JP2005229115A - Liquid film forming method and method of forming solid film - Google Patents

Liquid film forming method and method of forming solid film Download PDF

Info

Publication number
JP2005229115A
JP2005229115A JP2005030832A JP2005030832A JP2005229115A JP 2005229115 A JP2005229115 A JP 2005229115A JP 2005030832 A JP2005030832 A JP 2005030832A JP 2005030832 A JP2005030832 A JP 2005030832A JP 2005229115 A JP2005229115 A JP 2005229115A
Authority
JP
Japan
Prior art keywords
substrate
liquid
chemical
processed
blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005030832A
Other languages
Japanese (ja)
Other versions
JP4253305B2 (en
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005030832A priority Critical patent/JP4253305B2/en
Publication of JP2005229115A publication Critical patent/JP2005229115A/en
Application granted granted Critical
Publication of JP4253305B2 publication Critical patent/JP4253305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a discharge of liquid out of a substrate to be treated, and to uniformly form a liquid film in a technology which spirally feeds the liquid on the substrate to be treated to perform a film formation. <P>SOLUTION: A dripper is radially moved so that there may be changed a moving pitch of the dripper in a radial direction which is produced whenever the substrate to be treated makes a round while the liquid drips on the substrate to be treated from the dripper and at the same time the substrate to be treated is rotated. The rotational frequency of the substrate and the feed speed v of the liquid from the dripper are adjusted so that the dripped liquid film may not be moved by a centrifugal force applied on the dripped liquid film by accompanying a radial movement of the substrate to be treated of the dripper, and the liquid film is formed. Thereafter, the substrate to be treated is rotated by using a rotational frequency that is less than a maximum rotational frequency, by which the liquid film at a maximum periphery on the substrate to be treated does not move out of the substrate to be treated by the centrifugal force. The substrate to be treated is rotated by making the upper part of the substrate on which the liquid film is formed as almost closed space. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被処理基板に対して液体を渦巻き状に滴下して成膜を行う液膜形成方法、及びこれを用いた固体膜の形成方法に関する。   The present invention relates to a liquid film forming method for forming a film by dropping a liquid spirally onto a substrate to be processed, and a solid film forming method using the liquid film forming method.

リソグラフィプロセスで従来から行われてきた回転塗布法は基板に滴下した液体の殆どを基板外に排出し、残りの数%で成膜するため、使用する薬液の無駄が多く、排出された薬液が多いことから環境にも悪影響を及ぼしていた。また、方形の基板や12インチ以上の大口径の円形基板では、基板の外周部で乱気流が生じその部分で膜厚が不均一になるという問題が生じていた。   The spin coating method that has been conventionally performed in the lithography process discharges most of the liquid dropped on the substrate to the outside of the substrate and forms the remaining several percent of the film. Many of them had an adverse effect on the environment. Further, in the case of a square substrate or a circular substrate having a large diameter of 12 inches or more, there is a problem that turbulence is generated in the outer peripheral portion of the substrate and the film thickness is nonuniform in that portion.

薬液を無駄にせず基板全面に均一に塗布する手法として特開平2−220428号公報には一列に配置した多数のノズルよりレジストを滴下し、その後方よりガスまたは液体を成膜面に吹き付けることで均一な膜を得る手法が記載されている。また、特開平6−151295号公報では棒に多数の噴霧口を設け、それよりレジストを基板上に滴下し均一な膜を得ることを目的としている。更に特開平7−321001号にレジストを噴霧するための多数の噴出孔が形成されたスプレーヘッドを用い、基板と相対的に移動して塗布する手法が記載されている。これらいずれの塗布装置においても滴下あるいは噴霧ノズルを横一列に複数配置し、それを基板表面にそってスキャンさせて均一な膜を得ることを目的としている。   JP-A-2-220428 discloses a technique for applying a chemical solution uniformly on the entire surface of a substrate without wasting it, by dropping a resist from a large number of nozzles arranged in a row, and spraying a gas or a liquid on the film formation surface from the back. A technique for obtaining a uniform film is described. Japanese Patent Application Laid-Open No. 6-151295 aims at obtaining a uniform film by providing a number of spray holes on a rod and dropping a resist on the substrate. Further, Japanese Patent Application Laid-Open No. 7-32001 describes a technique in which a spray head in which a large number of jet holes for spraying resist is formed is used to move relative to the substrate for coating. In any of these coating apparatuses, a plurality of dropping or spraying nozzles are arranged in a horizontal row and scanned along the substrate surface to obtain a uniform film.

これら複数のノズルを持つ装置を用いた塗布法の他に一本の液体吐出ノズルを用い、被処理基板上を走査させることで液膜を形成する手法が有る。この手法ではノズルの操作法次第では基板1枚あたりの処理時間が長くなったり、薬液の使用量が膨大になったりするという問題が生じていた。   In addition to the coating method using an apparatus having a plurality of nozzles, there is a method of forming a liquid film by scanning a substrate to be processed using a single liquid discharge nozzle. In this method, depending on the operation method of the nozzle, there has been a problem that the processing time per one substrate becomes long and the amount of chemicals used becomes enormous.

これらの問題を解決する成膜方法として、特開2000−77326号公報には、渦巻き状に薬液を供給して塗布を行う手法が開示されている。この中で、“塗布条件としてウェハを低速(例えば20〜30rpm)で回転させつつノズルユニットをこのウェハの直径方向(例えばX方向)に移動させることで塗布を行うようにすることが好ましい。”ということが記載されている。また、“ウェハとノズルユニットの相対速度を一定に保つことが重要である。”ことが記載されている。すなわち、ノズルの線速度を一定にすることが記載されている。   As a film forming method for solving these problems, Japanese Patent Application Laid-Open No. 2000-77326 discloses a method of applying a chemical solution in a spiral shape. Among these, “it is preferable to perform coating by moving the nozzle unit in the diameter direction (for example, X direction) of the wafer while rotating the wafer at a low speed (for example, 20 to 30 rpm) as a coating condition.” It is described. Further, it is described that “it is important to keep the relative speed of the wafer and the nozzle unit constant”. That is, it is described that the linear velocity of the nozzle is made constant.

ノズルユニットを一定の速度で移動させた場合、線速度を一定にするためには、ノズル外周部に対してその内側での回転数を大きくしなければならない。例えば、200mmウェハで考えた場合、半径100mmでの回転数を30rpmとしても、回転数が径の逆数に比例し半径1mm以下の部分では3000rpm以上で回転させる必要がある。3000rpmでウェハを回転させた場合、基板中心から液塗布を開始したとしても、薬液が瞬時に基板外に放出されてしまう。   When the nozzle unit is moved at a constant speed, in order to make the linear velocity constant, the number of rotations inside the nozzle outer periphery must be increased. For example, in the case of a 200 mm wafer, even if the rotation speed at a radius of 100 mm is 30 rpm, the rotation speed is proportional to the reciprocal of the diameter, and it is necessary to rotate at 3000 rpm or more in a portion having a radius of 1 mm or less. When the wafer is rotated at 3000 rpm, even if the liquid application is started from the center of the substrate, the chemical solution is instantaneously released outside the substrate.

また、ウェハを低速で一定の回転数で回転させた場合、基板中心でのノズル移動速度はきわめて速く、塗布後に振動を与えて液体の移動を生じさせたとしても、移動しきれず結局中央部では塗布されない領域が生じ、均一な膜を形成することができないという問題があった。このように、線速度一定にして薬液を吐出させると、液膜が形成されないという問題があった。   In addition, when the wafer is rotated at a constant speed at a low speed, the nozzle movement speed at the center of the substrate is extremely fast, and even if the liquid is moved by applying vibration after coating, it cannot move completely and eventually in the center. There was a problem that a non-coated region was generated, and a uniform film could not be formed. As described above, when the chemical liquid is discharged at a constant linear velocity, there is a problem that a liquid film is not formed.

上述したように、被処理基板を回転させつつ薬液を滴下して被処理基板上に渦巻き状に薬液を供給して液膜の成膜を行う技術において、被処理基板に対する滴下ノズルの線速度を一定にすると、薬液が基板外に放出されてしまう、或いは均一に液膜が形成されないという問題があった。   As described above, in the technology of forming a liquid film by dropping a chemical solution while rotating the substrate to be processed and supplying the chemical solution spirally on the substrate to be processed, the linear velocity of the dropping nozzle with respect to the substrate to be processed is set. If it is fixed, there is a problem that the chemical solution is discharged out of the substrate or a liquid film is not formed uniformly.

本発明の目的は、被処理基板上に渦巻き状に液体を供給して成膜を行う技術において、被処理基板外への液体の放出を抑制すると共に、均一に液膜を形成し得る液膜形成方法,固体膜の形成方法,液膜形成装置及び半導体装置の製造方法を提供することにある。   An object of the present invention is to provide a liquid film that can form a liquid film uniformly while suppressing the discharge of the liquid to the outside of the substrate to be processed in a technique for forming a film by supplying a liquid spirally onto the substrate to be processed. It is an object to provide a forming method, a solid film forming method, a liquid film forming apparatus, and a semiconductor device manufacturing method.

本発明は、上記目的を達成するために以下のように構成されている。   The present invention is configured as follows to achieve the above object.

(1)本発明に係わる液膜形成方法は、滴下部から被処理基板上に液体を滴下すると同時に、前記被処理基板を回転させながら、前記被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが小さく変化するように前記滴下部を前記被処理基板の内周部から該基板の外周部に向けて径方向に移動させ、且つ前記滴下部の前記被処理基板の径方向の移動に伴い、滴下された液膜がそれにかかる遠心力により移動しないように、該基板の回転数を徐々に下げつつ、該滴下部からの前記液体の供給速度を調整して前記被処理基板上に液膜を形成し、前記液膜を形成した後に、前記被処理基板上の最外周部の液膜が遠心力により前記被処理基板外に移動しない最大回転数以下の回転数を用いて前記被処理基板を回転させ、且つ、前記被処理基板の回転は、前記液膜が形成された該基板の上方を略閉空間として行うことを特徴とする。   (1) In the liquid film forming method according to the present invention, the liquid is dropped on the substrate to be processed from the dropping unit, and at the same time, the radial direction generated each time the substrate to be processed is rotated while rotating the substrate to be processed. The dropping portion is moved in the radial direction from the inner peripheral portion of the substrate to be processed toward the outer peripheral portion of the substrate so that the moving pitch of the dropping portion changes small, and the diameter of the substrate to be processed of the dropping portion is In order to prevent the dropped liquid film from moving due to the centrifugal force applied with the movement of the direction, the supply speed of the liquid from the dropping part is adjusted while gradually decreasing the number of rotations of the substrate. After forming a liquid film on the substrate and forming the liquid film, the liquid film at the outermost periphery on the substrate to be processed is used at a rotational speed equal to or lower than the maximum rotational speed at which the liquid film on the outer peripheral portion does not move out of the substrate to be processed by centrifugal force. The substrate to be processed is rotated, and the substrate is processed Rotation of the plate, and performs above the liquid film is formed substrate as substantially closed space.

(2)本発明に係わる固体膜の形成方法は、滴下部から被処理基板上に液体を滴下すると同時に、前記被処理基板を回転させながら、前記被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが小さく変化するように前記滴下部を前記被処理基板の内周部から該基板の外周部に向けて径方向に移動させ、且つ前記滴下部の前記被処理基板の径方向の移動に伴い、滴下された該液膜が滴下された液膜にかかる遠心力により移動しないように、該基板の回転数を徐々に下げつつ、該滴下部からの前記液体の供給速度を調整して前記被処理基板上に液膜を形成する工程と、該液膜が形成された該被処理基板を該液膜中の溶剤の処理温度における蒸気圧以下の圧力下に晒して溶剤を乾燥除去して固層を形成する工程とを含む。   (2) In the method for forming a solid film according to the present invention, the liquid is dropped from the dropping unit onto the substrate to be processed, and at the same time, the radial direction generated each time the substrate to be processed is rotated while rotating the substrate to be processed. The dropping portion is moved in the radial direction from the inner peripheral portion of the substrate to be processed toward the outer peripheral portion of the substrate so that the moving pitch of the dropping portion of the substrate is small, and the dropping portion of the substrate to be processed is The supply speed of the liquid from the dropping unit while gradually decreasing the rotation speed of the substrate so that the dropped liquid film does not move due to the centrifugal force applied to the dropped liquid film along with the radial movement. Forming a liquid film on the substrate to be treated, and subjecting the substrate to be treated formed with the liquid film to a pressure lower than the vapor pressure at the processing temperature of the solvent in the liquid film. And a step of forming a solid layer by drying.

(3)本発明に係わる液膜形成装置は、被処理基板が載置され、回転駆動系を有する被処理基板載置台と、前記被処理基板の周囲を囲むように構成された円柱状の処理室と、前記被処理基板に対して液体を連続的に吐出する滴下部と、前記滴下部を被処理基板の径方向に移動させる滴下部駆動機構と、前記滴下部と前記被処理基板との間に配置され、前記滴下部から吐出された薬液が通過するスリットが設けられた天板と、前記天板と前記滴下部との間に配置され、前記被処理基板の径方向の薬液遮断率に応じて複数配置された薬液部分遮断機構とを具備してなることを特徴とする。   (3) In the liquid film forming apparatus according to the present invention, a substrate to be processed is mounted, a substrate to be processed having a rotational drive system, and a columnar process configured to surround the substrate to be processed. A chamber, a dropping unit that continuously discharges liquid to the substrate to be processed, a dropping unit driving mechanism that moves the dropping unit in a radial direction of the substrate to be processed, and the dropping unit and the substrate to be processed A top plate provided with a slit through which the chemical solution discharged from the dropping unit passes, and a chemical blocking rate in the radial direction of the substrate to be processed, arranged between the top plate and the dropping unit And a plurality of chemical liquid partial blocking mechanisms arranged according to the above.

以上説明したように本発明によれば、前記被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが変化するように前記滴下部を径方向に移動させると共に、前記滴下部の前記被処理基板の径方向の移動に伴い、滴下された該液膜が滴下された液膜にかかる遠心力により移動しないように、該基板の回転数、及び該滴下部からの前記液体の供給速度を調整することによって中心部付近及び外周部において液膜が移動せず、被処理基板の中心部で液膜が形成されない領域が生じさせることなく、均一な液膜を形成することができる。   As described above, according to the present invention, the dropping unit is moved in the radial direction so that the moving pitch of the dropping unit in the radial direction that occurs every time the substrate to be processed makes one round, and the dropping unit With the movement of the substrate to be processed in the radial direction, the number of rotations of the substrate and the liquid from the dropping unit are prevented from moving due to the centrifugal force applied to the dropped liquid film. By adjusting the supply speed, the liquid film does not move in the vicinity of the central portion and the outer peripheral portion, and a uniform liquid film can be formed without generating a region where the liquid film is not formed in the central portion of the substrate to be processed. .

本発明の実施の形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は本発明に用いる成膜装置の概略構成を示す構成図である。
図1に示すように、被処理基板100が設置される被処理基板保持部120は、基板100中心で回転する駆動系121に接続されている。また、被処理基板100の上方には、薬液を吐出しつつ、ノズル駆動系123により径方向に移動可能な薬液供給ノズル(滴下部)122が設置されている。薬液供給ノズル122には、薬液供給管124を介して薬液供給ノズル122に薬液を供給する薬液供給ポンプ125が接続されている。薬液供給ノズル122からの薬液吐出速度の制御は、薬液供給ポンプ125からの薬液供給圧力を制御して行った。
(First embodiment)
FIG. 1 is a configuration diagram showing a schematic configuration of a film forming apparatus used in the present invention.
As shown in FIG. 1, the target substrate holding unit 120 on which the target substrate 100 is installed is connected to a drive system 121 that rotates about the substrate 100. Further, a chemical supply nozzle (dropping unit) 122 that is movable in the radial direction by the nozzle drive system 123 while discharging the chemical is installed above the substrate 100 to be processed. A chemical liquid supply pump 125 that supplies the chemical liquid to the chemical liquid supply nozzle 122 is connected to the chemical liquid supply nozzle 122 via the chemical liquid supply pipe 124. The chemical solution discharge speed from the chemical solution supply nozzle 122 was controlled by controlling the chemical solution supply pressure from the chemical solution supply pump 125.

薬液供給ノズル122は、例えば図2に示すような構成である。図2に示すように、薬液供給ノズル122は、図示されない薬液供給ポンプに接続された薬液供給管124から供給された薬液が一旦貯蔵する薬液槽201と、薬液槽201内の薬液が吐出される薬液吐出口202とを含んで構成される。   The chemical solution supply nozzle 122 is configured as shown in FIG. 2, for example. As shown in FIG. 2, the chemical liquid supply nozzle 122 discharges the chemical liquid in the chemical liquid tank 201 and the chemical liquid tank 201 that temporarily stores the chemical liquid supplied from the chemical liquid supply pipe 124 connected to the chemical liquid supply pump (not shown). And a chemical solution discharge port 202.

薬液供給ノズル122は、ノズル駆動系123により被処理基板100のほぼ中央から移動を開始し、薬液を被処理基板100上に連続的に供給しながら被処理基板100の略エッジ部分まで移動する。薬液供給は、薬液供給ノズルが被処理基板100のエッジに到達した段階で終了する。薬液供給ノズルの移動開始位置及び移動終了位置には、薬液遮断機構126a,126bが設けられている。移動開始位置の薬液遮断機構126aは、基板保持部120の回転数、ノズル駆動系123の移動速度、薬液供給ノズル122からの薬液吐出速度が塗布開始時に必要な所定の値になるまで、薬液供給ノズル122から吐出された薬液を遮断して、薬液が被処理基板100に到達するのを防ぐ。また、移動終了位置の薬液遮断機構126bは、被処理基板100のエッジ部に薬液が供給されない様に、被処理基板100エッジ部上空に待機し、薬液供給ノズル122が被処理基板100のエッジに来たときに、ノズル122から吐出された薬液を遮断して薬液が被処理基板100に到達するのを防止する。   The chemical solution supply nozzle 122 starts to move from approximately the center of the substrate to be processed 100 by the nozzle drive system 123 and moves to a substantially edge portion of the substrate to be processed 100 while continuously supplying the chemical solution onto the substrate to be processed 100. The chemical solution supply ends when the chemical solution supply nozzle reaches the edge of the substrate 100 to be processed. Chemical solution blocking mechanisms 126a and 126b are provided at the movement start position and the movement end position of the chemical solution supply nozzle. The chemical solution blocking mechanism 126a at the movement start position supplies the chemical solution until the rotation speed of the substrate holding unit 120, the moving speed of the nozzle drive system 123, and the chemical solution discharge speed from the chemical solution supply nozzle 122 reach predetermined values required at the start of application. The chemical solution discharged from the nozzle 122 is blocked to prevent the chemical solution from reaching the substrate 100 to be processed. Further, the chemical blocking mechanism 126b at the movement end position stands by above the edge of the substrate to be processed 100 so that the chemical is not supplied to the edge of the substrate 100, and the chemical supply nozzle 122 is placed at the edge of the substrate 100 to be processed. When it comes, the chemical solution discharged from the nozzle 122 is blocked to prevent the chemical solution from reaching the substrate 100 to be processed.

薬液が被処理基板100上に供給される間、基板保持部120の回転数、ノズル駆動系123の移動速度、薬液供給ノズル122からの薬液吐出速度は各々、回転駆動制御部128、ノズル駆動制御部127、薬液供給ポンプ125により管理される。なお、これら3つの制御部125,127,128を統括するコントローラ129がその上流に配置されている。   While the chemical solution is supplied onto the substrate 100, the rotation speed of the substrate holding unit 120, the moving speed of the nozzle drive system 123, and the discharge rate of the chemical solution from the chemical solution supply nozzle 122 are respectively rotation drive control unit 128 and nozzle drive control. Managed by the unit 127 and the chemical solution supply pump 125. A controller 129 that controls these three control units 125, 127, and 128 is disposed upstream thereof.

コントローラ129は、薬液供給ノズル122の被処理基板100上の位置情報に基づき、回転駆動制御部128の回転数、ノズル駆動速度、薬液吐出速度を決定し、回転駆動制御部128、ノズル駆動制御部127、薬液供給ポンプ125の各々に司令する。この司令に基づいて各々が動作することで被処理基板100上には渦巻き状に薬液が供給される。被処理基板100上に供給された薬液は広がり、隣接する液膜と結合して被処理基板100上で一つの液膜101になる。   The controller 129 determines the number of rotations, the nozzle drive speed, and the chemical liquid discharge speed of the rotation drive control unit 128 based on the position information of the chemical solution supply nozzle 122 on the target substrate 100, and the rotation drive control unit 128 and the nozzle drive control unit. 127, command each of the chemical supply pump 125. By operating each of them based on this command, the chemical solution is supplied spirally onto the substrate 100 to be processed. The chemical solution supplied onto the substrate to be processed 100 spreads and is combined with the adjacent liquid film to form one liquid film 101 on the substrate to be processed 100.

液膜101が形成された後、該被処理基板100には液膜中にある溶剤を乾燥除去する工程が行われる。乾燥手法には、加熱、溶剤の飽和蒸気圧以下での減圧乾燥、表面に気流に接触させる手法などが用いられる。   After the liquid film 101 is formed, a process of drying and removing the solvent in the liquid film is performed on the substrate 100 to be processed. Examples of the drying method include heating, drying under reduced pressure below the saturated vapor pressure of the solvent, and a method of bringing the surface into contact with an air stream.

液膜が形成された後、該被処理基板は液膜中にある溶剤を乾燥除去する工程に送られる。乾燥手法には、加熱、溶剤の飽和蒸気圧以下での減圧乾燥、表面に気流に接触させる手法などが用いられる。   After the liquid film is formed, the substrate to be processed is sent to a step of drying and removing the solvent in the liquid film. Examples of the drying method include heating, drying under reduced pressure below the saturated vapor pressure of the solvent, and a method of bringing the surface into contact with an air stream.

以下、この液膜形成手段を膜厚400nmのArF感光性樹脂膜形成に適用した場合について説明する。感光性樹脂溶液には固形分量3%のものを用いた。なお、被処理基板上に、ArF露光時に基板面からの反射光を相殺させる反射防止膜が以下と同様の手法で形成されたものを用いた。   Hereinafter, the case where this liquid film forming means is applied to the formation of an ArF photosensitive resin film having a film thickness of 400 nm will be described. A photosensitive resin solution having a solid content of 3% was used. In addition, the thing formed in the method similar to the following in the antireflection film which cancels the reflected light from a substrate surface at the time of ArF exposure on the to-be-processed substrate was used.

説明をわかりやすくするため、以下では被処理基板100の直径を含む基板保持部120の並進駆動方向をX軸とし、それと直交する薬液供給ノズル122を駆動した際の吐出口の軌跡をY軸とする。また、X軸とY軸の交点を装置基準点、円形の被処理基板の中心を基板原点と以下呼ぶことにする。また、装置基準点をXY座標系の原点(0,0)とし、位置の単位はmmで表す。   For easy understanding, in the following, the translation drive direction of the substrate holding unit 120 including the diameter of the substrate 100 to be processed is defined as the X axis, and the trajectory of the discharge port when driving the chemical solution supply nozzle 122 orthogonal thereto is defined as the Y axis. To do. The intersection of the X axis and the Y axis will be referred to as an apparatus reference point, and the center of the circular substrate to be processed will be referred to as a substrate origin. The apparatus reference point is the origin (0, 0) of the XY coordinate system, and the unit of position is expressed in mm.

以後、図3に示すように、薬液供給時のノズル移動方向と同じ向きの移動を+軸、その反対の移動を−軸として説明する。   Hereinafter, as shown in FIG. 3, the movement in the same direction as the nozzle movement direction at the time of supplying the chemical solution will be described as the + axis, and the opposite movement will be described as the − axis.

ノズルの軌跡として基板が1回転する毎の径方向ノズル移動ピッチ変化率aを0.99(1%減少)とした。原点を基準とした螺旋の数を周値n(n>0の実数)と定義する。この周値nを用い、n=1におけるノズル移動ピッチd1を用いて、周値nにおける径方向ノズル移動ピッチdnは、

Figure 2005229115
As a nozzle trajectory, the radial nozzle movement pitch change rate a for each rotation of the substrate was set to 0.99 (1% decrease). The number of spirals with respect to the origin is defined as a circumferential value n (n> 0 real number). Using this circumferential value n, and using the nozzle movement pitch d 1 at n = 1, the radial nozzle movement pitch dn at the circumferential value n is
Figure 2005229115

と表すことができる。
このときのノズル径方向位置Rn

Figure 2005229115
It can be expressed as.
The nozzle radial direction position R n at this time is
Figure 2005229115

と表すことができる。
以下に、基板外に薬液が排出されることなく、基板面内で液膜分布の偏りのない液膜形成が可能になる条件を説明する。まず、径方向ノズル移動ピッチdnが変化しない(a=1)場合の条件を説明し、その後、径方向ノズル移動ピッチdn変化するときの条件を説明する。
It can be expressed as.
In the following, conditions for enabling the formation of a liquid film with no uneven distribution of liquid film within the substrate surface without discharging the chemical solution outside the substrate will be described. First, it describes a radial nozzle movement pitch d n does not change (a = 1) when condition is explained, and thereafter conditions for changing moving radially nozzle pitch d n.

ところで径方向ノズル移動ピッチdnが一定(a=1)の場合には、径rにおける面積(S)変化率は2πrであるから径方向rにおける基板への螺旋の単位長さ当たりの薬液供給量qは薬液供給最外径routとその時の基板への螺旋の単位長さ当たりの薬液供給量qnoutを用いて
q=qnout/ rout (5)
とすればよい。また、基板中心からの距離rにおける薬液供給速度vn(cc/min)と基板回転数wn(rpm)と薬液供給量qとの間には、以下の(6)式の関係が成立する。
Meanwhile in the case of radial nozzle moving pitch d n is a constant (a = 1), the chemical liquid supply per unit length of the helix from the area (S) rate of change in the diameter r is 2πr to the substrate in the radial direction r The quantity q is calculated by using the chemical supply outermost diameter r out and the chemical supply quantity q nout per unit length of the spiral to the substrate at that time, q = q nout · r / r out (5)
And it is sufficient. Further, the following equation (6) is established among the chemical solution supply speed v n (cc / min), the substrate rotation number w n (rpm), and the chemical solution supply amount q at the distance r from the substrate center. .

q=vn / wn (6)
従って(5),(6)式から、以下の(7)式を満たすように基板中心からの距離rにおける薬液供給速度vnと基板回転数wnを定めれば良い。

Figure 2005229115
q = v n / w n (6)
Thus (5), (6) from the equation, may be determined the chemical feed rate v n and substrate rotational frequency w n at a distance r from the substrate center to satisfy the following equation (7).
Figure 2005229115

この時、薬液供給速度vnと基板回転数wnの決定には、以下の3つの方法がある。 In this case, the determination of chemical feed rate v n and substrate rotational frequency w n, there are the following three methods.

(I)薬液供給ノズルの径方向位置(r/rout)に応じて、薬液の吐出量と被処理基板の回転数を決定する。 (I) The discharge amount of the chemical solution and the rotation speed of the substrate to be processed are determined according to the radial position (r / r out ) of the chemical solution supply nozzle.

(II)薬液供給ノズルの径方向位置(r/rout)に応じて、被処理基板の回転数を決定(吐出量はほぼ一定)。 (II) The rotational speed of the substrate to be processed is determined according to the radial position (r / r out ) of the chemical solution supply nozzle (the discharge amount is substantially constant).

(III)薬液供給ノズルの径方向位置(r/rout)に応じて、薬液の吐出量を決定(回転数はほぼ一定)。 (III) The discharge amount of the chemical solution is determined according to the radial direction position (r / r out ) of the chemical solution supply nozzle (the rotation speed is substantially constant).

先ず、(I)の方法による薬液供給速度vnと基板回転数wnの決定について説明する。 First, a description for the determination of chemical feed rate v n and substrate rotational frequency w n according to the method of (I).

距離rにおける薬液供給速度vnと基板回転数wnとは、係数bを用いてそれぞれ以下の(8),(9)式のように表すことができる。

Figure 2005229115
The distance from the chemical feed rate v n and substrate rotational frequency w n in r, the following (8) respectively, using the coefficient b, can be expressed as equation (9).
Figure 2005229115

一方、基板中心からの距離rにおける微小単位面積にある液膜にかかる遠心力Fは液体の比重cを用いて、

Figure 2005229115
On the other hand, the centrifugal force F applied to the liquid film in the minute unit area at the distance r from the substrate center uses the specific gravity c of the liquid,
Figure 2005229115

と表せる。
ここでC=c(qnout/2πrout)と置き、遠心力Fが一定になるrと基板回転数wnの関係を求めると、

Figure 2005229115
It can be expressed.
Here placed and C = c (q nout / 2πr out), when determining the relationship between r and the substrate rotational frequency w n of the centrifugal force F is constant,
Figure 2005229115

となる。
(9)式と(11)式とからroutにおける基板回転数wnoutを、広がった液膜に流動性を生じる下限の遠心力Fと定数C及び係数b(通常は1)を用いて
nout≦(F/C)1/2×b (12)
のように定めることで、基板外に薬液が排出されることなく、基板面内で液膜分布の偏りのない液膜形成が可能になる。なお、基板回転数wnと基板への薬液供給速度vnは(6)式と以下の(13)式を満たす組み合わせであれば如何なる値に設定しても良い。

Figure 2005229115
It becomes.
From equation (9) and equation (11), the substrate rotation speed w nout at r out is calculated using the lower limit centrifugal force F, constant C, and coefficient b (usually 1) that cause fluidity in the spread liquid film. nout ≦ (F / C) 1/2 × b (12)
By defining as described above, it is possible to form a liquid film with no uneven distribution of the liquid film within the substrate surface without discharging the chemical solution outside the substrate. Incidentally, the chemical liquid feed rate v n of the substrate rotational speed w n and the substrate may be set to any value as long as the combination that satisfies the following equation (13) and (6).
Figure 2005229115

本実施形態では径方向ノズル移動ピッチdnは一定ではなく等比級数的に変化しているので(8),(9)式は

Figure 2005229115
Since the radial nozzle moving pitch d n in the present embodiment is changing geometrically not constant (8), (9) is
Figure 2005229115

と、それぞれおきかえられる。式(8')、(9')を用いて、且つ、広がった液膜に流動性が生じないような遠心力Fに調整することで、本発明の趣旨を達成することができる。 And each can be replaced. The gist of the present invention can be achieved by using the formulas (8 ′) and (9 ′) and adjusting the centrifugal force F so that fluidity does not occur in the spread liquid film.

次に、(II)の方法による薬液供給速度vnと基板回転数wnの決定について説明する。
係数b(通常は1)を用いて距離rにおける薬液供給速度vnと基板回転数wn

Figure 2005229115
Next, a description for the determination of chemical feed rate v n and substrate rotational frequency w n according to the method of (II).
(Usually 1) the coefficient b is chemical feed rate v n and substrate rotational frequency w n at a distance r with
Figure 2005229115

と表せる。(14),(15)は基板1周毎に生じる径方向ノズルピッチが一定であるときの値であるが、本発明ではdnは一定ではなく等比級数的に変化しているので(14),(15)式は

Figure 2005229115
It can be expressed. (14) and (15) are values when the radial nozzle pitch generated every round of the substrate is constant, but in the present invention, dn is not constant but varies in a geometric series (14). , (15) is
Figure 2005229115

と、それぞれおきかえられる。(16),(17)式を用い、且つ広がった液膜に流動性が生じないような遠心力Fに調整することで、本発明の趣旨を達成することができる。 And each can be replaced. The purpose of the present invention can be achieved by using the equations (16) and (17) and adjusting the centrifugal force F so that fluidity does not occur in the spread liquid film.

次に、(III)の方法による薬液供給速度vnと基板回転数wnの決定について説明する。 Next, a description for the determination of chemical feed rate v n and substrate rotational frequency w n according to the method of (III).

係数b(通常は1)を用いて距離rにおける薬液供給速度vnと基板回転数wn

Figure 2005229115
(Usually 1) the coefficient b is chemical feed rate v n and substrate rotational frequency w n at a distance r with
Figure 2005229115

と表せる。(18),(19)式は基板1周毎に生じる径方向ノズルピッチが一定であるときの値であるが、本発明ではdnは一定ではなく等比級数的に変化しているので(18),(19)式は、

Figure 2005229115
It can be expressed. (18), (19) but is a value when the radial direction nozzle pitch occurring every round substrate is constant, since in the present invention is changing geometrically rather than d n is a constant ( 18) and (19) are
Figure 2005229115

と、それぞれおきかえられる。(20),(21)を用いて、且つ、広がった液膜に流動性が生じないような遠心力Fに調整することで、本発明の趣旨を達成することができる。 And each can be replaced. The purpose of the present invention can be achieved by using (20) and (21) and adjusting the centrifugal force F so that fluidity does not occur in the spread liquid film.

(第2の実施形態)
本実施形態ではコンパクトディスク(CD)へのレーザー反応膜の塗布方法に関して説明する。レーザー反応膜として青色半導体レーザーでの加工を考慮し400〜550nmに吸収を持つ色素を有機溶剤に溶かしたものを用いた。なお、溶液中の固形分濃度は3%とした。コンパクトディスクの塗布領域は中心から径19mmより外側の領域である(外形55.4mm)。この基板に対する塗布はd1=1.5、a=0.995の条件下で行った。即ち薬液供給ノズルの軌跡Sn

Figure 2005229115
(Second Embodiment)
In the present embodiment, a method for applying a laser reactive film on a compact disc (CD) will be described. In consideration of processing with a blue semiconductor laser, a laser reaction film in which a dye having absorption at 400 to 550 nm was dissolved in an organic solvent was used. The solid content concentration in the solution was 3%. The application area of the compact disc is an area outside the diameter of 19 mm from the center (outer shape 55.4 mm). Application to this substrate was performed under the conditions of d 1 = 1.5 and a = 0.955. That trajectory S n of the chemical solution supply nozzle
Figure 2005229115

としnを14.05282から41.72949の間で変化させた。実際に塗布を行う場合には、上記ノズル径方向位置Rn、薬液供給速度vn、基板回転数wnのそれぞれを時間に対する関係に表現しておく必要がある。その手順を図4のフローチャートを用いて説明する。図4は、第1の実施形態に係わる、時間に対するノズル径方向位置Rn、薬液供給速度vn、基板回転数wnの関係を求める方法を示すフローチャートである。 And n was varied between 14.05282 and 41.72949. In actual application, it is necessary to express each of the nozzle radial direction position R n , the chemical solution supply speed v n , and the substrate rotation number w n in relation to time. The procedure will be described with reference to the flowchart of FIG. 4, according to the first embodiment, is a flowchart illustrating a method of determining a nozzle radial position R n, chemical feed rate v n, the relation between the substrate rotational speed w n with respect to time.

(ステップS101)
まず、被処理基板の最内周Rninを薬液供給ノズルの移動区間の演算開始位置(第1の位置)として設定する。
(Step S101)
First, the innermost circumference R nin of the substrate to be processed is set as the calculation start position (first position) of the movement section of the chemical solution supply nozzle.

(ステップS102)
nout=55.4における基板回転数wnout=107.6rpm、薬液吐出圧力(薬液供給速度)vnoutをまず設定する。ここで定める回転数と吐出圧力は、塗布時に基板外に薬液が放出されないように調整されている。
(Step S102)
First, the substrate rotation speed w nout = 107.6 rpm and the chemical solution discharge pressure (chemical solution supply speed) v nout at R nout = 55.4 are set. The rotational speed and the discharge pressure determined here are adjusted so that the chemical solution is not released outside the substrate during application.

基板外周部で薬液が飛散しない回転数の算出方法を説明する。停止状態から回転数を回転加速度1rpm/secで徐々に回転数を上げて、薬液が基板外に飛散する回転数を求めた。   A method for calculating the number of revolutions at which the chemical solution does not scatter on the outer periphery of the substrate will be described. From the stopped state, the rotational speed was gradually increased at a rotational acceleration of 1 rpm / sec, and the rotational speed at which the chemical solution scattered outside the substrate was determined.

(ステップS103)
薬液供給ノズルの径方向の軌跡、即ちノズル位置Rnにおけるノズル移動ピッチを設定する。本実施形態では、等比級数の初項d1を1.5、変化率aを0.995とした。

Figure 2005229115
(Step S103)
The trajectory in the radial direction of the chemical solution supply nozzle, that is, the nozzle movement pitch at the nozzle position R n is set. In this embodiment, the first term d 1 of the geometric series is 1.5, and the change rate a is 0.995.
Figure 2005229115

(ステップS104)
ノズル位置Rninをノズル位置Riに設定する。
なお、ステップS101〜S104の順序は順不同で、ここで記載された順序に限られるものではない。
(Step S104)
The nozzle position R nin is set to the nozzle position R i .
Note that the order of steps S101 to S104 is random, and is not limited to the order described here.

(ステップS105)
設定された初項d1、変化率a、及び(22)式を用いて、コンパクトディスクの最内周Ri(Rnin=19mm)に相当する周値iを求める。本実施形態の場合、コンパクトディスクの最内周Rnin=19mmに相当する周値nは、14.05282であった。
(Step S105)
A circumferential value i corresponding to the innermost circumference R i (R nin = 19 mm) of the compact disk is obtained using the set initial term d 1 , change rate a, and equation (22). In the case of this embodiment, the circumferential value n corresponding to the innermost circumference R nin = 19 mm of the compact disc was 14.005282.

(ステップS106)
nout=55.4における基板回転数wnout及び薬液吐出圧力vnout、並びに(8'),(9')式を用いて、周値i(=14.05282)での薬液吐出圧力vi(v14.05282)、基板回転数wi(w14.05282)を求める。
(Step S106)
By using the substrate rotational speed w nout and the chemical solution discharge pressure v nout at R nout = 55.4, and the equations (8 ′) and (9 ′), the chemical solution discharge pressure v i at the peripheral value i (= 14.005282). (V 14.05282 ), the substrate rotation speed w i (w 14.05282 ) is obtained.

一方、基板の最外周Rnoutに相当する周値noutはnout=41.72949となる。即ち基板中心から19mmの位置を始点とした薬液供給ノズルの螺旋の軌跡は、基板上を27.6767周して基板エッジに達することになる。 On the other hand, the peripheral value n out corresponding to the outermost periphery R nout of the substrate is n out = 41.772949. That is, the spiral trajectory of the chemical solution supply nozzle starting from a position 19 mm from the center of the substrate reaches the substrate edge after turning around 27.6767 on the substrate.

(ステップS107)
周値iが、i≧41.72949の条件を満たしているかの判定を行う。i≧41.72949でないと判定された場合は、ステップS108を実行する。
(Step S107)
It is determined whether the circumferential value i satisfies the condition of i ≧ 41.772949. If it is determined that i is not greater than 41.72949, step S108 is executed.

(ステップS108)
0.05秒間(単位時間)に変化する周値Δiを求め、0.05秒後の周値i'=i+Δiを求める。そして、求められた周値i'に相当する薬液供給ノズル径方向位置Ri'を算出する。
(Step S108)
A circumferential value Δi that changes in 0.05 seconds (unit time) is obtained, and a circumferential value i ′ = i + Δi after 0.05 seconds is obtained. Then, a chemical solution supply nozzle radial direction position R i ′ corresponding to the obtained circumferential value i ′ is calculated.

基板は時間t秒で基板が回転数wnで回転しているとき、時間t秒から時間t+0.05秒までの間に基板は、
Δn=wn /60×0.05(回転)
だけ回転する。
When the substrate board in the time t in seconds is rotating at a rotational speed w n, the substrate during the time t s to time t + 0.05 seconds,
Δn = w n /60×0.05 (rotation)
Only rotate.

以下に、具体例を用いて説明する。基板回転数w14.05282=180rpmとした場合、基板は0.15回転する。従って、基板回転数w14.05282で0.05秒回転した後の周値nは、n'=14.05282+0.15=14.20282、になる。n'=14.20282に相当するR14.20282は式(22)からR14.20282=19.2112[mm]となる。 Below, it demonstrates using a specific example. When the substrate rotation speed w 14.05282 = 180 rpm, the substrate rotates 0.15 times. Therefore, the peripheral value n after 0.05 second rotation at the substrate rotation speed w 14.05282 is n ′ = 14.005282 + 0.15 = 14.202082. R 14.20282 corresponding to n ′ = 14.020282 becomes R 14.20282 = 19.2112 [mm] from the equation (22).

(ステップS109)
そして、0.05秒後のノズル位置Ri'(第2の位置)を新たにRi(第1の位置)として再設定する。
(Step S109)
Then, the nozzle position Ri (second position) after 0.05 seconds is newly set as Ri (first position).

(ステップS106)
そして、Rnout=55.4における基板回転数wnout及び薬液吐出圧力vnout、並びに(8'),(9')式を用いて、ノズル位置Ri(周値i)での薬液吐出圧力vi、基板回転数wiを求める。
(Step S106)
Then, the chemical solution discharge pressure at the nozzle position R i (circumferential value i) is calculated by using the substrate rotation speed w nout and the chemical solution discharge pressure v nout at R nout = 55.4 and the equations (8 ′) and (9 ′). Find v i and substrate rotation speed w i .

(ステップS107)
i≧41.72949であると判定されるまで、ステップS108,S109,S106を繰り返し行う。
(Step S107)
Steps S108, S109, and S106 are repeated until it is determined that i ≧ 41.772949.

以上の説明した手順により、時間に対する、前記滴下部の径方向位置,薬液吐出圧力(薬液供給速度),被処理基板回転数のそれぞれの関係を決定することができる。任意の時間t秒からt+0.05秒までの間はRn,vn,wnはそれぞれ一定であるとみなす。 According to the above-described procedure, it is possible to determine the relationship between the radial position of the dropping unit, the chemical solution discharge pressure (chemical solution supply speed), and the substrate rotation speed with respect to time. The period from an arbitrary time t s to t + 0.05 seconds regarded as R n, v n, the w n are constant, respectively.

そして、求められた関係に基づいて、薬液供給ノズルの径方向位置と、薬液吐出圧力と被処理基板回転数の制御を行って、前記被処理基板上に液膜の形成を行う。   Then, based on the obtained relationship, the position of the chemical solution supply nozzle in the radial direction, the chemical solution discharge pressure, and the rotation speed of the substrate to be processed are controlled to form a liquid film on the substrate to be processed.

以上示した手順は最内周部で機器に対して矛盾が生じない場合に適用できる。しかし、本実施形態の装置では、吐出圧力を制御することよって、薬液供給速度の制御を行っている。ところが、最内周における吐出圧力が制御可能な圧力範囲の下限である2kgF/cm2 より小さくなってしまうため制御不能となった。この場合、基板外周部から時間に対する薬液供給ノズル位置、薬液供給速度(薬液吐出圧力)、基板回転数を決めていくと良い。 The procedure shown above can be applied when there is no contradiction for the equipment in the innermost periphery. However, in the apparatus of the present embodiment, the chemical supply speed is controlled by controlling the discharge pressure. However, since the discharge pressure in the innermost circumference becomes smaller than 2 kgF / cm 2 which is the lower limit of the controllable pressure range, the control becomes impossible. In this case, the position of the chemical supply nozzle with respect to time, the chemical supply speed (chemical discharge pressure), and the number of rotations of the substrate may be determined from the outer periphery of the substrate.

以下に、外周部から時間に対する薬液供給ノズル位置、薬液供給速度(薬液吐出圧力)、基板回転数の求め方を図5,6を参照して説明する。図5,6は、第1の実施形態に係わる、時間に対するノズル径方向位置Rn、薬液吐出圧力vn、基板回転数wnの関係を求める方法を示すフローチャートである。 Hereinafter, how to obtain the chemical supply nozzle position, the chemical supply speed (chemical discharge pressure), and the substrate rotation speed with respect to time from the outer periphery will be described with reference to FIGS. 5 and 6, according to the first embodiment, is a flowchart illustrating a method of determining a nozzle radial position R n, chemical solution discharge pressure v n, the relation between the substrate rotational speed w n with respect to time.

(ステップS201)
まず、被処理基板の最外周Rnoutを薬液供給ノズルの移動区間の演算開始位置(第1の位置)として設定する。
(Step S201)
First, the outermost circumference R nout of the substrate to be processed is set as the calculation start position (first position) of the movement section of the chemical solution supply nozzle.

(ステップS202〜S206)
ステップS202〜S206は、前に説明したステップS102〜S106と同様なので説明を省略する。ただし、ステップS204において、ノズル位置Rnoutをノズル位置Riに設定する。
(Steps S202 to S206)
Steps S202 to S206 are the same as steps S102 to S106 described above, and a description thereof will be omitted. However, in step S204, the nozzle position R nout is set to the nozzle position R i .

(ステップS207)
算出された基板回転数wiと薬液吐出圧力viが制御範囲内に有るか判定を行う。
(Step S207)
It is determined whether the calculated substrate rotation speed w i and chemical solution discharge pressure v i are within the control range.

(ステップS208)
ステップS207において、基板回転数wiと薬液吐出圧力viが制御範囲内にないと判定された場合、式(8')(9')のbを適当に調整して、基板回転数wiと薬液吐出圧力viを算出し、基板回転数wiと薬液吐出圧力viが制御範囲内に収まっているか判定する。
(Step S208)
If it is determined in step S207 that the substrate rotation speed w i and the chemical solution discharge pressure v i are not within the control range, b in equations (8 ′) and (9 ′) is appropriately adjusted to obtain the substrate rotation speed w i. and calculate the chemical solution discharge pressure v i, determines whether the substrate rotational speed w i and chemical solution discharge pressure v i is within the control range.

(ステップS209)
ステップS208の判定の結果、基板回転数wn"と薬液吐出圧力vn"が制御範囲内に収められない場合、設定した薬液供給ノズル径方向位置より内側を塗布不能領域として、終了する。
(Step S209)
As a result of the determination in step S208, if the substrate rotation speed wn " and the chemical solution discharge pressure vn " are not within the control range, the inside of the set chemical solution supply nozzle radial direction position is set as an unapplicable region, and the process ends.

(ステップS210)
ステップS207において、回転数wi及び吐出量viが制御範囲内にあると判定された場合、周値iが、i<14.05282の条件を満たしているかの判定を行う。i<14.05282でないと判定された場合は、ステップS211を実行する。
(Step S210)
When it is determined in step S207 that the rotation speed w i and the discharge amount v i are within the control range, it is determined whether the circumferential value i satisfies the condition of i <14.05282. If it is determined that i <14.05282 is not satisfied, step S211 is executed.

(ステップS211)
0.05秒間(単位時間)に変化する周値Δiを求め、0.05秒前の周値i'=i+Δiを求める。そして、求められた周値i'に相当する薬液供給ノズル径方向位置Ri'を算出する。
(Step S211)
A circumferential value Δi that changes in 0.05 seconds (unit time) is obtained, and a circumferential value i ′ = i + Δi before 0.05 seconds is obtained. Then, a chemical solution supply nozzle radial direction position R i ′ corresponding to the obtained circumferential value i ′ is calculated.

(ステップS212)
そして、0.05秒後のノズル位置Ri'(第2の位置)を新たにRi(第1の位置)として再設定する。
(Step S212)
Then, the nozzle position Ri (second position) after 0.05 seconds is newly set as Ri (first position).

(ステップS206)
そして、Rnout=55.4における基板回転数wnout及び薬液吐出圧力vnout、並びに(8'),(9')式を用いて、ノズル位置Ri(周値i)での薬液吐出圧力vi、基板回転数wiを求める。
(Step S206)
Then, the chemical solution discharge pressure at the nozzle position R i (circumferential value i) is calculated by using the substrate rotation speed w nout and the chemical solution discharge pressure v nout at R nout = 55.4 and the equations (8 ′) and (9 ′). Find v i and substrate rotation speed w i .

i<14.05282であると判定されるまで、或いは塗布不能領域と判定されるまでS206,S207,S211,S212を繰り返し行う。   Steps S206, S207, S211, and S212 are repeated until it is determined that i <14.05282, or until it is determined that the region cannot be applied.

以上説明した手順で求められた、時間に対する薬液ノズルの径方向の位置、薬液吐出圧力、基板回転数の関係を図7に示す。図7(a)はプロセス時間に対する基板中心からのノズル位置を示す図、図7(b)はプロセス時間に対する基板回転数を示す図、図7(c)はプロセス時間に対する薬液吐出圧力を示す図である。   FIG. 7 shows the relationship among the position of the chemical nozzle in the radial direction, the chemical discharge pressure, and the substrate rotation speed with respect to time, which is obtained by the procedure described above. 7A is a view showing the nozzle position from the center of the substrate with respect to the process time, FIG. 7B is a view showing the number of rotations of the substrate with respect to the process time, and FIG. 7C is a view showing the chemical discharge pressure with respect to the process time. It is.

なお、上述の時間に対する薬液供給ノズルの径方向位置、薬液吐出圧力、被処理基板回転数の決定法は薬液供給ノズルの径方向移動が周値に対する等比級数的な移動の場合だけでなく、薬液供給ノズルの径方向移動が一定である場合にたいしても適用できる。   In addition, the method of determining the radial position of the chemical solution supply nozzle, the chemical solution discharge pressure, and the rotation speed of the substrate to be processed with respect to the above-described time is not only the case where the radial movement of the chemical solution supply nozzle is a geometrical series movement with respect to the circumferential value, The present invention can also be applied to a case where the radial movement of the chemical solution supply nozzle is constant.

プロセス時間0〜0.8秒の間で薬液吐出圧力が一定になっているのは吐出圧力制御下限が2kgF/cm2 が限界であることによる。この領域では式(8')で薬液吐出圧力vの値が一定になるようにbの値を変化させて、それに応じて(9')により基板回転数を設定している。また、同様にプロセス時間12秒以降でも薬液吐出圧力が一定になっている。これは吐出圧力の上限値が3.5kgF/cm2 であったため、(8')式で最大吐出圧力に対応する最大薬液吐出圧力vmaxを超えないようにbの値を変化させたことによる。このように薬液供給速度と基板回転数は基本的に式(8')、(9')により制御を行い、装置の制約に応じて適時bの値を変更すると良い。 The reason why the chemical discharge pressure is constant during the process time of 0 to 0.8 seconds is that the lower limit of the discharge pressure control is 2 kgF / cm 2 . In this region, the value of b is changed so that the value of the chemical solution discharge pressure v becomes constant in the equation (8 ′), and the substrate rotation speed is set according to (9 ′) accordingly. Similarly, the chemical discharge pressure is constant even after the process time of 12 seconds. This is because the upper limit value of the discharge pressure was 3.5 kgF / cm 2 , and therefore the value of b was changed so as not to exceed the maximum chemical solution discharge pressure v max corresponding to the maximum discharge pressure in the equation (8 ′). . In this way, the chemical solution supply speed and the substrate rotation speed are basically controlled by the equations (8 ′) and (9 ′), and the value b may be changed in a timely manner according to the restrictions of the apparatus.

図7のそれぞれの制御パターンに応じて図1に示される装置を用いて基板中心からのノズルの位置、基板回転数、ノズルからの薬液供給速度を調整し、円形基板上に厚さ10μmの液状塗布膜を形成した。塗布膜形成の後、減圧下で溶剤を除去して、さらにベーキングを行って円形基板上に膜厚0.3μmで、膜厚均一性1%以下の色素膜を形成した。なお、本発明では中心に近いほど従い薬液供給ノズルにより薬液を滴下した軌跡の幅が広がることになるが塗布終了後にこれらの軌跡が広がるものの互いに接続しない場合には閉空間あるいは溶剤の雰囲気で満たされた空間で塗布基板を保持し、液膜が十分に広がりレベリングされるのを待った後に減圧などの乾燥工程に移動させることが望ましい。また、乾燥速度の速い溶剤を用いる場合には塗布そのものを溶剤雰囲気下で行うことが望ましい。上記レベリングは、前記被処理基板上の最外周部の液膜が遠心力により前記被処理基板外に移動しない最大回転数以下の回転数以下で行うことが好ましい。回転数は、液体の表面張力と界面張力、遠心力のバランスにより、プロファイルが決定される。このとき微小な凹凸が残る場合がある(特に基板の外周部に残る)。この場合、液膜の粘度を高くしていく過程で、音波・超音波などを用いて液膜に対して振動を与えると凹凸を限りなく小さくできる。   The position of the nozzle from the center of the substrate, the number of rotations of the substrate, and the supply speed of the chemical solution from the nozzle are adjusted using the apparatus shown in FIG. 1 according to each control pattern of FIG. 7, and a liquid having a thickness of 10 μm is formed on the circular substrate. A coating film was formed. After forming the coating film, the solvent was removed under reduced pressure, and baking was further performed to form a dye film having a film thickness of 0.3 μm and a film thickness uniformity of 1% or less on a circular substrate. In the present invention, the closer to the center, the wider the trajectory where the chemical solution is dropped by the chemical solution supply nozzle. However, when these trajectories widen after the application is completed but they are not connected to each other, they are filled with a closed space or a solvent atmosphere. It is desirable to hold the coated substrate in the formed space and move to a drying process such as decompression after waiting for the liquid film to sufficiently spread and level. In addition, when a solvent having a high drying rate is used, it is desirable that the coating itself be performed in a solvent atmosphere. The leveling is preferably performed at a rotation speed equal to or lower than the maximum rotation speed at which the outermost peripheral liquid film on the substrate to be processed does not move out of the substrate to be processed due to centrifugal force. The profile of the rotational speed is determined by the balance between the surface tension, interfacial tension, and centrifugal force of the liquid. At this time, minute irregularities may remain (particularly, on the outer peripheral portion of the substrate). In this case, in the process of increasing the viscosity of the liquid film, unevenness can be reduced as much as possible by applying vibration to the liquid film using sound waves, ultrasonic waves, or the like.

また、乾燥を行う前段階で、表面張力により液が内側に移動して、基板エッジ部分の液膜厚が薄くなる場合がある。このような場合には、乾燥の直前で基板の上方を開放系として、基板を150〜200rpm程度で回転させることで、基板中心で上方から基板面に向かい、さらに基板外周方向に向かう気流を生じさせることで、内側に移動している液膜を外側に引っ張るとよい。直ちに乾燥を行うことで、エッジ部分でも膜厚変動の小さい良好な膜厚均一性をえることができる。   Further, before the drying, the liquid may move inward due to surface tension, and the liquid film thickness at the edge portion of the substrate may become thin. In such a case, the substrate is opened at an upper system immediately before drying, and the substrate is rotated at about 150 to 200 rpm, thereby generating an air flow from the upper side toward the substrate surface at the center of the substrate and further toward the outer periphery of the substrate. By doing so, the liquid film moving inward may be pulled outward. By performing drying immediately, good film thickness uniformity with little film thickness fluctuation can be obtained even at the edge portion.

本実施形態はコンパクトディスクの塗布に関するものであるが、これに限るものではなく、DVDディスク、ミニディスクなどドーナツ状の基板及び、円形の半導体ウェハ上への塗布へも適用できる。また、材料もレーザー光吸収材料に限るものではなく、磁性体が含まれる液体、金属材料が含まれる液体の塗布に対しても適用可能である。   Although this embodiment relates to the application of a compact disk, the present invention is not limited to this, and can also be applied to application to a donut-shaped substrate such as a DVD disk or a minidisk, and a circular semiconductor wafer. Further, the material is not limited to the laser light absorbing material, and can be applied to the application of a liquid containing a magnetic material or a liquid containing a metal material.

また、塗布条件も(12)式のようにWnoutを設定し、(8'),(9')式により薬液供給速度とそれに対応した薬液吐出圧力、基板回転数、(3)式により基板中心に対する薬液供給ノズルの位置を定め、制御を行いさえすれば、如何なる制御を行っても良い。また、液吐出圧力と基板回転数はパラメータhにより、薬液供給ノズル位置については複数の領域に分けてd1、a、nを調整して制御を行っても構わない。 Also, the coating conditions are set as W nout as in equation (12), the chemical solution supply speed and the corresponding chemical solution discharge pressure, the substrate rotation speed according to equations (8 ′) and (9 ′), and the substrate according to equation (3). Any control may be performed as long as the position of the chemical solution supply nozzle with respect to the center is determined and controlled. Further, the liquid discharge pressure and the number of rotations of the substrate may be controlled by adjusting the parameter d 1 , a, n by dividing the chemical solution supply nozzle position into a plurality of regions by the parameter h.

(第3の実施形態)
本実施形態は半導体基板の層間絶縁膜を塗布で形成する手法に関する。
(Third embodiment)
This embodiment relates to a technique for forming an interlayer insulating film of a semiconductor substrate by coating.

配線が形成された基板を図1に示す塗布装置にセットした。この基板への塗布を薬液供給ノズルの軌跡としてd1=1.5mm、a=0.995となるよう(15)式のように定めた。

Figure 2005229115
The substrate on which the wiring was formed was set in the coating apparatus shown in FIG. The application onto the substrate was determined as shown in the equation (15) so that d 1 = 1.5 mm and a = 0.993 as the locus of the chemical solution supply nozzle.
Figure 2005229115

しかし、この塗布条件では径7.6mmより内側で膜厚異常が生じたため、径7.6mm以内では膜厚異常を解消するためd0=4.22、a=0.844となるよう(24)式のように定めた。

Figure 2005229115
However, since the film thickness abnormality occurred inside the diameter of 7.6 mm under this coating condition, d 0 = 4.22 and a = 0.844 so as to eliminate the film thickness abnormality within the diameter of 7.6 mm (24 ).
Figure 2005229115

つまり、径7.6mmより内側では、(24)式の制御式に基づいて処理時間に対する薬液供給ノズル位置、基板回転数、薬液吐出圧力を算出し、径7.6mmより外側では(23)式の制御式に基づいて処理時間に対する薬液供給ノズル位置、基板回転数、薬液吐出圧力を算出した。
径7.6mmより内側では周値nは0.5≦n≦3.00であり、径7.6mmより外側では周値nは6.11≦n≦80.4である。
That is, inside the diameter of 7.6 mm, the chemical solution supply nozzle position, the substrate rotation speed, and the chemical solution discharge pressure with respect to the processing time are calculated based on the control expression of the equation (24), and outside the diameter of 7.6 mm, the equation (23) is calculated. Based on the control equation, the chemical solution supply nozzle position, the substrate rotation speed, and the chemical solution discharge pressure with respect to the processing time were calculated.
The circumferential value n is 0.5 ≦ n ≦ 3.00 inside the diameter 7.6 mm, and the circumferential value n is 6.11 ≦ n ≦ 80.4 outside the diameter 7.6 mm.

これを元に算出した処理時間に対する薬液供給ノズル位置、基板回転数、薬液吐出圧力の関係を図8に示す。図8(a)はプロセス時間に対する基板中心からのノズル位置を示す図、図8(b)はプロセス時間に対する基板回転数を示す図、図8(c)はプロセス時間に対する薬液吐出圧力を示す図である。   FIG. 8 shows the relationship between the chemical solution supply nozzle position, the substrate rotation speed, and the chemical solution discharge pressure with respect to the processing time calculated based on this. 8A is a view showing the nozzle position from the center of the substrate with respect to the process time, FIG. 8B is a view showing the number of rotations of the substrate with respect to the process time, and FIG. 8C is a view showing the chemical discharge pressure with respect to the process time. It is.

また、滴下される径7.6mmより内側と外側の薬液供給ノズルの軌跡を図9に示す。図9は、図8に示すプロセス時間に対する基板中心からのノズル位置,基板回転数,及び薬液吐出圧力に基づいて滴下される薬液供給ノズルの軌跡を示す図である。図9において、601は径7.6mmより内側の軌跡を示し、602は径7.6mmより外側の軌跡を示し、603は径7.6mの内側の軌跡と外側の軌跡との接続点と基板中心とを直径とする真円を示している。   Moreover, the locus | trajectory of the chemical | medical solution supply nozzle inside and outside the diameter of 7.6 mm dripped is shown in FIG. FIG. 9 is a diagram showing a locus of the chemical solution supply nozzle dropped based on the nozzle position from the center of the substrate, the substrate rotation speed, and the chemical solution discharge pressure with respect to the process time shown in FIG. In FIG. 9, reference numeral 601 denotes a trajectory inside the diameter 7.6 mm, 602 denotes a trajectory outside the diameter 7.6 mm, and 603 denotes a connection point between the inner trajectory of the diameter 7.6 m and the outer trajectory, and the substrate. A perfect circle whose diameter is the center is shown.

図8(c)に示すプロセス時間と薬液吐出圧力との関係において、プロセス時間0〜1.7秒の間で吐出圧力が一定になっているのは吐出圧力制御下限が2kgF/cm2 が限界であることによる。この領域では式(8')で薬液吐出圧力vの値が一定になるようにbの値を変化させて、それに応じて(9')により基板回転数を設定している。また、同様にプロセス時間8.5秒以降でも吐出圧力が一定になっている。これは吐出圧力の上限値が3.5kgF/cm2 であったため、(8')式で最大吐出圧力に対応する最大薬液吐出圧力vmaxを超えないようにbの値を変化させたことによる。このように薬液供給速度と基板回転数は基本的に式(8')、(9')により制御を行い、装置の制約に応じて適時bの値を変更すると良い。 In the relationship between the process time and the chemical solution discharge pressure shown in FIG. 8C, the discharge pressure is constant between the process time 0 and 1.7 seconds because the discharge pressure control lower limit is 2 kgF / cm 2. Because it is. In this region, the value of b is changed so that the value of the chemical solution discharge pressure v becomes constant in the equation (8 ′), and the substrate rotation speed is set according to (9 ′) accordingly. Similarly, the discharge pressure is constant after the process time of 8.5 seconds. This is because the upper limit value of the discharge pressure was 3.5 kgF / cm 2 , and therefore the value of b was changed so as not to exceed the maximum chemical solution discharge pressure v max corresponding to the maximum discharge pressure in the equation (8 ′). . In this way, the chemical solution supply speed and the substrate rotation speed are basically controlled by the equations (8 ′) and (9 ′), and the value b may be changed in a timely manner according to the restrictions of the apparatus.

図8に示したそれぞれの制御パターンに応じて図1に示される装置を用いて基板中心からのノズルの位置、基板回転数、ノズルからの薬液供給速度を調整し、円形基板上に厚さ20μmの液状塗布膜を形成した。塗布膜形成の後、減圧下で溶剤を除去して、さらにベーキングを行って円形基板上に膜厚1μmで、膜厚均一性1%以下の層間絶縁膜を形成した。なお、本発明では中心に近づくに従い薬液供給ノズルにより薬液を滴下した軌跡の幅が広がることになるが塗布終了後にこれらの軌跡が広がるものの互いに接続しない場合には閉空間あるいは溶剤の雰囲気で満たされた空間で塗布基板を保持し、液膜が十分に広がりレベリングされるのを待った後に減圧などの乾燥工程に移動させることが望ましい。また、乾燥速度の速い溶剤を用いる場合には塗布そのものを溶剤雰囲気下で行うことが望ましい。上記レベリングは液体の表面張力と界面張力、遠心力のバランスにより、プロファイルが決定される。このとき微小な凹凸が残る場合がある。この場合、液膜の粘度を高くしていく過程で、音波・超音波などを用いて液膜に対して振動を与えると凹凸を限りなく小さくできる。   According to each control pattern shown in FIG. 8, the position of the nozzle from the center of the substrate, the number of rotations of the substrate, and the supply speed of the chemical solution from the nozzle are adjusted using the apparatus shown in FIG. 1, and the thickness is 20 μm on the circular substrate. A liquid coating film was formed. After forming the coating film, the solvent was removed under reduced pressure, and baking was further performed to form an interlayer insulating film having a film thickness of 1 μm and a film thickness uniformity of 1% or less on a circular substrate. In the present invention, as the distance from the center is approached, the width of the trajectory where the chemical solution is dropped by the chemical solution supply nozzle is widened. It is desirable to hold the coated substrate in the remaining space and move to a drying step such as decompression after waiting for the liquid film to sufficiently spread and level. In addition, when a solvent having a high drying rate is used, it is desirable that the coating itself be performed in a solvent atmosphere. In the leveling, the profile is determined by the balance of the surface tension, interfacial tension, and centrifugal force of the liquid. At this time, minute unevenness may remain. In this case, in the process of increasing the viscosity of the liquid film, unevenness can be reduced as much as possible by applying vibration to the liquid film using sound waves, ultrasonic waves, or the like.

また、乾燥を行う前段階で、表面張力により液が内側に移動して、基板エッジ部分の液膜厚が薄くなる場合がある。このような場合には、乾燥の直前で基板の上方を開放系として、基板を前記被処理基板上の最外周部の液膜が遠心力により前記被処理基板外に移動しない最大回転数以下の回転数、例えば70〜200rpm程度で回転させることで、基板中心で上方から基板面に向かい、さらに基板外周方向に向かう気流を生じさせることで、内側に移動している液膜を外側に引っ張るとよい。直ちに乾燥を行うことで、エッジ部分でも膜厚変動の小さい良好な膜厚均一性をえることができる。   Further, before the drying, the liquid may move inward due to surface tension, and the liquid film thickness at the edge portion of the substrate may become thin. In such a case, the upper part of the substrate is opened immediately before drying, and the liquid film at the outermost periphery on the substrate to be processed does not move out of the substrate to be processed by centrifugal force. When the liquid film that is moving inward is pulled outward by rotating at a rotational speed of, for example, about 70 to 200 rpm, generating an air flow from the upper side toward the substrate surface at the center of the substrate and further toward the outer periphery of the substrate. Good. By performing drying immediately, good film thickness uniformity with little film thickness fluctuation can be obtained even at the edge portion.

本実施形態では中心部の塗布を別な等比級数関数により薬液供給ノズルを移動させながら行ったが、十分に広がる性質の薬液であれば、基板の中心に所望量滴下することも可能である。この場合、中心に滴下した後、基板を回転させて略径7.6mmの位置まで液膜を広げた後、(23)式に従い薬液供給ノズルを移動させつつ、ノズルの位置に対応した薬液供給速度(圧力)と基板回転数を与えると良い。   In this embodiment, the central portion is applied while moving the chemical solution supply nozzle by another geometric series function. However, if the chemical solution has a sufficiently spreading property, a desired amount can be dropped on the center of the substrate. . In this case, after dripping at the center, the substrate is rotated to widen the liquid film to a position having a diameter of about 7.6 mm, and then the chemical liquid supply nozzle is moved according to the equation (23), and the chemical liquid supply corresponding to the position of the nozzle is performed. It is good to give speed (pressure) and substrate rotation speed.

本実施形態は円形半導体基板の層間絶縁膜塗布に関するものであるが、これに限るものではなく、反射防止膜、感光性材料膜、強誘電体膜、平坦化膜など円形の半導体ウェハ上へのあらゆる塗布膜形成にも適用できる。   This embodiment relates to the application of an interlayer insulating film to a circular semiconductor substrate, but is not limited to this, and is not limited to this, but is applied to a circular semiconductor wafer such as an antireflection film, a photosensitive material film, a ferroelectric film, or a planarizing film. It can be applied to any coating film formation.

また、塗布条件も(12)式のようにWnoutを設定し、(8'),(9')式により薬液供給速度とそれに対応した薬液吐出圧力、基板回転数、(3)式により基板中心に対する薬液供給ノズルの位置を定め、制御を行いさえすれば、如何なる制御を行っても良い。また、液吐出圧力と基板回転数はパラメータhにより、薬液供給ノズル位置については複数の領域に分けてd1、a、nを調整して制御を行っても構わない。 Also, the coating conditions are set as W nout as in equation (12), the chemical solution supply speed and the corresponding chemical solution discharge pressure, the substrate rotation speed according to equations (8 ′) and (9 ′), and the substrate according to equation (3). Any control may be performed as long as the position of the chemical solution supply nozzle with respect to the center is determined and controlled. Further, the liquid discharge pressure and the number of rotations of the substrate may be controlled by adjusting the parameter d 1 , a, n by dividing the chemical solution supply nozzle position into a plurality of regions by the parameter h.

本実施形態では螺旋上に滴下した液線が被処理基板上で液体の流動性により広がり、被処理基板のエッジ部分を除く全面への液膜形成を可能にするものであるが、場合によっては中心部で線状のまま液体が残る場合がある。その場合は中心部の薬液供給ノズルの径方向移動ピッチと変化率を小さくし、滴下時に過剰となる薬液を、連続滴下している薬液の側面からガスを照射するか、薬液そのものを吸引するか、シャッターなどを挿入して物理的に遮断するなどして、単位面積あたりの薬液供給量を調整すると良い。   In this embodiment, the liquid line dropped on the spiral spreads due to the fluidity of the liquid on the substrate to be processed, and enables liquid film formation on the entire surface except the edge portion of the substrate to be processed. The liquid may remain linear at the center. In that case, reduce the radial movement pitch and rate of change of the chemical solution supply nozzle in the center, and irradiate the chemical solution that is excessive when dripping from the side of the continuously dripping chemical solution or aspirate the chemical solution itself It is preferable to adjust the chemical supply amount per unit area by inserting a shutter or the like to physically shut it off.

(第4の実施形態)
上記パラメータの決定法に基づき、コンパクトディスク(CD)へのレーザー反応膜の塗布方法に関して説明する。レーザー反応膜として青色半導体レーザーでの加工を考慮し400〜700nmに吸収を持つ色素を有機溶剤に溶かしたものを用いた。なお、溶液中の固形分濃度は2%とした。コンパクトディスクの塗布領域は中心から径19mmより外側の領域である(外形55.4mm)。この基板に対する塗布はd1=1.65、a=0.995の条件下で行った。即ち薬液供給ノズルの軌跡Sn

Figure 2005229115
(Fourth embodiment)
Based on the method for determining the above parameters, a method for applying a laser reactive film to a compact disc (CD) will be described. In consideration of processing with a blue semiconductor laser, a laser reaction film in which a dye having absorption at 400 to 700 nm was dissolved in an organic solvent was used. The solid content concentration in the solution was 2%. The application area of the compact disc is an area outside the diameter of 19 mm from the center (outer shape 55.4 mm). Application to this substrate was performed under the conditions of d 1 = 1.65 and a = 0.955. That trajectory S n of the chemical solution supply nozzle
Figure 2005229115

としnを14.202から41.729の間で変化させた。実際に塗布を行う場合には、吐出位置Rn、吐出量vn、回転数wnをそれぞれを時間に対する関係で表現しておく必要がある。その手順を、図10のフローチャートを参照して説明する。図10は、本発明の第4の実施形態に係わる処理時間に対するノズル径方向位置Rn、薬液供給速度vn、基板回転数wnの関係を求める方法を示すフローチャートである。 And n was varied between 14.202 and 41.729. When actually performing coating, the discharge position R n, discharge rate v n, it is necessary to represent the rotational speed w n respectively in relation to time. The procedure will be described with reference to the flowchart of FIG. FIG. 10 is a flowchart showing a method for obtaining the relationship between the nozzle radial direction position R n , the chemical solution supply speed v n , and the substrate rotation number w n with respect to the processing time according to the fourth embodiment of the present invention.

(ステップS301)
最外周吐出位置Rnout=55.4mmにおける回転数wnout=61.26rpm,吐出圧vnout(=2kgF/cm2 :薬液供給ノズルの吐出加減圧)をまず設定する。ここで定める回転数と吐出量は、塗布時に基板外に薬液が放出されないように調整されている。また、各制御パラメータは、薬液供給ノズルの径方向位置(r/rout)に応じて、被処理基板の回転数を決定(吐出量一定)する(II)の方法により決定した。
(Step S301)
First, the rotational speed w nout = 61.26 rpm and the discharge pressure v nout (= 2 kgF / cm 2 : discharge pressure increase / decrease of the chemical solution supply nozzle) at the outermost peripheral discharge position R nout = 55.4 mm are set. The rotation speed and the discharge amount determined here are adjusted so that the chemical solution is not released outside the substrate during application. Each control parameter was determined by the method (II) in which the number of rotations of the substrate to be processed was determined (constant discharge amount) according to the radial position (r / r out ) of the chemical solution supply nozzle.

(ステップS302)
薬液供給ノズルの径方向の軌跡、即ちノズル位置Rnにおけるノズル移動ピッチを設定する。本実施形態では、等比級数の初項d1を1.5、変化率aを0.995とした。
(Step S302)
The trajectory in the radial direction of the chemical solution supply nozzle, that is, the nozzle movement pitch at the nozzle position R n is set. In this embodiment, the first term d 1 of the geometric series is 1.5, and the change rate a is 0.995.

(ステップS303)
設定された初項d1、変化率a、及び(25)式を用いて、コンパクトディスクの最内周Rin(Rnin=19mm)に相当する周値ninを求める。本実施形態の場合、コンパクトディスクの最内周Rnin=19mmに相当する周値nは、14.47596になる。
(Step S303)
A circumferential value n in corresponding to the innermost circumference R in (R nin = 19 mm) of the compact disk is obtained using the set initial term d 1 , change rate a, and equation (25). In the case of this embodiment, the circumferential value n corresponding to the innermost circumference R nin = 19 mm of the compact disc is 14.47596.

一方、基板の最外周Rnoutに相当する周値noutはnout=46.86691となる。即ち基板中心から19mmの位置を始点とした薬液供給ノズルの螺旋の軌跡は、基板上を32.39094(=nout−nin)周して基板エッジに達することになる。 On the other hand, the peripheral value n out corresponding to the outermost periphery R nout of the substrate is n out = 46.86691. That is, the spiral trajectory of the chemical solution supply nozzle starting from a position 19 mm from the center of the substrate reaches the substrate edge by making a round of 32.39094 (= n out −n in ) on the substrate.

(ステップS304)
nin=19mmにおける基板回転数wnout及び薬液吐出圧力vnout(=2kgF/cm2 :薬液供給ノズルの吐出加減圧)、並びに(16),(17)式を用いて、周値i(=14.47596)での、基板回転数wi(w14.47596)を求める。

Figure 2005229115
(Step S304)
Substrate rotation number w nout and chemical solution discharge pressure v nout (= 2 kgF / cm 2 : discharge pressure increase / decrease of the chemical solution supply nozzle) at R nin = 19 mm, and circumferential value i (= 14. The number of substrate rotations w i (w 14.47596 ) at 14.47596 ) is obtained.
Figure 2005229115

この時、薬液吐出圧力が変化しないように、係数bを調整する。即ち、(16)式において、vn=2kgF/cm2 を代入し、薬液吐出圧力が変化しない係数bを求める。そして、求められた係数bを(17)式に代入して基板回転数wnを求める。 At this time, the coefficient b is adjusted so that the chemical discharge pressure does not change. That is, in the equation (16), v n = 2 kgF / cm 2 is substituted to obtain a coefficient b that does not change the chemical discharge pressure. Then, the coefficients were determined b (17) is substituted into equation obtaining the substrate rotational frequency w n.

(ステップS305)
周値iが、i≧46.86691の条件を満たしているかの判定を行う。i≧46.86691でないと判定された場合は、ステップS108を実行する。
(Step S305)
It is determined whether or not the circumferential value i satisfies the condition of i ≧ 46.86691. If it is determined that i is not greater than 46.86691, step S108 is executed.

(ステップS306)
0.05秒間(単位時間)に変化する周値Δiを求め、0.05秒後の周値i'=i+Δiを求める。そして、求められた周値i'に相当する薬液供給ノズル径方向位置Ri'を算出する。任意の時間t秒からt+0.05秒までの間はRn、vn、wnはそれぞれ一定であるとみなす。
(Step S306)
A circumferential value Δi that changes in 0.05 seconds (unit time) is obtained, and a circumferential value i ′ = i + Δi after 0.05 seconds is obtained. Then, a chemical solution supply nozzle radial direction position R i ′ corresponding to the obtained circumferential value i ′ is calculated. The period from an arbitrary time t s to t + 0.05 seconds regarded as R n, v n, the w n are constant, respectively.

基板は時間t秒で基板が回転数wnで回転しているとき、時間t秒から時間t+0.05秒までの間に基板は、

Figure 2005229115
When the substrate board in the time t in seconds is rotating at a rotational speed w n, the substrate during the time t s to time t + 0.05 seconds,
Figure 2005229115

だけ回転する。
例えば、w14.47596=180rpmとした場合、0.15回転する。従ってwnで0.05秒回転した後のnは

Figure 2005229115
Only rotate.
For example, when w 14.47596 = 180 rpm, the rotation is 0.15. N after rotation 0.05 sec w n therefore
Figure 2005229115

になる。n’=14.62596に相当するR14.62596は式(3)からR14.62596=19.19733となる。 become. R 14.62596 corresponding to n ′ = 14.662596 becomes R 14.62596 = 19.19733 from the formula (3).

(ステップS307)
そして、0.05秒後の薬液供給ノズル位置Ri'(第2の位置)を新たにノズル位置Ri(第1の位置)として再設定する。
(Step S307)
Then, the chemical solution supply nozzle position Ri (second position) after 0.05 seconds is newly set as the nozzle position Ri (first position).

(ステップS304)
そして、Rnout=55.4における基板回転数wnout及び薬液吐出圧力vnout、並びに(8'),(9')式を用いて、ステップ307で新たに設定されたノズル位置Ri(周値i)での薬液吐出圧力vi、基板回転数wiを求める。
(Step S304)
Then, the nozzle position R i (circumference) newly set in step 307 is calculated by using the substrate rotational speed w nout and chemical solution discharge pressure v nout at R nout = 55.4, and equations (8 ′) and (9 ′). The chemical solution discharge pressure v i and the substrate rotation number w i at the value i) are obtained.

(ステップS305)
i≧46.86691であると判定されるまで、ステップS306,S307,S304を繰り返し行う。
(Step S305)
Steps S306, S307, and S304 are repeated until it is determined that i ≧ 46.86691.

以上の手順により、時間に対する吐出位置Rn、吐出量vn、回転数wnが表現される。 By the above procedure, the discharge position R n with respect to time, the discharge amount v n, the rotational speed w n is represented.

これらの手順により得られた処理時間に対する薬液供給ノズルの径方向位置、薬液供給圧力、被処理基板回転数の関係を図11にそれぞれ記す。図11(a)は処理時間に対する基板中心から径方向のノズル位置を示し、図11(b)は処理時間に対する薬液吐出圧力を示し、図11(c)は処理時間に対する基板回転数を示している。   FIG. 11 shows the relationship between the radial position of the chemical solution supply nozzle, the chemical solution supply pressure, and the rotation speed of the substrate to be processed with respect to the processing time obtained by these procedures. 11A shows the nozzle position in the radial direction from the substrate center with respect to the processing time, FIG. 11B shows the chemical discharge pressure with respect to the processing time, and FIG. 11C shows the substrate rotation speed with respect to the processing time. Yes.

図11のそれぞれの制御パターンに応じて図1に示される装置を用いて、薬液供給ノズルからの薬液供給速度を一定にしつつ、基板中心からの薬液供給ノズルの位置、基板回転数を調整し、円形基板上に厚さ20μmの液状塗布膜を形成した。塗布膜形成の後、減圧下で溶剤を除去して、さらにベーキングを行って円形基板上に膜厚0.4μmで、膜厚均一性1%以下の色素膜を形成した。   Using the apparatus shown in FIG. 1 according to each control pattern in FIG. 11, the position of the chemical solution supply nozzle from the center of the substrate and the substrate rotation speed are adjusted while keeping the chemical solution supply speed from the chemical solution supply nozzle constant. A liquid coating film having a thickness of 20 μm was formed on a circular substrate. After forming the coating film, the solvent was removed under reduced pressure, and baking was further performed to form a dye film having a film thickness of 0.4 μm and a film thickness uniformity of 1% or less on a circular substrate.

被処理基板上に滴下した液体の広がりが遅く、隣接する線と接続しにくい場合には、基板を密閉容器あるいは溶剤雰囲気に置くことで液体を広がらせて、隣接する線を接続するように施すのが望ましい。また、乾燥速度の速い溶剤を用いる場合には塗布そのものを溶剤雰囲気下で行うのが望ましい。上記レベリング中に液体の表面張力と界面張力、遠心力のバランスにより、プロファイルが決定される。このとき微小な凹凸が残る場合がある。この場合、液膜の粘度が増していく過程で、膜厚斑の周期Sに対して略S/2からSの範囲の波長を含む振動を音波・超音波などを用いて液膜に対して与えることで凹凸を限りなく小さくできる。   If the liquid dropped on the substrate to be treated is slow to spread and difficult to connect to adjacent lines, place the substrate in a sealed container or solvent atmosphere to spread the liquid and connect the adjacent lines. Is desirable. In addition, when a solvent having a high drying rate is used, it is desirable that the coating itself be performed in a solvent atmosphere. During the leveling, the profile is determined by the balance of the surface tension, interfacial tension, and centrifugal force of the liquid. At this time, minute unevenness may remain. In this case, in the process of increasing the viscosity of the liquid film, the vibration including the wavelength in the range of about S / 2 to S with respect to the period S of the film thickness unevenness is applied to the liquid film using sound waves, ultrasonic waves, or the like. By giving, the unevenness can be made as small as possible.

また、乾燥を行う前段階で、表面張力により液が内側に移動して、基板エッジ部分の液膜厚が薄くなる場合がある。このような場合には、乾燥の直前に基板上方を開放して、基板を150〜200rpm程度で回転させることで、基板中心上方から基板面に向かい、さらに基板外周方向に向かう気流を生じさせることができ、内側に移動している液膜を外側に引っ張ることができる。その後、乾燥を行うことで、エッジ部分でも膜厚変動の小さい良好な膜厚均一性をえることができる。   Further, before the drying, the liquid may move inward due to surface tension, and the liquid film thickness at the edge portion of the substrate may become thin. In such a case, by opening the upper part of the substrate immediately before drying and rotating the substrate at about 150 to 200 rpm, an air flow is generated from the upper part of the substrate toward the substrate surface and further toward the outer periphery of the substrate. And the liquid film moving inward can be pulled outward. Thereafter, by drying, good film thickness uniformity with small film thickness fluctuation can be obtained even at the edge portion.

本実施形態はコンパクトディスクの塗布に関して説明した。しかし、、これに限るものではなく、DVDディスク、ミニディスクなどドーナツ状の基板及び、円形の半導体ウエハ上への塗布へも適用できる。また、材料もレーザー光吸収材料に限るものではなく、磁性体が含まれる液体、金属材料が含まれる液体の塗布に対しても適用可能である。   In the present embodiment, the application of the compact disc has been described. However, the present invention is not limited to this, and the present invention can also be applied to a donut-shaped substrate such as a DVD disk or a minidisk, and coating on a circular semiconductor wafer. Further, the material is not limited to the laser light absorbing material, and can be applied to the application of a liquid containing a magnetic material or a liquid containing a metal material.

また、塗布条件も(12)式のようにWnoutを設定し、式(16)、(17)により薬液供給速度とそれに対応した薬液吐出圧力、基板回転数、(3)式により基板中心に対する薬液供給ノズルの位置を定め、制御を行いさえすれば、如何なる制御を行っても良い。また、液吐出圧力と基板回転数はパラメータhにより、薬液供給ノズル位置については複数の領域に分けてd1,a,nを調整して制御を行っても構わない。 Also, the application condition is set to W nout as in the equation (12), the chemical solution supply speed and the corresponding chemical solution discharge pressure, the substrate rotation speed according to the equations (16) and (17), and the substrate center according to the equation (3). As long as the position of the chemical solution supply nozzle is determined and controlled, any control may be performed. Further, the liquid discharge pressure and the number of rotations of the substrate may be controlled by adjusting d 1 , a, n in a plurality of regions with respect to the position of the chemical solution supply nozzle according to the parameter h.

(第5の実施形態)
第4の実施形態で説明した塗布膜形成方法を図12に記した塗布装置を用いて行った。図12は、本発明の第5の実施形態に係わる塗布装置の概略構成を示す図である。図12(a)は塗布装置の構成を示す平面図、図12(b)は同図(a)のA−A’部の断面図である。
(Fifth embodiment)
The coating film forming method described in the fourth embodiment was performed using the coating apparatus shown in FIG. FIG. 12 is a diagram showing a schematic configuration of a coating apparatus according to the fifth embodiment of the present invention. 12A is a plan view showing the configuration of the coating apparatus, and FIG. 12B is a cross-sectional view taken along the line AA ′ of FIG.

図12に示す塗布装置は、下部ユニット701内に回転機能を有する基板載置部702が設けられている。下部ユニット701上に、天板703が設けられている。天板703には、被処理基板700の薬液供給開始位置から塗布終了部分にかけて、被処理基板700上に薬液が滴下されるようにスリット703aが設けられている。被処理基板700の搬入搬出時、天板703は開放されるようになっている。天板703の開放は、天板703が上方に移動する機構でも、被処理基板700を搭載する基板載置部702を含めた下部ユニット701が下方に移動する機構であっても良い。   The coating apparatus shown in FIG. 12 is provided with a substrate platform 702 having a rotation function in a lower unit 701. A top plate 703 is provided on the lower unit 701. The top plate 703 is provided with a slit 703a so that the chemical solution is dropped onto the substrate to be processed 700 from the chemical solution supply start position of the substrate to be processed 700 to the application end portion. When carrying in / out the substrate 700 to be processed, the top plate 703 is opened. The opening of the top plate 703 may be a mechanism in which the top plate 703 moves upward or a mechanism in which the lower unit 701 including the substrate mounting portion 702 on which the substrate 700 to be processed is moved moves downward.

天板703のスリット703a上方を移動する薬液供給ノズル122が設けられている。薬液供給ノズル122には、薬液供給管124を介して薬液供給ノズル122に薬液を供給する図示されない薬液供給ポンプが接続されている。薬液供給ノズル122からの薬液吐出速度の制御は、薬液供給ポンプからの薬液供給圧力を制御して行った。   A chemical solution supply nozzle 122 that moves above the slit 703a of the top plate 703 is provided. A chemical solution supply pump (not shown) that supplies the chemical solution to the chemical solution supply nozzle 122 via the chemical solution supply pipe 124 is connected to the chemical solution supply nozzle 122. The chemical liquid discharge speed from the chemical liquid supply nozzle 122 was controlled by controlling the chemical liquid supply pressure from the chemical liquid supply pump.

薬液供給開始位置及び薬液供給終了位置の天板703上に、薬液供給ノズル122とは独立に設けられた薬液遮断機構710a,710bがそれぞれ設けられている。
薬液が被処理基板700上に供給される間、基板載置部702の回転数、ノズルを駆動させる駆動系(不図示)の移動速度、薬液供給ノズル122からの薬液吐出速度は各々、回転駆動制御部(不図示)、ノズル駆動制御部(不図示)、薬液供給ポンプ(不図示)により管理される。なお、これら3つの制御部を統括するコントローラ(不図示)がその上流に配置されている。
On the top plate 703 at the chemical solution supply start position and the chemical solution supply end position, chemical solution blocking mechanisms 710 a and 710 b provided independently of the chemical solution supply nozzle 122 are provided.
While the chemical solution is supplied onto the substrate 700, the rotational speed of the substrate mounting portion 702, the moving speed of a drive system (not shown) for driving the nozzle, and the discharge rate of the chemical solution from the chemical supply nozzle 122 are each rotationally driven. It is managed by a control unit (not shown), a nozzle drive control unit (not shown), and a chemical solution supply pump (not shown). A controller (not shown) that supervises these three control units is arranged upstream thereof.

薬液遮断機構710(710a,710b)の構成を図13(a),(b)を用いて説明する。図13は、本発明の第5の実施形態に係わる薬液遮断機構の概略構成を示す図である。図13(a)は薬液を遮断している動作状態を示し、図13(b)は薬液を遮断していない動作状態を示している。薬液遮断機構は、図13に示すように、図示されていないガス供給管713に順次接続された変形自在管721,ガス噴射ノズル722を具備する。薬液遮断機構は、変形自在管721を変形、開放することでガス流を制御できるノズル開閉制御用ピエゾ723及び、薬液供給ノズル122から滴下された薬液720をガス噴射ノズル722と挟むように配置された薬液ミスト回収部724とを更に具備する。ノズル開閉制御用ピエゾ723は、印加電圧の制御により伸縮するピエゾ素子を具備する。ピエゾ素子への印加電圧を制御することによって、変形自在管721の変形、開放を行う。変形自在管721の変形及び開放は、ピエゾ素子で直接行っても良いし、ピエゾ素子に接続された部材により行っても良い。   The structure of the chemical solution blocking mechanism 710 (710a, 710b) will be described with reference to FIGS. 13 (a) and 13 (b). FIG. 13 is a diagram showing a schematic configuration of a chemical liquid blocking mechanism according to the fifth embodiment of the present invention. FIG. 13A shows an operating state in which the chemical solution is blocked, and FIG. 13B shows an operating state in which the chemical solution is not blocked. As shown in FIG. 13, the chemical liquid blocking mechanism includes a deformable pipe 721 and a gas injection nozzle 722 that are sequentially connected to a gas supply pipe 713 (not shown). The chemical liquid blocking mechanism is arranged so as to sandwich the chemical liquid 720 dropped from the chemical liquid supply nozzle 122 and the gas injection nozzle 722 so that the gas flow can be controlled by deforming and opening the deformable tube 721. And a chemical mist collection unit 724. The nozzle opening / closing control piezo 723 includes a piezo element that expands and contracts by controlling the applied voltage. The deformable tube 721 is deformed and opened by controlling the voltage applied to the piezo element. The deformation and opening of the deformable tube 721 may be performed directly by a piezo element or by a member connected to the piezo element.

この塗布装置を用いたと膜の形成方法について以下に説明する。
天板703の開放、被処理基板700の下部ユニット701内への搬送、被処理基板700の基板載置部702への載置、天板703を閉じる動作が順次行われる。次いで薬液供給開始位置の天板703の上空に、薬液供給ノズル122を薬液供給を停止した状態で移動させる。薬液遮断機構710aのガス噴射ノズル722からガス吐出を開始した後、薬液供給ノズル122から薬液の吐出を開始させる。吐出された薬液720はその下方に予め形成されたガス気流により薬液ミスト回収部724に輸送される。このとき薬液ミスト回収部724では、薬液720がガスに衝突した際に生じるミストを回収できるのに十分な吸引を行う。吸引された薬液は廃棄管714を経て塗布装置外に輸送される。
A method for forming a film using this coating apparatus will be described below.
The operations of opening the top plate 703, transporting the substrate 700 to be processed into the lower unit 701, placing the substrate 700 to be placed on the substrate placement unit 702, and closing the top plate 703 are sequentially performed. Next, the chemical solution supply nozzle 122 is moved over the top plate 703 at the chemical solution supply start position in a state where supply of the chemical solution is stopped. After gas discharge is started from the gas injection nozzle 722 of the chemical solution blocking mechanism 710a, discharge of the chemical solution is started from the chemical solution supply nozzle 122. The discharged chemical liquid 720 is transported to the chemical liquid mist collection unit 724 by a gas flow formed in advance below the chemical liquid 720. At this time, the chemical mist collecting unit 724 performs suction sufficient to collect the mist generated when the chemical 720 collides with the gas. The sucked chemical solution is transported out of the coating apparatus through the waste pipe 714.

薬液供給ノズル122からの薬液の吐出が安定した段階で、ノズル開閉制御用ピエゾ723を押し出し、変形自在管721を変形させてガス供給を遮断する。これにより薬液供給ノズル122から被処理基板700への薬液720の供給が開始される(処理時間の原点)。薬液供給ノズルの径方向位置、薬液吐出圧力、被処理基板回転数は、図11に示す処理時間に対するノズル移動、薬液供給ノズルの吐出圧力、被処理基板回転数の制御設定値に基づいて、制御を行う。   When the discharge of the chemical liquid from the chemical liquid supply nozzle 122 is stable, the nozzle opening / closing control piezo 723 is pushed out, the deformable tube 721 is deformed, and the gas supply is shut off. Thereby, supply of the chemical solution 720 from the chemical solution supply nozzle 122 to the substrate 700 is started (the origin of the processing time). The radial position of the chemical solution supply nozzle, the chemical solution discharge pressure, and the substrate rotation speed are controlled based on the nozzle movement with respect to the processing time shown in FIG. 11, the discharge pressure of the chemical solution supply nozzle, and the control set value of the substrate rotation speed. I do.

薬液供給ノズル122が被処理基板外周の薬液供給終了位置に移動した段階で、外周部に配置されている薬液遮断機構710bを動作させる。外周部の薬液遮断機構710bは、予め薬液供給終了位置上方に配置されており、薬液供給ノズル122から供給される薬液720がガス噴射ノズル722の直前に来た段階でノズル開閉制御用ピエゾ723を戻して、変形自在管721の変形を開放してガス噴射を行う。噴射されたガスは薬液720に衝突して薬液の滴下軌道を変更する。滴下軌道が変更された薬液は薬液ミスト回収部724に導かれて回収される。この薬液供給終了位置で薬液供給ノズル122を停止させると共に、薬液720の吐出も停止させる。   When the chemical solution supply nozzle 122 moves to the chemical solution supply end position on the outer periphery of the substrate to be processed, the chemical solution blocking mechanism 710b disposed on the outer peripheral portion is operated. The chemical liquid blocking mechanism 710b on the outer peripheral portion is disposed in advance above the chemical liquid supply end position, and the nozzle opening / closing control piezo 723 is provided when the chemical liquid 720 supplied from the chemical liquid supply nozzle 122 comes immediately before the gas injection nozzle 722. Returning, the deformation of the deformable tube 721 is released and gas injection is performed. The injected gas collides with the chemical solution 720 and changes the dropping trajectory of the chemical solution. The chemical solution whose dripping trajectory has been changed is guided to the chemical solution mist collection unit 724 and collected. The chemical solution supply nozzle 122 is stopped at this chemical solution supply end position, and the discharge of the chemical solution 720 is also stopped.

薬液供給ノズル122からの薬液吐出が完全に停止した段階で、薬液遮断機構710bのノズル開閉制御用ピエゾ723を押し出し、変形自在管721を変形させてガス供給を停止させる。   When the discharge of the chemical liquid from the chemical liquid supply nozzle 122 is completely stopped, the nozzle opening / closing control piezo 723 of the chemical liquid blocking mechanism 710b is pushed out, the deformable tube 721 is deformed, and the gas supply is stopped.

更に、薬液供給ノズル122を天板703上方から退避させ、天板703を開放させた後、被処理基板700を下部ユニット701から搬出する。なお、被処理基板700の回転は、天板703を開放するまで継続して行うことが好ましい。天板703がある状態で被処理基板700を停止させると、被処理基板700上方の環境の違い、例えばスリット703a部分で膜厚変化が生じるからである。   Further, the chemical solution supply nozzle 122 is retracted from above the top plate 703 and the top plate 703 is opened, and then the substrate to be processed 700 is unloaded from the lower unit 701. Note that the rotation of the substrate 700 is preferably continued until the top plate 703 is opened. This is because if the substrate to be processed 700 is stopped in a state where the top plate 703 is present, a difference in the environment above the substrate to be processed 700, for example, a change in film thickness occurs at the slit 703a portion.

基板の乾燥については第4の実施形態に準じて行えば良く、詳細な説明を省略する。   The substrate may be dried according to the fourth embodiment, and detailed description thereof is omitted.

(第6の実施形態)
本実施形態は、半導体基板上に層間絶縁膜を塗布法で形成する手法に関する。
(Sixth embodiment)
The present embodiment relates to a method of forming an interlayer insulating film on a semiconductor substrate by a coating method.

表面に配線が形成された半導体基板を図1に示す塗布装置にセットする。この半導体基板への塗布を薬液供給ノズル122の軌跡としてd1=1.65mm、a=0.995となるよう(28)式のように定めた。

Figure 2005229115
The semiconductor substrate having the wiring formed on the surface is set in the coating apparatus shown in FIG. The application to the semiconductor substrate was determined as shown in the equation (28) so that d 1 = 1.65 mm and a = 0.0.99 as the locus of the chemical solution supply nozzle 122.
Figure 2005229115

しかし、この塗布条件では径9.8mmより内側で膜厚異常が生じるため、径9.8mm以内では薬液部分遮断機構を設けて薬液を部分的に遮断し、薬液の供給量を調節する。薬液の部分遮断を行う領域では、領域の外側を塗布する際のシーケンスで径方向位置9.8mmでの条件をそのまま用いた。即ち被処理基板の回転数を180rpmに、薬液吐出圧力を2kgF/cm2 とし、径方向の薬液供給ノズルの移動ピッチ/回転を径9.8mmより外側の領域を塗布する際の最小ピッチ1.609mmとした。これらのパラメータを一定にすることで、薬液部分遮断機構による径位置rにおける薬液遮断率Cは径位置9.8mmから0mmの間で0から1まで単調に増加し、(29)式のように1次式で表すことができる。

Figure 2005229115
However, since the film thickness abnormality occurs inside the diameter of 9.8 mm under this application condition, a chemical solution partial blocking mechanism is provided within the diameter of 9.8 mm to partially block the chemical solution and adjust the supply amount of the chemical solution. In the region where the chemical solution was partially blocked, the condition at the radial position of 9.8 mm was used as it was in the sequence when the outside of the region was applied. That is, the rotation speed of the substrate to be processed is set to 180 rpm, the chemical solution discharge pressure is set to 2 kgF / cm 2, and the movement pitch / rotation of the chemical solution supply nozzle in the radial direction is set to a minimum pitch of 1. It was set to 609 mm. By making these parameters constant, the chemical liquid blocking rate C at the radial position r by the chemical liquid partial blocking mechanism increases monotonically from 0 to 1 between the radial positions 9.8 mm and 0 mm, as shown in Equation (29). It can be expressed by a linear expression.
Figure 2005229115

ここで、rは径方向位置、rcは薬液部分遮断が必要な最外径である。 Here, r is the radial position, r c is the outermost diameter required chemical moiety blocked.

薬液の部分遮断は、薬液供給ノズル122から滴下された薬液に複数設けられたガス噴射ノズルからガスを噴射して行う。遮断率の調整は、ガス噴射ノズルの配置及び配管径、及びガス圧力を最適化して行う。   The partial blocking of the chemical liquid is performed by injecting gas from a plurality of gas injection nozzles provided in the chemical liquid dropped from the chemical liquid supply nozzle 122. The cutoff rate is adjusted by optimizing the arrangement of the gas injection nozzle, the pipe diameter, and the gas pressure.

部分遮断に用いるガス噴射ノズルの配置例を図14に示す。図14は、本発明の第6の実施形態に係わる薬液部分遮断機構のガス噴射ノズルの配置例を示す図である。図14に示すように、一つのガス噴射ノズル731bに隣接するガス噴射ノズル731a,bを1遮断単位とし(図中の点線で囲まれた2本分のガス噴射ノズル)、これら遮断単位の幅を最適化した。隣接するガス噴射ノズル731の間隔が狭い場合は図14に示されているように2段構造、広い場合には1段構造にする。   An example of the arrangement of gas injection nozzles used for partial blocking is shown in FIG. FIG. 14 is a diagram illustrating an arrangement example of gas injection nozzles of the chemical liquid partial blocking mechanism according to the sixth embodiment of the present invention. As shown in FIG. 14, the gas injection nozzles 731a and b adjacent to one gas injection nozzle 731b are defined as one cutoff unit (two gas injection nozzles surrounded by a dotted line in the figure), and the width of these cutoff units. Optimized. If the interval between the adjacent gas injection nozzles 731 is narrow, a two-stage structure is used as shown in FIG.

1つのガス噴射ノズル731の外径をD、内径をa、遮断位置での薬液遮断有効幅をsとする。ここで薬液遮断有効幅sとは一つのガス噴射ノズル731から吐出したガスが薬液遮断能力を持つ範囲(直径)である。   The outer diameter of one gas injection nozzle 731 is D, the inner diameter is a, and the chemical liquid blocking effective width at the blocking position is s. Here, the chemical blocking effective width s is a range (diameter) in which the gas discharged from one gas injection nozzle 731 has a chemical blocking capability.

これらのパラメータを用いて1遮断単位内における薬液遮断率Cは、

Figure 2005229115
Using these parameters, the chemical blocking rate C within one blocking unit is
Figure 2005229115

として表せる。一方、1遮断単位における1番目のガス噴射ノズル731aと3番目とガス噴射ノズル731cとの中心の間隔はD+Wとなる。この遮断単位の中間位置、即ち(D+W)/2の位置で所望の遮断率Cを得られるように(29),(30)式からガス噴射ノズル731b,cの位置を決定する。 It can be expressed as On the other hand, the distance between the centers of the first gas injection nozzle 731a, the third gas injection nozzle 731c, and one gas injection nozzle 731c is D + W. The positions of the gas injection nozzles 731b and 7c are determined from the equations (29) and (30) so that a desired cutoff rate C can be obtained at an intermediate position of this cutoff unit, that is, at a position of (D + W) / 2.

例えば原点位置(p=0)に1番目のガス噴射ノズル731aを設定し、

Figure 2005229115
For example, the first gas injection nozzle 731a is set at the origin position (p = 0),
Figure 2005229115

と置き換えた場合を考える。
ここでは1遮断単位辺り2本のノズルで構成されているので実際には(30’)式は、

Figure 2005229115
Consider the case where
Here, since it is composed of two nozzles per block unit, the equation (30 ′) is actually
Figure 2005229115

と書き表せる。即ち、1本のノズルを基準に考えると薬液有効遮断幅sを遮断単位幅Pの中間位置riから基準位置pを減じたものを2倍した値で除した値と、遮断率Cとが等しくなるような中間位置riを定め、定められた中間位置riに基づいて遮断単位幅Pを決定する。具体的には次のようになる。 Can be written. That is, when considering one nozzle as a reference, a value obtained by dividing the chemical effective blocking width s by the value obtained by subtracting the reference position p from the intermediate position r i of the blocking unit width P by twice, and the blocking rate C. An intermediate position r i is determined so as to be equal, and the blocking unit width P is determined based on the determined intermediate position r i . Specifically:

(29)式と(30’)式の右辺が等しいとしてriを算出すると(31)式が得られる。

Figure 2005229115
When r i is calculated assuming that the right sides of the expressions (29) and (30 ′) are equal, the expression (31) is obtained.
Figure 2005229115

本実施形態の場合、具体的にガス噴射ノズル731の外径Dを0.5mm、薬液遮断有効幅sを0.3mm(ガス噴射ノズル内径a=0.25mm)に設定し、先の薬液遮断が必要な最外径rc=9.8mmを用いて、2番目のガス噴射ノズル731bの中心位置を0.310mm(=ri)、3番目のガス噴射ノズル731cの中心位置を0.620mm(=2(ri−p),p=0)と定められる。 In the case of the present embodiment, specifically, the outer diameter D of the gas injection nozzle 731 is set to 0.5 mm, the chemical liquid blocking effective width s is set to 0.3 mm (gas injection nozzle inner diameter a = 0.25 mm), and the previous chemical liquid blocking is performed. with the outermost diameter r c = 9.8 mm needed, the center position of the second gas injection nozzle 731b 0.310mm (= r i), 0.620mm the center position of the third gas injection nozzle 731c (= 2 (r i -p) , p = 0) is defined as.

4,5番目のガス噴射ノズルの中心位置は、3番目のガス噴射ノズルの中心位置を基準位置p(=0.620mm)として(30)式をより一般化した(32)式に代入して求める。

Figure 2005229115
The center position of the fourth and fifth gas injection nozzles is substituted into the expression (32), which is a more general expression of (30), with the center position of the third gas injection nozzle as the reference position p (= 0.620 mm). Ask.
Figure 2005229115

すると、4番目のガス噴射ノズルの中心位置はp+ri(p=0.620mm)、5番目のガス噴射ノズルの中心位置は2r−p(=p+2〔r−p〕)と求められる。 Then, the center position of the fourth gas injection nozzle p + r i (p = 0.620mm ), the center position of the 5 th of the gas injection nozzle is determined to 2r-p (= p + 2 [r-p]).

さらに、6,7番目、8,9番目のガス噴射ノズルの中心位置は、それぞれ5番目、7番目、…のガス噴射ノズルの中心位置を基準位置pとして(31)式から求める。より、一般化すると、2n,2n+1(n=2,3,…)番目のガス噴射ノズルの中心位置は、2n−1番目のガス噴射ノズルの中心位置を基準位置pとして(32)式から求める
なお、(32)式で

Figure 2005229115
Further, the center positions of the sixth, seventh, eighth, and ninth gas injection nozzles are obtained from the equation (31) with the center positions of the fifth, seventh,. More generally, the center position of the 2n, 2n + 1 (n = 2, 3,...) Th gas injection nozzle is obtained from the equation (32) with the center position of the 2n−1th gas injection nozzle as the reference position p. (32)
Figure 2005229115

となる場合には、図14に示すような配置(重ね置きまたは平置き)を行うことが不可能であることを意味する。この場合には互いに隣接するガス噴射ノズルの中心で仕切られたものを1遮断単位として(34)式によりガス噴射ノズルの位置を定めると良い。

Figure 2005229115
In this case, it means that it is impossible to perform the arrangement (overlay or flat) as shown in FIG. In this case, it is preferable to determine the position of the gas injection nozzle according to the equation (34) with the one partitioned by the center of the gas injection nozzles adjacent to each other as one block unit.
Figure 2005229115

(34)式においても、

Figure 2005229115
Also in the equation (34),
Figure 2005229115

となる場合は最後のガス噴射ノズルの配置が困難であることを意味する。その場合にはガス噴射ノズルの外径の異なるもの或いは遮断有効幅を異ならせるよう微調整すれば良い。遮断有効幅が異なる場合には(29)式〜(33)式においては、左、中央、右のガス噴射ノズルの薬液遮断有効幅s1,s2,s3を用いて2sにs1/2+s2+s3/2を代入すれば良い。また(34)式,(35)式については左、右のガス噴射ノズルの薬液遮断有効幅s1,s3を用いてsにs1/2+s3/2を代入すれば良い。 This means that it is difficult to arrange the last gas injection nozzle. In this case, fine adjustment may be made so that the gas injection nozzles having different outer diameters or different effective cutoff widths are used. When the effective blocking widths are different, in equations (29) to (33), the chemical liquid blocking effective widths s 1 , s 2 , and s 3 of the left, center, and right gas injection nozzles are used, and s 1 / 2 + s 2 + s 3/ 2 can be substituted into. The (34) equation (35) may be substituted left, the s 1/2 + s 3/ 2 to s using chemical blocking effective width s 1, s 3 of the right of the gas injection nozzle for.

このように外径0.5mmのガス噴射ノズルを用いた場合の径方向のガス噴射ノズル中心位置、薬液遮断有効幅を決めた結果を表1に示す。ガス噴射ノズル1番から16番までは(32)式により、17番のガス噴射ノズルは薬液遮断有効幅sを変更しつつ(34)式により定めている。

Figure 2005229115
Table 1 shows the result of determining the radial gas injection nozzle center position and the chemical liquid blocking effective width when the gas injection nozzle having an outer diameter of 0.5 mm is used. The gas injection nozzles Nos. 1 to 16 are determined by the equation (32), and the gas injection nozzle No. 17 is determined by the equation (34) while changing the chemical liquid blocking effective width s.
Figure 2005229115

なお、ガス噴射ノズル1番から16番までは内径0.250mmとし、遮断有効幅の異なる17番には内径0.300mmを適用した。各ガス噴射ノズルについて所望の遮断有効幅になるようそれぞれガス圧力を調整する。   The gas injection nozzles Nos. 1 to 16 had an inner diameter of 0.250 mm, and No. 17 with a different effective blocking width had an inner diameter of 0.300 mm. The gas pressure is adjusted so as to obtain a desired cutoff effective width for each gas injection nozzle.

ガス圧力の調整値は、例えば図15に示すような、観察用ビデオカメラ741を準備し、ガス圧力と有効遮断幅の相関を取得して求めると良い。すなわち、塗布時と同じ吐出速度で薬液供給ノズル122から薬液720を吐出させる。実際の装置で薬液を遮断する場合と同じ距離だけ離れた位置にガス噴射ノズル731を設置し、特定のガス圧でガスを噴射させつつ、薬液供給ノズル122を一方向にゆっくり移動させる。ガス噴射ノズル731と薬液720を挟むように設置された観察用ビデオカメラ741により薬液720の状態を観察して遮断幅を計測する。ガス圧を変更して吐出幅値を取得し、最適なガス圧力を決定する。   For example, the adjustment value of the gas pressure may be obtained by preparing a video camera 741 for observation as shown in FIG. 15 and acquiring the correlation between the gas pressure and the effective cutoff width. That is, the chemical liquid 720 is discharged from the chemical liquid supply nozzle 122 at the same discharge speed as that during application. The gas injection nozzle 731 is installed at a position separated by the same distance as when the chemical solution is shut off with an actual apparatus, and the chemical solution supply nozzle 122 is slowly moved in one direction while injecting gas at a specific gas pressure. The state of the chemical solution 720 is observed by an observation video camera 741 installed so as to sandwich the gas injection nozzle 731 and the chemical solution 720, and the blocking width is measured. The gas pressure is changed to obtain the discharge width value, and the optimum gas pressure is determined.

表1のガス噴射ノズルの中心位置、遮断有効幅に基づいて作成した薬液部分遮断機構のガス噴射ノズルの配置を図16に示す。図16に示すように、ガス噴射ノズル7311〜73117が配列されている。 FIG. 16 shows the arrangement of the gas injection nozzles of the chemical liquid partial blocking mechanism created based on the center position and the blocking effective width of the gas injection nozzles in Table 1. As shown in FIG. 16, gas injection nozzles 731 1 to 731 17 are arranged.

更にこの薬液遮断装置を具備した塗布装置の構成を図17に示す。図17(a)は平面図、図17(b)は同図(a)のA−A’部の断面図である。なお、図17において、図12と同一な部分には同一符号を付し、その説明を省略する。   Furthermore, the structure of the coating device provided with this chemical | medical solution interruption | blocking apparatus is shown in FIG. 17A is a plan view, and FIG. 17B is a cross-sectional view taken along the line A-A ′ of FIG. In FIG. 17, the same parts as those in FIG.

図17に示すように、被処理基板700を基板載置部702に載置したとき、天板703上で被処理基板700中心の上方に位置する部分には、薬液部分遮断機構750が配置されている。薬液部分遮断機構750は、先に配置位置が最適化された17本のガス噴射ノズル7311〜73117を持つノズル群751と、スリット703aを挟んでノズル群751に対向する位置に薬液ミスト回収部752と具備する。また、基板エッジ部の上方にもガスを用いた薬液遮断機構710bが配置されている。 As shown in FIG. 17, when the substrate to be processed 700 is placed on the substrate platform 702, a chemical liquid partial blocking mechanism 750 is disposed on the top plate 703 above the center of the substrate 700 to be processed. ing. The chemical liquid partial blocking mechanism 750 includes a nozzle group 751 having 17 gas injection nozzles 731 1 to 731 17 whose arrangement positions are optimized, and a chemical mist collection at a position facing the nozzle group 751 across the slit 703a. Part 752. Also, a chemical blocking mechanism 710b using gas is disposed above the substrate edge portion.

被処理基板700の搬入搬出時、天板703は開放されるようになっている。天板703の開放は、天板703が上方に移動する機構でも、被処理基板700を搭載する基板載置部702を含めた下部ユニット701が下方に移動する機構であっても良い。   When carrying in / out the substrate 700 to be processed, the top plate 703 is opened. The opening of the top plate 703 may be a mechanism in which the top plate 703 moves upward or a mechanism in which the lower unit 701 including the substrate mounting portion 702 on which the substrate 700 to be processed is moved moves downward.

薬液が被処理基板700上に供給される間、基板載置部702の回転数、ノズルを駆動させる駆動系(不図示)の移動速度、薬液供給ノズル122からの薬液吐出速度は各々、回転駆動制御部(不図示)、ノズル駆動制御部(不図示)、薬液供給ポンプ(不図示)により管理される。なお、これら3つの制御部を統括するコントローラ(不図示)がその上流に配置されている。   While the chemical solution is supplied onto the substrate 700, the rotational speed of the substrate mounting portion 702, the moving speed of a drive system (not shown) for driving the nozzle, and the discharge rate of the chemical solution from the chemical supply nozzle 122 are each rotationally driven. It is managed by a control unit (not shown), a nozzle drive control unit (not shown), and a chemical solution supply pump (not shown). A controller (not shown) that supervises these three control units is arranged upstream thereof.

次に被処理基板700上に層間絶縁膜を塗布する過程について説明する。
基板載置部702及び下部ユニット701が下方に移動して天板703との間に空間が形成され、その空間に搬送アーム(図示されない)により被処理基板700を搬入する。次いで基板載置部702に具備された3つのピン(図示されない)が上昇して搬送アームから被処理基板700を持ち上げ、搬送アームはユニット外へ戻る。3つのピンが下降すると共に、基板載置部702及び下部ユニット701が上方に移動して天板703に接続して閉空間を形成する。なお閉空間には、薬液供給ノズル122から薬液を供給するための細いスリット703aが設けられている。
Next, a process of applying an interlayer insulating film on the substrate 700 will be described.
The substrate platform 702 and the lower unit 701 move downward to form a space between the top plate 703 and the substrate 700 to be processed is carried into the space by a transfer arm (not shown). Next, three pins (not shown) provided on the substrate platform 702 are raised to lift the substrate 700 to be processed from the transfer arm, and the transfer arm returns to the outside of the unit. As the three pins descend, the substrate platform 702 and the lower unit 701 move upward to connect to the top plate 703 to form a closed space. In the closed space, a thin slit 703a for supplying the chemical liquid from the chemical liquid supply nozzle 122 is provided.

薬液供給ノズル122が、薬液供給を停止した状態で、被処理基板700の薬液供給開始位置である被処理基板700中心の上方まで移動する。薬液部分遮断機構750のノズル群751からガスの噴射を開始した後、薬液供給ノズル122から薬液の吐出を開始する。吐出された薬液はその下方に形成されているガス気流により薬液ミスト回収部に輸送される。このとき薬液ミスト回収部は、薬液がガスに衝突した際に生じるミストも回収できるように吸引調整する。吸引された薬液は廃棄管を経て塗布装置外に輸送される。   The chemical solution supply nozzle 122 moves to above the center of the substrate 700 to be processed, which is the chemical solution supply start position of the substrate 700 to be processed, with the supply of the chemical solution stopped. After the gas injection is started from the nozzle group 751 of the chemical liquid partial blocking mechanism 750, the discharge of the chemical liquid from the chemical liquid supply nozzle 122 is started. The discharged chemical liquid is transported to the chemical liquid mist collecting section by the gas flow formed below. At this time, the chemical mist collecting unit performs suction adjustment so that the mist generated when the chemical collides with the gas can also be collected. The sucked chemical solution is transported out of the coating apparatus through a waste pipe.

薬液供給ノズル122からの吐出が安定した段階で、図18に示す制御に基づいて薬液供給ノズル122の移動を開始させる。図18(a)は処理時間に対する基板中心から径方向のノズル位置を示し、図18(b)は処理時間に対する薬液吐出圧力を示し、図18(c)は処理時間に対する基板回転数を示している。   When the discharge from the chemical solution supply nozzle 122 is stabilized, the movement of the chemical solution supply nozzle 122 is started based on the control shown in FIG. 18A shows the nozzle position in the radial direction from the substrate center with respect to the processing time, FIG. 18B shows the chemical discharge pressure with respect to the processing time, and FIG. 18C shows the substrate rotation speed with respect to the processing time. Yes.

基板700中心から径方向8.9mmまでは被処理基板700の回転数を180rpmに、薬液吐出圧力を2kgF/cm2 とし、径方向のノズル移動ピッチ/回転を1.609mmとする。薬液供給ノズル122は基板700の中心から外周部に向けて移動を開始する。各々のガス噴射ノズルの遮断有効幅内で、薬液供給ノズルから滴下した薬液が、ガス噴射により滴下方向が変わり薬液ミスト回収部に輸送される。遮断有効幅以外の領域で、薬液は被処理基板上に滴下する。この動作により薬液は適時遮断されて、被処理基板の径8.9mm以内の領域で、滴下された薬液が被処理基板上で広がり、それぞれ接続することで厚さが均一な液膜が形成される。被処理基板中心から径8.9mmまでの処理時間は5.89秒程度であった。 From the center of the substrate 700 to the radial direction of 8.9 mm, the rotational speed of the substrate 700 to be processed is 180 rpm, the chemical solution discharge pressure is 2 kgF / cm 2, and the nozzle movement pitch / rotation in the radial direction is 1.609 mm. The chemical supply nozzle 122 starts to move from the center of the substrate 700 toward the outer periphery. Within the effective cut-off width of each gas injection nozzle, the chemical liquid dropped from the chemical liquid supply nozzle changes its dropping direction by gas injection and is transported to the chemical liquid mist collection unit. In a region other than the effective blocking width, the chemical solution is dropped on the substrate to be processed. By this operation, the chemical solution is shut off in a timely manner, and the dropped chemical solution spreads on the substrate to be processed within a region within a diameter of 8.9 mm of the substrate to be processed, and a liquid film having a uniform thickness is formed by connecting each of them. The The processing time from the center of the substrate to be processed to the diameter of 8.9 mm was about 5.89 seconds.

5.89秒以降は被処理基板700が1周する毎の薬液供給ノズル122の径方向移動ピッチが等比級数的に変化するように移動させつつ、回転数の制御を行う。なお、ノズル群751からのガス照射は、薬液供給ノズルからの液滴が最期のガス噴射ノズルの遮断有効幅を通過した段階で停止させた。   After 5.89 seconds, the number of revolutions is controlled while moving the chemical solution supply nozzle 122 so that the radial movement pitch of the substrate 700 to be processed changes once in a geometric series. The gas irradiation from the nozzle group 751 was stopped when the droplets from the chemical solution supply nozzle passed through the effective cutoff width of the last gas injection nozzle.

薬液供給ノズル122が被処理基板700外周の非塗布領域に来たときに、外周部に配置している薬液遮断機構710bを動作させる。外周の薬液遮断機構710bは、予め非塗布領域上方に配置されており、薬液供給ノズルから供給される薬液がガス噴射ノズル711bの遮断有効幅に入ると直ぐにノズル開閉制御用ピエゾ723を戻して変形自在管721の変形を開放してガス噴射を行う。このガスが薬液に衝突し、薬液の軌道は変更してミスト回収部724に回収される。また、この位置で薬液供給ノズル122は停止して、薬液の吐出も停止させる。薬液供給ノズル122からの薬液吐出が完全に停止した段階で、ノズル開閉制御用ピエゾ723を押し出し、変形自在管721を変形させてガス噴射を停止した。なお、ガスには窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。   When the chemical solution supply nozzle 122 comes to the non-application area on the outer periphery of the substrate 700 to be processed, the chemical solution blocking mechanism 710b disposed on the outer peripheral portion is operated. The outer peripheral chemical liquid blocking mechanism 710b is arranged in advance above the non-application area, and immediately after the chemical liquid supplied from the chemical liquid supply nozzle enters the effective blocking width of the gas injection nozzle 711b, the nozzle opening / closing control piezo 723 is returned and deformed. The deformation of the universal tube 721 is released to perform gas injection. This gas collides with the chemical solution, and the trajectory of the chemical solution is changed and collected by the mist collecting unit 724. Further, at this position, the chemical solution supply nozzle 122 is stopped, and the discharge of the chemical solution is also stopped. When the discharge of the chemical liquid from the chemical liquid supply nozzle 122 was completely stopped, the nozzle opening / closing control piezo 723 was pushed out, the deformable tube 721 was deformed, and the gas injection was stopped. Note that an inert gas such as nitrogen, argon, or helium can be used as the gas.

更に薬液供給ノズル122を天板703上方から退避させ、基板載置部702及び下部ユニット701を下方に移動させながら3ピンで被処理基板700を持ち上げ、生じた隙間に搬送アームを挿入し、3ピンを下げることにより搬送アームに被処理基板700を載せ、搬送アームをユニット外に移動させることで被処理基板700を搬出した。その後基板載置部702及び下部ユニット701を上方に移動させて所定位置で停止し、処理を終了した。   Further, the chemical solution supply nozzle 122 is retracted from above the top plate 703, the substrate mounting portion 702 and the lower unit 701 are moved downward, the substrate to be processed 700 is lifted with 3 pins, and a transfer arm is inserted into the generated gap. The substrate 700 was placed on the transfer arm by lowering the pins, and the substrate 700 was unloaded by moving the transfer arm out of the unit. Thereafter, the substrate platform 702 and the lower unit 701 were moved upward and stopped at a predetermined position, and the processing was completed.

基板700上に形成された液膜の乾燥については第4の実施形態に準じて行えば良く、詳細な説明を省略する。   The liquid film formed on the substrate 700 may be dried according to the fourth embodiment, and detailed description thereof is omitted.

本実施形態では、ガス噴射ノズルの配置を遮断単位の両端とその中心に配置するようにしたがこれに限るものではない。遮断単位のなかに1つ配置してもよい。例えば、図19に示すように、遮断単位の中間にガス噴射ノズル761を配置する場合には(30)式右辺をs/(D+W)として式を変形して得られた位置riにガス噴射ノズル761を配置すれば良い。表2に遮断単位の中間にガス噴射ノズルを配置した場合のノズルの配置位置を示す。

Figure 2005229115
In the present embodiment, the gas injection nozzles are arranged at both ends and the center of the blocking unit, but the present invention is not limited to this. One may be arranged in the blocking unit. For example, as shown in FIG. 19, when the gas injection nozzle 761 is arranged in the middle of the shut-off unit, the gas injection is performed at a position r i obtained by modifying the expression with the right side of the expression (30) as s / (D + W). A nozzle 761 may be disposed. Table 2 shows the nozzle arrangement position when the gas injection nozzle is arranged in the middle of the shut-off unit.
Figure 2005229115

この場合、外形0.5mm、内径0.3mmの14本のガス噴射ノズルを用いることができる。図20に14本のガス噴射ノズルの配置を示す。図20は、表2に示す配置位置により配置されたガス噴射ノズルの構成を示す図である。図20に示すように、ガス噴射ノズル7611〜76114が配置されている。14番目のガス噴射ノズル76114の遮断有効幅を広くする必要があったが、表2に示すような遮断有効幅決定法に基づき14番目のガス噴射ノズル76114のガス圧を他のノズルよりも大きくした。表2ではガス噴射ノズルの中心位置を遮断単位の中心に置いたが、これに限るものではない。遮断単位の始点から終点の間であれば適当に位置を選ぶことができる。また、遮断単位の幅(始点から終点までの距離)は薬液遮断が必要な最外径rcに依存する。このrcは所望の液膜厚と薬液の物性値(例えば固形分、粘度、密度、界面活性剤の有無)にも依存するため、ガス噴射ノズルの位置は固定でないほうが望ましい。塗布条件に基づきrcの値を計算もしくは実験的に求めて、その結果に基づき配置できるよう微調整する機構を有することが望ましい。微調整には例えば所定の温度により伸び量が記録された形状記憶合金のベース上に、ガス噴射ノズルを配置し、各ガス噴射ノズルの間の温度を調整することで所望の間隔を再現させて用いることができる。 In this case, 14 gas injection nozzles having an outer diameter of 0.5 mm and an inner diameter of 0.3 mm can be used. FIG. 20 shows the arrangement of 14 gas injection nozzles. FIG. 20 is a diagram showing the configuration of the gas injection nozzles arranged at the arrangement positions shown in Table 2. As shown in FIG. 20, gas injection nozzles 761 1 to 761 14 are arranged. It was necessary to widen the 14 th cutoff effective width of the gas injection nozzle 761 14, from the other nozzle 14 th gas pressure of the gas injection nozzle 761 14 Based on blocking effective width determination method as shown in Table 2 Was also bigger. In Table 2, the center position of the gas injection nozzle is placed at the center of the shut-off unit, but this is not restrictive. An appropriate position can be selected as long as it is between the start point and end point of the blocking unit. Moreover, (the distance from the start point to the end point) the width of the blocking unit is dependent on the outermost diameter r c required chemical blocking. The r c is the physical property values of the desired liquid film thickness and chemical (e.g. solids, viscosity, density, surface presence of the active agent) to be dependent on the position of the gas injection nozzle it is desirable not fixed. The value of r c based on the coating conditions determined calculated or experimentally, it is desirable to have a fine adjustment to mechanisms that can be placed based on the result. For fine adjustment, for example, a gas injection nozzle is arranged on a base of a shape memory alloy in which an elongation amount is recorded at a predetermined temperature, and a desired interval is reproduced by adjusting the temperature between the gas injection nozzles. Can be used.

また、薬液の遮断にガス噴射ノズルを用いるのではなく、薬液供給ノズルと被処理基板との間に配置された薬液遮断樋を用いてもよい。このときの薬液遮断樋の位置は、例えば表1,2の遮断条件をガス噴射ノズルの代わりに薬液遮断樋を用いるのであれば、薬液遮断樋の幅をガス噴射ノズルの遮断有効幅と等しくし、樋の中心をガス噴射ノズルの中心位置に一致させると良い。なお、薬液遮断樋を用いる場合、平置きであるのが望ましい。薬液遮断樋を用いた場合であっても、遮断単位幅(始点から終点までの距離)は薬液遮断が必要な最外径rcに依存する。このrcは所望の液膜厚と薬液の物性値(例えば固形分、粘度、密度、界面活性剤の有無)にも依存するため、遮断樋の位置は固定でないほうが望ましい。 Further, instead of using the gas injection nozzle for blocking the chemical solution, a chemical solution blocking rod disposed between the chemical solution supply nozzle and the substrate to be processed may be used. The position of the chemical liquid blocking rod at this time is, for example, if the blocking conditions in Tables 1 and 2 are used instead of the gas injection nozzle, the width of the chemical liquid blocking rod is made equal to the effective cutting width of the gas injection nozzle. The center of the ridge is preferably matched with the center position of the gas injection nozzle. In addition, when using a chemical | medical solution blocker, it is desirable that it is flatly placed. Even in the case of using the chemical blocking gutter (distance from the start point to the end point) blocking unit width is dependent on the outermost diameter r c required chemical blocking. The r c is the physical property values of the desired liquid film thickness and chemical (e.g. solids, viscosity, density, surface presence of the active agent) to be dependent on the position of the shut-off trough it is desirable not fixed.

また、塗布条件に基づき、薬液遮断が必要な最外径rcの値を計算もしくは実験的に求めて、その結果に基づき配置できるよう微調整する機構を有するのが望ましい。微調整には例えば所定の温度により伸び量が記録された形状記憶合金のベース上に、薬液遮断樋を配置し、各遮断樋の間の温度を調整することで所望の間隔を再現させて用いることができる。また、薬液遮断樋を用いた場合、薬液遮断樋により遮断した薬液が固化してダストの発生源になる可能性が高い。従って薬液の遮断時には、薬液に含まれる溶剤を遮断樋に流し、遮断した薬液を速やかに溶剤と共に薬液回収部に輸送するような機構を塗布装置に設けることが望ましい。薬液遮断樋に溶剤を流すことによって、前記薬液に含まれる固形分の析出を抑えることができる。 Further, based on the coating conditions, the value of the outermost diameter r c required chemical blocking calculations or experimentally obtained, it is desirable to have a fine adjustment to mechanisms that can be placed based on the result. For fine adjustment, for example, a chemical liquid barrier rod is arranged on the shape memory alloy base in which the elongation amount is recorded at a predetermined temperature, and a desired interval is reproduced by adjusting the temperature between the barrier rods. be able to. In addition, when a chemical solution barrier is used, there is a high possibility that the chemical solution blocked by the chemical barrier will solidify and become a dust generation source. Therefore, it is desirable to provide the coating apparatus with a mechanism that causes the solvent contained in the chemical solution to flow through the barrier and quickly transports the blocked chemical solution together with the solvent to the chemical recovery unit when the chemical solution is shut off. By flowing a solvent through the chemical liquid blocking rod, it is possible to suppress the precipitation of the solid content contained in the chemical liquid.

また、望ましくは樋を図21のように2層構造として上層と下層ともに溶剤を流すと良い。図21は、上層及び下層に配置された樋により構成された薬液部分遮断機構の概略構成を示す図である。上層に配置された第1の遮断樋782は、薬液781が滴下することで薬液に含まれる溶剤が僅かにあふれさせるようする。第1の遮断樋782から溢れた溶剤が滴となって下層に配置された第2の遮断樋783に落下する。落下した溶剤及び薬液を第2の遮断樋783で回収することで、第1の遮断樋782の側面に薬液781が固着することなく、清浄性を保ちつつ塗布することができる。なお、図21では被処理基板785上に滴下された薬液786が流動性により第1の遮断幅782の内側に進入してきている。本実施形態で言う薬液の遮断とは、薬液を遮断することによる滴下量調節にほかならない。従って被処理基板785上に滴下された薬液786は流動性により、第1及び第2の遮断樋782,783で遮断されている領域に侵入し、最終的には薬液同士が接続して一つの液膜になる。更に薬液の表面張力により所望の均一な厚さの液膜が形成されるというのが本実施形態の主旨である。   Further, it is desirable that the soot has a two-layer structure as shown in FIG. FIG. 21 is a diagram showing a schematic configuration of a chemical liquid partial blocking mechanism constituted by scissors arranged in the upper layer and the lower layer. The first blocking rod 782 disposed in the upper layer causes the solvent contained in the chemical liquid to slightly overflow when the chemical liquid 781 is dropped. The solvent overflowing from the first blocking rod 782 becomes a droplet and falls on the second blocking rod 783 disposed in the lower layer. By collecting the dropped solvent and the chemical solution with the second blocking rod 783, the chemical solution 781 does not adhere to the side surface of the first blocking rod 782, and can be applied while maintaining cleanliness. In FIG. 21, the chemical liquid 786 dropped on the substrate 785 to be processed enters the first blocking width 782 due to fluidity. The blocking of the chemical solution referred to in the present embodiment is nothing but the adjustment of the dropping amount by blocking the chemical solution. Accordingly, the chemical solution 786 dropped on the substrate 785 to be processed enters the region blocked by the first and second blocking rods 782 and 783 due to the fluidity, and finally the chemical solutions are connected to each other. Become a liquid film. Furthermore, the main point of this embodiment is that a liquid film having a desired uniform thickness is formed by the surface tension of the chemical liquid.

なお、本発明は、上記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。例えば、上記各実施形態では、薬液滴下ノズルを被処理基板の内周部から外周部に向けて移動させていたが、薬液滴下ノズルを被処理基板の外周部から内周部に向けて移動させても良い。この場合、被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが徐々に大きくなる。また、前記被処理基板が1周する毎に生じる径方向の移動ピッチdRは、その直前の移動ピッチdR0に、1より大きい変化率a’を乗じた値として決定される。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. For example, in each of the above embodiments, the chemical droplet lower nozzle is moved from the inner peripheral portion of the substrate to be processed toward the outer peripheral portion, but the chemical droplet lower nozzle is moved from the outer peripheral portion of the substrate to be processed toward the inner peripheral portion. May be. In this case, the moving pitch of the dripping portion in the radial direction that occurs each time the substrate to be processed makes one round gradually increases. Further, the radial movement pitch d R generated each time the substrate to be processed makes one round is determined as a value obtained by multiplying the movement pitch d R0 immediately before by a change rate a ′ larger than 1.

更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be obtained as an invention.

第1の実施形態に係わる成膜装置の概略構成を示す構成図。1 is a configuration diagram showing a schematic configuration of a film forming apparatus according to a first embodiment. 図1に示す成膜装置を構成する薬液供給ノズルの概略構成を示す構成図。The block diagram which shows schematic structure of the chemical | medical solution supply nozzle which comprises the film-forming apparatus shown in FIG. 薬液供給時のノズル移動方向を示す平面図。The top view which shows the nozzle moving direction at the time of chemical | medical solution supply. 第2の実施形態に係わる、時間に対するノズル径方向位置Rn、薬液供給速度vn、基板回転数wnの関係を求める方法を示すフローチャート。9 is a flowchart illustrating a method for obtaining a relationship among a nozzle radial direction position R n , a chemical solution supply speed v n , and a substrate rotation number w n with respect to time according to the second embodiment. 第2の実施形態に係わる、時間に対するノズル径方向位置Rn、薬液供給速度vn、基板回転数wnの関係を求める方法を示すフローチャート。9 is a flowchart illustrating a method for obtaining a relationship among a nozzle radial direction position R n , a chemical solution supply speed v n , and a substrate rotation number w n with respect to time according to the second embodiment. 第2の実施形態に係わる、時間に対するノズル径方向位置Rn、薬液供給速度vn、基板回転数wnの関係を求める方法を示すフローチャート。9 is a flowchart illustrating a method for obtaining a relationship among a nozzle radial direction position R n , a chemical solution supply speed v n , and a substrate rotation number w n with respect to time according to the second embodiment. 第2の実施形態に係わる、プロセス時間に対する基板中心からのノズル位置,基板回転数,及び薬液吐出圧力を示す図。The figure which shows the nozzle position from a substrate center with respect to process time, a board | substrate rotation speed, and a chemical | medical solution discharge pressure concerning 2nd Embodiment. 第3の実施形態に係わる、プロセス時間に対する基板中心からのノズル位置,基板回転数,及び薬液吐出圧力を示す図。The figure which shows the nozzle position from the substrate center with respect to process time, a board | substrate rotation speed, and a chemical | medical solution discharge pressure concerning 3rd Embodiment. 図8に示すプロセス時間に対する基板中心からのノズル位置,基板回転数,及び薬液吐出圧力に基づいて滴下される薬液供給ノズルの軌跡を示す図。The figure which shows the locus | trajectory of the chemical | medical solution supply nozzle dripped based on the nozzle position from the substrate center with respect to the process time shown in FIG. 8, a board | substrate rotation speed, and a chemical | medical solution discharge pressure. 第4の実施形態に係わる処理時間に対するノズル径方向位置Rn、薬液供給速度vn、基板回転数wnの関係を求める方法を示すフローチャート。9 is a flowchart showing a method for obtaining a relationship among a nozzle radial direction position R n , a chemical solution supply speed v n , and a substrate rotation number w n with respect to a processing time according to the fourth embodiment. 第4の実施形態に係わる、処理時間に対する基板中心からのノズル位置,基板回転数,及び薬液吐出圧力を示す図。The figure which shows the nozzle position from a substrate center with respect to process time, a board | substrate rotation speed, and a chemical | medical solution discharge pressure concerning 4th Embodiment. 第5の実施形態に係わる塗布装置の概略構成を示す図。The figure which shows schematic structure of the coating device concerning 5th Embodiment. 第5の実施形態に係わる薬液遮断機構の概略構成を示す図。The figure which shows schematic structure of the chemical | medical solution interruption | blocking mechanism concerning 5th Embodiment. 第6の実施形態に係わる薬液部分遮断機構のガス噴射ノズルの配置例を示す図。The figure which shows the example of arrangement | positioning of the gas injection nozzle of the chemical | medical solution partial interruption | blocking mechanism concerning 6th Embodiment. ガス噴射ノズルからのガス噴射による遮断幅の決定方法を説明するための図。The figure for demonstrating the determination method of the interruption | blocking width by the gas injection from a gas injection nozzle. 表1のガス噴射ノズル中心位置、有効幅に基づいて作成した薬液部分遮断機構のガス噴射ノズルの配置を示す図。The figure which shows arrangement | positioning of the gas injection nozzle of the chemical | medical solution partial interruption | blocking mechanism created based on the gas injection nozzle center position of Table 1, and an effective width | variety. 薬液部分遮断機構を具備する塗布装置の概略構成を示す図。The figure which shows schematic structure of the coating device which comprises a chemical | medical solution partial interruption | blocking mechanism. 第6の実施形態に係わる、処理時間に対する基板中心からのノズル位置,基板回転数,及び薬液吐出圧力を示す図。The figure which shows the nozzle position from a substrate center with respect to process time, a board | substrate rotation speed, and a chemical | medical solution discharge pressure concerning 6th Embodiment. 遮断単位の中間にガス噴射ノズルを配置した例を示す図。The figure which shows the example which has arrange | positioned the gas injection nozzle in the middle of the interruption | blocking unit. 表2に示す配置位置により配置されたガス噴射ノズルの構成を示す図。The figure which shows the structure of the gas injection nozzle arrange | positioned by the arrangement position shown in Table 2. FIG. 上層及び下層に配置された樋により構成された薬液部分遮断機構の概略構成を示す図。The figure which shows schematic structure of the chemical | medical solution partial interruption | blocking mechanism comprised with the scissors arrange | positioned at the upper layer and the lower layer.

符号の説明Explanation of symbols

100…被処理基板、101…液膜、120…基板保持部、121…駆動系、122…薬液供給ノズル、123…ノズル駆動系、124…薬液供給管、125…薬液供給ポンプ、126a,126b…薬液遮断機構、127…ノズル駆動制御部、128…回転駆動制御部、129…コントローラ。   DESCRIPTION OF SYMBOLS 100 ... Substrate to be processed, 101 ... Liquid film, 120 ... Substrate holding part, 121 ... Drive system, 122 ... Chemical supply nozzle, 123 ... Nozzle drive system, 124 ... Chemical supply pipe, 125 ... Chemical supply pump, 126a, 126b ... Chemical solution blocking mechanism, 127... Nozzle drive control unit, 128... Rotation drive control unit, 129.

Claims (38)

滴下部から被処理基板上に液体を滴下すると同時に、前記被処理基板を回転させながら、
前記被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが小さく変化するように前記滴下部を前記被処理基板の内周部から該基板の外周部に向けて径方向に移動させ、
且つ前記滴下部の前記被処理基板の径方向の移動に伴い、滴下された液膜がそれにかかる遠心力により移動しないように、該基板の回転数を徐々に下げつつ、該滴下部からの前記液体の供給速度を調整して前記被処理基板上に液膜を形成し、ことを特徴とする液膜形成方法。
While dropping the liquid on the substrate to be processed from the dropping unit, while rotating the substrate to be processed,
The dropping portion is radially directed from the inner peripheral portion of the substrate to be processed to the outer peripheral portion of the substrate so that the moving pitch of the dropping portion in the radial direction that occurs each time the substrate to be processed changes one time. Move
In addition, as the dripping portion moves in the radial direction of the substrate to be processed, the dripped liquid film is not moved by the centrifugal force applied to the dripping portion while gradually reducing the rotation speed of the substrate, A liquid film forming method, wherein a liquid film is formed on the substrate to be processed by adjusting a liquid supply speed.
滴下部から被処理基板上に液体を滴下すると同時に、前記被処理基板を回転させながら、
前記被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが小さく変化するように前記滴下部を前記被処理基板の内周部から該基板の外周部に向けて径方向に移動させ、
且つ前記滴下部の前記被処理基板の径方向の移動に伴い、滴下された液膜がそれにかかる遠心力により移動しないように、該基板の回転数を徐々に下げつつ、該滴下部からの前記液体の供給速度を調整して前記被処理基板上に液膜を形成し、
前記滴下部から滴下された液体の一部を前記被処理基板上に供給させずに回収することを特徴とする液膜形成方法。
While dropping the liquid on the substrate to be processed from the dropping unit, while rotating the substrate to be processed,
The dropping portion is radially directed from the inner peripheral portion of the substrate to be processed to the outer peripheral portion of the substrate so that the moving pitch of the dropping portion in the radial direction that occurs each time the substrate to be processed changes one time. Move
In addition, as the dripping portion moves in the radial direction of the substrate to be processed, the dripped liquid film is not moved by the centrifugal force applied to the dripping portion while gradually reducing the rotation speed of the substrate, Adjusting the liquid supply rate to form a liquid film on the substrate to be processed;
A method of forming a liquid film, wherein a part of the liquid dropped from the dropping part is collected without being supplied onto the substrate to be processed.
前記滴下部から滴下された液体の一部の回収を前記被処理基板中心近傍で行うことを特徴とする請求項2記載の液膜形成方法。 The liquid film forming method according to claim 2, wherein a part of the liquid dropped from the dropping part is collected in the vicinity of the center of the substrate to be processed. 前記被処理基板中心近傍は、薬液吐出速度及び基板回転数の少なくとも一方が制御限界外となり、この状態で制御を行ったときに前記液膜の膜厚が所望膜厚よりも厚くなる領域であることを特徴とする請求項3記載の液膜形成方法。 The vicinity of the center of the substrate to be processed is a region where at least one of the chemical solution discharge speed and the substrate rotation speed is outside the control limit, and when the control is performed in this state, the film thickness of the liquid film becomes thicker than the desired film thickness The method of forming a liquid film according to claim 3. 前記液体の一部を回収する工程は、前記滴下部から滴下された液体の側面にガスを噴射し、噴射されたガスを該液体に衝突させることで該滴下された液体の滴下軌道を変更し、該滴下軌道が変更された液体を薬液回収部で回収することで行うことを特徴とする請求項2記載の液膜形成方法。 The step of recovering a part of the liquid changes the dropping trajectory of the dropped liquid by injecting a gas onto a side surface of the liquid dropped from the dropping unit and causing the injected gas to collide with the liquid. The liquid film forming method according to claim 2, wherein the liquid film in which the dropping trajectory has been changed is recovered by a chemical recovery unit. 滴下軌道が変更された液体を液体回収部で回収する際、前記液体と、該液体と前記ガスとの衝突により生じたミストとを吸引しながら行うことを特徴とする請求項2記載の液膜形成方法。 3. The liquid film according to claim 2, wherein when the liquid whose dropping trajectory has been changed is recovered by the liquid recovery unit, the liquid and the mist generated by the collision between the liquid and the gas are sucked. Forming method. 滴下部から被処理基板上に液体を滴下すると同時に、前記被処理基板を回転させながら、前記被処理基板が1周する毎に生じる径方向の前記滴下部の移動ピッチが小さく変化するように前記滴下部を前記被処理基板の内周部から該基板の外周部に向けて径方向に移動させ、且つ前記滴下部の前記被処理基板の径方向の移動に伴い、滴下された該液膜が滴下された液膜にかかる遠心力により移動しないように、該基板の回転数を徐々に下げつつ、該滴下部からの前記液体の供給速度を調整して前記被処理基板上に液膜を形成する工程と、
該液膜が形成された該被処理基板を該液膜中の溶剤の処理温度における蒸気圧以下の圧力下に晒して溶剤を乾燥除去して固層を形成する工程とを含む固体膜の形成方法。
While dropping the liquid on the substrate to be processed from the dropping unit and rotating the substrate to be processed, the moving pitch of the dropping unit in the radial direction that occurs each time the substrate to be processed makes one turn changes so as to be small. The dropping portion is moved in the radial direction from the inner peripheral portion of the substrate to be processed toward the outer peripheral portion of the substrate, and the dropped liquid film is moved along with the movement of the dropping portion in the radial direction of the substrate to be processed. Form the liquid film on the substrate to be processed by adjusting the supply speed of the liquid from the dropping part while gradually reducing the rotation speed of the substrate so that it does not move due to the centrifugal force applied to the dropped liquid film And a process of
Forming the solid film including a step of exposing the substrate on which the liquid film is formed to a pressure equal to or lower than a vapor pressure at a processing temperature of the solvent in the liquid film, and drying and removing the solvent to form a solid layer. Method.
前記液膜を振動させながら前記溶剤を乾燥除去させて、表面が略平坦な固層を形成することを特徴とする請求項7記載の固体膜の形成方法。 8. The method for forming a solid film according to claim 7, wherein the solvent is dried and removed while vibrating the liquid film to form a solid layer having a substantially flat surface. 該固体層が、露光工程に用いられる反射防止膜、感光性を有する膜、低誘電体膜、層間絶縁膜、強誘電体膜、電極、パターン転写膜、レーザー光吸収膜、磁性体膜のいずれかであることを特徴とする請求項7記載の固体膜の形成方法。 The solid layer is any of an antireflection film used in an exposure process, a photosensitive film, a low dielectric film, an interlayer insulating film, a ferroelectric film, an electrode, a pattern transfer film, a laser light absorption film, and a magnetic film. The method for forming a solid film according to claim 7, wherein 回転する被処理基板に対して径方向に移動しつつ薬液を滴下する滴下部の移動区間の一端を第1の位置として設定する工程と、
前記滴下部が、前記被処理基板の薬液供給領域の最外径に位置する時の前記被処理基板の回転数と該基板への、該滴下部から被処理基板上に滴下された薬液の軌跡において単位長さ当たりの薬液供給量q0を決定する工程と、
前記滴下部が任意の位置に存在する時、被処理基板が1周する毎に生じる前記滴下部の径方向の移動ピッチが変化するように、移動ピッチを設定するステップと、
第1の位置、第1の位置における前記滴下部の移動ピッチ、及び前記薬液供給量q0から、第1の位置における前記滴下部からの薬液供給速度と被処理基板回転数を決定する工程と、
前記滴下部が第1の位置に位置してから前記被処理基板を単位時間回転させたときの回転角と、第1の位置における前記滴下部の移動ピッチとから、単位時間後に前記滴下部が位置する第2の位置を決定する工程と、
第2の位置が移動区間の他端に至るまで、第2の位置を新たな第1の位置として再設定して、第1の位置における前記滴下部からの薬液供給速度と被処理基板回転数の決定,単位時間後に前記滴下部が位置する第2の位置の決定を繰り返し行い、時間に対する前記滴下部の径方向位置と、薬液供給速度と被処理基板回転数のそれぞれの関係を決定する工程とを有し、
決定された関係に基づいて滴下部の径方向位置と、薬液供給速度と被処理基板回転数の制御を行って、前記被処理基板上に液膜の形成を行い、
前記薬液供給速度及び基板回転数が制御限界外となり、前記液膜の膜厚が所望の膜厚より厚くなる領域において、
膜厚が厚くなる直前の最外周の径方向位置rcにおける薬液供給速度、基板回転数と略等しくなるように制御を行うと共に、
前記滴下部の径方向のガス噴射ノズル位置rにおいて、1/rcにrを乗じた値を1から除した値で示される遮断率Cで、該滴下部から吐出された薬液を遮断することを特徴とする液膜形成方法。
A step of setting one end of a moving section of a dropping unit for dropping a chemical solution while moving in a radial direction with respect to a rotating substrate to be processed as a first position;
The number of rotations of the substrate to be processed when the dripping portion is positioned at the outermost diameter of the chemical solution supply region of the substrate to be processed and the locus of the chemical liquid dropped onto the substrate to be processed from the dripping portion to the substrate Determining the chemical supply amount q 0 per unit length in
Setting the movement pitch so that the movement pitch in the radial direction of the dropping section that occurs each time the substrate to be processed makes one round when the dropping section exists at an arbitrary position;
Determining a chemical supply speed and a substrate rotation speed from the dropping unit at the first position from the first position, the moving pitch of the dropping unit at the first position, and the chemical supply amount q 0 ; ,
From the rotation angle when the substrate to be processed is rotated for a unit time after the dropping unit is positioned at the first position, and the moving pitch of the dropping unit at the first position, the dropping unit is unit time later. Determining a second position to be located;
Until the second position reaches the other end of the moving section, the second position is reset as a new first position, and the chemical supply speed from the dropping unit and the substrate rotation speed at the first position are reset. Determining the second position where the dropping unit is positioned after a unit time, and determining the relationship between the radial position of the dropping unit with respect to time, the chemical supply speed, and the substrate rotation speed And
Based on the determined relationship, the radial position of the dropping unit, the chemical solution supply speed and the rotation speed of the substrate to be processed are controlled, and a liquid film is formed on the substrate to be processed.
In the region where the chemical supply speed and the substrate rotation speed are out of control limits, the film thickness of the liquid film becomes thicker than desired.
Chemical feed rate at radial position r c of the outermost immediately before the film thickness increases, performs control so as to be substantially equal to the substrate rotational frequency,
In the radial direction of the gas injection nozzle position r of the dropping unit, 1 / r c the value obtained by multiplying r in with blocking ratio C represented by a value obtained by dividing 1, blocking the chemical discharged from the drip lower A method for forming a liquid film.
前記薬液の遮断は前記滴下部と前記被処理基板との間に配置されるガス噴射ノズルから噴射されるガスにより行われ、
前記ガス噴射ノズルの配置位置の決定は、
前記ガス噴射ノズルの外径Dと、1本のガス噴射ノズルから噴射されるガスにより前記薬液が径方向に遮断される薬液有効遮断幅sとを設定する工程と、
薬液供給開始位置又は薬液遮断を行う最外周位置を基準位置pとして、薬液有効遮断幅sを遮断単位幅Pの中間位置riから基準位置pを減じたものを2倍した値で除した値と、遮断率Cとが等しくなるような中間位置riを決定し、決定された中間位置riに基づいて遮断単位幅Pを決定する工程と、
薬液供給開始位置から薬液遮断を行う最外周位置、もしくは、薬液遮断を行う最外周位置から薬液供給開始位置の間にかけて、決定された遮断単位幅Pに対応する位置を新たな基準位置に設定しつつ、前記中間位置ri及び遮断単位幅Pの決定を行う工程と、
決定された遮断単位幅P及び中間位置riに基づいて、ガス噴射ノズルの配置位置を決定する工程とを含むことを特徴とする請求項10記載の液膜形成方法。
The blocking of the chemical solution is performed by a gas injected from a gas injection nozzle disposed between the dropping unit and the substrate to be processed.
Determination of the arrangement position of the gas injection nozzle is
Setting an outer diameter D of the gas injection nozzle and a chemical liquid effective blocking width s in which the chemical liquid is blocked in a radial direction by a gas injected from one gas injection nozzle;
A value obtained by dividing the chemical liquid effective blocking width s by the value obtained by subtracting the reference position p from the intermediate position r i of the blocking unit width P by dividing the chemical liquid supply starting position or the outermost peripheral position where chemical liquid blocking is performed as the reference position p. Determining an intermediate position r i such that the cutoff rate C is equal, and determining a cutoff unit width P based on the determined intermediate position r i ;
The position corresponding to the determined blocking unit width P is set as a new reference position from the chemical solution supply start position to the outermost peripheral position where the chemical solution is shut off, or between the outermost peripheral position where chemical solution is cut off and the chemical solution supply start position. While determining the intermediate position r i and the blocking unit width P;
11. The liquid film forming method according to claim 10, further comprising a step of determining an arrangement position of the gas injection nozzle based on the determined cutoff unit width P and the intermediate position r i .
前記薬液有効遮断幅の調整は、前記ガス噴射ノズルの内径の変更及びガス圧力の少なくとも一方の調整により行うことを特徴とする請求項11記載の液膜形成方法。 12. The liquid film forming method according to claim 11, wherein the chemical liquid effective cutoff width is adjusted by changing at least one of an inner diameter of the gas injection nozzle and a gas pressure. 前記ガスが不活性ガスであることを特徴とする請求項11記載の液膜形成方法。 The method of forming a liquid film according to claim 11, wherein the gas is an inert gas. 前記ガス噴射ノズルの位置を、被処理基板の塗布条件に応じて微調整することを特徴とする請求項11記載の液膜形成装置。 12. The liquid film forming apparatus according to claim 11, wherein the position of the gas injection nozzle is finely adjusted according to the application condition of the substrate to be processed. 前記液体の遮断は、前記滴下部と前記被処理基板との間に複数配置される遮断樋を用いて行われ、
前記遮断樋の配置位置の決定は、
前記遮断樋の径方向の幅sを設定する工程と、
薬液供給開始位置又は薬液遮断を行う最外周位置を基準位置pとして、薬液有効遮断幅sを遮断単位幅Pの中間位置riから基準位置pを減じたものを2倍した値で除した値と、遮断率Cとが等しくなるような中間位置riをを決定し、決定された中間位置riに基づいて遮断単位幅Pを決定する工程と、
薬液供給開始位置から薬液遮断を行う最外周位置、もしくは、薬液遮断を行う最外周位置から薬液供給開始位置の間にかけて、決定された遮断単位幅Pに対応する位置を新たな基準位置に設定しつつ、前記中間位置ri及び遮断単位幅Pの決定を行う工程と、
決定された遮断単位幅P及び中間位置riに基づいて、前記遮断樋の配置位置を決定する工程とを含むことを特徴とする請求項10記載の液膜形成方法。
The blocking of the liquid is performed using a plurality of blocking rods arranged between the dropping unit and the substrate to be processed.
Determination of the arrangement position of the barrier rod is
Setting a radial width s of the barrier rod;
A value obtained by dividing the chemical liquid effective blocking width s by the value obtained by subtracting the reference position p from the intermediate position r i of the blocking unit width P by dividing the chemical liquid supply starting position or the outermost peripheral position where chemical liquid blocking is performed as the reference position p. Determining an intermediate position r i such that the cutoff rate C is equal, and determining the cutoff unit width P based on the determined intermediate position r i .
The position corresponding to the determined blocking unit width P is set as a new reference position from the chemical solution supply start position to the outermost peripheral position where the chemical solution is shut off, or between the outermost peripheral position where chemical solution is cut off and the chemical solution supply start position. While determining the intermediate position r i and the blocking unit width P;
The liquid film forming method according to claim 10, further comprising: determining an arrangement position of the barrier rod based on the determined barrier unit width P and the intermediate position r i .
前記薬液遮断時に、液体に含まれる溶剤を前記遮断樋に流して、前記溶剤と共に前記遮断樋により遮断された液体を液体廃棄部に輸送することを特徴とする請求項15記載の液膜形成方法。 16. The liquid film forming method according to claim 15, wherein when the chemical liquid is shut off, a solvent contained in a liquid is caused to flow into the shutoff tank, and the liquid blocked by the shutoff pipe is transported to the liquid waste section together with the solvent. . 前記遮断樋が、径方向の幅が該遮断樋の幅sにほぼ等しい第1の遮断樋と、第1の遮断樋の下方に設けられ、径方向の幅が第1の遮断樋の幅より短い第2の遮断樋とを含んで構成され、
第1の遮断樋により前記薬液を遮断すると共に、第1の遮断樋から溢れた薬液を被処理基板上に溢れされることなく第2の遮断樋で回収し、回収された前記溶液を薬液廃棄部に輸送することを特徴とする請求項15記載の液膜形成方法。
The barrier rod is provided below the first barrier rod, the first barrier rod having a radial width substantially equal to the width s of the barrier rod, and the radial width is greater than the width of the first barrier rod. Comprising a short second barrier rod,
The chemical solution is blocked by the first blocking rod, the chemical solution overflowing from the first blocking rod is collected by the second blocking rod without overflowing the substrate to be processed, and the collected solution is discarded. The liquid film forming method according to claim 15, wherein the liquid film is transported to a part.
前記薬液遮断時に、前記第1の遮断樋に前記滴下部から滴下された液体に含まれる溶剤をみたしておくことを特徴とする請求項17記載の液膜形成方法。 18. The liquid film forming method according to claim 17, wherein a solvent contained in the liquid dropped from the dripping portion is allowed to stand in the first barrier when the chemical is cut off. 前記薬液遮断時に、前記滴下部から滴下された液体に含まれる溶剤を第2の樋に流し、前記溶剤と共に前記第2の遮断樋により回収された液体を液体廃棄部に輸送することを特徴とする請求項17又は18に記載の液膜形成方法。 When the chemical liquid is shut off, the solvent contained in the liquid dripped from the dropping unit is caused to flow into a second soot, and the liquid collected by the second shutting soot together with the solvent is transported to a liquid waste part. The liquid film forming method according to claim 17 or 18. 前記遮断樋の位置を、被処理基板の塗布条件に応じて微調整することを特徴とする請求項15記載の液膜形成方法。 The liquid film forming method according to claim 15, wherein the position of the barrier is finely adjusted according to the application condition of the substrate to be processed. 前記薬液有効遮断幅sは、前記薬液遮断により遮断されず被処理基板上に供給された隣接する液体が、該被処理基板上の液体の持つ流動性により互いに接続するのに十分な幅に設定することを特徴とする請求項11または15記載の液膜形成方法。 The chemical liquid effective blocking width s is set to a width sufficient for adjacent liquids supplied on the substrate to be processed that are not blocked by the chemical liquid blocking to be connected to each other due to the fluidity of the liquid on the substrate to be processed. 16. The liquid film forming method according to claim 11 or 15, wherein: 回転する被処理基板に対して径方向に移動しつつ薬液を滴下する滴下部の移動区間の一端を第1の位置として設定する工程と、
前記滴下部が、前記被処理基板の薬液供給領域の最外径に位置する時の前記被処理基板の回転数と該基板への、該滴下部から被処理基板上に滴下された薬液の軌跡において単位長さ当たりの薬液供給量q0を決定する工程と、
前記滴下部が任意の位置に存在する時、被処理基板が1周する毎に生じる前記滴下部の径方向の移動ピッチが変化するように、移動ピッチを設定するステップと、
第1の位置、第1の位置における前記滴下部の移動ピッチ、及び前記薬液供給量q0から、第1の位置における前記滴下部からの薬液供給速度と被処理基板回転数を決定する工程と、
前記滴下部が第1の位置に位置してから前記被処理基板を単位時間回転させたときの回転角と、第1の位置における前記滴下部の移動ピッチとから、単位時間後に前記滴下部が位置する第2の位置を決定する工程と、
第2の位置が移動区間の他端に至るまで、第2の位置を新たな第1の位置として再設定して、第1の位置における前記滴下部からの薬液供給速度と被処理基板回転数の決定,単位時間後に前記滴下部が位置する第2の位置の決定を繰り返し行い、時間に対する前記滴下部の径方向位置と、薬液供給速度と被処理基板回転数のそれぞれの関係を決定する工程とを有し、
決定された関係に基づいて滴下部の径方向位置と、薬液供給速度と被処理基板回転数の制御を行って、前記被処理基板上に液膜の形成を行い、
且つ前記移動区間の一端が薬液供給開始位置及び終了位置のいずれかであって、それに対応して滴下部の移動区間の他端が薬液供給終了位置及び開始位置となるように時間に対する滴下部の径方向位置と、薬液供給速度と被処理基板回転数のそれぞれの関係を決定し、前記関係に基づき滴下部の径方向位置と、薬液供給速度と被処理基板回転数の制御を行い、
且つ前記薬液供給速度と基板回転数とが制御限界外となり所望の液膜厚より液膜が厚くなる領域において、
液厚が厚くなり始める最外周の径方向位置rcにおける、被処理基板が1回転する毎に生じる径方向の前記滴下部の移動ピッチと略等しくなるように、前記滴下部の制御を行うことを特徴とする液膜形成方法。
A step of setting one end of a moving section of a dropping unit for dropping a chemical solution while moving in a radial direction with respect to a rotating substrate to be processed as a first position;
The number of rotations of the substrate to be processed when the dripping portion is positioned at the outermost diameter of the chemical solution supply region of the substrate to be processed and the locus of the chemical liquid dropped onto the substrate to be processed from the dripping portion to the substrate Determining the chemical supply amount q 0 per unit length in
Setting the movement pitch so that the movement pitch in the radial direction of the dropping section that occurs each time the substrate to be processed makes one round when the dropping section exists at an arbitrary position;
Determining a chemical supply speed and a substrate rotation speed from the dropping unit at the first position from the first position, the moving pitch of the dropping unit at the first position, and the chemical supply amount q 0 ; ,
From the rotation angle when the substrate to be processed is rotated for a unit time after the dropping unit is positioned at the first position, and the moving pitch of the dropping unit at the first position, the dropping unit is unit time later. Determining a second position to be located;
Until the second position reaches the other end of the moving section, the second position is reset as a new first position, and the chemical supply speed from the dropping unit and the substrate rotation speed at the first position are reset. Determining the second position where the dropping unit is positioned after a unit time, and determining the relationship between the radial position of the dropping unit with respect to time, the chemical supply speed, and the substrate rotation speed And
Based on the determined relationship, the radial position of the dropping part, the chemical solution supply speed and the substrate rotation speed are controlled to form a liquid film on the substrate to be processed,
In addition, the one end of the moving section is either the chemical supply start position or the end position, and the other end of the moving section of the dropping section correspondingly corresponds to the chemical supply end position and the start position. Determining the relationship between the radial position, the chemical solution supply speed and the substrate rotation speed, and controlling the radial position of the dropping unit, the chemical solution supply speed and the substrate rotation speed based on the relationship,
And in the region where the chemical solution supply speed and the substrate rotation speed are outside the control limit and the liquid film becomes thicker than the desired liquid film thickness,
At radial position r c of the outermost the liquid thickness starts to become thicker, so that substantially equal to the movement pitch of the dropping portion in the radial direction that occurs each time the target substrate is rotated once, to perform the control of the dropping portion A method for forming a liquid film.
被処理基板が載置され、回転駆動系を有する被処理基板載置台と、
前記被処理基板の周囲を囲むように構成された円柱状の処理室と、
前記被処理基板に対して液体を連続的に吐出する滴下部と、
前記滴下部を被処理基板の径方向に移動させる滴下部駆動機構と、
前記滴下部と前記被処理基板との間に配置され、前記滴下部から吐出された薬液が通過するスリットが設けられた天板と、
前記天板と前記滴下部との間に配置され、前記被処理基板の径方向の薬液遮断率に応じて複数配置された薬液部分遮断機構とを具備してなることを特徴とする液膜形成装置。
A substrate to be processed on which a substrate to be processed is mounted and having a rotational drive system;
A columnar processing chamber configured to surround the substrate to be processed;
A dropping unit that continuously discharges liquid to the substrate to be processed;
A dropping unit driving mechanism for moving the dropping unit in the radial direction of the substrate to be processed;
A top plate provided between the dripping unit and the substrate to be processed and provided with a slit through which the chemical solution discharged from the dripping unit passes,
Liquid film formation characterized by comprising a plurality of chemical liquid partial blocking mechanisms disposed between the top plate and the dropping portion and arranged in accordance with the chemical liquid blocking rate in the radial direction of the substrate to be processed. apparatus.
前記薬液部分遮断機構が、前記薬液遮断率に応じて複数配置され、吐出された液体に対してガスを噴射して薬液の吐出軌道を変化させるガス噴射ノズルと、
吐出された液体を前記各ガス噴射ノズルと挟むように配置され、該ガス噴射ノズルにより軌道が変化された液体を吸引して回収する液体回収機構とを具備してなることを特徴とする請求項23に記載の液膜形成装置。
A plurality of the chemical liquid partial blocking mechanisms are arranged according to the chemical liquid blocking rate, and a gas injection nozzle that changes the discharge trajectory of the chemical liquid by injecting gas to the discharged liquid;
2. A liquid recovery mechanism that is disposed so as to sandwich the discharged liquid with each of the gas injection nozzles and that sucks and recovers the liquid whose trajectory has been changed by the gas injection nozzles. 24. The liquid film forming apparatus according to 23.
前記ガス噴射ノズルの配置位置の決定は、
前記ガス噴射ノズルの外径Dと、1本のガス噴射ノズルから噴射されるガスにより前記薬液が径方向に遮断される薬液有効遮断幅sとを設定する工程と、
薬液供給開始位置又は薬液遮断を行う最外周位置を基準位置pとして、薬液有効遮断幅sを遮断単位幅Pの中間位置riから基準位置pを減じたものを2倍した値で除した値と、遮断率Cとが等しくなるような中間位置riを決定し、決定された中間位置riに基づいて遮断単位幅Pを決定する工程と、
薬液供給開始位置から薬液遮断を行う最外周位置、もしくは、薬液遮断を行う最外周位置から薬液供給開始位置の間にかけて、決定された遮断単位幅Pに対応する位置を新たな基準位置に設定しつつ、前記中間位置ri及び遮断単位幅Pの決定を行う工程と、
決定された遮断単位幅P及び中間位置riに基づいて、ガス噴射ノズルの配置位置を決定する工程とを含むことを特徴とする請求項24に記載の液膜形成装置。
Determination of the arrangement position of the gas injection nozzle is
Setting an outer diameter D of the gas injection nozzle and a chemical liquid effective blocking width s in which the chemical liquid is blocked in a radial direction by a gas injected from one gas injection nozzle;
A value obtained by dividing the chemical liquid effective blocking width s by the value obtained by subtracting the reference position p from the intermediate position r i of the blocking unit width P by dividing the chemical liquid supply starting position or the outermost peripheral position where chemical liquid blocking is performed as the reference position p. Determining an intermediate position r i such that the cutoff rate C is equal, and determining a cutoff unit width P based on the determined intermediate position r i ;
The position corresponding to the determined blocking unit width P is set as a new reference position from the chemical solution supply start position to the outermost peripheral position where the chemical solution is shut off, or between the outermost peripheral position where chemical solution is cut off and the chemical solution supply start position. While determining the intermediate position r i and the blocking unit width P;
Based on the determined cutoff unit width P and intermediate position r i, liquid film forming apparatus according to claim 24, characterized in that it comprises the step of determining the position of the gas injection nozzle.
前記各ガス噴射ノズルの外径が同一であり、薬液遮断幅に応じて内径が選択されていることを特徴とする請求項24記載の液膜形成装置。 25. The liquid film forming apparatus according to claim 24, wherein an outer diameter of each of the gas injection nozzles is the same, and an inner diameter is selected according to a chemical liquid blocking width. 前記ガス噴射ノズルが、2段に配置されていることを特徴とする請求項24に記載の液膜形成装置。 The liquid film forming apparatus according to claim 24, wherein the gas injection nozzles are arranged in two stages. 前記ガス噴射ノズルの径方向の位置を微調整する位置調整機構を更に具備することを特徴とする請求項24に記載の液膜形成装置。 The liquid film forming apparatus according to claim 24, further comprising a position adjusting mechanism for finely adjusting a radial position of the gas injection nozzle. 前記ガス噴射ノズルは、開閉により断続的にガス噴射を行わせる弁を具備することを特徴とする請求項24記載の液膜形成装置。 25. The liquid film forming apparatus according to claim 24, wherein the gas injection nozzle includes a valve for intermittently injecting gas by opening and closing. 前記ガス噴射ノズルの上流側には、変形自在管が接続され、
前記薬液部分遮断機構が、前記変形自在管の一部を押しつぶすことが可能な加圧機構をさらに具備してなることを特徴とする請求項24記載の液膜形成装置。
A deformable tube is connected to the upstream side of the gas injection nozzle,
25. The liquid film forming apparatus according to claim 24, wherein the chemical liquid partial blocking mechanism further includes a pressurizing mechanism capable of crushing a part of the deformable tube.
前記加圧機構がピエゾ素子を用いていることを特徴とする請求項30記載の成膜装置。 31. The film forming apparatus according to claim 30, wherein the pressurizing mechanism uses a piezo element. 前記薬液部分遮断機構が、前記被処理基板の径方向の薬液遮断率に応じて複数配置された遮断樋で構成されていることを特徴とする請求項23に記載の液膜形成装置。 24. The liquid film forming apparatus according to claim 23, wherein the chemical liquid partial blocking mechanism includes a plurality of blocking rods arranged in accordance with a radial chemical blocking rate of the substrate to be processed. 前記被処理基板の径方向薬液遮断率に応じた遮断樋の配置が、
前記遮断樋の径方向の幅sを設定する工程と、
薬液供給開始位置又は薬液遮断を行う最外周位置を基準位置pとして、薬液有効遮断幅sを遮断単位幅Pの中間位置riから基準位置pを減じたものを2倍した値で除した値と、遮断率Cとが等しくなるような中間位置riを決定し、決定された中間位置riに基づいて遮断単位幅Pを決定する工程と、
薬液供給開始位置から薬液遮断を行う最外周位置、もしくは、薬液遮断を行う最外周位置から薬液供給開始位置の間にかけて、決定された遮断単位幅Pに対応する位置を新たな基準位置に設定しつつ、前記中間位置ri及び遮断単位幅Pの決定を行う工程と、
決定された遮断単位幅P及び中間位置riに基づいて、前記遮断樋の配置位置を決定する工程とを含むことを特徴とする請求項32記載の液膜形成装置。
The arrangement of the blocking rod according to the radial chemical liquid blocking rate of the substrate to be processed,
Setting a radial width s of the barrier rod;
A value obtained by dividing the chemical liquid effective blocking width s by the value obtained by subtracting the reference position p from the intermediate position r i of the blocking unit width P by dividing the chemical liquid supply starting position or the outermost peripheral position where chemical liquid blocking is performed as the reference position p. Determining an intermediate position r i such that the cutoff rate C is equal, and determining a cutoff unit width P based on the determined intermediate position r i ;
The position corresponding to the determined blocking unit width P is set as a new reference position from the chemical solution supply start position to the outermost peripheral position where the chemical solution is shut off, or between the outermost peripheral position where chemical solution is cut off and the chemical solution supply start position. While determining the intermediate position r i and the blocking unit width P;
Based on the determined cutoff unit width P and intermediate position r i, liquid film forming apparatus according to claim 32, wherein the comprising the step of determining the position of the cut-off trough.
前記遮断樋内を流れる薬液の下流には、薬液回収部が配置されていることを特徴とする請求項32記載の液膜形成装置。 33. The liquid film forming apparatus according to claim 32, wherein a chemical solution recovery unit is disposed downstream of the chemical solution flowing in the blocking cage. 前記遮断樋には薬液を遮断している間、前記遮断樋内に前記薬液に含まれる溶剤を流す溶剤供給機構を更に具備することを特徴とする請求項32に記載の液膜形成装置。 33. The liquid film forming apparatus according to claim 32, further comprising a solvent supply mechanism that allows the solvent contained in the chemical liquid to flow into the blocking cage while the chemical solution is blocked in the blocking basket. 前記遮断樋は、径方向の幅が該遮断樋の幅sにほぼ等しい第1の遮断樋と、第1の遮断樋の下方に設けられ、径方向の幅が第1の遮断樋の幅より短い第2の遮断樋とを含んで構成されていることを特徴とする請求項32に記載の液膜形成装置。 The barrier rod is provided below the first barrier rod with a first barrier rod having a radial width substantially equal to the width s of the barrier rod, and the radial width is greater than the width of the first barrier rod. 33. The liquid film forming apparatus according to claim 32, comprising a short second barrier rod. 被処理基板に対する薬液の遮断情報に基づき、前記遮断樋の位置を調整する位置調整機構を更に具備することを特徴とする請求項32に記載の液膜形成装置。 33. The liquid film forming apparatus according to claim 32, further comprising a position adjusting mechanism that adjusts a position of the blocking bar based on information on blocking the chemical liquid with respect to the substrate to be processed. 請求項12〜14の何れかに記載された固体膜の形成方法を用いて、半導体基板上に固体膜を形成することを特徴とする半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising: forming a solid film on a semiconductor substrate using the method for forming a solid film according to claim 12.
JP2005030832A 2001-07-26 2005-02-07 Liquid film forming method and solid film forming method Expired - Fee Related JP4253305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030832A JP4253305B2 (en) 2001-07-26 2005-02-07 Liquid film forming method and solid film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001226471 2001-07-26
JP2005030832A JP4253305B2 (en) 2001-07-26 2005-02-07 Liquid film forming method and solid film forming method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001336968A Division JP3655576B2 (en) 2001-07-26 2001-11-01 Liquid film forming method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2005229115A true JP2005229115A (en) 2005-08-25
JP4253305B2 JP4253305B2 (en) 2009-04-08

Family

ID=35003523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030832A Expired - Fee Related JP4253305B2 (en) 2001-07-26 2005-02-07 Liquid film forming method and solid film forming method

Country Status (1)

Country Link
JP (1) JP4253305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067059A (en) * 2005-08-30 2007-03-15 Tokyo Electron Ltd Coat forming device
JP2014236042A (en) * 2013-05-31 2014-12-15 株式会社東芝 Film deposition apparatus, and film deposition method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333356A (en) * 1998-05-28 1999-12-07 Tokyo Electron Ltd Coating device and coating method
JP2000079366A (en) * 1998-06-19 2000-03-21 Toshiba Corp Apparatus and method for film formation
JP2000350955A (en) * 1999-04-08 2000-12-19 Tokyo Electron Ltd Film formation method and film formation apparatus
JP2001168021A (en) * 1999-09-27 2001-06-22 Toshiba Corp Liquid film forming method
JP2001174819A (en) * 1999-12-16 2001-06-29 Seiko Epson Corp Method of forming coating film, method of producing liquid crystal device and film forming device
JP2002015984A (en) * 2000-04-27 2002-01-18 Toshiba Corp Film-forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333356A (en) * 1998-05-28 1999-12-07 Tokyo Electron Ltd Coating device and coating method
JP2000079366A (en) * 1998-06-19 2000-03-21 Toshiba Corp Apparatus and method for film formation
JP2000350955A (en) * 1999-04-08 2000-12-19 Tokyo Electron Ltd Film formation method and film formation apparatus
JP2001168021A (en) * 1999-09-27 2001-06-22 Toshiba Corp Liquid film forming method
JP2001174819A (en) * 1999-12-16 2001-06-29 Seiko Epson Corp Method of forming coating film, method of producing liquid crystal device and film forming device
JP2002015984A (en) * 2000-04-27 2002-01-18 Toshiba Corp Film-forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067059A (en) * 2005-08-30 2007-03-15 Tokyo Electron Ltd Coat forming device
JP4519035B2 (en) * 2005-08-30 2010-08-04 東京エレクトロン株式会社 Coating film forming device
US7802536B2 (en) 2005-08-30 2010-09-28 Tokyo Electron Limited Apparatus and method of forming an applied film
US8287954B2 (en) 2005-08-30 2012-10-16 Tokyo Electron Limited Apparatus and method of forming an applied film
JP2014236042A (en) * 2013-05-31 2014-12-15 株式会社東芝 Film deposition apparatus, and film deposition method

Also Published As

Publication number Publication date
JP4253305B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP3655576B2 (en) Liquid film forming method and semiconductor device manufacturing method
KR100590663B1 (en) Film forming method, pattern forming method and manufacturing method of semiconductor device
US6770424B2 (en) Wafer track apparatus and methods for dispensing fluids with rotatable dispense arms
US7553374B2 (en) Coating treatment apparatus and coating treatment method
US6602382B1 (en) Solution processing apparatus
TWI748628B (en) Substrate processing method and substrate processing apparatus
JP2007157898A (en) Substrate cleaning method, substrate cleaning device, control program, and computer readable storage medium
KR100384806B1 (en) Method of forming film, semiconductor device and method of manufacturing the same, and method of manufacturing dough-nut storage media
JP5114252B2 (en) Substrate processing method and substrate processing apparatus
JP2019016654A (en) Substrate processing apparatus, substrate processing method and storage medium
CN106132564B (en) Cover plate for defect control in spin coating
TWI740095B (en) Substrate processing method and substrate processing apparatus
JP2006093497A (en) Substrate cleaning device
JP4253305B2 (en) Liquid film forming method and solid film forming method
JP4504229B2 (en) Rinse processing method and development processing method
JP5327238B2 (en) Coating processing apparatus, coating processing method, and storage medium
CN109560017B (en) Substrate processing method, substrate processing apparatus, and storage medium
JP3535997B2 (en) Development processing apparatus and development processing method
JP6569574B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP6481598B2 (en) Coating film forming method, coating film forming apparatus, and storage medium
JPH0555133A (en) Liquid supply nozzle
JP2005334754A (en) Coating film forming apparatus
JP3697419B2 (en) Liquid film forming method and solid film forming method
JP2006278654A (en) Method and apparatus for processing substrate
JP7092508B2 (en) Application method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees