JP2005235699A - Separator for fuel cell - Google Patents

Separator for fuel cell Download PDF

Info

Publication number
JP2005235699A
JP2005235699A JP2004046568A JP2004046568A JP2005235699A JP 2005235699 A JP2005235699 A JP 2005235699A JP 2004046568 A JP2004046568 A JP 2004046568A JP 2004046568 A JP2004046568 A JP 2004046568A JP 2005235699 A JP2005235699 A JP 2005235699A
Authority
JP
Japan
Prior art keywords
fuel cell
resin
separator
conductive fillers
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046568A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Shinji Shimane
伸治 島根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004046568A priority Critical patent/JP2005235699A/en
Publication of JP2005235699A publication Critical patent/JP2005235699A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a fuel cell adjusting conductivity in its thickness direction within a proper range while maintaining mechanical characteristics. <P>SOLUTION: This separator for the fuel cell is molded by a molding material 1, and recessed and projecting parts 5 are each arranged on its front and back sides, The molding material 1 is prepared by at least a resin 2 and a large number of conductive fillers 3, and a majority of the conductive fillers 3 among a large number of the conductive fillers 3 are arranged perpendicularly to the arranged direction of the recessed and projecting parts 5. The arrangement pitch for the recessed and projecting parts 5 on the front side is shifted from that for the recessed and projecting parts 5 on the back side by one pitch. Since the X Y surfaces of a majority of the conductive fillers 3 are compulsorily oriented perpendicularly to the arranged direction of the recessed and projecting parts 5 to reduce the number of contact times in the thickness direction of the conductive fillers 3 in the resin, conductivity and volume resistivity in the thickness direction are raised and lowered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池を構成する固体高分子型の燃料電池用セパレータに関するものである。   The present invention relates to a polymer electrolyte fuel cell separator constituting a fuel cell.

従来の燃料電池用セパレータは、図7に示すように、所定の成形材料により板形にプレスあるいは射出成形され、表裏両面に流路を形成する凹凸部5が同一ピッチで配列されており、複数枚が積層されることにより燃料電池を構成する(特許文献1、2参照)。所定の成形材料は、例えばフェノール樹脂と黒鉛とが混合されることにより調製される。   As shown in FIG. 7, a conventional fuel cell separator is pressed or injection-molded into a plate shape with a predetermined molding material, and uneven portions 5 forming flow paths on both front and back surfaces are arranged at the same pitch. A fuel cell is formed by stacking sheets (see Patent Documents 1 and 2). The predetermined molding material is prepared, for example, by mixing a phenol resin and graphite.

ところで、燃料電池用セパレータは、一般的に厚さ方向(層方向ともいう)と面方向の導電性が大きく異なる値となり、厚さ方向の導電性を十分に確保できない傾向にある。
係る点に鑑み、従来においては、成形材料中の黒鉛の配合量を増加したり、黒鉛を大きくしたり、あるいは黒鉛のアスペクト比(aspect ratio)を変更等する方法が提案されている(特許文献3、4参照)。
特開平10‐334927号公報 特開2003‐282026号公報 特開2002‐100378号公報 特開2001‐143719号公報
By the way, the separator for fuel cells generally has a value in which the conductivity in the thickness direction (also referred to as the layer direction) and the surface direction are greatly different, and there is a tendency that the conductivity in the thickness direction cannot be sufficiently secured.
In view of this point, conventionally, methods have been proposed for increasing the amount of graphite in the molding material, increasing the graphite, or changing the aspect ratio of the graphite (Patent Document). 3 and 4).
JP-A-10-334927 JP 2003-282026 A JP 2002-100378 A JP 2001-143719 A

従来の燃料電池用セパレータは、以上のように構成され、厚さ方向の導電性を確保するため、黒鉛の量を増加したり、黒鉛を大きくしたり、黒鉛のアスペクト比を変更するようにしている。
しかしながら、係る方法を採用する場合には、厚さ方向の導電性をある程度確保することができるものの、曲げ強度が低下したり、割れる際の歪み量が小さくなる等、機械的特性が低下するという大きな問題が新たに生じることとなる。
The conventional fuel cell separator is configured as described above, and in order to ensure conductivity in the thickness direction, the amount of graphite is increased, the graphite is increased, or the aspect ratio of graphite is changed. Yes.
However, when such a method is adopted, although the conductivity in the thickness direction can be ensured to some extent, the mechanical properties are deteriorated, such as the bending strength is reduced or the strain amount when cracking is reduced. A big problem will arise.

本発明は上記に鑑みなされたもので、機械的特性を維持しながら厚さ方向の導電性を適切な範囲に調整することのできる燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above, and an object thereof is to provide a fuel cell separator capable of adjusting the electrical conductivity in the thickness direction to an appropriate range while maintaining mechanical characteristics.

本発明においては、上記課題を解決するため、成形材料により成形され、表裏面に凹凸部がそれぞれ配列されるものであって、
成形材料を少なくとも樹脂と複数の導電フィラーとにより調製するとともに、この複数の導電フィラーのうち、少なくとも一部の導電フィラーを凹凸部の配列方向と交わる方向に配向し、表面における凹凸部と裏面における凹凸部の配列ピッチをずらしたことを特徴としている。
なお、成形材料の樹脂を硬化性樹脂とし、導電フィラーを黒鉛としてそのXY面を凹凸部の配列方向と交わる方向に配向することができる。
In the present invention, in order to solve the above-mentioned problem, it is molded with a molding material, and uneven portions are arranged on the front and back surfaces,
The molding material is prepared with at least a resin and a plurality of conductive fillers, and among the plurality of conductive fillers, at least a part of the conductive filler is oriented in a direction crossing the arrangement direction of the concavo-convex parts, The feature is that the arrangement pitch of the uneven portions is shifted.
Note that the resin of the molding material can be a curable resin, the conductive filler can be graphite, and the XY plane can be oriented in a direction crossing the arrangement direction of the concavo-convex portions.

ここで、特許請求の範囲における成形材料は少なくとも樹脂と複数の導電フィラーとから配合されれば良く、この樹脂と複数の導電フィラーとは混練(kneading)されずに混合(blending)されることが好ましい。この成形材料には、フッ素樹脂、フッ素系化合物、カップリング剤、改質剤、充填剤等からなる他の材料が含有されても良い。   Here, the molding material in the claims may be blended at least from a resin and a plurality of conductive fillers, and the resin and the plurality of conductive fillers may be blended without being kneaded. preferable. This molding material may contain other materials including a fluororesin, a fluorine-based compound, a coupling agent, a modifier, a filler, and the like.

樹脂としては、熱可塑性樹脂、硬化性樹脂、天然・合成ゴムのいずれもが含まれ、導電フィラーを被覆するものでも、そうでなくても良い。導電フィラーは、XYZ表示法により表示可能な略片状に形成され、XYのアスペクト比が2〜100の範囲内であるのが好ましい。   The resin includes any of thermoplastic resins, curable resins, and natural / synthetic rubbers, and may or may not be coated with a conductive filler. The conductive filler is preferably formed in a substantially piece-like shape that can be displayed by the XYZ display method, and the XY aspect ratio is preferably in the range of 2 to 100.

複数の導電フィラーは、少なくともその一部が凹凸部の配列方向と交わる方向に指向すれば良く、全部あるいは大部分が指向するものでも良い。一部の導電フィラーは、凹凸部の配列方向と30°以上の角度で交わるよう配向(orientation)されることが好ましい。   The plurality of conductive fillers only need to be directed in a direction in which at least a part thereof intersects the arrangement direction of the concavo-convex portions, or may be directed to all or most of the conductive fillers. Some of the conductive fillers are preferably oriented so as to intersect with the arrangement direction of the uneven portions at an angle of 30 ° or more.

配列ピッチのずれは、1ピッチでも良いし、半ピッチ等とすることもできる。さらに、本発明に係る燃料電池用セパレータは、平面視で長方形、正方形、多角形等に成形でき、部分的に薄くても良いし、厚くすることも可能である。   The shift in the arrangement pitch may be one pitch, half pitch, or the like. Furthermore, the fuel cell separator according to the present invention can be formed into a rectangular shape, a square shape, a polygonal shape or the like in a plan view, and may be partially thinned or thickened.

本発明によれば、少なくとも一部の導電フィラーを凹凸部の配列方向に向けるのではなく、凹凸部の配列方向と交わる方向に向けるので、厚さ方向の導電路を形成する複数の導電フィラーの数、接触数、部位を減少させることができる。
また、燃料電池用セパレータの表面における凹凸部と裏面における凹凸部の配列ピッチがずれるので、成形時の導電フィラーの流れを整え、これにより配向度を向上させて厚さ方向の導電性を向上させることができる。
According to the present invention, since at least a part of the conductive filler is not directed in the arrangement direction of the concavo-convex portions, but is directed in a direction intersecting with the arrangement direction of the concavo-convex portions, the plurality of conductive fillers forming the conductive path in the thickness direction The number, the number of contacts, and the site can be reduced.
In addition, since the arrangement pitch of the concavo-convex portions on the surface of the fuel cell separator and the concavo-convex portions on the back surface is shifted, the flow of the conductive filler during molding is adjusted, thereby improving the degree of orientation and improving the conductivity in the thickness direction. be able to.

本発明によれば、機械的特性を維持し、厚さ方向の導電性を適切な範囲に調整することができるという効果がある。   According to the present invention, it is possible to maintain the mechanical characteristics and adjust the conductivity in the thickness direction within an appropriate range.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における燃料電池用セパレータは、図1ないし図5に示すように、成形材料1により表裏面にそれぞれ凹凸部5を備えた略矢板形(sheet pile)に形成されるが、成形材料1を少なくとも樹脂2と多数の導電フィラー3とにより調製するとともに、この多数の導電フィラー3のうち、大部分の導電フィラー3を凹凸部5の配列方向と交わる方向に配向し、表面における凹凸部5と裏面における凹凸部5の配列ピッチをずらすようにしている。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. In the fuel cell separator according to the present embodiment, as shown in FIGS. The sheet material is formed in a substantially sheet pile shape, and the molding material 1 is prepared by at least the resin 2 and a large number of conductive fillers 3, and the majority of the conductive fillers 3 among the large number of conductive fillers 3 are prepared. It is oriented in a direction intersecting with the arrangement direction of the concavo-convex portions 5, and the arrangement pitch of the concavo-convex portions 5 on the front surface and the concavo-convex portions 5 on the back surface is shifted.

成形材料1は、少なくとも樹脂2と多数の導電フィラー3とから調製され、これらがミキサー等により混合して使用される。この成形材料1には、その特性を喪失しない範囲において、炭酸カルシウム、タルク、カオリン、珪藻土、シリカ、ベントナイト、ゼオライト、マイカ、水酸化アルミニウム、酸化チタン、活性炭、木炭、ガラス繊維、アラミド繊維等が適宜添加される。   The molding material 1 is prepared from at least a resin 2 and a large number of conductive fillers 3, and these are used by mixing with a mixer or the like. The molding material 1 includes calcium carbonate, talc, kaolin, diatomaceous earth, silica, bentonite, zeolite, mica, aluminum hydroxide, titanium oxide, activated carbon, charcoal, glass fiber, aramid fiber, etc., as long as the characteristics are not lost. Add as appropriate.

樹脂2と多数の導電フィラー3の配合は、樹脂100質量部に対して導電フィラー100〜2,000質量部、好ましくは樹脂100質量部に対して導電フィラー200〜1,500質量部、より好ましくは樹脂100質量部に対して導電フィラー300〜1,000質量部が良い。これは、樹脂100質量部に対して導電フィラー100質量部未満の場合には、燃料電池用セパレータの電気的特性に支障を来たすからである。逆に、導電フィラー2,000質量部を越える場合には、燃料電池用セパレータの気密性(ガス透過率)や機械的特性に難が生じるからである。   The blending of the resin 2 and the many conductive fillers 3 is 100 to 2,000 parts by weight of the conductive filler with respect to 100 parts by weight of the resin, preferably 200 to 1,500 parts by weight of the conductive filler with respect to 100 parts by weight of the resin. Is preferably 300 to 1,000 parts by mass of the conductive filler with respect to 100 parts by mass of the resin. This is because if the amount of the conductive filler is less than 100 parts by mass with respect to 100 parts by mass of the resin, the electrical characteristics of the fuel cell separator are hindered. On the contrary, when the amount exceeds 2,000 parts by mass of the conductive filler, it is difficult for the airtightness (gas permeability) and mechanical characteristics of the fuel cell separator.

樹脂2としては、例えばPPSやPPからなる熱可塑性樹脂、粉末のフェノール樹脂やエポキシ系樹脂からなる硬化性樹脂、EPDMやクロロプレン等からなる合成ゴムが選択的に用いられる。これらの中でも、水との接触角調整の容易化、耐水性、寸法安定性、機械的強度に優れる粉末のフェノール樹脂が好適であり、より好ましくは硬化反応が緩やかな粉末のフェノール・ホルムアルデヒド系樹脂が良い。   As the resin 2, for example, a thermoplastic resin made of PPS or PP, a curable resin made of powdered phenol resin or epoxy resin, or a synthetic rubber made of EPDM, chloroprene, or the like is selectively used. Among these, powder phenolic resin that is easy to adjust the contact angle with water, water resistance, dimensional stability, and mechanical strength is suitable, and more preferably a phenol / formaldehyde resin with a slow curing reaction. Is good.

樹脂2に使用されるフェノール樹脂は、メチロール基が1分子中に10個以下、望ましくは5個以下が良い。これは、メチロール基が1分子中に10個を越える場合には、硬化時に発生する水により、燃料電池用セパレータ中の空隙、フクレ等が発生しやすく、機械的特性や寸法精度に悪影響を及ぼすからである。   The phenol resin used for the resin 2 has 10 or less, preferably 5 or less methylol groups in one molecule. This is because when the number of methylol groups exceeds 10 in one molecule, the water generated during curing tends to cause voids and blisters in the fuel cell separator, which adversely affects mechanical properties and dimensional accuracy. Because.

樹脂2の粒子は、分散させる関係上、細かいほうが好ましい。具体的には、平均粒径1〜35μm、好ましくは3〜20μmの範囲にあるのが良い。また、樹脂2の平均分子量は、3,000〜20,000、好ましくは4,000〜15,000、より好ましくは5,000〜10,000の範囲が良い。これは、樹脂2の平均分子量が3,000未満の場合には、導電フィラー3の高充填が困難化するとともに、溶融温度の低下に伴い導電フィラー3の表面被覆が大きくなり、しかも、燃料電池用セパレータの電気的特性が低下するという理由に基づく。   The particles of the resin 2 are preferably finer in view of dispersion. Specifically, the average particle size is 1 to 35 μm, preferably 3 to 20 μm. The average molecular weight of the resin 2 is in the range of 3,000 to 20,000, preferably 4,000 to 15,000, more preferably 5,000 to 10,000. This is because when the average molecular weight of the resin 2 is less than 3,000, high filling of the conductive filler 3 becomes difficult, and the surface coating of the conductive filler 3 increases as the melting temperature decreases, and the fuel cell This is based on the reason that the electrical properties of the separator for use deteriorate.

多数の導電フィラー3は、例えば黒鉛、金属繊維、カーボン繊維等からなり、その大部分が相互に点接触して厚さ方向に導電路を形成する。この導電フィラー3としては、水との接触角を容易に調整したり、相互に接触して抵抗値を低下させたり、機械的強度の低下を防止する観点から鱗片状の黒鉛を使用することが好ましい(図3参照)。これは、例えば球状の黒鉛を使用すれば、黒鉛同士を接触させるために配合量を増やさなければならず、成形品である燃料電池用セパレータの物性が低下するという理由に基づく。   A large number of conductive fillers 3 are made of, for example, graphite, metal fibers, carbon fibers, and the like, and most of them are in point contact with each other to form a conductive path in the thickness direction. As the conductive filler 3, scaly graphite can be used from the viewpoint of easily adjusting the contact angle with water, reducing the resistance value by contacting each other, and preventing the mechanical strength from decreasing. Preferred (see FIG. 3). This is based on the reason that, for example, if spherical graphite is used, the blending amount must be increased in order to bring the graphites into contact with each other, and the physical properties of the fuel cell separator that is a molded product are reduced.

導電フィラー3は、図3に示すように、XYZ表示法により表示可能な鱗片状に形成され、XYのアスペクト比が好ましくは2〜100、さらに好ましくは10〜50の範囲に設定されており、XYにより表示されるXY面4が凹凸部5の配列方向と交わる方向に指向する(図1、図2参照)。アスペクト比が係る範囲なのは、アスペクト比が2未満の場合には、十分な配向効果を得にくいからである。逆に、アスペクト比が100を越える場合には、樹脂2との十分な配合を得にくいからである。   As shown in FIG. 3, the conductive filler 3 is formed in a scale-like shape that can be displayed by the XYZ display method, and the aspect ratio of XY is preferably set in the range of 2 to 100, more preferably in the range of 10 to 50. The XY plane 4 displayed by XY is oriented in a direction intersecting with the arrangement direction of the concavo-convex portions 5 (see FIGS. 1 and 2). The reason for the aspect ratio is that when the aspect ratio is less than 2, it is difficult to obtain a sufficient alignment effect. Conversely, when the aspect ratio exceeds 100, it is difficult to obtain a sufficient blend with the resin 2.

導電フィラー3である鱗片状の黒鉛の大きさは、平均粒径5〜150μm、好ましくは10〜100μmの範囲が良い。これは、平均粒径5μm未満の場合、樹脂2との配合時に舞い上がり、作業環境が悪化したり、電気的特性が低下するからである。逆に、平均粒径150μmを越える場合、燃料電池用セパレータの機械的特性が低下するからである。   The scale-like graphite as the conductive filler 3 has an average particle size of 5 to 150 μm, preferably 10 to 100 μm. This is because if the average particle size is less than 5 μm, it rises when blended with the resin 2 and the working environment is deteriorated or the electrical characteristics are deteriorated. Conversely, when the average particle size exceeds 150 μm, the mechanical characteristics of the fuel cell separator deteriorate.

鱗片状の黒鉛の嵩密度については、特に限定されるものではないが、0.1〜1.0g/cm3の範囲が好適である。これは、黒鉛の嵩密度が小さすぎる場合、燃料電池用セパレータのシール特性が低下するという理由に基づく。逆に、黒鉛の嵩密度が大きすぎる場合、燃料電池用セパレータの機械的強度や導電性が低下するという理由に基づく。 Although it does not specifically limit about the bulk density of scale-like graphite, The range of 0.1-1.0 g / cm < 3 > is suitable. This is based on the reason that when the bulk density of graphite is too small, the sealing characteristics of the fuel cell separator deteriorate. Conversely, when the bulk density of graphite is too large, it is based on the reason that the mechanical strength and conductivity of the fuel cell separator are lowered.

燃料電池用セパレータは、図1に示すように、その露出面である表裏両面に、ガスや冷却水の流路となる凹凸部5がそれぞれ配列され、1.9g/cm3以上の密度(比重)に設定されており、複数枚が電解質膜、燃料極、空気極等を介し重ねて積層されることにより燃料電池を形成する。 As shown in FIG. 1, the fuel cell separator has an uneven surface portion 5 serving as a flow path for gas and cooling water on both the front and back surfaces, which are exposed surfaces, and a density (specific gravity) of 1.9 g / cm 3 or more. The fuel cell is formed by stacking a plurality of layers via an electrolyte membrane, a fuel electrode, an air electrode, and the like.

燃料電池用セパレータの表面における凹凸部5と裏面における凹凸部5とは、相互にセンターがずれるよう、配列方向に1ピッチずれて並設される。凹凸部5は、厚さ方向に凹み、水素ガス、酸素ガス、冷却水を流通させる断面略逆台形の凹部6と、この凹部6に隣接する断面略台形の凸部7とを備え、これら凹部6と凸部7とが交互に複数配列される。   The uneven portion 5 on the front surface and the uneven portion 5 on the back surface of the fuel cell separator are arranged side by side in the arrangement direction so that the centers are shifted from each other. The concavo-convex portion 5 includes a concave portion 6 having a substantially inverted trapezoidal cross section that is recessed in the thickness direction and allows hydrogen gas, oxygen gas, and cooling water to flow therethrough, and a convex portion 7 having a substantially trapezoidal cross section adjacent to the concave portion 6. 6 and the convex part 7 are arranged in multiple numbers by turns.

燃料電池用セパレータの密度は、樹脂2と導電フィラー3(黒鉛)との配合比にもよるが、概ね1.9g/cm3以上、好ましくは1.95g/cm3以上に設定される。これは、密度が1.9g/cm3以上であれば、十分なガス不透過性や撥水効果を得ることができるからである。 The density of the fuel cell separator is generally set to 1.9 g / cm 3 or more, preferably 1.95 g / cm 3 or more, although it depends on the blending ratio of the resin 2 and the conductive filler 3 (graphite). This is because if the density is 1.9 g / cm 3 or more, sufficient gas impermeability and water repellent effect can be obtained.

上記において、燃料電池用セパレータを製造する場合には、先ず、少なくとも樹脂2と多数の導電フィラー3とを混練することなく混合して成形材料1を調製し、この成形材料1を図4に示す予備成形型10に充填して中間体を圧縮成形する。この際、フェノール樹脂からなる樹脂2が流動して導電フィラー3間の空隙を埋め、鱗片状の黒鉛からなる大部分の導電フィラー3が圧縮成形時の圧縮に伴い、圧縮方向と直交する方向、すなわち圧縮面と略平行に配向される。   In the above, when manufacturing a separator for a fuel cell, first, at least the resin 2 and a large number of conductive fillers 3 are mixed without kneading to prepare a molding material 1, and this molding material 1 is shown in FIG. The preform 10 is filled and the intermediate is compression molded. At this time, the resin 2 made of a phenol resin flows to fill the gaps between the conductive fillers 3, and most of the conductive fillers 3 made of scaly graphite are in a direction orthogonal to the compression direction along with compression during compression molding, That is, it is oriented substantially parallel to the compression surface.

こうして中間体を圧縮成形したら、この中間体を図5に示す本成形金型11にセットして加熱プレス成形し、中間体にせん断力を作用させて大部分の導電フィラー3を厚さ方向に配向し、燃料電池用セパレータの表裏両面に凹凸部5をそれぞれ配列すれば、燃料電池用セパレータを製造することができる。   When the intermediate body is compression-molded in this way, this intermediate body is set in a main molding die 11 shown in FIG. 5 and subjected to hot press molding, and a shearing force is applied to the intermediate body so that most of the conductive filler 3 is moved in the thickness direction. A fuel cell separator can be manufactured by aligning and arranging the concavo-convex portions 5 on both the front and back surfaces of the fuel cell separator.

上記構成によれば、大部分の導電フィラー3のXY面4を凹凸部5の配列方向(面方向)と交わる方向に自然に向けるのではなく、意識的・強制的に配向して樹脂2中における導電フィラー3の厚さ方向の接触回数を減少させるので、黒鉛の充填量を増加したり、黒鉛を大きくしたり、黒鉛のアスペクト比を変更せずとも、厚さ方向の導電性や体積抵抗率を高めたり、低くすることができる。したがって、厚さ方向の導電性や体積抵抗率を所定の範囲に調整することが容易になる。   According to the above configuration, the XY surface 4 of most of the conductive fillers 3 is not oriented naturally in the direction intersecting with the arrangement direction (surface direction) of the concavo-convex portions 5, but is consciously and forcibly oriented in the resin 2. The number of contacts in the thickness direction of the conductive filler 3 is reduced, so that the conductivity and volume resistance in the thickness direction can be increased without increasing the graphite filling amount, increasing the graphite size, or changing the aspect ratio of the graphite. The rate can be increased or decreased. Therefore, it becomes easy to adjust the electrical conductivity and volume resistivity in the thickness direction within a predetermined range.

また、厚さ方向における導電性の向上や体積抵抗率の低下が容易に実現できるので、これを前提に樹脂2と多数の導電フィラー3の配合を実用性を損なわないよう適宜変更すれば、導電性確保の他、曲げ強度や割れる際の歪み量の維持向上を図ることができる。すなわち、導電性と強度とを両立させることが可能になる。   In addition, since it is possible to easily improve the conductivity in the thickness direction and decrease the volume resistivity, the conductivity can be improved by appropriately changing the composition of the resin 2 and the many conductive fillers 3 so as not to impair the practicality. In addition to securing the properties, it is possible to maintain and improve the bending strength and the amount of strain when cracking. That is, it is possible to achieve both conductivity and strength.

また、燃料電池用セパレータが略矢板形で表面における凹凸部5と裏面における凹凸部5の配列ピッチが配列方向に1ピッチずれるので、成形時における導電フィラー3の逆流等の不規則な流れを抑制し、配向度の向上を通じて厚さ方向の導電性を大幅に向上させることが可能になる。さらに、図7に示す従来の燃料電池用セパレータと比較して断面形状(凹部6と凸部7の間)の変化を小さくできるので、成形作業を容易化したり、不要なスキン層が生ずるのを防ぐことができ、ミクロな特性のばらつきを著しく減少させることが可能になる。   In addition, the fuel cell separator has a substantially sheet-like shape, and the arrangement pitch of the uneven portion 5 on the front surface and the uneven portion 5 on the back surface is shifted by 1 pitch in the arrangement direction, thereby suppressing irregular flows such as backflow of the conductive filler 3 during molding. In addition, the conductivity in the thickness direction can be significantly improved through the improvement of the degree of orientation. Furthermore, since the change in the cross-sectional shape (between the concave portion 6 and the convex portion 7) can be reduced as compared with the conventional fuel cell separator shown in FIG. 7, the molding operation can be facilitated or an unnecessary skin layer is generated. Therefore, it is possible to significantly reduce the variation in micro characteristics.

以下、本発明に係る燃料電池用セパレータの実施例を比較例と共に説明する。
実施例
先ず、鱗片状の黒鉛粒子50に対して粉状のフェノール樹脂10の質量比である成形材料を調製した。黒鉛粒子は、平均粒径が50μm、アスペクト比が20〜30である。また、フェノール樹脂は、特公昭62−30211号公報に記載されたフェノール・ホルムアルデヒド粉末からなり、平均粒径が30μm、溶融温度が100℃で粘度16000Pa・s、120℃で粘度2000Pa・sである。
Examples of the fuel cell separator according to the present invention will be described below together with comparative examples.
Example First, a molding material having a mass ratio of the powdery phenol resin 10 to the scaly graphite particles 50 was prepared. The graphite particles have an average particle size of 50 μm and an aspect ratio of 20-30. Further, the phenol resin is composed of a phenol / formaldehyde powder described in Japanese Patent Publication No. 62-30211, and has an average particle size of 30 μm, a melting temperature of 100 ° C., a viscosity of 16000 Pa · s, and a viscosity of 2000 Pa · s at 120 ° C. .

次いで、調整した成形材料90gを図4の予備成形型に充填し、120℃、100kg/cm2の条件下で中間体を圧縮成形した。成形の際、フェノール樹脂が流動して黒鉛粒子間の空隙を埋め、黒鉛粒子が圧縮成形時の圧縮に伴い、圧縮面と平行に配向された。 Next, 90 g of the adjusted molding material was filled in the preforming mold shown in FIG. 4, and the intermediate was compression molded under the conditions of 120 ° C. and 100 kg / cm 2 . During molding, the phenol resin flowed to fill the gaps between the graphite particles, and the graphite particles were oriented in parallel with the compression surface as the compression was performed during compression molding.

こうして中間体を圧縮成形したら、この中間体を図5の本成形金型にセットして190℃、150kg/cm2の条件下において5分間加熱プレス成形し、表裏両面に凹凸部をそれぞれ並べ備えた矢板形の燃料電池用セパレータを製造した(図5参照)。
燃料電池用セパレータは、150mm×150mm×2mmの大きさとした。また、この燃料電池用セパレータの凹部は、溝ピッチ2mm、溝幅1mm、抜け勾配10°、溝の深さ0.7mmとした。
After the intermediate body is compression molded in this way, the intermediate body is set in the main mold shown in FIG. 5 and subjected to hot press molding at 190 ° C. and 150 kg / cm 2 for 5 minutes. A sheet pile separator for a fuel cell was manufactured (see FIG. 5).
The fuel cell separator was 150 mm × 150 mm × 2 mm in size. The recesses of the fuel cell separator had a groove pitch of 2 mm, a groove width of 1 mm, a drop gradient of 10 °, and a groove depth of 0.7 mm.

比較例
実施例と同様の成形材料90gを予備成形型に充填し、120℃、100kg/cm2の条件下で中間体を圧縮成形した。中間体を圧縮成形したら、この中間体を本成形金型にセットして190℃、150kg/cm2の条件下において5分間加熱プレス成形し、表裏両面に凹凸部をそれぞれ並べ備えた燃料電池用セパレータを製造した(図7参照)。
燃料電池用セパレータやその凹部の寸法については実施例と同様とした。
Comparative Example 90 g of the same molding material as in the example was filled in a preforming mold, and the intermediate was compression molded under the conditions of 120 ° C. and 100 kg / cm 2 . Once the intermediate is compression-molded, this intermediate is set in a main mold and subjected to hot press molding at 190 ° C. and 150 kg / cm 2 for 5 minutes. A separator was manufactured (see FIG. 7).
The dimensions of the fuel cell separator and its recess were the same as in the example.

燃料電池用セパレータの評価
実施例、比較例で燃料電池用セパレータをそれぞれ製造したら、溝形成部から50mm×50mm切り出し、各燃料電池用セパレータの面方向の導電性を、JIS−K7194に準拠したプローブ付きの抵抗率計〔株式会社ダイアインスルメンツ製ロレスタGP、MCP−T600型,プローブは直列4探針(ASP)〕により測定した。
厚さ方向の測定に際しては、図6に示す一対の金メッキ銅電極間に燃料電池用セパレータを挟み、10kg/cm2の条件で加圧し、結果を表1にまとめた。
Evaluation of Fuel Cell Separator After manufacturing fuel cell separators in Examples and Comparative Examples, 50 mm × 50 mm was cut out from the groove forming portion, and the conductivity in the surface direction of each fuel cell separator was determined in accordance with JIS-K7194. The resistivity was measured using a resistivity meter [Loresta GP manufactured by Diains, Inc., MCP-T600 type, the probe was a series 4 probe (ASP)].
When measuring in the thickness direction, a fuel cell separator was sandwiched between a pair of gold-plated copper electrodes shown in FIG. 6 and pressurized under the conditions of 10 kg / cm 2. The results are summarized in Table 1.

Figure 2005235699
Figure 2005235699

実施例の燃料電池用セパレータについては、比較例と異なり、厚さ方向の導電性や体積抵抗率を所定の範囲内に調整することができ、導電性と強度とを両立させながら厚さ方向の導電性を向上させ得るのが確認できた。   Unlike the comparative example, the separator for the fuel cell of the example can adjust the conductivity in the thickness direction and the volume resistivity within a predetermined range, and can achieve the balance between the conductivity and the strength in the thickness direction. It was confirmed that the conductivity could be improved.

本発明に係る燃料電池用セパレータの実施形態を示す一部断面説明図である。It is a partial cross section explanatory view showing an embodiment of a separator for fuel cells concerning the present invention. 図1のII部を拡大して示す要部拡大説明図である。It is a principal part enlarged explanatory view which expands and shows the II section of FIG. 本発明に係る燃料電池用セパレータの実施形態における導電フィラーを示す模式斜視説明図である。It is a model perspective view showing the conductive filler in the embodiment of the separator for fuel cells concerning the present invention. 本発明に係る燃料電池用セパレータの実施形態における予備成形型を示す説明図である。It is explanatory drawing which shows the preforming die in embodiment of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの実施形態における本成形金型と中間体を示す説明図である。It is explanatory drawing which shows the main mold and intermediate body in embodiment of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの実施例における燃料電池用セパレータの評価状態を示す説明図である。It is explanatory drawing which shows the evaluation state of the separator for fuel cells in the Example of the separator for fuel cells which concerns on this invention. 従来の燃料電池用セパレータを示す説明図である。It is explanatory drawing which shows the conventional separator for fuel cells.

符号の説明Explanation of symbols

1 成形材料
2 樹脂
3 導電フィラー
4 XY面
5 凹凸部
6 凹部
7 凸部
DESCRIPTION OF SYMBOLS 1 Molding material 2 Resin 3 Conductive filler 4 XY surface 5 Concave part 6 Concave part 7 Convex part

Claims (2)

成形材料により成形され、表裏面に凹凸部がそれぞれ配列される燃料電池用セパレータであって、
成形材料を少なくとも樹脂と複数の導電フィラーとにより調製するとともに、この複数の導電フィラーのうち、少なくとも一部の導電フィラーを凹凸部の配列方向と交わる方向に配向し、表面における凹凸部と裏面における凹凸部の配列ピッチをずらしたことを特徴とする燃料電池用セパレータ。
A fuel cell separator that is molded from a molding material and has uneven portions arranged on the front and back surfaces,
The molding material is prepared with at least a resin and a plurality of conductive fillers, and among the plurality of conductive fillers, at least a part of the conductive filler is oriented in a direction crossing the arrangement direction of the concavo-convex parts, A separator for a fuel cell, wherein the arrangement pitch of the uneven portions is shifted.
成形材料の樹脂を硬化性樹脂とし、導電フィラーを黒鉛としてそのXY面を凹凸部の配列方向と交わる方向に配向した請求項1記載の燃料電池用セパレータ。

The fuel cell separator according to claim 1, wherein the molding material resin is a curable resin, the conductive filler is graphite, and the XY plane is oriented in a direction crossing the arrangement direction of the concavo-convex portions.

JP2004046568A 2004-02-23 2004-02-23 Separator for fuel cell Pending JP2005235699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046568A JP2005235699A (en) 2004-02-23 2004-02-23 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046568A JP2005235699A (en) 2004-02-23 2004-02-23 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2005235699A true JP2005235699A (en) 2005-09-02

Family

ID=35018415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046568A Pending JP2005235699A (en) 2004-02-23 2004-02-23 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2005235699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043420A (en) * 2007-08-06 2009-02-26 Nippon Pillar Packing Co Ltd Separator for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043420A (en) * 2007-08-06 2009-02-26 Nippon Pillar Packing Co Ltd Separator for fuel cell

Similar Documents

Publication Publication Date Title
EP2067201B1 (en) Separator for fuel cell and production method thereof
WO2018030430A1 (en) Heat transfer sheet and method for producing same
Lee et al. Effects of hybrid carbon fillers of polymer composite bipolar plates on the performance of direct methanol fuel cells
EP3353838A1 (en) Low-cost, high-performance composite bipolar plate
JP3978429B2 (en) Conductive resin molding
KR100988915B1 (en) Fuel cell separator and its manufacturing method
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
EP2190048B1 (en) Bipolar plate for fuel cell
JP2005108616A (en) Separator for fuel cell, and its manufacturing method
Wang Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC)
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP2005235699A (en) Separator for fuel cell
JP2004315578A (en) Conductive resin composition, and separator for fuel battery and method for producing the same
KR102476009B1 (en) Resin composition for fuel cell dense separator
JP2006210222A (en) Separator for fuel cell and its manufacturing method
JP2006164816A (en) Sheet manufactured by papermaking method and separator for fuel cell
JP2005216679A (en) Separator for fuel cell and its manufacturing method
EP1995810B1 (en) Fuel cell separator resin composition and fuel cell separator
JP4733008B2 (en) Conductive resin molded body and method for producing the same
JP2002358973A (en) Fuel cell separator member and its manufacturing method
JP2005216678A (en) Separator for fuel cell
JP2006059567A (en) Separator for fuel cell
JP4761979B2 (en) Raw material composition for fuel cell separator and fuel cell separator
JP4100617B2 (en) Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same
US20220045338A1 (en) Compositions for bipolar plates and methods for preparing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721