic electrical insulation of superconducting power transmission lines: transfer of experience learned from metal superconductors to high critical temperature superconductors
JP4273525B2 (en) Terminal structure of superconducting equipment
US8401601B2 (en) Use of a two-phase superconducting cable as a power supply cable
JP2014146585A (en) Superconductive cable and superconductive cable rail track
JP2005341767A (en) Terminal structure of superconducting cable
JP2016001582A (en) Superconductive cable rail track and coolant transportation rail track
JP2011138781A (en) Superconducting cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080302

R150 Certificate of patent or registration of utility model

Ref document number: 4096360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees