JP2005229758A - System for managing energy consumption - Google Patents

System for managing energy consumption Download PDF

Info

Publication number
JP2005229758A
JP2005229758A JP2004037169A JP2004037169A JP2005229758A JP 2005229758 A JP2005229758 A JP 2005229758A JP 2004037169 A JP2004037169 A JP 2004037169A JP 2004037169 A JP2004037169 A JP 2004037169A JP 2005229758 A JP2005229758 A JP 2005229758A
Authority
JP
Japan
Prior art keywords
control
data
temperature
energy consumption
management server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004037169A
Other languages
Japanese (ja)
Inventor
Koji Yoshida
幸治 吉田
Masami Usui
雅実 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYRELL EXPRESS KK
Original Assignee
TYRELL EXPRESS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYRELL EXPRESS KK filed Critical TYRELL EXPRESS KK
Priority to JP2004037169A priority Critical patent/JP2005229758A/en
Publication of JP2005229758A publication Critical patent/JP2005229758A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/128Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment involving the use of Internet protocol

Landscapes

  • Air Conditioning Control Device (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Selective Calling Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy consumption managing system for suppressing energy consumption, without impairing comfortableness. <P>SOLUTION: The energy consumption managing system is provided with a management server 10 for producing a control plan for energy consuming devices, such as an air conditioner 22; and a control server 12 for collecting information from the devices, transmitting the information to the management server, and controlling the devices, based on the control plan. The management server periodically transmits plan information within a predetermined period to the control server. The management server predicts the degree of busyness, from data indicating the degree of busy pressure and regional weather data, and creates the control plan from predicted values, measured values such as the temperature, setting values of the devices, and weather report data. The system accurately produces the control plan, and suppresses energy consumption to a minimum, without impairing comfort. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エネルギー消費管理システムに関するものであり、特に、統計処理に基づく最適化を図ることにより、快適性や要求される条件を損なわずにエネルギー消費を抑制するエネルギー消費管理システムに関するものである。   The present invention relates to an energy consumption management system, and more particularly to an energy consumption management system that suppresses energy consumption without deteriorating comfort and required conditions by optimization based on statistical processing. .

従来、店舗や事務所等における空調機器等の消費電力を管理するシステムが提案されている。例えば下記の特許文献1には、コンビニ等の店舗内の各種機器を自立分散方式で省電力制御する技術が開示されている。
特開2002−27686号公報
Conventionally, a system for managing power consumption of an air conditioner or the like in a store or an office has been proposed. For example, Patent Document 1 below discloses a technology for controlling power saving of various devices in a store such as a convenience store by an independent distribution method.
JP 2002-27686 A

上記した従来の電力制御システムにおいては、過去の運転実績データや気象データ等に基づく統計処理による最適化が図られていないという問題点があった。また、主観的な快適感を満足しつつ、エネルギー消費を抑制するという観点が考慮されておらず、無駄なエネルギーを消費しているという問題点もあった。   The above-described conventional power control system has a problem that optimization by statistical processing based on past operation record data, weather data, or the like is not achieved. In addition, there is a problem that wasteful energy is consumed because the viewpoint of suppressing energy consumption is not considered while satisfying subjective comfort.

本発明は、上記した課題を解決することを目的とし、このために、本発明のエネルギー消費管理システムは、少なくとも制御サーバー手段から得た情報に基づき、エネルギー消費機器の制御計画を作成する管理サーバー手段と、少なくともエネルギー消費機器から情報を収集して前記管理サーバー手段に送り、前記制御計画に基づいてエネルギー消費機器を制御する制御サーバー手段とを備えたことを主要な特徴とする。また、前記管理サーバー手段は、所定期間分の計画情報を周期的に前記制御サーバー手段へ送信する点にも特徴がある。   The present invention aims to solve the above-described problems, and for this purpose, the energy consumption management system of the present invention is a management server that creates a control plan for energy consuming equipment based on at least information obtained from the control server means. And a control server means for collecting information from at least the energy consuming equipment and sending the information to the management server means to control the energy consuming equipment based on the control plan. Further, the management server means is characterized in that the plan information for a predetermined period is periodically transmitted to the control server means.

更に、前記制御サーバー手段は、繁忙度合いを現わすデータを収集して管理サーバーへ送る繁忙度合いデータ収集手段を備え、前記管理サーバ手段は、少なくとも繁忙度合いを現わすデータおよび該当地域の気象データから繁忙度合いの予想データを生成する繁忙度合い予想手段と、前記繁忙度合いの予想データ、制御対象装置の計測値および設定値データ、気象予報データにより制御計画を生成する制御計画生成手段とを備えた点にも特徴がある。   Further, the control server means comprises busy degree data collecting means for collecting data indicating the busy degree and sending it to the management server, wherein the management server means comprises at least the data showing the busy degree and the weather data of the area. A point comprising busy degree predicting means for generating predicted data of busy degree, and control plan generating means for generating a control plan from the predicted data of busy degree, measured value and set value data of the control target device, and weather forecast data There are also features.

本発明のエネルギー消費管理システムは上記のような特徴によって、精度の高い制御計画を作成することができ、快適性や必要とされる性能を損なわずにエネルギー消費を最低限に抑制することができるという効果がある。   The energy consumption management system of the present invention can create a highly accurate control plan by the above-described features, and can suppress energy consumption to the minimum without impairing comfort and required performance. There is an effect.

本発明のエネルギー消費管理システムは、エネルギー消費量を極小にすることと、制御対象装置の性能の範囲内で目標とする室温等を許容範囲に保つことをコンピュータシステムによる、エネルギー最適需要予測・自動制御運転により実現するシステムである。最適制御を実現するには、制御対象装置の設置箇所ごとの以下のデータをコンピュータシステムで処理する。   The energy consumption management system according to the present invention uses a computer system to optimize energy demand prediction and automatically by minimizing energy consumption and keeping the target room temperature within an allowable range within the performance range of the control target device. This system is realized by controlled operation. In order to realize optimal control, the computer system processes the following data for each installation location of the device to be controlled.

(1)繁忙度合いを現わす時系列の数値データ
例えば以下のようなものを採用可能である。(イ)店舗POSデータの場合:客数/アイテム別販売数。(ロ)予約データの場合:予約客数。(ハ)設置箇所近傍の人体通過センサーのカウント値。(ニ)設置箇所近傍の扉の開閉カウント値。この他、適用箇所の繁忙を現わす指標であれば、どんな時系列データでも利用可能である。
(1) Time-series numerical data showing the degree of busyness For example, the following can be adopted. (A) In the case of store POS data: number of customers / number of items sold by item. (B) For reservation data: Number of reservation customers. (C) The count value of the human body passage sensor near the installation location. (D) Open / close count value of the door near the installation location. In addition, any time-series data can be used as long as it is an index showing the busyness of the application location.

(2)制御装置の計測値/設定値の時系列履歴
(イ)制御装置のコントロール対象媒体の計測値。例えば、空調機の場合は室温、冷蔵庫の場合は庫内温度、温水器の場合は湯温等。(ロ)制御装置の運転履歴。例えば、空調機/冷蔵庫/温水器の場合は設定温度とその投入時間等。
(2) Time series history of measured value / set value of control device (a) Measured value of control target medium of control device. For example, room temperature for an air conditioner, interior temperature for a refrigerator, hot water temperature for a water heater, etc. (B) Operation history of the control device. For example, in the case of an air conditioner / refrigerator / water heater, the set temperature and its input time.

(3)該当地域の気象データ
(イ)実績の気象状態(晴れ、曇り、雨等)をコード化して時系列で履歴化したもの。(ロ)実績の外気温を時系列で履歴化したもの。(ハ)天気予報の気象状態(晴れ、曇り、雨等)をコード化して時系列で現わしたもの。(ニ)天気予報の外気温を時系列で現わしたもの。
(3) Meteorological data of the corresponding area (a) Data of actual meteorological conditions (clear, cloudy, rain, etc.) encoded and time-historyed. (B) Time-series history of actual outside temperatures. (C) The weather condition (sunny, cloudy, rain, etc.) of the weather forecast is coded and displayed in time series. (D) A time series showing the outside temperature in the weather forecast.

上記データを装置別にデータベースに蓄積し、これを元に多変量解析の統計分析により、最も効果的なデータ解析方法を判定し、この解析方法により、求めたい日時の繁忙度合いの予想データを生成し、これと該当の気象予報データを合わせて、制御装置の運転結果のシュミレーションを行い、最適な装置制御計画の生成を行う。   The above data is stored in a database for each device, and based on this, the most effective data analysis method is determined by statistical analysis of multivariate analysis, and this analysis method generates forecast data for the degree of busyness of the desired date and time. Combine this with the relevant weather forecast data to simulate the operation results of the control device and generate an optimal device control plan.

本システムは、対象データの蓄積と統計解析を行う部位(管理サーバー)と、対象装置の制御運転/運転履歴取得/制御装置のコントロール対象媒体の計測値取得の部位(制御サーバー=ゲートウェイサーバー)の2つの基本機能により構成されている。   This system consists of target data accumulation and statistical analysis (management server), and target device control operation / operation history acquisition / control device control target medium measurement value acquisition part (control server = gateway server). It consists of two basic functions.

この2つの基本機能を対象装置の設置されている箇所のLAN(ローカルエリアネットワーク)上に構築することも、対象データの蓄積と統計解析を行う機能を装置設置箇所の外部に設け、各種通信網によるデータ交換により実現することも可能である。基本機能を装置設置箇所と外部に分けた場合の通信手段は、以下を可能とする。(イ)公衆電話回線使用の地点間通信。(ロ)インターネット網利用のTCP/IPプロトコルでの通信。   These two basic functions can be constructed on the LAN (local area network) where the target device is installed, or the functions for storing the target data and performing statistical analysis are provided outside the device installation location. It is also possible to realize this by exchanging data with The communication means when the basic function is divided into the device installation location and the outside enables the following. (B) Point-to-point communication using public telephone lines. (B) Communication using the Internet / TCP / IP protocol.

解析対象データのデータベースへの時系列での蓄積により、以下のデータ解析を実現する。(イ)外気温から季節解釈(春夏秋冬)(ロ)装置容量の違いによる特性。(ハ)年変化による運転状態の変化。(ニ)繁忙度合いの変化。例として、装置設置箇所が飲食業の場合は、店舗の流行り具合の把握等。   The following data analysis is realized by accumulating the analysis target data in the database in time series. (B) Seasonal interpretation from outside temperature (spring, summer, autumn and winter) (b) Characteristics due to differences in equipment capacity. (C) Changes in operating conditions due to changes over time. (D) Changes in the degree of busyness. As an example, if the device installation location is a restaurant business, grasp the fashion of the store.

制御対象装置を複数組み合わせて利用する場合、例として、同一空間に設置の空調機等は、装置毎に同時系列のデータを分析する事により、装置どうしの運転時の相関関係が導きだされ、装置群による効率的な制御計画が生成される。   When using a combination of multiple devices to be controlled, for example, air conditioners installed in the same space can be correlated with each other during operation by analyzing simultaneous data for each device. An efficient control plan by the device group is generated.

制御計画の時系列の分解能をパラメータとして、対象装置の種類によって、適切な値に設定する。例えば、貯湯式業務用温水器は3時間間隔、空調機は5分間隔等とする。また業種業態別で、時系列データの同一傾向が顕著に統計解析出来る区分けを選定し、利用する。   Using the time series resolution of the control plan as a parameter, an appropriate value is set according to the type of the target device. For example, a hot water storage type commercial water heater is set at intervals of 3 hours, and an air conditioner is set at intervals of 5 minutes. In addition, by category, select a category that can statistically analyze the same tendency of time-series data and use it.

装置設置箇所の繁忙度合い・装置の計測値/設定値の時系列履歴が取得でき、装置の制御(例として、運転のON/OFF、運転状態の強弱等)が可能であれば、本発明の制御方式は、特に制御対象装置の種類は限定されず、広くの業種業態で使用の業務機器に対して効率運転制御が可能である。   If the degree of busyness of the device installation location and the time series history of the measured value / set value of the device can be acquired and the device can be controlled (for example, ON / OFF of driving, strength of driving state, etc.), The type of the control target device is not particularly limited, and efficient operation control is possible for business equipment used in a wide variety of business categories.

以下、空調機の制御を行う場合について説明する。空調調和での快適性の要因には、動機付け、満足感などの内的要因と、雰囲気、環境要因(温度、湿度、気流)等の外的要因があり、本システムでは外的要因の環境要因(温度、気流)を司る。そして、下記の感覚器官の反応の意図を持って、環境要因を積極的に変化させる。
(イ)心理的反応(主観データ):例えば体感温度、精神性発汗(生理的反応)、主観評価など。
(ロ)生理的反応(生理データ):体温、心拍、筋活動、発汗、血圧、代謝など。
Hereinafter, the case of controlling the air conditioner will be described. Factors of comfort in air conditioning harmony include internal factors such as motivation and satisfaction, and external factors such as atmosphere and environmental factors (temperature, humidity, airflow). Controls factors (temperature, airflow). And the environmental factor is changed positively with the intention of the following sensory organ reaction.
(B) Psychological reaction (subjective data): for example, temperature of sensation, mental sweating (physiological reaction), subjective evaluation, etc.
(B) Physiological response (physiological data): body temperature, heart rate, muscle activity, sweating, blood pressure, metabolism, etc.

代謝の多い個体に対し、心理的反応の体感温度に対し積極的に介入する。代謝の少ない個体に対しては、生理的反応に対しての環境要因を適切に調整する(代謝の多い男性/代謝の少ない女性間の差異の吸収など)。   Actively intervene in the temperature of the psychological reaction for individuals with high metabolism. For individuals with low metabolism, adjust environmental factors to physiological responses appropriately (such as absorbing differences between men with high metabolism / women with low metabolism).

心理的反応の体感温度のコントロールを実現するために冷房時の気流変化の発生により、体感温度の変化を実現する。気流変化の方法としては、例えば空調機の設定温度を変化させる。空調機の風量を変化させる等の方法がある。   In order to realize the control of the sensory temperature of the psychological reaction, the change of the sensory temperature is realized by the generation of airflow changes during cooling. As a method for changing the airflow, for example, the set temperature of the air conditioner is changed. There are methods such as changing the air volume of the air conditioner.

次に、本発明システムでの設定温度制御について説明する。従来の空調機自立制御の設定温度制御は、ターゲット温度と吸い込み口温度センサー値との差異を感知し、プラスマイナス1度の範囲でサーモON/OFFの制御を行っている。従って、温度変化は少なく、本システムで有効な温度の高低差を実現していない。   Next, set temperature control in the system of the present invention will be described. The conventional temperature control of the air conditioner independent control senses the difference between the target temperature and the inlet temperature sensor value, and controls the thermo ON / OFF within a range of plus or minus 1 degree. Therefore, the temperature change is small and the effective temperature difference is not realized in this system.

これに対し、本発明のシステムでの設定温度制御は、5分後の吸い込み口温度センサー値を予め予想し、このポイントの直近10分(高温5分間、低温5分間の2コマを1セットで取り扱う)に投入する、適切な設定温度を予め予想し、その設定温度に制御している。直近10分間の間に、積極的な設定温度変化(平均2℃の幅)の制御を高温5分間、低温5分間行う。短期の間隔で、温度変化幅を実現する制御を行うことで、主観評価を最大に誘導する。冷房時は、発汗→蒸発の生理サイクルを誘導し、快適な涼感を導く。   On the other hand, the preset temperature control in the system of the present invention predicts the suction port temperature sensor value after 5 minutes in advance, and the set of 2 frames of the last 10 minutes (high temperature 5 minutes, low temperature 5 minutes) at this point. An appropriate set temperature is estimated in advance and is controlled to the set temperature. During the latest 10 minutes, aggressive control of the set temperature change (average 2 ° C. width) is performed for 5 minutes at high temperature and 5 minutes at low temperature. By performing control that realizes the temperature change width at short-term intervals, the subjective evaluation is maximized. During cooling, it induces a physiological cycle of sweating → evaporation, leading to a comfortable cool feeling.

次に、噴出し風量の制御について説明する。従来の空調機自立制御の場合は、人的に初期設定した値が継続される。本システムでは、運転状態が送風時に風量の最強指定を行う。また、冷房時の設定温度変化指定で温度幅の低温指定時に風量の最強指定を行う。この制御により、気流変化の主観評価を最大に誘導する。暖房時は、温風の気流変化がダイレクトに人体に影響するのは不快に感じるので、噴出し風量の制御は行わない。   Next, control of the amount of blown air will be described. In the case of conventional air conditioner self-sustained control, the value initially set manually is continued. In this system, the strongest designation of the air volume is performed when the operating state is blowing. In addition, the strongest air volume is specified when the temperature range is specified as a low temperature by specifying the set temperature change during cooling. By this control, the subjective evaluation of airflow change is maximally induced. During heating, since it feels uncomfortable that a change in the flow of warm air directly affects the human body, the amount of blown air is not controlled.

室温を指定の温度状態に持続させる機能については、本システムの制御は従来の空調機自立制御の方式である設定温度狙いのサーモON/OFFと同じであるが、室温を指定温度へ至らせる時間の気流変化の制御に以下の意図を持たせ、物理的な室温は、通常制御の場合に比べ抑え目に制御されているにも関わらず、満足のいく空調調和空間を実現する。   As for the function to keep the room temperature at the specified temperature state, the control of this system is the same as the thermo ON / OFF for the preset temperature that is the conventional air conditioner independent control method, but the time to bring the room temperature to the specified temperature. The following intention is given to the control of the air flow change of the air, and a satisfactory air conditioning harmonious space is realized even though the physical room temperature is controlled by the eyes compared to the case of the normal control.

・省エネルギー効果目的:
設定温度の平均2℃幅の設定変更を行うので、高温指定時にコンプレッサの運転が停止する場合があり、結果、機器の間欠運転が誘発される。電力使用量ピーク期には、設定温度高温指定時に、コンプレッサ運転が確実に停止する送風モードへの変更をかけ、間欠運転の実施によるピークカット制御を選択することができる。この時、複数機器の協調制御を行い、間欠運転のON/OFFを機器間で交互に行い、一時的に、稼動空調機の台数を半数にし、快適度の低下を最小限に抑え、装置全体の合計電力使用量の抑制も実現する制御を行う。
・ Energy saving effect purpose:
Since the setting change of the average temperature of 2 ° C. is performed, the operation of the compressor may be stopped when a high temperature is specified, and as a result, intermittent operation of the device is induced. In the peak period of power consumption, when the set temperature is high, a change to the air blowing mode in which the compressor operation is surely stopped can be applied, and the peak cut control by the intermittent operation can be selected. At this time, coordinated control of multiple devices is performed, intermittent operation ON / OFF is alternately performed between devices, temporarily halving the number of operating air conditioners, minimizing the decrease in comfort level, and the entire device Control is also performed to reduce the total power consumption.

・快適度目的:
室温を指定温度へ至らせる時間の気流変化の制御に、カオス理論による1/fゆらぎ等の気流変化を重ねて制御し、快適度向上のファクターを盛り込むことが可能となる。また、人体の生理反応で、汗が蒸発することで人間は涼感を味わう。冷房運転時には、空調機の設定温度の強弱や、冷房の間欠運転により、室内温度の上昇する時点を設ける事により、発汗を促す間を与え、自立神経による発汗→蒸発の繰り返しを誘導し、健康的な涼感を導く。
・ Comfort level:
It is possible to incorporate a factor for improving the comfort level by controlling the airflow change during the time to bring the room temperature to the specified temperature by controlling the airflow change such as 1 / f fluctuation by the chaos theory. In addition, humans enjoy a cool feeling as the sweat evaporates due to the physiological reaction of the human body. During cooling operation, by setting the time when the indoor temperature rises due to the strength of the air conditioner's set temperature and intermittent cooling operation, it gives a period to encourage sweating, and induces repeated sweating → evaporation by self-sustaining nerves. A sense of coolness.

業種業態別時系列解析ブロック区分け自動作成処理機能:
業種業態別の精度の高いシュミレーション結果を得るために、業態別のデータ処理方法のテンプレート作成機能を実現する。
図8は、解析ブロックの区分け方法を示す説明図である。まず、外気温状態の変化に対する区分けを行う。即ち、該当地域の終日の外気温差により、時間帯を区分けする。日の出後暫時後から日没までの昼間と、外気温が顕著に低下する日没後の夜間帯等を分ける。
Time series analysis block classification automatic creation processing function by industry type:
In order to obtain highly accurate simulation results for each business category, a template creation function for the data processing method for each business category is implemented.
FIG. 8 is an explanatory diagram showing a method for dividing an analysis block. First, classification is performed for changes in the outside air temperature state. In other words, the time zone is divided according to the difference in the outside temperature throughout the day in the corresponding area. The daytime from sunrise to sunset is divided into the nighttime zone after sunset when the outside air temperature drops significantly.

次に、繁忙度合い(POSデータの客数やアイテム別販売数)による区分けを行う。即ち、飲食店におけるランチタイムや一時休業時間、ディナータイムの営業時間等上記の外気温要因と繁忙度合い要因の区分けの組み合わせ毎に、制御機器別のエネルギー使用相関を調査し、高い精度の時間帯別相関が得られる区分けを決定する。   Next, classification is performed according to the degree of busyness (number of customers in POS data and number of items sold by item). In other words, for each combination of outside temperature factor and busyness factor such as lunchtime, temporary closing time, dinnertime business hours, etc. in restaurants, the energy usage correlation by control device is investigated, and a highly accurate time zone Determine the divisions that will yield different correlations.

図8においては、閉店、日中、ランチ、一時休業、日中、ディナー、夜間、閉店の8ブロックに区分けされる。そして、日中、ランチ、一時休業、夜間、ディナーの各解析ブロック毎に、繁忙度合いデータの要素毎(POSデータのアイテム別販売数や客数、飲食店POSの場合、注文数と注文時の該当席着席数)に重回帰分析し、重相関係数が大きい組み合わせである最適重相関式を選定する。   In FIG. 8, it is divided into 8 blocks of closing, daytime, lunch, temporary closing, daytime, dinner, nighttime, closing. And for each analysis block of daytime, lunch, temporary suspension, nighttime, dinner, for each element of busyness data (number of sales and customers by item of POS data, in the case of restaurant POS, the number of orders and the corresponding at the time of ordering The number of seats) is subjected to multiple regression analysis, and an optimal multiple correlation equation that is a combination having a large multiple correlation coefficient is selected.

図9は、アイテム別の販売数によるブロック区分け方法を示す説明図である。各解析ブロック毎に販売アイテム毎の重相関式を算出、相関が他のデータより高い場合は、刺身販売数、鍋物販売数などが選定される。   FIG. 9 is an explanatory diagram showing a block sorting method based on the number of items sold. For each analysis block, a multiple correlation formula is calculated for each sales item. If the correlation is higher than other data, the number of sashimi sales, the number of pots sold, etc. are selected.

上記が、業態別の実業運用と機器のエネルギー使用相関を精度良く算出できる業態別の時系列毎解析パターンテンプレートとなる。実業の店舗運用状況が加味されたパターンとなっている。このパターンテンプレートは以後同業種における初期パターンとして利用する。以下店舗の空調装置を制御する実施例について説明する。   The above is a time-series analysis pattern template for each business type that can accurately calculate the business operation for each business type and the energy usage correlation of the device. It is a pattern that takes into account the business operation status of business. This pattern template is used as an initial pattern for the same industry. An embodiment for controlling an air conditioner in a store will be described below.

図1は、本発明のエネルギー管理システムの実施例のシステム構成を示すブロック図である。インターネット11には、データを収集して制御計画を作成する管理サーバー10、店舗14等において制御計画に基づいて空調機器等を制御するゲートウェイ(制御)サーバー12、任意の地域の気象情報を提供可能な公知の気象情報提供システム13等が接続されている。   FIG. 1 is a block diagram showing a system configuration of an embodiment of the energy management system of the present invention. The Internet 11 can provide the management server 10 that collects data and creates a control plan, the gateway (control) server 12 that controls air-conditioning equipment and the like based on the control plan in the store 14, and the like, and weather information in any region A known weather information providing system 13 or the like is connected.

ゲートウェイサーバー12は、LonWorks(登録商標)等の公知の監視制御用ネットワーク23用のインターフェイス回路、イーサネット(登録商標)等の公知のLAN41用のインターフェイス回路、RS-232Cなどの公知の通信回線用のインターフェイス回路を備えている。管理サーバー10およびゲートウェイサーバー12のハードウェアは、市販のサーバーに必要に応じてインターフェイス回路を装着することにより実現できる。   The gateway server 12 is an interface circuit for a known monitoring control network 23 such as LonWorks (registered trademark), a known interface circuit for LAN 41 such as Ethernet (registered trademark), and a known communication line such as RS-232C. An interface circuit is provided. The hardware of the management server 10 and the gateway server 12 can be realized by attaching an interface circuit to a commercially available server as necessary.

複数の空調装置22は、公知の空調機器集中リモコンネットワーク24によって、インターフェイス(I/F)アダプタ20に接続されている。ゲートウェイサーバー12は、監視制御ネットワーク23、I/Fアダプタ20を介して各空調装置22の監視、制御が可能である。   The plurality of air conditioners 22 are connected to the interface (I / F) adapter 20 by a known air conditioner centralized remote control network 24. The gateway server 12 can monitor and control each air conditioner 22 via the monitoring control network 23 and the I / F adapter 20.

また、複数の冷蔵庫31が、RS-485などの監視制御バス32、公知のコントローラ30、RS-232Cなどの通信回線33を介してゲートウェイサーバー12と接続されており、ゲートウェイサーバー12は、各冷蔵庫31の監視、制御が可能である。   A plurality of refrigerators 31 are connected to the gateway server 12 via a monitoring control bus 32 such as RS-485, a known controller 30, and a communication line 33 such as RS-232C. The gateway server 12 is connected to each refrigerator. 31 can be monitored and controlled.

更に、複数のPOS40が公知のLAN41を介してゲートウェイサーバー12と接続されており、ゲートウェイサーバー12は、各POS40から客数やアイテム別販売数等の情報収集が可能である。   Further, a plurality of POSs 40 are connected to the gateway server 12 via the known LAN 41, and the gateway server 12 can collect information such as the number of customers and the number of items sold from each POS 40.

図2は、本発明の管理サーバー処理の内容を示すフローチャートである。S10においてはゲートウェイサーバー12から制御計画情報の要求が有ったか否かを判定し、判定結果が肯定の場合にはS11に移行する。S11においてはゲートウェイサーバー12に制御計画データを送信する。S12においては、ゲートウェイサーバーから運転履歴、気温等の測定値情報を受信し、運転履歴、測定値データを保存する。   FIG. 2 is a flowchart showing the contents of the management server process of the present invention. In S10, it is determined whether or not there is a request for control plan information from the gateway server 12. If the determination result is affirmative, the process proceeds to S11. In S11, the control plan data is transmitted to the gateway server 12. In S12, measurement value information such as operation history and temperature is received from the gateway server, and operation history and measurement value data are stored.

S13においては気象情報取得時刻になったか否かが判定され、判定結果が肯定の場合にはS14に移行する。S14においては公知の気象情報提供システム13から該当店舗のある地域の気象実績データを取得し、気象実績データとして保存する。S15においては同様に該当地域の気象予報データを取得する。そして、気象予報データの時系列データを作成する。   In S13, it is determined whether or not the weather information acquisition time has come. If the determination result is affirmative, the process proceeds to S14. In S14, the weather result data of the area where the store is located is acquired from the well-known weather information providing system 13 and stored as weather result data. In S15, the weather forecast data for the corresponding area is acquired in the same manner. Then, time series data of weather forecast data is created.

即ち、取得した天気予報データより、該当日の最低気温を午前五時の時点とし、該当日の最高気温を午後2時の時点とし、該当日翌日の最低気温を該当日翌日の午前五時の時点とした解釈で、時系列途中の気温値をスプライン補完により、5分毎に算出し、気象予報データとして保存する。   That is, from the acquired weather forecast data, the lowest temperature of the day is 5:00 am, the highest temperature of the day is 2:00 pm, and the lowest temperature of the next day is 5:00 am Based on the interpretation of the time, temperature values in the middle of the time series are calculated every 5 minutes by spline interpolation and stored as weather forecast data.

S16においては該当日最初の処理であるか否かが判定され、判定結果が肯定の場合にはS17に移行する。S17においてはゲートウェイサーバー12から繁忙度合い実績データを取得し、繁忙実績データとして保存する。S18においては過去の繁忙実績データから繁忙度合い予想データを生成し、繁忙予想データとして保存する。   In S16, it is determined whether or not the process is the first process on the corresponding day. If the determination result is affirmative, the process proceeds to S17. In S17, the busy degree record data is acquired from the gateway server 12, and stored as busy record data. In S18, busy degree prediction data is generated from past busy record data and stored as busy prediction data.

ここで、繁忙度合い数値の予想値の算出について説明する。まず、POSデータでの所定時間毎の客数や特定アイテムの販売数、飲食店POSシステムの場合、販売時点ではなく、注文時点での時間毎の客数や特定アイテムの販売数、販売行為が行わられない空間(市役所の受付窓口等)では人体通過センサーの時間毎のカウント値や、入り口ドアの開閉回数等、対象空間の繁忙度合いあるいは気温に相関する取得可能な数値を予め履歴データとして蓄積しておく。   Here, calculation of the expected value of the busyness value will be described. First, in the case of the POS data, the number of customers per specific time, the number of sales of specific items, and the restaurant POS system, the number of customers per time at the time of ordering, the number of sales of specific items, and sales activities are performed at the time of ordering. In non-existent spaces (city hall reception desks, etc.), accumulating numerical values that correlate with the degree of busyness or temperature of the target space, such as the count value of the human body passage sensor per hour and the number of times of opening and closing the entrance door, are accumulated in advance as history data deep.

繁忙度合いの数値化データを取得できるシステムとの連動が実現できない場合は、繁忙度合いを表現するなんらかの尺度(販売行為が関わる機器設置箇所の場合は、売上げ金額等、事務所等では、出勤人数等)をゲートウェイサーバー12のデータエントリ画面から手動で例えば毎日入力することで実現する。   If linkage with a system that can obtain digitized data on the degree of busyness is not possible, some measure to express the degree of busyness (in the case of equipment installation where sales activities are involved, the amount of sales, etc. ) Is manually input from the data entry screen of the gateway server 12, for example, every day.

繁忙度合いの数値化係数のグループ範囲は、同じ建屋内で階層等、対象機器の運転結果への影響が及ぼされる空間をグループでまとめる。(物販店の場合、POSでの会計がフロア毎の場合、売り場別に機器に関連つける)そして、対象日から過去13週の対象機器の設置フロアー毎のデータを取得する。時系列の分解能を例えば30分単位とし、取得の実績データをまとめる。   The grouping range of the quantification coefficient for the degree of busyness is a grouping of spaces that have an influence on the operation result of the target device, such as a hierarchy, in the same building. (In the case of a merchandise store, when accounting at the POS is for each floor, it is related to the equipment for each sales floor.) Then, data for each installation floor of the target equipment for the past 13 weeks from the target date is acquired. The time series resolution is set to 30 minutes, for example, and the obtained result data is collected.

次に、以下の要素の重回帰分析を行う。即ち、従属変数を「ターゲットの時刻から30分後の間の繁忙度合い数値」とし、説明変数を「該当日の曜日のISOコード」および「気象状態をコード登録したもの」とし、重相関式より、該当日の気象予報の天気状態と曜日により、繁忙度合い数値の予想値算出を行う。過去13週のデータ蓄積が足りない場合で、算出結果の重相関係数が、0.6以下の場合には繁忙度合い数値と気象状態のみで相関結果を得る。   Next, a multiple regression analysis of the following elements is performed. In other words, the dependent variable is “the value of busyness between 30 minutes after the target time”, the explanatory variables are “the ISO code of the day of the day” and “the meteorological state code registration”, and from the multiple correlation equation Based on the weather condition of the weather forecast and the day of the week, the predicted value of the busyness value is calculated. When the data accumulation for the past 13 weeks is insufficient and the multiple correlation coefficient of the calculation result is 0.6 or less, the correlation result is obtained only by the busyness value and the weather condition.

重相関係数が、0.6以下の場合、標本時間帯毎で、曜日コード別、気象コード別の幾何平均値を算出し、予想値として使用する。美容院等で予約システムが稼動の場合は、対象日時の予約客数を繁忙度合いの係数としてそのまま利用する。なお、30分毎の予想値を更に5分毎に分解し、以後相関算出に使用するデータの分解能に合わせておく。   When the multiple correlation coefficient is 0.6 or less, the geometric mean value for each day code and each weather code is calculated for each sampling time zone and used as an expected value. When the reservation system is in operation at a beauty salon or the like, the number of reservation customers at the target date and time is used as it is as a coefficient of busyness. Note that the predicted value every 30 minutes is further decomposed every 5 minutes, and is adjusted to the resolution of data used for correlation calculation thereafter.

S19においては後述する処理によって装置別にデータ相関性を統計解析し、相関解析データとして保存する。S20においては気象予報に変更が有ったか否かが判定され、判定結果が肯定の場合にはS21に移行する。S21においては各種実績、予想データに基づき、後述する処理によって制御計画データを生成し、制御計画データとして保存する。   In S19, the data correlation is statistically analyzed for each apparatus by the process described later, and stored as correlation analysis data. In S20, it is determined whether or not the weather forecast has been changed. If the determination result is affirmative, the process proceeds to S21. In S21, control plan data is generated by processing to be described later based on various achievements and predicted data, and stored as control plan data.

図3は、本発明のゲートウェイサーバー処理の内容を示すフローチャートである。S30においては制御データを取得する時刻になったか否かが判定され、判定結果が肯定の場合にはS31に移行する。S31においては管理サーバーから制御計画データを取得する。S32においては運転履歴情報および空調機器から収集した気温などの計測値を送信する。   FIG. 3 is a flowchart showing the contents of the gateway server process of the present invention. In S30, it is determined whether it is time to acquire control data. If the determination result is affirmative, the process proceeds to S31. In S31, control plan data is acquired from the management server. In S32, the measured values such as the operation history information and the temperature collected from the air conditioner are transmitted.

S33においては繁忙情報収集周期が到来したか否かが判定され、判定結果が肯定の場合にはS34に移行する。S34においては例えばPOS40から所定時間毎の客数や特定アイテムの販売数などの繁忙度合いデータを収集する。S35においては繁忙度合いデータを管理サーバーに送信する(実際には管理サーバーからの要求に応じて送信する)。   In S33, it is determined whether or not a busy information collection cycle has arrived. If the determination result is affirmative, the process proceeds to S34. In S34, for example, busyness data such as the number of customers per predetermined time and the number of sales of specific items is collected from the POS 40, for example. In S35, the busy degree data is transmitted to the management server (actually, it is transmitted in response to a request from the management server).

S36においては、例えば店舗の従業員による空調装置のオン、オフ操作が有ったか否かが判定され、判定結果が肯定の場合にはS37に移行し、装置ごとのオン、オフ情報を保存する。なお、本発明のシステムにおいてはオン操作された制御対象装置のみを制御する。   In S36, for example, it is determined whether or not an air conditioner on / off operation has been performed by a store employee. If the determination result is affirmative, the process proceeds to S37 to store on / off information for each device. . In the system of the present invention, only the control target device that is turned on is controlled.

S38においては例えば店舗の従業員による空調装置の設定温度、設定風量等の設定値の変更操作が有ったか否かが判定され、判定結果が肯定の場合にはS39に移行する。S39においては、操作から一定期間(例えば数十分)だけ手動操作による設定変更指示を優先して制御計画を修正する。   In S38, for example, it is determined whether or not an operation of changing the set values of the air conditioner, such as the set temperature and the set air volume, has been performed by a store employee. If the determination result is affirmative, the process proceeds to S39. In S39, the control plan is corrected by giving priority to a setting change instruction by manual operation for a certain period (for example, several tens of minutes) after the operation.

S40においては対象装置の制御周期(例えば空調装置では5分)が到来したか否かが判定され、判定結果が肯定の場合にはS41に移行する。S41においては対象装置から運転履歴情報を収集する。S42においては例えば空調装置から制御対象(気温)の計測値を収集する。S43においては制御計画データに基づき対象装置を制御する。制御内容は運転モード、設定温度、設定風量など、リモコンで設定可能な項目であり、各空調装置は設定された条件になるように自律動作する。この後S30に戻り、処理を繰り返す。   In S40, it is determined whether or not the control cycle of the target device (for example, 5 minutes for an air conditioner) has arrived. If the determination result is affirmative, the flow proceeds to S41. In S41, operation history information is collected from the target device. In S42, for example, measured values of the control target (temperature) are collected from the air conditioner. In S43, the target device is controlled based on the control plan data. The control contents are items that can be set by the remote controller, such as the operation mode, set temperature, and set air volume, and each air conditioner operates autonomously so as to satisfy the set conditions. Thereafter, the process returns to S30 and the process is repeated.

図4は、統計解析処理(S19)の内容を示すフローチャートである。S50においては、過去の所定期間(例えば過去13週)の装置毎、時系列解析ブロック毎、運転状態毎(空調機の場合、冷房・暖房・送風)の室温、外気温、設定温度、繁忙度合いデータを取得する。S51においては不良データを取り除く。即ち、相関精度を上げるために、制御機器の能力以上の負荷がかかっていて、機能していない状態時のデータを破棄する。例えば、空調機の猛暑の運転時で、該当設定温度で連続運転を行っていても室温が目標温度に至らず、逆に温度上昇してしまうような状態が連続している時のデータ等。   FIG. 4 is a flowchart showing the contents of the statistical analysis process (S19). In S50, the room temperature, the outside temperature, the set temperature, and the degree of busyness for each device in the past predetermined period (for example, the past 13 weeks), for each time series analysis block, and for each operation state (in the case of an air conditioner, cooling / heating / air blowing) Get the data. In S51, the defective data is removed. That is, in order to increase the correlation accuracy, the data when the load is higher than the capacity of the control device and is not functioning is discarded. For example, data when the air conditioner is operating in extreme heat and the room temperature does not reach the target temperature and the temperature rises conversely even if it is continuously operated at the set temperature.

S52においてはデータ数が最大件数以上か否かが判定され、判定結果が肯定の場合にはS53に移行する。S53においては時系列上の直近の最大件数データを取得する。S54においては、全ての説明変数要素の組み合わせについて重相関係数を算出する。即ち、以下の要素の重回帰分析を行う。   In S52, it is determined whether or not the number of data is equal to or greater than the maximum number. If the determination result is affirmative, the process proceeds to S53. In S53, the latest maximum number of data in the time series is acquired. In S54, multiple correlation coefficients are calculated for all combinations of explanatory variable elements. That is, a multiple regression analysis of the following elements is performed.

図10は、組み合わせ検査を行う15種類の説明変数を示す説明図である。
(1)従属変数:(イ)対象時刻から5分後の室温。
(2)説明変数:(イ)5分前から対象時刻までの設定温度。(ロ)5分前から対象時刻までの外気温。(ハ)5分前から対象時刻までの室温。(ニ)5分前から対象時刻までの外気温と設定温度の温度差。(ホ)5分前から対象時刻までの室温と設定温度の温度差。(ヘ)5分前から対象時刻までの外気温と室温の温度差。(ト)5分前から対象時刻までの繁忙度合い(POSデータ客数、販売アイテム数等)。(チ)対象時刻から5分後までの設定温度。(リ)対象時刻から5分後までの外気温。(ヌ)対象時刻から5分後の外気温と設定温度の温度差。(ル)対象時刻の設定温度と、5分後の設定温度の温度差。(ヲ)対象時刻の外気温と、5分後の外気温の温度差。(ワ)対象時刻から5分後までの繁忙度合い数値。(カ)対象時刻の繁忙度合い数値と、5分後の繁忙度合い数値の差。(ヨ)当日の気象状態を数値コードで現わしたもの。
FIG. 10 is an explanatory diagram showing 15 types of explanatory variables for performing combination inspection.
(1) Dependent variable: (A) Room temperature 5 minutes after the target time.
(2) Explanatory variables: (A) Set temperature from 5 minutes before to the target time. (B) Outside temperature from 5 minutes before the target time. (C) Room temperature from 5 minutes before to the target time. (D) Temperature difference between the outside air temperature and the set temperature from 5 minutes before to the target time. (E) Temperature difference between room temperature and set temperature from 5 minutes before to the target time. (F) Temperature difference between outside temperature and room temperature from 5 minutes before to the target time. (G) Busy degree from 5 minutes before to the target time (number of POS data customers, number of items sold, etc.). (H) The set temperature from the target time until 5 minutes later. (Li) The outside temperature from the target time until 5 minutes later. (Nu) The temperature difference between the outside air temperature and the set temperature 5 minutes after the target time. (L) Temperature difference between the set temperature at the target time and the set temperature after 5 minutes. (Wo) The temperature difference between the outside air temperature at the target time and the outside air temperature after 5 minutes. (W) Busy degree value from 5 minutes after the target time. (F) The difference between the busyness value at the target time and the busyness value after 5 minutes. (Yo) A numerical code showing the weather condition of the day.

対象の時刻から5分後の予想値の室温を得る相関式を上記説明変数の順列組み合わせの全てのパターンについて試行し、最も高い重相関係数算出に至った式を採用する。
重回帰分析については、例えば、岡本泰治著「プログラミングによる統計処理の実践アプローチ、Delphiデータ分析法」CQ出版株式会社1998年3月20日発行などに記載されているように周知であるので、概要のみ説明する。
重回帰分析では、n組の説明変数を用いて下記のように従属変数を表す重回帰式を用いる。
[従属変数(予測値)]=[偏回帰係数1]×[説明変数1]+[偏回帰係数2]×[説明変数2]+・・・+[偏回帰係数n]×[説明変数n]+[残差(定数)]
ここで、[残差(定数)]に注目すると、[残差(定数)]=[従属変数(予測値)]−( [偏回帰係数1]×[説明変数1]+[偏回帰係数2]×[説明変数2]+・・・+[偏回帰係数n]×[説明変数n] )であるから、この残差平方和を求め、残差平方和が最小にするような偏回帰係数1、偏回帰係数2・・・偏回帰係数nを求めると、重回帰式を得ることができる。
説明変数が複数個ある場合、可能な変数の組み合わせについて重回帰式を求め、それらを比較し、最良の変数の組み合わせのものを総当たりで検査する。総当たりで検査を行う事により、本システムでの、例えば空調機での制御について従属変数を対象時刻から5分後の室温とすると、空調機の設置箇所により、窓際に設置の場合は、外気温関連の説明変数の相関が強くなり、飲食業の厨房近傍に設置の場合は、繁忙度合い(POSデータ客数、販売アイテム数等)関連の説明変数の相関が強くなり、また、経年変化による性能変化は、設定温度関連や室温関連の説明変数の相関が強くなる等の機器毎に固有の最良の変数の組み合わせを漏れなく捜し出すことができる。
選択の基準には、上記重回帰式の総変動平方和と残差平方和の比の平方根である重相関係数を検査し、重相関係数が最大となる変数の組み合わせを採用する。変数の組み合わせの個数は、変数がp個あれば、[2のp乗−1]通りある。本システムは、上記した15組の説明変数を検査対象とするので、32767 通りの組み合わせの検査を行う。
A correlation equation that obtains the room temperature of the predicted value five minutes after the target time is tried for all patterns of permutation combinations of the explanatory variables, and the equation that leads to the highest multiple correlation coefficient calculation is adopted.
The multiple regression analysis is well known as described in, for example, Yasuharu Okamoto, “Practical approach to statistical processing by programming, Delphi data analysis” published on March 20, 1998 by CQ Publishing Co., Ltd. Only explained.
In the multiple regression analysis, a multiple regression equation representing a dependent variable is used as follows using n sets of explanatory variables.
[Dependent variable (predicted value)] = [partial regression coefficient 1] × [explanatory variable 1] + [partial regression coefficient 2] × [explanatory variable 2] +... + [Partial regression coefficient n] × [explanatory variable n ] + [Residual (constant)]
Here, paying attention to [residual (constant)], [residual (constant)] = [dependent variable (predicted value)] − ([partial regression coefficient 1] × [explanatory variable 1] + [partial regression coefficient 2] ] × [explanatory variable 2] +... + [Partial regression coefficient n] × [explanatory variable n]), the partial regression coefficient is such that the residual sum of squares is obtained and the residual sum of squares is minimized. 1, partial regression coefficient 2... If a partial regression coefficient n is obtained, a multiple regression equation can be obtained.
When there are a plurality of explanatory variables, multiple regression equations are obtained for possible combinations of variables, compared, and the best combination of variables is examined brute-force. If the dependent variable is set to room temperature 5 minutes after the target time in this system, for example, control with an air conditioner, by performing a round robin inspection, depending on where the air conditioner is installed, Correlation of explanatory variables related to temperature becomes stronger, and when installed near the kitchen of the restaurant industry, correlation of explanatory variables related to the degree of busyness (number of POS data customers, number of items sold, etc.) becomes stronger, and performance changes due to secular changes Can find the best combination of variables unique to each device, such as the correlation between set temperature-related and room temperature-related explanatory variables is strong.
As a selection criterion, a multiple correlation coefficient that is the square root of the ratio of the total variation square sum and the residual sum of squares of the multiple regression equation is examined, and a combination of variables that maximizes the multiple correlation coefficient is adopted. The number of combinations of variables is [2 to the power of p−1] if there are p variables. Since this system targets the 15 explanatory variables described above, 32767 combinations are inspected.

S55においては重相関係数が0.6以上で、かつ最も高いものを選定する。S56においては、選定された重相関式を装置毎、時系列解析ブロック毎に登録する。   In S55, the highest correlation coefficient is 0.6 or more and the highest one is selected. In S56, the selected multiple correlation equation is registered for each device and each time series analysis block.

図5は、制御計画データ生成処理(S21)の内容を示すフローチャートである。制御計画は、例えば外気温の一般的な変化に合わせて処理単位を5分を1コマとする午前5時5分〜翌日午前5時までの計288コマ(1日分)とする。また、同一空間に設置の制御対象機器に連番の管理番号を付与し、予め機器毎の管理マスタデータベースに登録を行っておく。   FIG. 5 is a flowchart showing the contents of the control plan data generation process (S21). The control plan is, for example, a total of 288 frames (one day) from 5:05 am to 5 am the following day, with a processing unit of 5 minutes as one frame in accordance with a general change in outside air temperature. In addition, serial management numbers are assigned to control target devices installed in the same space, and registered in advance in the management master database for each device.

S60においては、送風運転を想定した室温推移シミュレーションを行う。即ち、目的の日付の予想繁忙度合いデータと気象予報データからの外気温推移予想値と対象機器毎、時系列解析ブロック毎、送風運転状態の最適重相関式により、計画データ作成日全時間帯の予想値を5分毎に算出する。   In S60, a room temperature transition simulation assuming a blowing operation is performed. That is, based on the expected busyness data of the target date and the predicted outside air temperature from the weather forecast data, and for each target device, each time series analysis block, and the optimum multiple correlation formula of the air blow operation state, Expected values are calculated every 5 minutes.

S61においてはシミュレーションの予想値は上限温度以上か否かが判定され、判定結果が肯定の場合にはS62に移行するが、否定の場合にはS64に移行する。なお、機器毎の管理マスタデータベースに予めパラメータとして”上限温度”と”下限温度”の登録を行っておく。そして、送風時の室温シュミレーション結果が”上限温度”以上になった場合は冷房運転対象箇所とし、送風時の室温シュミレーション結果が”下限温度”以下になった場合は暖房運転対象箇所とする。   In S61, it is determined whether or not the expected value of the simulation is equal to or higher than the upper limit temperature. In addition, “upper limit temperature” and “lower limit temperature” are registered in advance as parameters in the management master database for each device. And when the room temperature simulation result at the time of ventilation becomes more than "the upper limit temperature", it is set as a cooling operation target location, and when the room temperature simulation result at the time of ventilation becomes "lower limit temperature" or less, it is set as a heating operation target location.

S62においては、所定温度範囲で設定温度1度毎に冷房運転での5分後の室温を予想する。S63においては、冷房時想定温度と冷房予想温度との誤差の絶対値が最少の設定温度を選定して冷房運転の設定温度とする。S64においてはシミュレーションの予想値は下限温度以下か否かが判定され、判定結果が肯定の場合にはS65に移行する。S65においては所定温度範囲で設定温度1度毎に暖房運転での5分後の室温を予想する。S66においては暖房時想定温度と暖房予想温度との誤差の絶対値が最少の設定温度を選定して暖房運転の設定温度とする。   In S62, the room temperature after 5 minutes in the cooling operation is predicted every set temperature within a predetermined temperature range. In S63, the set temperature with the smallest absolute value of the error between the assumed cooling temperature and the expected cooling temperature is selected as the set temperature for cooling operation. In S64, it is determined whether the predicted value of the simulation is equal to or lower than the lower limit temperature. If the determination result is affirmative, the process proceeds to S65. In S65, the room temperature after 5 minutes in the heating operation is predicted every set temperature within a predetermined temperature range. In S66, a preset temperature with the smallest absolute value of the error between the assumed heating temperature and the expected heating temperature is selected and set as the preset temperature for the heating operation.

このため、機器毎の管理マスタデータベースに予めパラメータとして”冷房時想定温度”と”暖房時想定温度”の登録を行っておく。予想値は、目的の日時の予想繁忙度合いデータ、気象予報データからの外気温推移予想値、対象機器毎、時系列解析ブロック毎、冷房/暖房それぞれの運転状態別最適重相関式により温度範囲18℃〜29℃内で設定温度1℃毎に対象時刻の予想室温を算出する。   Therefore, “estimated cooling temperature” and “assumed heating temperature” are registered in advance in the management master database for each device as parameters. The predicted value is the temperature range 18 based on the predicted busy degree data of the target date and time, the predicted outside air temperature transition value from the weather forecast data, the target device, the time series analysis block, and the optimum multiple correlation equation for each cooling / heating operation state. The predicted room temperature at the target time is calculated for each set temperature of 1 ° C. within a temperature range of 0 ° C. to 29 ° C.

S67においては、ゆらぎ制御判定のために該当機器管理番号を取得する。S68においては冷房運転か否かが判定され、判定結果が肯定の場合にはS69に移行する。S69においては冷房計画が同じ運転状態で時系列に並んでいる場合には後述するゆらぎ制御処理を行う。S70においては、後述するピークカット処理を行う。S71においては風量判定を行う。即ち、運転状態が送風時に風量の最強指定を行う。また、冷房時の設定温度変化指定で温度幅の低温指定時に風量の最強指定を行う。
S72においては1/fゆらぎ制御処理を行う。即ち、実装関数による間欠カオスによる1/fゆらぎ値を用いて設定温度や風量にゆらぎ変化が付くように変更する。S73においては制御計画データを保存する。
In S67, the corresponding device management number is acquired for the fluctuation control determination. In S68, it is determined whether or not the cooling operation is performed. If the determination result is affirmative, the process proceeds to S69. In S69, when the cooling plans are arranged in time series in the same operation state, the fluctuation control process described later is performed. In S70, a peak cut process described later is performed. In S71, air volume determination is performed. That is, the strongest designation of the air volume is performed when the operating state is blowing. In addition, the strongest air volume is specified when the temperature range is specified as a low temperature by specifying the set temperature change during cooling.
In S72, 1 / f fluctuation control processing is performed. In other words, the setting temperature and the air volume are changed so as to change the fluctuation using the 1 / f fluctuation value due to the intermittent chaos by the mounting function. In S73, the control plan data is saved.

図6は、ゆらぎ処理(S69)の内容を示すフローチャートである。冷房計画が、同じ運転状態で時系列に並んでいる場合、以下の処理を行う。S80においては機器管理番号は奇数か否かが判定され、判定結果が肯定の場合にはS81に移行するが、否定の場合にはS84に移行する。S81においては、日次の基点時点(例えば午前5時5分)からの制御コマ数(最小時系列単位のカウント数)が奇数か否かが判定され、判定結果が肯定の場合にはS82に移行するが、否定の場合にはS83に移行する。S82においては設定温度を制御計画値より1℃プラスする。また、S83においては設定温度を1℃マイナスする。   FIG. 6 is a flowchart showing the contents of the fluctuation process (S69). When the cooling plans are arranged in time series in the same operation state, the following processing is performed. In S80, it is determined whether or not the device management number is an odd number. If the determination result is affirmative, the process proceeds to S81. If the determination result is negative, the process proceeds to S84. In S81, it is determined whether or not the number of control frames (count number of minimum time series unit) from the daily base point (for example, 5:05 am) is an odd number. If the determination result is affirmative, the process proceeds to S82. If the result is negative, the process proceeds to S83. In S82, the set temperature is increased by 1 ° C. from the planned control value. In S83, the set temperature is decreased by 1 ° C.

S84においては、制御コマ数が奇数か否かが判定され、判定結果が肯定の場合にはS85に移行するが、否定の場合にはS86に移行する。S85においては設定温度を制御計画値より1℃マイナスする。また、S86においては設定温度を1℃プラスする。   In S84, it is determined whether or not the number of control frames is an odd number. If the determination result is affirmative, the process proceeds to S85, but if not, the process proceeds to S86. In S85, the set temperature is subtracted by 1 ° C. from the planned control value. In S86, the set temperature is increased by 1 ° C.

図7は、ピークカット処理(S70)の内容を示すフローチャートである。デマンドピークカット間欠運転制御のために、設置箇所毎の管理マスタデータベースに予めデマンド制御を行う温度値の登録を行っておく。そして、冷房計画が同じ運転状態で時系列に並んでいる場合に以下の処理を行う。   FIG. 7 is a flowchart showing the contents of the peak cut processing (S70). For the demand peak cut intermittent operation control, a temperature value for performing demand control is registered in advance in the management master database for each installation location. Then, when the cooling plans are arranged in time series in the same operation state, the following processing is performed.

S90においては、デマンド制御を行う温度値を同時刻の外気温予想値が越えているか否かが判定され、判定結果が肯定の場合にはS91に移行する。S91においては管理番号は奇数か否かが判定され、判定結果が肯定の場合にはS92に移行するが、否定の場合にはS95に移行する。   In S90, it is determined whether or not the predicted outside air temperature at the same time exceeds the temperature value for which demand control is performed. If the determination result is affirmative, the process proceeds to S91. In S91, it is determined whether or not the management number is an odd number. If the determination result is affirmative, the process proceeds to S92. If the determination result is negative, the process proceeds to S95.

S92においては制御コマ数が奇数か否かが判定され、判定結果が肯定の場合にはS93に移行するが、否定の場合にはS94に移行する。S93においては運転状態を送風運転に変更する。またS94においては設定温度を1℃マイナスする。   In S92, it is determined whether or not the number of control frames is an odd number. If the determination result is affirmative, the process proceeds to S93, but if not, the process proceeds to S94. In S93, the operation state is changed to the air blowing operation. In S94, the set temperature is decreased by 1 ° C.

S95制御コマ数が奇数か否かが判定され、判定結果が肯定の場合にはS96に移行するが、否定の場合にはS97に移行する。S96においては設定温度を1℃マイナスする。また、S97においては運転状態を送風運転に変更する。 S95: It is determined whether the number of control frames is an odd number. If the determination result is affirmative, the process proceeds to S96, but if not, the process proceeds to S97. In S96, the set temperature is decreased by 1 ° C. In S97, the operation state is changed to the blowing operation.

次に、重回帰分析予測の実際の適用例について説明する。空調機制御で重回帰分析により5分後にしたい室温に至るための最適な設定温度値を予測する場合、前記したように、その予測に使用するデータ項目の実績値を保存のデータベースから抽出し、重回帰分析を行って重回帰式を求める。この際に、予測するデータ項目に対する相関の最も強い説明変数の組み合わせを決定する。
例えば、説明変数のデータ項目として室温、設定温度、外気温、売上げ点数の4項目を選定した相関式が最適であったとする。図11は、該当機器の選定された(直近13週の)4項目のデータ値例である。そして、上記データから5分毎に予測した設定温度値で運転計画を作成し、空調機運転を行った結果のグラフを図12に示す。グラフの縦軸、横軸はそれぞれ、温度あるいは客数と時刻を表現している。
図12において、天気予報外気温63は図2の気象予報データから、予測繁忙度(売上点数=客数)64は図2の繁忙予想データから得られ、予想室温62および予想OFF時室温65は、図5のS60からS66の処理室温推移シミュレーション処理によって得られる。この結果、運転計画データである設定温度61が生成される。なお、室温60はこの運転計画によって運転された結果の室温の実際の推移を表しており、予想室温とほぼ一致している。また、設定温度が波状になっているのはS69のゆらぎ処理によるものである。
Next, an actual application example of multiple regression analysis prediction will be described. When predicting the optimal set temperature value to reach room temperature after 5 minutes by multiple regression analysis with air conditioner control, as described above, the actual value of the data item used for the prediction is extracted from the storage database, A multiple regression analysis is performed to obtain a multiple regression equation. At this time, the combination of explanatory variables having the strongest correlation with the data item to be predicted is determined.
For example, it is assumed that a correlation equation in which four items of room temperature, set temperature, outside air temperature, and number of sales points are selected as the data items of the explanatory variable is optimal. FIG. 11 shows an example of data values of four items (for the latest 13 weeks) selected for the corresponding device. Then, FIG. 12 shows a graph of the result of creating an operation plan with the set temperature value predicted every 5 minutes from the above data and operating the air conditioner. The vertical and horizontal axes of the graph represent temperature or the number of customers and time, respectively.
In FIG. 12, the weather forecast outside temperature 63 is obtained from the weather forecast data in FIG. 2, and the predicted busyness (number of sales = number of customers) 64 is obtained from the busy forecast data in FIG. It is obtained by the processing room temperature transition simulation processing of S60 to S66 of FIG. As a result, a set temperature 61 that is operation plan data is generated. The room temperature 60 represents the actual transition of the room temperature as a result of operation according to this operation plan, and is almost coincident with the expected room temperature. The set temperature is wavy due to the fluctuation process of S69.

以上、実施例を説明したが、本発明は以下のように他業種・業態への適用も可能である。
(1)冷蔵庫、温水器の最適制御
冷蔵庫、温水器の場合には、対象が商品や水であるので、快適性とは関係ないが、本発明の制御方式を適用することにより、エネルギー利用の最適化を実現することができる。繁忙度合いを現わす時系列の数値データに相当するものとしては、前記した店舗の客数等の他、例えば冷蔵庫であれば商品の在庫量や回転率など、温水器であれば温水の使用量等を採用可能である。
Although the embodiments have been described above, the present invention can also be applied to other industries / business conditions as follows.
(1) Optimal control of refrigerators and water heaters In the case of refrigerators and water heaters, since the object is goods and water, it has nothing to do with comfort, but by applying the control method of the present invention, Optimization can be realized. In addition to the number of customers in the store as described above, the equivalent to time-series numerical data showing the degree of busyness, for example, the inventory amount and turnover rate of products for refrigerators, the amount of hot water used for water heaters, etc. Can be adopted.

(2)畜産施設・食品工場・下水処理施設での、排水処理設備(活性汚泥式)の曝気装置の最適制御
排水処理では、流入する汚水の水量、水質は季節変動、時間変動があり、流入水量が少ない時期、時間帯に曝気装置の最大能力で酸素を供給した場合、過曝気になり、無駄なエネルギーを消費することになる。水中の容存酸素濃度 DO(Dissolved Oxygen)値のセンサ計測値の適正を保持する曝気装置の適正運転予測シュミレーションを流入水量、流入水質、気象予報等より行い、エネルギー利用の最適化を実現することができる。
(2) Optimal control of aeration equipment for wastewater treatment facilities (activated sludge type) at livestock facilities, food factories, and sewage treatment facilities In wastewater treatment, the amount and quality of sewage that flows in varies seasonally and with time. If oxygen is supplied at the maximum capacity of the aeration apparatus during a period when the amount of water is small, excessive aeration occurs and wasteful energy is consumed. Achieving optimal optimization of energy use by performing appropriate operation prediction simulation of the aeration equipment that maintains the appropriateness of the sensor measurement value of DO (Dissolved Oxygen) value from the inflow water volume, inflow water quality, weather forecast, etc. Can do.

(3)受水槽の最適水位制御
高架水槽や井水受水槽の揚水に当たり、受水槽の水位センサの低水位検知時に都度追加揚水するのではなく、需要予測シュミレーションから、昼間の使用量のピークに前もって、貯水量を低水位から満水位までに上げる制御を行う。これにより夜間電力時間帯へのタイムシフトと、揚水ポンプの連続稼動による効率化を図り、エネルギー利用の最適化を実現することができる。
(3) Optimal water level control of receiving tanks When pumping up elevated tanks and well water receiving tanks, instead of additional pumping whenever a low water level is detected by the water level sensor in the receiving tank, a peak in daytime usage is obtained from demand prediction simulations. In advance, control is performed to increase the amount of stored water from a low water level to a full water level. Thereby, the time shift to the night electric power time zone and the efficiency improvement by continuous operation of the pump are realized, and the optimization of the energy use can be realized.

本発明のエネルギー管理システムの実施例のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the Example of the energy management system of this invention. 本発明の管理サーバー処理の内容を示すフローチャートである。It is a flowchart which shows the content of the management server process of this invention. 本発明のゲートウェイサーバー処理の内容を示すフローチャートである。It is a flowchart which shows the content of the gateway server process of this invention. 統計解析処理(S19)の内容を示すフローチャートである。It is a flowchart which shows the content of a statistical analysis process (S19). 制御計画データ生成処理(S21)の内容を示すフローチャートである。It is a flowchart which shows the content of a control plan data generation process (S21). ゆらぎ処理(S69)の内容を示すフローチャートである。It is a flowchart which shows the content of fluctuation processing (S69). ピークカット処理(S70)の内容を示すフローチャートである。It is a flowchart which shows the content of the peak cut process (S70). 解析ブロックの区分け方法を示す説明図である。It is explanatory drawing which shows the division method of an analysis block. アイテム別の販売数によるブロック区分け方法を示す説明図である。It is explanatory drawing which shows the block division method by the number of sales according to item. 組み合わせ検査を行う15種類の説明変数例を示す説明図である。It is explanatory drawing which shows the example of 15 types of explanatory variables which perform a combination test | inspection. 該当機器の直近13週の4項目のデータ値例を示す説明図である。It is explanatory drawing which shows the data value example of 4 items of the latest 13 weeks of an applicable apparatus. 予測した設定温度値で運転計画を作成し、空調機運転を行った結果を示すグラフである。It is a graph which shows the result of having created the operation plan with the predicted set temperature value and performing the air conditioner operation.

符号の説明Explanation of symbols

10 管理サーバー
11 インターネット
12 ゲートウェイサーバー
13 気象情報提供システム
14 店舗
20 I/Fアダプタ
21 集中リモコン
22 空調装置
23 監視制御ネットワーク
24 空調機器集中リモコンネットワーク
DESCRIPTION OF SYMBOLS 10 Management server 11 Internet 12 Gateway server 13 Weather information provision system 14 Store 20 I / F adapter 21 Centralized remote control 22 Air conditioner 23 Monitoring control network 24 Air conditioning equipment centralized remote control network

Claims (5)

少なくとも制御サーバー手段から得た情報に基づき、エネルギー消費機器の制御計画を作成する管理サーバー手段と、
少なくともエネルギー消費機器から情報を収集して前記管理サーバー手段に送り、前記制御計画に基づいてエネルギー消費機器を制御する制御サーバー手段と、
を備えたことを特徴とするエネルギー消費管理システム。
Management server means for creating a control plan for energy consuming equipment based on at least information obtained from the control server means;
Control server means for collecting information from at least energy consuming equipment and sending it to the management server means for controlling the energy consuming equipment based on the control plan;
An energy consumption management system characterized by comprising:
更に、前記管理サーバー手段と前記制御サーバー手段とを接続する通信手段を備え、
前記管理サーバー手段は、所定期間分の計画情報を周期的に前記制御サーバー手段へ送信することを特徴とする請求項1に記載のエネルギー消費管理システム。
And further comprising communication means for connecting the management server means and the control server means,
2. The energy consumption management system according to claim 1, wherein the management server means periodically transmits plan information for a predetermined period to the control server means.
前記制御サーバー手段は、繁忙度合いを現わすデータを収集して管理サーバーへ送る繁忙度合いデータ収集手段を備え、
前記管理サーバ手段は、少なくとも繁忙度合いを現わすデータおよび該当地域の気象データから繁忙度合いの予想データを生成する繁忙度合い予想手段と、
前記繁忙度合いの予想データ、制御対象装置の計測値および設定値データ、気象予報データにより制御計画を生成する制御計画生成手段と、
を備えたことを特徴とする請求項1に記載のエネルギー消費管理システム。
The control server means comprises busy degree data collecting means for collecting data representing the busy degree and sending it to the management server,
The management server means generates busyness prediction means for generating busyness prediction data from at least data indicating the busyness and weather data of the area, and
Control plan generating means for generating a control plan based on the forecast data of the busy degree, the measured value and set value data of the device to be controlled, and weather forecast data;
The energy consumption management system according to claim 1, further comprising:
前記制御計画生成手段は、関連する制御対象機器群について積極的にゆらぎ制御を行うゆらぎ制御手段および快適性をさほど損なわずにエネルギー消費を低減するピークカット手段を備えたことを特徴とする請求項1に記載のエネルギー消費管理システム。   The said control plan production | generation means is provided with the fluctuation control means which actively performs fluctuation control about a related control object apparatus group, and the peak cut means which reduces energy consumption, without impairing comfort so much. The energy consumption management system according to 1. 前記制御サーバー手段は制御対象装置がオン操作された場合にのみ制御を行い、かつ手動による設定変更に基づき一定期間だけ制御計画を変更することを特徴とする請求項1に記載のエネルギー消費管理システム。
2. The energy consumption management system according to claim 1, wherein the control server means performs control only when the control target device is turned on, and changes the control plan only for a certain period based on manual setting change. .
JP2004037169A 2004-02-13 2004-02-13 System for managing energy consumption Withdrawn JP2005229758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037169A JP2005229758A (en) 2004-02-13 2004-02-13 System for managing energy consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037169A JP2005229758A (en) 2004-02-13 2004-02-13 System for managing energy consumption

Publications (1)

Publication Number Publication Date
JP2005229758A true JP2005229758A (en) 2005-08-25

Family

ID=35004039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037169A Withdrawn JP2005229758A (en) 2004-02-13 2004-02-13 System for managing energy consumption

Country Status (1)

Country Link
JP (1) JP2005229758A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765170B1 (en) 2006-09-28 2007-10-15 삼성전자주식회사 Control apparatus and method for system air conditioner
JP2008039261A (en) * 2006-08-03 2008-02-21 Toho Gas Co Ltd Operation control device of cogeneration system
JP2010027029A (en) * 2008-06-16 2010-02-04 Fuji Electric Fa Components & Systems Co Ltd Energy saving support device, energy consumption determining method, and program
JP2010218034A (en) * 2009-03-13 2010-09-30 Toshiba Corp Integrated management system and method
WO2011055192A1 (en) * 2009-11-06 2011-05-12 パナソニック電工株式会社 Power distribution system
JP2011146073A (en) * 2011-04-26 2011-07-28 Nec Corp Device and system for managing operation, information processing method, and operation management program
JP2012168842A (en) * 2011-02-16 2012-09-06 Nec Corp Facility operation system for multi-store type establishment, process method and program for the same
JP5264991B2 (en) * 2009-03-16 2013-08-14 三菱電機株式会社 Data collection device
US8655492B2 (en) 2009-10-21 2014-02-18 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
WO2014053988A1 (en) 2012-10-03 2014-04-10 Pronoó Gmbh Predictive control method, for example for heating, and device for implementing the method
JP2014240708A (en) * 2013-06-11 2014-12-25 アズビル株式会社 Control set value updating device and updating method
JP2016142415A (en) * 2015-01-29 2016-08-08 株式会社東芝 Air-conditioning control device, server device, air-conditioning control system, air-conditioning control method, and air-conditioning control program
JP2017067427A (en) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 Air conditioning control method, air conditioning control device and air conditioning control program
WO2017056403A1 (en) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 Air conditioning control method, air conditioning control device, and air conditioning control program
JP2017102932A (en) * 2010-12-31 2017-06-08 グーグル インコーポレイテッド Climate control system and method for controlling the same
JP2018023227A (en) * 2016-08-04 2018-02-08 東日本旅客鉄道株式会社 Power demand prediction method and power demand prediction program
CN109883005A (en) * 2019-03-26 2019-06-14 广州远正智能科技股份有限公司 Terminal tail end air conditioner device intelligence control system, method, medium and equipment
JP2019120568A (en) * 2017-12-29 2019-07-22 ナガノサイエンス株式会社 Temperature characteristic evaluation method
KR20210117946A (en) * 2020-03-19 2021-09-29 주식회사 티에스엠테크놀로지 Facility performance analysis system and facility performance analysis program for active energy management

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039261A (en) * 2006-08-03 2008-02-21 Toho Gas Co Ltd Operation control device of cogeneration system
KR100765170B1 (en) 2006-09-28 2007-10-15 삼성전자주식회사 Control apparatus and method for system air conditioner
JP2010027029A (en) * 2008-06-16 2010-02-04 Fuji Electric Fa Components & Systems Co Ltd Energy saving support device, energy consumption determining method, and program
JP2010218034A (en) * 2009-03-13 2010-09-30 Toshiba Corp Integrated management system and method
JP5264991B2 (en) * 2009-03-16 2013-08-14 三菱電機株式会社 Data collection device
US8655492B2 (en) 2009-10-21 2014-02-18 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
JP2011101539A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Power distribution system
JP2014057517A (en) * 2009-11-06 2014-03-27 Panasonic Corp Power distribution system
WO2011055192A1 (en) * 2009-11-06 2011-05-12 パナソニック電工株式会社 Power distribution system
JP2017102932A (en) * 2010-12-31 2017-06-08 グーグル インコーポレイテッド Climate control system and method for controlling the same
JP2012168842A (en) * 2011-02-16 2012-09-06 Nec Corp Facility operation system for multi-store type establishment, process method and program for the same
JP2011146073A (en) * 2011-04-26 2011-07-28 Nec Corp Device and system for managing operation, information processing method, and operation management program
WO2014053988A1 (en) 2012-10-03 2014-04-10 Pronoó Gmbh Predictive control method, for example for heating, and device for implementing the method
JP2014240708A (en) * 2013-06-11 2014-12-25 アズビル株式会社 Control set value updating device and updating method
JP2016142415A (en) * 2015-01-29 2016-08-08 株式会社東芝 Air-conditioning control device, server device, air-conditioning control system, air-conditioning control method, and air-conditioning control program
JP2017067427A (en) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 Air conditioning control method, air conditioning control device and air conditioning control program
WO2017056403A1 (en) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 Air conditioning control method, air conditioning control device, and air conditioning control program
CN106817909A (en) * 2015-10-01 2017-06-09 松下知识产权经营株式会社 Air conditioning control method, air conditioning control device and air-conditioning control program
US10584892B2 (en) 2015-10-01 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control method, air-conditioning control apparatus, and storage medium
CN106817909B (en) * 2015-10-01 2021-06-11 松下知识产权经营株式会社 Air conditioning control method, air conditioning control device, and computer-readable recording medium
JP2018023227A (en) * 2016-08-04 2018-02-08 東日本旅客鉄道株式会社 Power demand prediction method and power demand prediction program
JP2019120568A (en) * 2017-12-29 2019-07-22 ナガノサイエンス株式会社 Temperature characteristic evaluation method
JP7079955B2 (en) 2017-12-29 2022-06-03 ナガノサイエンス株式会社 Temperature characterization method
CN109883005A (en) * 2019-03-26 2019-06-14 广州远正智能科技股份有限公司 Terminal tail end air conditioner device intelligence control system, method, medium and equipment
KR20210117946A (en) * 2020-03-19 2021-09-29 주식회사 티에스엠테크놀로지 Facility performance analysis system and facility performance analysis program for active energy management
KR102646934B1 (en) * 2020-03-19 2024-03-12 주식회사 티에스엠테크놀로지 Facility performance analysis system and facility performance analysis program for active energy management

Similar Documents

Publication Publication Date Title
JP2005229758A (en) System for managing energy consumption
Lee et al. Energy savings by energy management systems: A review
Peña et al. Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach
US10775067B2 (en) Method for controlling activation of air conditioning device and apparatus therefor
EP3091499A1 (en) System and method for monitoring and managing the energy efficiency of buildings
Salimi et al. Optimizing energy consumption and occupants comfort in open-plan offices using local control based on occupancy dynamic data
Morán et al. Information and Communications Technologies (ICTs) for energy efficiency in buildings: Review and analysis of results from EU pilot projects
KR101649658B1 (en) Central control apparatus for controlling facilities, facility control system comprising the same, and method for controlling facilities
US7216021B2 (en) Method, system and computer program for managing energy consumption
CN102713780B (en) For the automatic control of HVAC &amp; R facility of working cycle and the controller of optimization and the system and method using this controller
US7130719B2 (en) System and method of controlling an HVAC system
KR101972227B1 (en) Smart home controlling apparatus based intellect learning and method thereof
EP1729223A2 (en) Demand control apparatus, electric power consumption prediction method, and program therefor
KR101641258B1 (en) Central control apparatus for controlling facilities, facility control system comprising the same, and method for controlling facilities
CN110738380B (en) Thermal load control method, device and system
Turhan et al. Development of a personalized thermal comfort driven controller for HVAC systems
WO2014185149A1 (en) Consumer power control system and consumer power control method
WO2006082939A1 (en) Environmental control system
CN105190193B (en) Air conditioning control device, air-conditioner control system and air conditioning control method
JP2011248568A (en) Energy management system
JP2008025908A (en) Optimization control support system
US11920808B2 (en) Energy management system and energy management method
Cheng et al. Energy efficient thermal comfort control for cyber-physical home system
CN103148559B (en) The control method of air-conditioner, device and air-conditioner
CN111998505B (en) Energy consumption optimization method and system for air conditioning system in general park based on RSM-Kriging-GA algorithm

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501