JP2005231952A - レーザ光によるカーボンナノチューブの合成 - Google Patents

レーザ光によるカーボンナノチューブの合成 Download PDF

Info

Publication number
JP2005231952A
JP2005231952A JP2004043930A JP2004043930A JP2005231952A JP 2005231952 A JP2005231952 A JP 2005231952A JP 2004043930 A JP2004043930 A JP 2004043930A JP 2004043930 A JP2004043930 A JP 2004043930A JP 2005231952 A JP2005231952 A JP 2005231952A
Authority
JP
Japan
Prior art keywords
carbon
substrate
metal catalyst
cnt
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043930A
Other languages
English (en)
Inventor
Kazumasa Onodera
和正 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NET SPACE KK
Original Assignee
NET SPACE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NET SPACE KK filed Critical NET SPACE KK
Priority to JP2004043930A priority Critical patent/JP2005231952A/ja
Publication of JP2005231952A publication Critical patent/JP2005231952A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

【課題】カーボンナノチューブ(CNT)を基板上の特定の位置に成長させ、再配置を不要にしてCNT特性の劣化を防止し、かつ再配置することなしに単体あるいは高集積化CNT-FETなどの電子デバイス、燃料電池、センサーなどの作成を容易にする。
【解決手段】カーボン(炭素、C)を含んだアセチレン(C2H2),エチレン(C2H4)などを反応ガスとしてカーボンナノチューブを合成するに際し、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、など金属触媒をシリコンなどの基盤上にパターニングし金属触媒細線として、このパターン部分とこれに接する反応ガスのみをレーザ光照射して、反応可能温度まで高温化し、この金属触媒に接してあるいは金属触媒が完全に粒子化した
際は基板に接して、カーボンナノチューブもしくは同素体でカーボンナノフフアイバーあるいはホイスカーを合成する。
【選択図】図1

Description

本発明はカーボンナノチューブもしくはその同素体を合成する方法に関する。
従来、カーボンナノチューブの合成法には(1)アーク放電法、(2)レーザ蒸着法、(3)CVD法、の三つの代表的な方法が用いられてきた。
(1)は炭素の蒸発にアーク放電で装置内を雰囲気ガス(主にヘリウム)で満たし、2本のグラファイトの電極を軽く接触させた状態で、高電流例えば100A(約20V)の電流を流すとアーク放電が起こり、高温になる陽極側の炭素が蒸発する。これらは気相で凝縮し、煤を形成して、炭素のおよそ半分は陰極先端に直接凝縮して炭素質の堆積物を形成する。この堆積物中に、多層ナノチューブ(Multi-Walled Carbon nanotube=MWNT)が成長する。単層ナノチューブ(Single−Walled Carbon Nanotube=SWNT)は、陽極の触媒金属、例えば鉄(Fe),ニッケル(Ni)、コバルト(Co)を含んだ炭素棒を蒸発することにより得られる。ターゲットがグラファイトのみの時は、得られる煤はC60、C70といったフラーレンが得られ、ターゲットに触媒となる金属(例えばコバルトやニッケルなど)を含む場合、単層ナノチューブが得られる。
(2)は電気炉の中に挿入した石英管の中央に、グラファイトのターゲットを置き、石英管にアルゴンガスを流します。ガスの流れの上流側からグラファイトにNd:YAGレーザを照射して、グラファイトを蒸発させると、電気炉の出口付近のコレクターや石英管に煤を付着させる。
(3)は高温、例えば1000℃近傍に熱した反応炉中にC2H2,C2H4などの反応ガスと触媒金属を含んだ気相化合物、例えばFe(CO)5を同時に導入して分解と合成を連続的に行うものである。
上に述べた従来技術(1)、(2)、(3)は基板上の特定の位置にカーボンナノチューブ(CNT)を成長させるとができない。したがってデバイス応用では、出来上がったCNTを高倍率の顕微鏡下でマニピュレーシヨン(Manipulation)して、定位置に配置し例えば電界効果トランジスター(FET)の場合にはソース、ドレイン電極をCNTの両端に配置してFETとした。これでは再配置の際、CNTの特性が劣化する、マニピュレーシヨンに時間を要する、高集積化CNT-FETの作成はほとんど不可能である、などの解決すべき課題を提起した。
この定位置にCNTを成長させるという課題を解決するため、触媒金属を成長(合成)すべき基板上の成長すべき位置に触媒金属をパターニングして細線パターンを形成し、当該細線パターン上に接してCNTを成長させる手段を提供するにある。
以上説明した本発明によればレーザ光のエネルギーによって、カーボンを含む化合物、たとえばアセチレン、エチレンあるいはグラフアイトなどのカーボン単体は触媒金属の働きによって容易にCNTとなり、しかもレーザ照射光の集光化によって触媒金属付近のみが高温化し、触媒金属に接してもしくは金属触媒を保持するシリコンなどの基板に接して一定の方向に成長する。成長するCNTの本数は触媒金属細線パターン幅に依存して増減できる。
また、成長すべきCNTの両端にあらかじめ電極金属を形成しておけば、それがそのまま例えばFETのソース、ドレイン電極と同時にCNTの成長範囲を規定できる。
以下、本発明の『レーザ光によるカーボンナノチューブの合成』を、図面を参照しながら説明する。図1にはレーザ光を応用してCNTを成長させるシステム構成図を示した。まず、この図を使って説明する。
ステンレススチールで作られた反応炉1はガス導入管2、CW-CO2レーザ光源3、基板ホールダ4とこれに繋がる基板加熱制御装置5、磁石6、真空発生・制御装置7(真空ポンプ、圧力計など)によって主として構成される。
ガス導入管2では先端部はノズル化されアセチレン(C2H2),エチレン(C2H4)、
アルゴン(Ar)、時として触媒発生源としてのFe(CO)5、あるいは水素(H2)
の反応関連ガス8が導入される。基板ホールダ上4にはCNTを成長(合成)すべき、その上部に後に詳細に述べる触媒パターンを持った、一例としてシリコン(Si)基板9が配置される。当該基板ホールダ4は基板加熱制御装置5によって室温から600℃の範囲で温度制御される。
基板上のレーザ光10のスポット径は最大6mm程度で、シリコン基板9が8インチなら、8インチの範囲でスキヤンできる。スキヤンすることで長いCNTを得ることができる。レーザ光は一例として10μP(14)ライン(λ=10.5μm)でエチレンのν7吸収帯と一致する。従って、エチレンを反応関連ガス8に加えることで、反応炉の炉壁が室温に保持され、また基板加熱制御装置5及びシリコン基板9が低温(室温から600℃の範囲で制御される)に保持されても、上記レーザ光10の出力を50W(ワット)とし、かつマスフローメータでの全ガス圧を200ミリバール(mbar)に制御することでシリコン基板9付近の絞られたレーザ光3の先端部の温度は700℃付近から1100℃付近の範囲で温度制御される。シリコン基板9とレーザ光3の先端部の温度はCNTの形状(直径、長さ、SWNTもしくはMWNT)、本数を決める重要な因子となり、上記温度範囲で決定される。
つぎにCNTを成長すべきシリコン基板9は高抵抗基板かもしくは高抵抗基板でないときはシリコン酸化膜などの絶縁膜で覆われている。この構成の基板上にCNTの生成を促す遷移金属(Fe,Ni,Co)の触媒金属細線パターン11を形成する。この細線の形成は、例えばCNTをその電子放射部としたAFM(Atomic Force Microscopy)でPMMAレジストに最小線幅数nm(ナノメートル)程度の溝を形成、蒸着・リフトオフを経て得られが、他の方法でもよい。
以上の反応系に於いては、ガス導入管2によって導入されたアセチレン(C2H2)、エチレン(C2H4)、アルゴン(Ar)、水素(H2)の混合ガスはガス導入管2の先端部のノズルから放出され、触媒金属細線パターン11を上部にもったシリコン基板9付近に到達し、先に述べたエチレンのレーザエネルギー吸収作用で
700℃から1100℃の範囲で上昇する。触媒金属細線パターン11もこれに近い温度まで上昇し、アセチレンの分解(decomposition)を促し、CNTの先駆物を形成する。この先駆物の先端部には触媒金属が含まれることが多い。この先駆物を核として触媒金属細線パターン11上にCNTが混合ガス流の下流に向かって成長する。
CNTの成長速度、下流に向かって成長するという成長の方向性の両者はノズルから放出される混合ガスの流速の制御によってももたらされるが、方向性を確実なものとするため、図1の磁石6を設置してもよい。先に述べたように成長過程のCNT先端部にはFeなどの磁性体が含まれることが多く、磁界13を成長方向に掛けてCNTの成長方向を下流方向に制御することができる。また、本特許による方法で直径0.5〜2nmのSWNT又はこの束(Bundle)もしくはさらに大きな直径のMWNTを細線上もしくは基板上に得ることができる。
触媒金属細線パターン11のパターン幅はCNTの所望チューブ本数によって決定されるべきものである。また、デバイス応用によっては、例えば電界効果トランジスター(FET)の場合、CNTの形成以前に形成さるべきCNTパターンの両端部に触媒金属もしくはCNTとのオーミックが取れるAu、Alなどの他金属種の電極13(図3)を配置し、CNT成長の始点・終点とし、両電極をFETのソース、ドレインとすることができる。
また、反応ガス中のFe(CO)5は含まれても、含まれなくてもよい。Fe(CO)5に含有することで触媒金属細線パターン11上のCNTの生成を加速させるもので、
目的とするCNT形状・本数などによって決定されるべきものである。また、水素についても同様な因子によって決定される。
本発明のもうひとつの実施の形態を図4を使って説明する。石英管31などに囲まれた反応炉中に回転軸を中心に回転する正面をグラフアイトで覆われたフラフアイト・ロッド32を反応炉の中心付近に設置する。このグフアイト・ロッド32下に表面に触媒金属細線パターン33をもったシリコン基盤34など
レーザ光35を透過させる材質の基板を配置する。レーザ光35をグラフアイト・ロッド32下部からこれに向かって照射し、プラズマ柱36を作る。
一方、プラズマ柱36の先端部に配置されたノズルからはアルゴンガスが噴出し、プラズマ柱36の先端部をアルゴン流の方向に直角に曲げ、触媒金属細線パターン33を高温化、例えば800℃まで上昇させ、触媒金属の一部もしくは全部を粒子化する。この粒子が触媒となり、グラフアイト粒子からCNT38が触媒金属細線パターン33、もしくはシリコン基盤34に接して成長する。このときの成長の方向はアルゴン流の下流方向となる。
本発明になるCNT合成技術を使って成長したCNTは電子デバイス、燃料電池、センサーなどの基本システムの構成要素として汎用性が高い。具体的には、通信機器のトランジスター、燃料電池の電極、センサーの感応部分として利用される。
本発明になるレーザ光によるCNT成長(合成)装置(側面図) 図1円内の拡大図(側面図) 本発明になるCNTと金属細線パターン(平面図) 本発明になるもうひとつのレーザ光によるCNT成長(合成)装置(側面図)
符号の説明
1-反応炉、2-ガス導入管、3-CW-CO2レーザ光源、4基板ホールダ、
5基板加熱制御装置、6-磁石、7-圧力計&真空ポンプ、8-反応関連ガス、
9-Si基板、10-集光レーザビーム、11-触媒金属細線パターン、
12-カーボンナノチューブ(CNT)、13-磁界(図1)、13--電極(図3)、
31-石英管、32-グラフアイト・ロッド、33--触媒金属細線パターン、
34-シリコン基板、35-レーザ光、36-プラズマ柱、37-ノズル、
38-CNT,

Claims (3)

  1. カーボン(炭素、C)を含んだアセチレン(C2H2),エチレン(C2H4)
    などを反応ガスとしてカーボンナノチューブを合成するに際し、鉄(Fe)、コバ
    ルト(Co)、ニッケル(Ni)、など金属触媒をシリコンなどの基盤上にパターニ
    ングし金属触媒細線として、このパターン幅は合成するカーボンノチューブの幅
    と等しくするか、カーボンナノチューブの束を合成するときにはこの束の幅に等
    しくし、このパターン部分とこれに接するガスのみをレーザ光照射して反応可能
    温度まで高温化し、該金属触媒に接してあるいは金属触媒が完全に粒子化した際
    は基板に接して、カーボンナノチューブもしくは同素体でカーボンナノフフアイ
    バーあるいはホイスカーを合成する方法。
  2. 請求項1において反応ガス流の下流からガス流に平行に磁界を掛け
    てカーボンナノチューブを下流に向けて成長させる合成方法。
  3. 反応炉中にグラフアイトなどのカーボンナノチューブの同素体をド
    ラムなどに巻きつけて、当該ドラムにレーザ光を照射してカーボン粒子を飛散さ
    せカーボンのプラズマ柱(Plasma Plume)を生成し、このプラズマ柱に接して
    鉄(Fe)、コバルト(Co)、ニッケル(Ni)など金属触媒をシリコンなどの基盤上
    にパターニングして金属触媒細線とし配置し、この際このパターン幅は請求項1
    と同じくし、このプラズマ柱に直角方向からアルゴンなどのキヤリアガスでプラ
    ズマ柱の先端部を直角方向に曲げて金属触媒細線を高温化して、パターンに接し
    てあるいは金属触媒が完全に粒子化した際は基板に接してカーボンナノチュー
    ブもしくは同素体でカーボンナノフフアイバー、ホイスカーを合成する方法。
JP2004043930A 2004-02-20 2004-02-20 レーザ光によるカーボンナノチューブの合成 Pending JP2005231952A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043930A JP2005231952A (ja) 2004-02-20 2004-02-20 レーザ光によるカーボンナノチューブの合成

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043930A JP2005231952A (ja) 2004-02-20 2004-02-20 レーザ光によるカーボンナノチューブの合成

Publications (1)

Publication Number Publication Date
JP2005231952A true JP2005231952A (ja) 2005-09-02

Family

ID=35015296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043930A Pending JP2005231952A (ja) 2004-02-20 2004-02-20 レーザ光によるカーボンナノチューブの合成

Country Status (1)

Country Link
JP (1) JP2005231952A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025393A1 (ja) * 2004-08-31 2006-03-09 Japan Science And Technology Agency ナノスケールの低次元量子構造体の製造方法、及び、当該製造方法を用いた集積回路の製造方法
US7858147B2 (en) * 2008-01-31 2010-12-28 National Tsing Hua University Interconnect structure and method of fabricating the same
JP2015509152A (ja) * 2012-01-20 2015-03-26 フリー フォーム ファイバーズ リミテッド ライアビリティ カンパニー 高強度セラミック繊維および製造方法
JP2016216277A (ja) * 2015-05-15 2016-12-22 住友電気工業株式会社 カーボンナノ構造体の製造方法
US10676391B2 (en) 2017-06-26 2020-06-09 Free Form Fibers, Llc High temperature glass-ceramic matrix with embedded reinforcement fibers
KR102230032B1 (ko) * 2019-10-28 2021-03-19 한국과학기술연구원 질화붕소 나노튜브 제조 시스템
US11362256B2 (en) 2017-06-27 2022-06-14 Free Form Fibers, Llc Functional high-performance fiber structure
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)
US12006605B2 (en) 2019-09-25 2024-06-11 Free Form Fibers, Llc Non-woven micro-trellis fabrics and composite or hybrid-composite materials reinforced therewith

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025393A1 (ja) * 2004-08-31 2006-03-09 Japan Science And Technology Agency ナノスケールの低次元量子構造体の製造方法、及び、当該製造方法を用いた集積回路の製造方法
JPWO2006025393A1 (ja) * 2004-08-31 2008-05-08 独立行政法人科学技術振興機構 ナノスケールの低次元量子構造体の製造方法、及び、当該製造方法を用いた集積回路の製造方法
US7858147B2 (en) * 2008-01-31 2010-12-28 National Tsing Hua University Interconnect structure and method of fabricating the same
JP2015509152A (ja) * 2012-01-20 2015-03-26 フリー フォーム ファイバーズ リミテッド ライアビリティ カンパニー 高強度セラミック繊維および製造方法
US10047015B2 (en) 2012-01-20 2018-08-14 Free Form Fibers, Llc High strength ceramic fibers and methods of fabrication
US10882749B2 (en) 2012-01-20 2021-01-05 Free Form Fibers, Llc High strength ceramic fibers and methods of fabrication
JP2016216277A (ja) * 2015-05-15 2016-12-22 住友電気工業株式会社 カーボンナノ構造体の製造方法
US10676391B2 (en) 2017-06-26 2020-06-09 Free Form Fibers, Llc High temperature glass-ceramic matrix with embedded reinforcement fibers
US11362256B2 (en) 2017-06-27 2022-06-14 Free Form Fibers, Llc Functional high-performance fiber structure
US12006605B2 (en) 2019-09-25 2024-06-11 Free Form Fibers, Llc Non-woven micro-trellis fabrics and composite or hybrid-composite materials reinforced therewith
KR102230032B1 (ko) * 2019-10-28 2021-03-19 한국과학기술연구원 질화붕소 나노튜브 제조 시스템
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)

Similar Documents

Publication Publication Date Title
JP5140989B2 (ja) 単層カーボンナノチューブヘテロ接合の製造方法および半導体素子の製造方法
RU2483022C2 (ru) Способ изготовления функционализированной фуллеренами углеродной нанотрубки, композиционный материал, толстая или тонкая пленка, провод и устройство, выполненные с использованием получаемых нанотрубок
US7628974B2 (en) Control of carbon nanotube diameter using CVD or PECVD growth
Terranova et al. The world of carbon nanotubes: an overview of CVD growth methodologies
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
US7625544B2 (en) Method for manufacturing carbon nanotubes
US20070287202A1 (en) Method for Producing Nano-Scale Low-Dimensional Quantum Structure, and Method for Producing Integrated Circuit Using the Method for Producing the Structure
JP2005075725A (ja) カーボンナノチューブ構造体及びその製造方法とそれを応用した電界放出素子及び表示装置
US20040036403A1 (en) Fabrication method of carbon nanotubes
US20040191158A1 (en) Carbon nanotube-based device and method for making the same
JP4979296B2 (ja) カーボンナノチューブの製造方法
US7744958B2 (en) Method for making carbon nanotube-based device
JP4670640B2 (ja) カーボンナノチューブの製造方法、並びにカーボンナノチューブ構造体を用いた素子、及び配線
JP2005231952A (ja) レーザ光によるカーボンナノチューブの合成
Il’in et al. Vertically aligned carbon nanotubes production by PECVD
JP2003277029A (ja) カーボンナノチューブ及びその製造方法
Bonard et al. Influence of the deposition conditions on the field emission properties of patterned nitrogenated carbon nanotube films
US20240199425A1 (en) Method for mass synthesis of carbon nanotubes and carbon nanotubes synthesized thereby
JP2004182537A (ja) ナノカーボン材料配列構造の形成方法
US7718224B2 (en) Synthesis of single-walled carbon nanotubes
JP2012140268A (ja) カーボンナノチューブ生成用基材の判定方法およびカーボンナノチューブの製造方法
JP2002080211A (ja) カーボンナノチューブの製造方法
KR100707199B1 (ko) H2o 플라즈마를 이용한 단일벽 탄소나노튜브의 저온성장방법
Yun et al. Converting carbon nanofibers to carbon nanoneedles: catalyst splitting and reverse motion
JP2009046325A (ja) カーボンナノチューブおよびその製造方法