JP2005236325A - Method for manufacturing solid-state image sensor - Google Patents

Method for manufacturing solid-state image sensor Download PDF

Info

Publication number
JP2005236325A
JP2005236325A JP2005126565A JP2005126565A JP2005236325A JP 2005236325 A JP2005236325 A JP 2005236325A JP 2005126565 A JP2005126565 A JP 2005126565A JP 2005126565 A JP2005126565 A JP 2005126565A JP 2005236325 A JP2005236325 A JP 2005236325A
Authority
JP
Japan
Prior art keywords
solid
impurity diffusion
ion implantation
diffusion region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005126565A
Other languages
Japanese (ja)
Other versions
JP4274145B2 (en
Inventor
Atsushi Asai
淳 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005126565A priority Critical patent/JP4274145B2/en
Publication of JP2005236325A publication Critical patent/JP2005236325A/en
Application granted granted Critical
Publication of JP4274145B2 publication Critical patent/JP4274145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid-state image sensor, in which the dynamic range is wide, and the properties such as blooming tolerance, read-out voltage and smear can be improved. <P>SOLUTION: The solid-state image sensor is manufactured in which ion-implantation forming an impurity diffusion region 13 constituting a sensor part 2 is carried out at an angle of 7° to 45° from the wafer normal of a semiconductor wafer forming the solid-state imaging device. The ion-implantation process is divided to two or more processes, in which the direction inclined from the wafer normal is respectively in the reverse direction of the charge transfer direction of a transfer register 6. The width W<SB>1</SB>of the impurity diffusion region 13 is formed wider than the width of a positive charge storage region 17 in the charge transfer direction of the transfer register 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体撮像素子の製造方法に係わる。   The present invention relates to a method for manufacturing a solid-state imaging device.

固体撮像素子の一種であるCCD固体撮像素子においては、センサ部を半導体領域内にイオン注入による不純物拡散を行って形成したフォトダイオードにより構成している。
従来は、このCCD撮像素子のセンサ部を形成するイオン注入工程は、作業の効率化の観点からも1回のみの工程で行われてきた。
In a CCD solid-state imaging device which is a kind of solid-state imaging device, a sensor portion is constituted by a photodiode formed by performing impurity diffusion by ion implantation in a semiconductor region.
Conventionally, the ion implantation process for forming the sensor portion of the CCD image pickup device has been performed only once from the viewpoint of improving work efficiency.

しかしながら、最近ますます進むCCD固体撮像素子の微細化に伴い、センサ部のパターンやブルーミング耐性や読み出し電圧等の電気特性のより細かい調節が要求されてきている。
しかも、コストダウンをするためにウエハ径の拡大が図られており、このためウエハ面内の製造の均一性やロット毎の安定性の向上も要求度が厳しくなる一方である。
However, with the recent miniaturization of CCD solid-state imaging devices, finer adjustments of sensor characteristics, such as sensor pattern, blooming resistance, and readout voltage, have been required.
Moreover, the diameter of the wafer has been increased in order to reduce the cost. For this reason, the degree of demand for increasing the uniformity of manufacturing within the wafer surface and the stability of each lot is becoming stricter.

このような要求に対して、従来からの単純な1回のみのイオン注入によるセンサ部の形成工程では、もはや対応できなくなくなってきている。   In response to such a demand, the conventional sensor unit forming process by simple one-time ion implantation can no longer cope.

上述した問題の解決のために、本発明においては、受光部を形成するイオン注入工程を制御することにより、ダイナミックレンジが大きい、ブルーミング耐性、読み出し電圧、スミア等の特性を改善した固体撮像素子を製造する固体撮像素子の製造方法を提供するものである。   In order to solve the above-described problems, in the present invention, a solid-state imaging device having a large dynamic range, improved blooming resistance, read voltage, smear, and the like is controlled by controlling an ion implantation process for forming a light receiving portion. A method for manufacturing a solid-state imaging device to be manufactured is provided.

本発明の固体撮像素子の製造方法は、半導体領域内にセンサ部を構成する不純物拡散領域が形成され、センサ部の各列に沿って、信号電荷の転送が行われる転送レジスタが形成され、不純物拡散領域の表面に、正電荷蓄積領域が形成された固体撮像素子を製造する方法であって、センサ部を構成する不純物拡散領域を形成するイオン注入を、固体撮像素子を形成する半導体ウエハのウエハ法線から7°以上45°以下傾斜させて行い、イオン注入工程を、ウエハ法線から傾斜した方向が、それぞれ転送レジスタの電荷転送方向の互いに逆向きである、2回以上のイオン注入工程に分けて行い、不純物拡散領域の幅を、転送レジスタの電荷転送方向において、正電荷蓄積領域の幅よりも大に形成するものである。
本発明の固体撮像素子の製造方法は、半導体領域内にセンサ部を構成する不純物拡散領域が形成され、センサ部の各列に沿って、信号電荷の転送が行われる転送レジスタが形成され、不純物拡散領域の表面に、正電荷蓄積領域が形成された固体撮像素子を製造する方法であって、センサ部を構成する不純物拡散領域を形成するイオン注入を、固体撮像素子を形成する半導体ウエハのウエハ法線から7°以上45°以下傾斜させて行い、イオン注入工程を、ウエハ法線から傾斜した方向が、それぞれ転送レジスタの電荷転送方向とは直交する方向の互いに逆向きである、2回以上のイオン注入工程に分けて行い、不純物拡散領域の幅を、転送レジスタの電荷転送方向と直交する方向において、正電荷蓄積領域の幅よりも大に形成するものである。
According to the method for manufacturing a solid-state imaging device of the present invention, an impurity diffusion region constituting a sensor unit is formed in a semiconductor region, a transfer register for transferring signal charges is formed along each column of the sensor unit, and an impurity is formed. A method of manufacturing a solid-state imaging device having a positive charge accumulation region formed on the surface of a diffusion region, wherein ion implantation for forming an impurity diffusion region constituting a sensor unit is performed on a semiconductor wafer forming a solid-state imaging device The ion implantation process is performed at an angle of 7 ° or more and 45 ° or less from the normal, and the ion implantation process is performed in two or more ion implantation processes in which directions inclined from the wafer normal are opposite to each other in the charge transfer direction of the transfer register. In other words, the width of the impurity diffusion region is formed larger than the width of the positive charge storage region in the charge transfer direction of the transfer register.
According to the method for manufacturing a solid-state imaging device of the present invention, an impurity diffusion region constituting a sensor unit is formed in a semiconductor region, a transfer register for transferring signal charges is formed along each column of the sensor unit, and an impurity is formed. A method of manufacturing a solid-state imaging device having a positive charge accumulation region formed on the surface of a diffusion region, wherein ion implantation for forming an impurity diffusion region constituting a sensor unit is performed on a semiconductor wafer forming a solid-state imaging device The ion implantation process is performed at an inclination of 7 ° or more and 45 ° or less from the normal, and the directions inclined from the wafer normal are opposite to each other in a direction perpendicular to the charge transfer direction of the transfer register. The ion diffusion process is performed separately, and the width of the impurity diffusion region is formed larger than the width of the positive charge accumulation region in the direction orthogonal to the charge transfer direction of the transfer register.

上述の本発明製法によれば、センサ部を形成するイオン注入工程を、ウエハ法線から7°以上45°以下傾斜させ、且つイオン注入を互いに逆向きで2回以上行うことにより、センサ部の不純物拡散領域を傾斜させた方向に横に広げて形成することができる。
また、逆向きの2回以上のイオン注入工程に分けて行うことにより、電気的特性を制御することができる。
逆向きに2回イオン注入を行うと、両側に不純物拡散領域を広げるため、センサ部を広く形成して、取り扱い電荷量を多くすることができる。
According to the above-described manufacturing method of the present invention, the ion implantation step for forming the sensor portion is inclined by 7 ° or more and 45 ° or less from the normal to the wafer, and the ion implantation is performed twice or more in opposite directions to each other. The impurity diffusion region can be formed by extending horizontally in the inclined direction.
In addition, the electrical characteristics can be controlled by performing the ion implantation process in two or more opposite directions.
When ion implantation is performed twice in the opposite direction, the impurity diffusion region is widened on both sides, so that the sensor portion can be formed wider and the amount of charge handled can be increased.

上述の本発明によれば、不純物拡散領域が広がることにより、取り扱い電荷量が増加し、ダイナミックレンジが広がる。   According to the above-described present invention, since the impurity diffusion region is widened, the amount of charge handled is increased and the dynamic range is widened.

以下、図面を参照して本発明の固体撮像素子の実施例を説明する。
図1は、本発明の固体撮像素子の実施例、本例ではCCD固体撮像素子の撮像領域即ち有効画素領域を上から観た図であり、遮光膜を透視して、第1転送電極及び第2転送電極のパターンがわかるように表示している。
Hereinafter, embodiments of the solid-state imaging device of the present invention will be described with reference to the drawings.
FIG. 1 is a view of an embodiment of a solid-state imaging device according to the present invention, and in this example, an imaging region, that is, an effective pixel region of a CCD solid-state imaging device as viewed from above. 2 The transfer electrode pattern is shown so that it can be seen.

このCCD固体撮像素子1は、図1に示すように、撮像領域において、複数の画素を構成するセンサ部2がマトリックス状に配列された、各センサ部列の一側にCCD構造の垂直転送レジスタ6が形成されて成る。3は、センサ部2の開口である。垂直転送レジスタ6は、センサ部2から読み出しゲート部を介して信号電荷を転送する2つの垂直転送電極、即ち第1垂直転送電極4及び第2垂直転送電極5を有して形成される。そして、図1中矢印aの方向が垂直転送方向になる。   As shown in FIG. 1, the CCD solid-state imaging device 1 includes a vertical transfer register having a CCD structure on one side of each sensor unit row in which sensor units 2 constituting a plurality of pixels are arranged in a matrix in the imaging region. 6 is formed. Reference numeral 3 denotes an opening of the sensor unit 2. The vertical transfer register 6 includes two vertical transfer electrodes that transfer signal charges from the sensor unit 2 via a read gate unit, that is, a first vertical transfer electrode 4 and a second vertical transfer electrode 5. The direction of arrow a in FIG. 1 is the vertical transfer direction.

図1中に示すA−B線に沿った方向が水平転送方向(水平転送部は図示せず)であり、A−B線上の断面を図2に示す。また、C−D線に沿った方向が垂直転送方向(実際に電荷が移動する方向なので以下順方向と呼ぶ)であり、C−D線上の断面を図3に示す。   The direction along the line AB in FIG. 1 is the horizontal transfer direction (the horizontal transfer part is not shown), and a cross section on the line AB is shown in FIG. Further, the direction along the line CD is the vertical transfer direction (because it is the direction in which the charge actually moves, so it will be referred to as the forward direction hereinafter), and a cross section along the line CD is shown in FIG.

例えばn型のシリコンからなる半導体基板11に、オーバーフローバリアとなる第1のp型半導体ウエル領域12が形成され、この第1のp型半導体ウエル領域12内に、受光部2を構成するn型の不純物拡散領域13及び読み出しゲート部14、垂直転送レジスタ6を構成するn型の転送チャネル領域15、画素分離部(必要に応じてp型のチャネルストップ領域を形成する)16がそれぞれ形成されている。
また、n型の不純物拡散領域13の上部にはp型の正電荷蓄積領域17、n型の転送チャネル領域15の下には第2のp型半導体ウエル領域18がそれぞれ形成されている。p型半導体ウエル領域12とn型不純物拡散領域13とp型の正電荷蓄積領域17によって、いわゆるHAD(ホールアキュミュレイテッドダイオード)センサによるセンサ部2が構成される。
For example, a first p-type semiconductor well region 12 serving as an overflow barrier is formed in a semiconductor substrate 11 made of n-type silicon, and the n-type constituting the light receiving unit 2 is formed in the first p-type semiconductor well region 12. An impurity diffusion region 13 and a read gate portion 14, an n-type transfer channel region 15 constituting the vertical transfer register 6, and a pixel separation portion (a p-type channel stop region is formed if necessary) 16 are formed. Yes.
A p-type positive charge storage region 17 is formed above the n-type impurity diffusion region 13, and a second p-type semiconductor well region 18 is formed below the n-type transfer channel region 15. The p-type semiconductor well region 12, the n-type impurity diffusion region 13, and the p-type positive charge accumulation region 17 constitute a sensor unit 2 that is a so-called HAD (Hole Accumulated Diode) sensor.

第1のp型半導体ウエル領域12が形成された半導体基板11の表面には、ゲート絶縁膜19が形成され、このゲート絶縁膜19を介して読み出しゲート部14、転送チャネル領域15、チャネルストップ領域16上に第1垂直転送電極4及び第2垂直転送電極5が形成される。
A−B線上の断面では第2垂直転送電極5のみが形成され、C−D断面では第1垂直転送電極4上に層間絶縁膜20を介して第2垂直転送電極5が形成されている。転送チャネル領域15、ゲート絶縁膜19及び垂直転送電極4,5によって垂直転送レジスタ6が構成される。
A gate insulating film 19 is formed on the surface of the semiconductor substrate 11 on which the first p-type semiconductor well region 12 is formed, and a read gate portion 14, a transfer channel region 15, and a channel stop region are formed through the gate insulating film 19. A first vertical transfer electrode 4 and a second vertical transfer electrode 5 are formed on 16.
Only the second vertical transfer electrode 5 is formed in the cross section on the line AB, and the second vertical transfer electrode 5 is formed on the first vertical transfer electrode 4 via the interlayer insulating film 20 in the CD cross section. The transfer channel region 15, the gate insulating film 19 and the vertical transfer electrodes 4 and 5 constitute a vertical transfer register 6.

そして、これらの垂直転送電極4,5を覆って層間絶縁膜20が形成され、これの上にAl等の金属等からなる遮光膜21が形成され、垂直転送電極4及び5の上面及び側面を覆うと共に、受光部に対応して遮光膜に開口3が形成されている。
さらに全体を覆って酸化膜等の透明な絶縁膜からなるパッシベーション膜22が形成され、その上にガラス等の透明な絶縁膜からなる平坦化膜23が形成されている。平坦化膜23の平坦化された表面の上にはオンチップカラーフィルター24が形成され、最上部にオンチップレンズ25が形成されて成る。
Then, an interlayer insulating film 20 is formed so as to cover these vertical transfer electrodes 4 and 5, and a light shielding film 21 made of a metal such as Al is formed thereon, and the upper and side surfaces of the vertical transfer electrodes 4 and 5 are covered. An opening 3 is formed in the light shielding film corresponding to the light receiving portion.
Further, a passivation film 22 made of a transparent insulating film such as an oxide film is formed so as to cover the whole, and a planarizing film 23 made of a transparent insulating film such as glass is formed thereon. An on-chip color filter 24 is formed on the planarized surface of the planarizing film 23, and an on-chip lens 25 is formed on the top.

本例では、特にセンサ部2を構成する不純物拡散領域13の幅Wを、図9(垂直転送方向の断面図)の比較例で示すような、通常の一方向のイオン注入の場合の不純物拡散領域13の幅Wより大に形成する。 In this example, in particular, the width W 1 of the impurity diffusion region 13 constituting the sensor unit 2 is set to the impurity in the case of normal ion implantation in one direction as shown in the comparative example of FIG. 9 (cross-sectional view in the vertical transfer direction). than the width W 2 of the diffusion region 13 is formed larger.

センサ部2の開口3は、遮光膜6の開口3パターンによって設定されるが、実際の電荷蓄積量は、半導体基板11内のセンサ部2を形成する不純物元素の分布で決まる。
本例においては、不純物拡散領域13の幅Wを大きく、即ちセンサ部2を広く形成していることにより、センサ部全体の電荷蓄積量を大きくしている。
これによりCCD固体撮像素子1のダイナミックレンジを大きくすることができる。
The opening 3 of the sensor unit 2 is set by the pattern of the opening 3 of the light shielding film 6, but the actual charge accumulation amount is determined by the distribution of impurity elements forming the sensor unit 2 in the semiconductor substrate 11.
In this example, the charge accumulation amount of the entire sensor unit is increased by increasing the width W 1 of the impurity diffusion region 13, that is, by forming the sensor unit 2 widely.
As a result, the dynamic range of the CCD solid-state imaging device 1 can be increased.

このように、不純物拡散領域の幅Wを、通常の垂直方向のイオン注入の場合の不純物拡散領域の幅Wより大に形成するには、後述するように、垂直転送順方向に傾斜したイオン注入工程及び垂直転送方向とは逆方向に傾斜したイオン注入工程を行えばよい。 Thus, the width W 1 of the impurity diffusion regions, in order to form the normal vertical direction of the large than the width W 2 of the impurity diffusion region when the ion implantation, as described below, inclined to the vertical transfer forward An ion implantation step inclined in a direction opposite to the ion implantation step and the vertical transfer direction may be performed.

次に本発明の固体撮像素子の製造方法について説明する。
通常、センサ部を形成するn型ドーパントの注入にイオン注入法を用いる場合には、チャネリング抑制のためウエハ法線(即ち、半導体ウエハの面に対して垂直方向の線)に対して5°以上傾斜させ、かつ結晶軸から20°以上回転させて施されるのが一般的である。
Next, the manufacturing method of the solid-state image sensor of this invention is demonstrated.
Usually, when an ion implantation method is used for n-type dopant implantation for forming a sensor portion, it is at least 5 ° with respect to the wafer normal (ie, a line perpendicular to the surface of the semiconductor wafer) to suppress channeling. It is generally applied by tilting and rotating by 20 ° or more from the crystal axis.

これに対して、本発明の固体撮像素子の製造方法では、図3及び図4に示すように、センサ部2に対応する領域に矢印Iで示すように、半導体ウエハ30におけるウエハ法線31に対して7°以上45°以下傾斜させてイオン注入を行う。
7°未満では傾斜させてイオン注入する効果が充分ではなく、45°を越えると、遮光膜21等に一部が遮られるため、いずれも好ましくない。
このとき、垂直転送方向(図1中C→D)に対する傾斜方向のなす角度は、ブルーミング耐性即ち隣接画素への信号電荷の漏れへの耐性や、読み出し等の電気特性で決定される。
On the other hand, in the method for manufacturing a solid-state imaging device according to the present invention, as shown in FIG. 3 and FIG. On the other hand, ion implantation is performed with an inclination of 7 ° to 45 °.
If the angle is less than 7 °, the effect of tilting and ion implantation is not sufficient, and if it exceeds 45 °, the light shielding film 21 and the like are partially blocked, so that neither is preferable.
At this time, the angle formed by the tilt direction with respect to the vertical transfer direction (C → D in FIG. 1) is determined by blooming resistance, that is, resistance to leakage of signal charges to adjacent pixels, and electrical characteristics such as readout.

例えば、センサ部付近の平面図を示す図5において、画素分離部16から読み出しゲート部14へ向けてウエハ法線に対して7°傾斜注入する場合(矢印A)は、垂直転送方向と平行にウエハ法線に対して7°傾斜注入する注入する場合(矢印B)と比べてブルーミング耐性が約0.5V低下し、読み出しゲート部14からチャネルストップ領域16へ向けてウエハ法線に対して7°傾斜注入する注入する場合(矢印C)と比べて約1V低下する。   For example, in FIG. 5 showing a plan view of the vicinity of the sensor unit, when implantation is performed at an angle of 7 ° with respect to the normal line of the wafer from the pixel separation unit 16 to the readout gate unit 14 (arrow A), it is parallel to the vertical transfer direction. The blooming resistance is reduced by about 0.5 V as compared with the case where implantation is performed with an inclination of 7 ° with respect to the wafer normal (arrow B), and 7% with respect to the wafer normal from the read gate portion 14 toward the channel stop region 16. ° Decrease by about 1 V compared to the case of tilted injection (arrow C).

つまり、画素分離部16から読み出しゲート部14へ向けてウエハ法線に対して7°傾斜注入する(矢印A)ことにより、転送電極4,5の下部の読み出しゲート部14側に不純物拡散領域13が広く注入され、実質的な読み出しゲート長を調節することができる。   That is, the impurity diffusion region 13 is formed on the side of the read gate portion 14 below the transfer electrodes 4 and 5 by implanting at an angle of 7 ° with respect to the wafer normal from the pixel separation portion 16 toward the read gate portion 14 (arrow A). Can be widely implanted to adjust the substantial read gate length.

このように、センサ部2を形成するドーパントのイオン注入角度は、ブルーミング、読み出し、撮像時の基板印加電圧、スミア等のトレードオフ関係にある特性値の所望のバランスを得るための制御パラメーターとして用いることができる。   As described above, the ion implantation angle of the dopant forming the sensor unit 2 is used as a control parameter for obtaining a desired balance of characteristic values in a trade-off relationship such as blooming, readout, substrate applied voltage at the time of imaging, and smear. be able to.

従来は、細かいブルーミング特性の調節は、製造上の不均一性、不安定性の点で有意差が得られる程度(前述したように0.5V程度)の1回のイオン注入工程で垂直転送方向に対して平行な方向のみ、或いは垂直転送方向に対して垂直な方向のみしか行われておらず、センサ部2の不純物拡散領域13の位置はシフトすることはあっても、その大きさはほぼ不変であり、センサポテンシャルの大きさ(深さ)が同一であれば、飽和電荷量もほぼ不変であった。   Conventionally, fine blooming characteristics are adjusted in the vertical transfer direction in a single ion implantation process to the extent that a significant difference is obtained in terms of manufacturing non-uniformity and instability (about 0.5 V as described above). Only the direction parallel to the vertical transfer direction or only the direction perpendicular to the vertical transfer direction is performed, and although the position of the impurity diffusion region 13 of the sensor unit 2 may be shifted, its size is almost unchanged. When the magnitude (depth) of the sensor potential is the same, the saturation charge amount is almost unchanged.

飽和電荷量が大きければ、ダイナミックレンジも増加するが、飽和電荷量を上げるために、センサポテンシャルを大きく(深く)しようとすると、不純物濃度を濃く、即ちイオン注入におけるドーズ量を大きくする必要がある。ところが、ドーズ量を多くすると結晶欠陥密度が増加し、いわゆる白傷発生数が増加する。   If the saturation charge amount is large, the dynamic range also increases. However, if the sensor potential is to be increased (deep) in order to increase the saturation charge amount, the impurity concentration must be increased, that is, the dose amount in ion implantation must be increased. . However, increasing the dose increases the crystal defect density and increases the number of so-called white scratches.

そこで、図1〜図3に示した実施例においては、このような白傷発生数を増加させずダイナミックレンジを増加させる手段として、センサ部2を形成するイオン注入を垂直転送方向に平行な方向で互いに逆の向きに、2回のイオン注入工程にそれぞれ半分程度のドーズ量に分けて行うようにした。
これにより、図3に示したように、前述の図9の比較例と比較してセンサ部2の不純物拡散領域13が拡大し、取り扱い電荷量が増加する。ブルーミング耐性等の電気特性のバランスは、平面パターンの微細な調節で行えば良く、白傷発生数を増加させることなく飽和電荷量を増加させ、ダイナミックレンジを広げることができる。
Therefore, in the embodiment shown in FIGS. 1 to 3, as a means for increasing the dynamic range without increasing the number of white scratches, ion implantation for forming the sensor unit 2 is performed in a direction parallel to the vertical transfer direction. Thus, in the opposite directions, the ion implantation process is divided into about half doses in each of the two ion implantation steps.
As a result, as shown in FIG. 3, the impurity diffusion region 13 of the sensor unit 2 is enlarged as compared with the above-described comparative example of FIG. The balance of electrical characteristics such as blooming resistance may be adjusted by fine adjustment of the planar pattern, and the saturation charge amount can be increased and the dynamic range can be expanded without increasing the number of white scratches.

この効果を発揮するためには、垂直方向の隣り合うセンサ部2間の画素分離部16(図3参照)を狭くする効果が充分に得られるように、ウエハ法線から7°以上傾斜させることが必要になる。   In order to exert this effect, it is inclined by 7 ° or more from the normal line of the wafer so that the effect of narrowing the pixel separating portion 16 (see FIG. 3) between the adjacent sensor portions 2 in the vertical direction can be sufficiently obtained. Is required.

また、パターンの微細な調整でブルーミング耐性等の電気特性の調節を完全に行うことが困難な場合には、従来からの手法を合わせ持つような、図6の矢印にて示すような、垂直転送方向から水平方向に45°回転した方向等の中間的な角度からの注入に設定することもできる。   In addition, when it is difficult to completely adjust electrical characteristics such as blooming resistance by fine pattern adjustment, vertical transfer as shown by the arrows in FIG. It is also possible to set the injection from an intermediate angle such as a direction rotated 45 ° horizontally from the direction.

一方、例えば水平方向に互いに逆向きに、同じドーズ量で2回イオン注入した場合には、図7に水平方向の断面図を示すように、不純物拡散領域13を水平方向に広げて、飽和電荷量を増加させ、ダイナミックレンジを広げることができる。
この場合には、さらに読み出しゲート部14及び画素分離部16の幅が変化するので、読み出し特性やブルーミング耐性等の特性も変化する。これらの特性の変化が固体撮像素子において問題のない程度にイオン注入の傾斜角等の条件を設定する。
On the other hand, for example, when ions are implanted twice with the same dose in the opposite directions in the horizontal direction, the impurity diffusion region 13 is expanded in the horizontal direction as shown in FIG. The amount can be increased and the dynamic range can be expanded.
In this case, since the widths of the readout gate unit 14 and the pixel separation unit 16 are further changed, characteristics such as readout characteristics and blooming resistance are also changed. Conditions such as the tilt angle of ion implantation are set to such an extent that the change in these characteristics causes no problem in the solid-state imaging device.

また、イオン注入工程は、垂直転送順方向、逆方向、読み出しゲート部から画素分離部への方向即ち垂直転送方向と垂直な方向というように3回以上の作業に分けることもできる。   In addition, the ion implantation process can be divided into three or more operations such as a vertical transfer forward direction, a reverse direction, and a direction from the readout gate portion to the pixel separation portion, that is, a direction perpendicular to the vertical transfer direction.

さらに、2回に分ける場合のイオン注入のドーズ量の配分を、半分ずつではなく、例えば垂直転送順方向(図1中C→D)に2/3のドーズ量、逆方向(図1中D→C)に1/3のドーズ量と配分すれば、図8Aに平面図、図8Bに図8AのP−P′ポテンシャル図を示すように、受光部2内で垂直転送順方向にポテンシャル勾配が形成され、センサポテンシャル中心はわずかに垂直転送順方向(図1中Dの側)に寄る。すると、読み出しは垂直転送順方向側の電極、即ち第2転送電極5で行われるため、読み出しに必要な印加電圧が従来の構造よりも低下する。
このように、2回以上のイオン注入のドーズの配分によって、電気特性を調整するという新しい機能も得られる。
Further, the distribution of the dose amount of the ion implantation in the case of dividing into two times is not half, for example, 2/3 dose amount in the vertical transfer forward direction (C → D in FIG. 1) and reverse direction (D in FIG. 1). If a dose amount of 1/3 is distributed to C), a potential gradient in the forward transfer forward direction in the light receiving unit 2 as shown in the plan view of FIG. 8A and the PP diagram of FIG. 8A in FIG. 8B. And the sensor potential center slightly approaches the vertical transfer forward direction (D side in FIG. 1). Then, since reading is performed by the electrode on the vertical transfer forward direction side, that is, the second transfer electrode 5, the applied voltage required for reading is lower than that of the conventional structure.
In this way, a new function of adjusting electrical characteristics can be obtained by distributing the dose of ion implantation twice or more.

また、本発明製法によれば、さらにイオン注入の傾斜角、垂直転送方向からの角度、ドーズ量の配分の各条件を、ウエハ面内の複数に区分した領域でそれぞれ設定して変化させることにより、電気特性のウエハ面内分布を吸収することもでき、製造装置の状態の経時変化を吸収することもできる。
即ち、例えば半導体ウエハ面での注入方向の角度を前回より20°小さくする等フィードバックを行って、これらの条件を調節することにより、製造の安定化や、ウエハ面内の均一性向上を図ることができる。
In addition, according to the manufacturing method of the present invention, by further setting and changing each condition of the ion implantation inclination angle, the angle from the vertical transfer direction, and the dose distribution in a plurality of regions in the wafer surface, respectively. In addition, it is possible to absorb the in-wafer distribution of the electrical characteristics, and it is possible to absorb the change with time of the state of the manufacturing apparatus.
That is, for example, by adjusting the conditions by performing feedback such as reducing the angle of the implantation direction on the semiconductor wafer surface by 20 ° from the previous time and adjusting these conditions, it is possible to stabilize the manufacturing and improve the uniformity within the wafer surface. Can do.

本発明は、上述の例に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The present invention is not limited to the above-described examples, and various other configurations can be taken without departing from the gist of the present invention.

本発明による固体撮像素子の実施例の概略構成図(平面図)である。It is a schematic block diagram (plan view) of the Example of the solid-state image sensor by this invention. 図1のA−Bにおける断面図である。It is sectional drawing in AB of FIG. 図1のC−Dにおける断面図である。It is sectional drawing in CD of FIG. イオン注入の方向を説明する図である。It is a figure explaining the direction of ion implantation. イオン注入の方向を説明する図である。It is a figure explaining the direction of ion implantation. イオン注入の方向を説明する図である。It is a figure explaining the direction of ion implantation. 本発明による固体撮像素子の他の実施例の水平方向の断面図である。It is sectional drawing of the horizontal direction of the other Example of the solid-state image sensor by this invention. 本発明による固体撮像素子のさらに他の実施例の構成図である。 A 平面図である。 B 図8AのP−P′断面における受光部のポテンシャル図である。It is a block diagram of the further another Example of the solid-state image sensor by this invention. It is A top view. 8B is a potential diagram of the light receiving section in the P-P ′ cross section of FIG. 8A. 通常のイオン注入方法でセンサ部を形成した比較例の固体撮像素子の垂直転送方向の断面図である。It is sectional drawing of the vertical transfer direction of the solid-state image sensor of the comparative example which formed the sensor part with the normal ion implantation method.

符号の説明Explanation of symbols

1 CCD固体撮像素子、2 センサ部、3 開口、4 第1転送電極、5 第2転送電極、6 垂直転送レジスタ、11 半導体基板、12 第1のp型半導体ウエル領域、13 不純物拡散領域、14 読み出しゲート部、15 転送チャネル領域、16 画素分離部、17 正電荷蓄積領域、18 第2のp型半導体ウエル領域、19 ゲート絶縁膜、20 層間絶縁膜、21 遮光膜、22 パッシベーション膜、23 平坦化膜、24 オンチップカラーフィルター、25 オンチップレンズ、30 半導体ウエハ、31 ウエハ放線、I イオン注入方向、W,W 不純物拡散領域の幅 DESCRIPTION OF SYMBOLS 1 CCD solid-state image sensor, 2 Sensor part, 3 Opening, 4 1st transfer electrode, 5 2nd transfer electrode, 6 Vertical transfer register, 11 Semiconductor substrate, 12 1st p-type semiconductor well area | region, 13 Impurity diffusion area | region, 14 Read gate portion, 15 transfer channel region, 16 pixel separation portion, 17 positive charge accumulation region, 18 second p-type semiconductor well region, 19 gate insulating film, 20 interlayer insulating film, 21 light shielding film, 22 passivation film, 23 flat Chemical film, 24 on-chip color filter, 25 on-chip lens, 30 semiconductor wafer, 31 wafer radiation, I ion implantation direction, width of W 1 and W 2 impurity diffusion regions

Claims (2)

半導体領域内にセンサ部を構成する不純物拡散領域が形成され、
上記センサ部の各列に沿って、信号電荷の転送が行われる転送レジスタが形成され、
上記不純物拡散領域の表面に、正電荷蓄積領域が形成された固体撮像素子を製造する方法であって、
上記センサ部を構成する不純物拡散領域を形成するイオン注入を、上記固体撮像素子を形成する半導体ウエハのウエハ法線から7°以上45°以下傾斜させて行い、
上記イオン注入工程を、上記ウエハ法線から傾斜した方向が、それぞれ上記転送レジスタの電荷転送方向の互いに逆向きである、2回以上のイオン注入工程に分けて行い、
上記不純物拡散領域の幅を、上記転送レジスタの電荷転送方向において、上記正電荷蓄積領域の幅よりも大に形成する
ことを特徴とする固体撮像素子の製造方法。
An impurity diffusion region constituting a sensor unit is formed in the semiconductor region,
A transfer register for transferring signal charges is formed along each column of the sensor unit,
A method of manufacturing a solid-state imaging device in which a positive charge accumulation region is formed on the surface of the impurity diffusion region,
Ion implantation for forming an impurity diffusion region constituting the sensor unit is performed by inclining by 7 ° or more and 45 ° or less from a wafer normal line of a semiconductor wafer forming the solid-state imaging device,
The ion implantation process is performed in two or more ion implantation processes in which directions inclined from the normal to the wafer are opposite to each other in the charge transfer direction of the transfer register, respectively.
A method of manufacturing a solid-state imaging device, wherein the width of the impurity diffusion region is formed larger than the width of the positive charge accumulation region in the charge transfer direction of the transfer register.
半導体領域内にセンサ部を構成する不純物拡散領域が形成され、
上記センサ部の各列に沿って、信号電荷の転送が行われる転送レジスタが形成され、
上記不純物拡散領域の表面に、正電荷蓄積領域が形成された固体撮像素子を製造する方法であって、
上記センサ部を構成する不純物拡散領域を形成するイオン注入を、上記固体撮像素子を形成する半導体ウエハのウエハ法線から7°以上45°以下傾斜させて行い、
上記イオン注入工程を、上記ウエハ法線から傾斜した方向が、それぞれ上記転送レジスタの電荷転送方向とは直交する方向の互いに逆向きである、2回以上のイオン注入工程に分けて行い、
上記不純物拡散領域の幅を、上記転送レジスタの電荷転送方向と直交する方向において、上記正電荷蓄積領域の幅よりも大に形成する
ことを特徴とする固体撮像素子の製造方法。
An impurity diffusion region constituting a sensor unit is formed in the semiconductor region,
A transfer register for transferring signal charges is formed along each column of the sensor unit,
A method of manufacturing a solid-state imaging device in which a positive charge accumulation region is formed on the surface of the impurity diffusion region,
Ion implantation for forming an impurity diffusion region constituting the sensor unit is performed by inclining by 7 ° or more and 45 ° or less from a wafer normal line of a semiconductor wafer forming the solid-state imaging device,
The ion implantation step is performed in two or more ion implantation steps in which directions inclined from the normal to the wafer are opposite to each other in a direction perpendicular to the charge transfer direction of the transfer register,
A method of manufacturing a solid-state imaging device, wherein the width of the impurity diffusion region is formed larger than the width of the positive charge storage region in a direction orthogonal to the charge transfer direction of the transfer register.
JP2005126565A 2005-04-25 2005-04-25 Manufacturing method of solid-state imaging device Expired - Lifetime JP4274145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126565A JP4274145B2 (en) 2005-04-25 2005-04-25 Manufacturing method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126565A JP4274145B2 (en) 2005-04-25 2005-04-25 Manufacturing method of solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00579597A Division JP3707178B2 (en) 1997-01-16 1997-01-16 Solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2005236325A true JP2005236325A (en) 2005-09-02
JP4274145B2 JP4274145B2 (en) 2009-06-03

Family

ID=35018880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126565A Expired - Lifetime JP4274145B2 (en) 2005-04-25 2005-04-25 Manufacturing method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4274145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209542A (en) * 2011-03-14 2012-10-25 Sony Corp Solid state imaging device, manufacturing method therefor and electronic apparatus
US9253456B2 (en) 2011-03-14 2016-02-02 Sony Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209542A (en) * 2011-03-14 2012-10-25 Sony Corp Solid state imaging device, manufacturing method therefor and electronic apparatus
US9253456B2 (en) 2011-03-14 2016-02-02 Sony Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US9461081B2 (en) 2011-03-14 2016-10-04 Sony Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus

Also Published As

Publication number Publication date
JP4274145B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4518996B2 (en) Solid-state imaging device manufacturing method and electronic information device
US9087757B2 (en) Semiconductor device, solid-state imaging device, method for manufacturing semiconductor device, method for manufacturing solid-state imaging device, and electronic apparatus
US8304354B2 (en) Methods to avoid laser anneal boundary effect within BSI CMOS image sensor array
US8217431B2 (en) Solid-state image pickup device for preventing cross-talk between adjacent pixels and manufacturing method thereof
US7736937B2 (en) Manufacturing method of solid-state imaging device and solid-state imaging device
KR100834300B1 (en) Method for manufacturing solid image pickup device
JP4274145B2 (en) Manufacturing method of solid-state imaging device
JP3707178B2 (en) Solid-state image sensor
JP4274125B2 (en) Solid-state imaging device and manufacturing method thereof
JP2000223687A (en) Fabrication of solid state image pickup
JP4025208B2 (en) Solid-state imaging device and manufacturing method thereof
JP4419658B2 (en) Solid-state imaging device
JP4488366B2 (en) Method for manufacturing solid-state imaging device
US20100245633A1 (en) Solid-state image element and solid-state image device
JP2841061B2 (en) CCD image element
JP4490075B2 (en) Solid-state imaging device and manufacturing method thereof
CN1574382A (en) Image pickup element and its manufacturing method
JP4797302B2 (en) Solid-state imaging device and manufacturing method thereof
JPWO2019167295A1 (en) Charge coupled device and manufacturing method thereof
JP2003229559A (en) Solid-state imaging apparatus and its manufacturing method
JP2001203343A (en) Solid state imaging device
JPH1154740A (en) Solid-state image sensing device and manufacture thereof
JP2005317768A (en) Solid-state image pickup element
JP2008047769A (en) Solid state imaging element and manufacturing method
JPH089261A (en) Ccd type solid-state image pickup element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4