JP2005227707A - Hollow waveguide and its application device - Google Patents

Hollow waveguide and its application device Download PDF

Info

Publication number
JP2005227707A
JP2005227707A JP2004038633A JP2004038633A JP2005227707A JP 2005227707 A JP2005227707 A JP 2005227707A JP 2004038633 A JP2004038633 A JP 2004038633A JP 2004038633 A JP2004038633 A JP 2004038633A JP 2005227707 A JP2005227707 A JP 2005227707A
Authority
JP
Japan
Prior art keywords
hollow waveguide
dielectric layer
thickness
light
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004038633A
Other languages
Japanese (ja)
Other versions
JP4135652B2 (en
Inventor
Yukio Abe
由起雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004038633A priority Critical patent/JP4135652B2/en
Publication of JP2005227707A publication Critical patent/JP2005227707A/en
Application granted granted Critical
Publication of JP4135652B2 publication Critical patent/JP4135652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow waveguide that can vary a transmissible wavelength band of light and an output intensity during the use, and also to provide its application device. <P>SOLUTION: The hollow waveguide 1 has a metallic layer 3 composed of gold, silver, copper, aluminum, etc. formed on the interior surface of a glass capillary tube 2, and a dielectric layer 4 composed of an inorganic or organic resin formed on the inner surface of the metallic layer 3. The dielectric layer 4 is formed in such a manner that the thickness is different depending on the circumferential direction θ. As a result, since the transmission characteristic varies by selecting a thickness of the light-transmitting dielectric layer, the transmissible wavelength band of light and the output intensity can be varied during the use. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、歯科治療,外科手術等の医療分野や、金属加工,表面改質等の工業分野で使用される中空導波路およびその応用デバイスに関し、特に、使用時に伝送可能な光の波長帯や出力強度を変化させることが可能な中空導波路およびその応用デバイスに関する。   The present invention relates to a hollow waveguide and its application device used in the medical field such as dental treatment and surgery, and in the industrial field such as metal processing and surface modification. The present invention relates to a hollow waveguide capable of changing an output intensity and an application device thereof.

近年、歯科治療,外科手術等の医療分野や、金属加工,表面改質等の工業分野では、高出力レーザが医療用や加工用デバイスとして注目されており、その伝送路として各種の超細径のフレキシブルガラス中空導波路が提案されている。   In recent years, in the medical field such as dental treatment and surgery, and in the industrial field such as metal processing and surface modification, a high-power laser has been attracting attention as a medical device or a processing device. A flexible glass hollow waveguide has been proposed.

図6は、その従来の中空導波路の一例を示す。この中空導波路1は、ガラスキャピラリーチューブ2の内面に金属層3を内装し、この金属層3の内面に誘電体層14を内装したものである(例えば、特許文献1参照。)。   FIG. 6 shows an example of the conventional hollow waveguide. The hollow waveguide 1 is configured such that a metal layer 3 is provided on the inner surface of a glass capillary tube 2 and a dielectric layer 14 is provided on the inner surface of the metal layer 3 (see, for example, Patent Document 1).

この構成によれば、ガラスキャピラリーチューブ2の内面に金属層3を形成しているので、チューブ内面における反射率を向上させ、誘電体層14における光の干渉効果により、内面反射率をさらに増大させることができるので、伝送させる光の損失を大幅に低減することができる。
特開2003−114344号公報([0008]、図1)
According to this configuration, since the metal layer 3 is formed on the inner surface of the glass capillary tube 2, the reflectance on the inner surface of the tube is improved, and the inner surface reflectance is further increased due to the light interference effect on the dielectric layer 14. Therefore, the loss of transmitted light can be greatly reduced.
JP 2003-114344 A ([0008], FIG. 1)

しかし、従来の中空導波路によると、伝送する光の波長に対して誘電体層の厚さを最適にしているが、その厚さは均一であるため、使用時に伝送する光の波長を変更することはできない。また、予定していた波長と異なる波長の光を伝送させるためには、その波長に適した誘電体層の層厚を有する中空導波路を別途用意する必要がある。   However, according to the conventional hollow waveguide, the thickness of the dielectric layer is optimized with respect to the wavelength of light to be transmitted. However, since the thickness is uniform, the wavelength of light to be transmitted is changed during use. It is not possible. In addition, in order to transmit light having a wavelength different from the planned wavelength, it is necessary to separately prepare a hollow waveguide having a dielectric layer thickness suitable for the wavelength.

従って、本発明の目的は、使用時に伝送可能な光の波長帯や出力強度を変化させることが可能な中空導波路およびその応用デバイスを提供することにある。   Therefore, an object of the present invention is to provide a hollow waveguide capable of changing the wavelength band and output intensity of light that can be transmitted during use, and an application device thereof.

本発明は、上記目的を達成するため、チューブの内面に金属層を内装し、この金属層の内面に誘電体層を内装した中空導波路において、前記誘電体層は、厚さが周方向で異なることを特徴とする中空導波路を提供する。   In order to achieve the above object, the present invention provides a hollow waveguide in which a metal layer is provided on the inner surface of a tube, and the dielectric layer is provided on the inner surface of the metal layer. Provided is a hollow waveguide characterized by being different.

前記チューブは、ガラスキャピラリーチューブを用いてもよい。   A glass capillary tube may be used as the tube.

前記誘電体層の周方向θにおける厚さtは、最大厚さをt1、最小厚さをt2とするとき、
t=t2+(t1-t2)・|cos(nθ/2)|(但しnは1または2)
で表されるように構成してもよい。
The thickness t in the circumferential direction θ of the dielectric layer has a maximum thickness t 1 and a minimum thickness t 2 .
t = t 2 + (t 1 -t 2 ) · | cos (nθ / 2) | (where n is 1 or 2)
You may comprise so that it may be represented by.

前記金属層は、金、銀、銅又はアルミニウムから形成することが好ましい。   The metal layer is preferably formed from gold, silver, copper or aluminum.

本発明は、上記目的を達成するため、予めあるいは使用時に少なくとも1箇所に曲げ部を有する金属パイプと、この金属パイプ内に挿通され、チューブの内面に金属層を内装し、この金属層の内面に誘電体層を内装した中空導波路とを備えた中空導波路応用デバイスにおいて、前記中空導波路の前記誘電体層は、厚さが周方向で異なることを特徴とする中空導波路応用デバイスを提供する。   In order to achieve the above object, the present invention provides a metal pipe having a bent portion at least at one place in advance or at the time of use, and is inserted into the metal pipe, and a metal layer is provided on the inner surface of the tube. A hollow waveguide application device comprising a hollow waveguide having a dielectric layer embedded therein, wherein the dielectric layer of the hollow waveguide has a thickness different in the circumferential direction. provide.

本発明の中空導波路によれば、光を伝送させる誘電体層の厚さを選択することにより、伝送特性が変化するので、使用時に伝送可能な光の波長帯や出力強度を変化させることが可能となる。   According to the hollow waveguide of the present invention, since the transmission characteristics change by selecting the thickness of the dielectric layer that transmits light, the wavelength band and output intensity of light that can be transmitted during use can be changed. It becomes possible.

チューブとして、ガラスキャピラリーチューブを用いることにより、長尺の中空導波路を製作が容易となる。   By using a glass capillary tube as the tube, it becomes easy to produce a long hollow waveguide.

誘電体層の周方向θにおける厚さtは、最大厚さをt1、最小厚さをt2とするとき、
t=t2+(t1-t2)・|cos(nθ/2)|(但しnは1または2)
で表されるように構成することにより、厚さの選択が容易となる。
The thickness t in the circumferential direction θ of the dielectric layer has a maximum thickness t 1 and a minimum thickness t 2 .
t = t 2 + (t 1 -t 2 ) · | cos (nθ / 2) | (where n is 1 or 2)
The thickness can be easily selected by the configuration.

金属層は、金、銀、銅又はアルミニウムから形成することにより、その複素屈折率の絶対値が大きいため、低損失の中空導波路を得ることができる。   By forming the metal layer from gold, silver, copper, or aluminum, since the absolute value of the complex refractive index is large, a low-loss hollow waveguide can be obtained.

本発明の中空導波路応用デバイスによれば、金属パイプが予め曲げ部を有する場合は、金属パイプか中空導波路を回すことにより、金属パイプが予め曲げ部を有していない場合は、中空導波路を挿通した金属パイプを所定の方向に曲げることにより、金属パイプの曲げ部における誘電体層の厚さ分布が変化するので、使用時に伝送可能な光の波長帯や出力強度を容易に変化させることが可能となる。   According to the hollow waveguide application device of the present invention, when the metal pipe has a bent portion in advance, by rotating the metal pipe or the hollow waveguide, when the metal pipe does not have the bent portion in advance, the hollow guide is used. By bending the metal pipe inserted through the waveguide in a predetermined direction, the thickness distribution of the dielectric layer at the bent portion of the metal pipe changes, so the wavelength band and output intensity of light that can be transmitted during use are easily changed. It becomes possible.

図1は、本発明の第1の実施の形態に係る中空導波路を示す。この中空導波路1は、構造を保つための保護層となるガラスキャピラリーチューブ2の内面に金属層3を内装し、この金属層3の内面に層厚が軸方向で一定であり、周方向θで異なる誘電体層4を内装したものである。   FIG. 1 shows a hollow waveguide according to a first embodiment of the present invention. In this hollow waveguide 1, a metal layer 3 is provided on the inner surface of a glass capillary tube 2 serving as a protective layer for maintaining the structure, and the layer thickness is constant in the axial direction on the inner surface of the metal layer 3, and the circumferential direction θ A different dielectric layer 4 is housed inside.

ガラスキャピラリーチューブ2は、例えば、石英ガラスからなり、十分な可撓性が得られるように、その内径は1mm以下が好ましい。なお、ガラスキャピラリーチューブ2の代わりに、Ni等の金属やエポキシ樹脂等の樹脂からなるチューブを用いてもよい。   The glass capillary tube 2 is made of, for example, quartz glass, and preferably has an inner diameter of 1 mm or less so that sufficient flexibility can be obtained. Instead of the glass capillary tube 2, a tube made of a metal such as Ni or a resin such as an epoxy resin may be used.

金属層3の材料としては、金、銀、銅、アルミニウム等を用いることができる。これらは、その複素屈折率の絶対値が大きいため、低損失の中空導波路を得ることができる。金属層3を形成する方法としては、メッキ法、真空蒸着法、スパッタリング法や溶融金属を付着させる方法等を用いることができる。   As the material of the metal layer 3, gold, silver, copper, aluminum, or the like can be used. Since these have a large absolute value of the complex refractive index, a low-loss hollow waveguide can be obtained. As a method for forming the metal layer 3, a plating method, a vacuum deposition method, a sputtering method, a method of attaching a molten metal, or the like can be used.

誘電体層4の材料としては、無機物あるいは有機樹脂を用いることができるが、使用する光の波長域において吸収が十分小さいことが重要であり、例えば、フッ化カルシウム,フッ化マグネシウム等のフッ化物や、石英,酸化マグネシウム,酸化ジルコニウム,酸化銅,酸化チタニウム,酸化アルミニウム,酸化イットリウム等の金属酸化物、ゲルマニウム,シリコン等の半導体、セレン化亜鉛,硫化亜鉛等のII-VI族化合物、あるいはポリイミド,ポリカーボネート,ポリエチレン,ポリシロキサン,ポリシロキサン,環状オレフィン樹脂,フッ素樹脂,シリコーン樹脂等の高分子樹脂を用いることができる。   As a material for the dielectric layer 4, an inorganic substance or an organic resin can be used. However, it is important that the absorption is sufficiently small in the wavelength range of the light to be used. And metal oxides such as quartz, magnesium oxide, zirconium oxide, copper oxide, titanium oxide, aluminum oxide and yttrium oxide, semiconductors such as germanium and silicon, II-VI group compounds such as zinc selenide and zinc sulfide, or polyimide Polymer resins such as polycarbonate, polyethylene, polysiloxane, polysiloxane, cyclic olefin resin, fluororesin, and silicone resin can be used.

次に、誘電体層4の形成方法の一例について説明する。誘電体層4は、チューブ2の内面に形成された金属層3の内面に誘電体層を形成する「内付け法」、棒状の芯材の周面に誘電体層を形成する「外付け法」等によって形成することができる。以下、「内付け法」と「外付け法」について説明する。   Next, an example of a method for forming the dielectric layer 4 will be described. The dielectric layer 4 includes an “internal method” in which a dielectric layer is formed on the inner surface of the metal layer 3 formed on the inner surface of the tube 2, and an “external method” in which a dielectric layer is formed on the peripheral surface of the rod-shaped core material. Etc.]. The “internal method” and “external method” will be described below.

「内付け法」は、ガラスキャピラリーチューブ2の内側に金属層3を形成した後、金属層3の内側に誘電体の溶液を流した後、これを乾燥する送液法によって形成することができる。この送液法によると、一般には以下の形成手順となる。   The “internal method” can be formed by a liquid feeding method in which a metal layer 3 is formed inside the glass capillary tube 2 and then a dielectric solution is poured inside the metal layer 3 and then dried. . According to this liquid feeding method, the following formation procedure is generally used.

(a)送液工程:ガラスキャピラリーチューブ2の内側に金属層3を形成したチューブを垂直に固定し、そのチューブ内に誘電体の溶液を一定の速度で流す。
(b)仮乾燥工程:チューブを動かさずに垂直保持した状態で、窒素(または乾燥空気、誘電体の溶剤など)を流して仮乾燥する。
(c)加熱乾燥工程:チューブを電気路に移動させ、窒素を流しながら加熱乾燥する。
(A) Liquid feeding step: A tube having the metal layer 3 formed inside the glass capillary tube 2 is fixed vertically, and a dielectric solution is allowed to flow through the tube at a constant speed.
(B) Temporary drying step: In a state where the tube is held vertically without moving, nitrogen (or dry air, dielectric solvent, etc.) is flowed to temporarily dry the tube.
(C) Heating and drying step: The tube is moved to an electric path and heated and dried while flowing nitrogen.

ここで、膜厚分布を有する誘電体層4を形成するには、自重による方法と曲げによる方法とが考えられる。自重による方法は、送液工程後の仮乾燥工程を従来一般に行われている時間よりも短い時間で一時中断し、チューブを一旦水平に置き直し、その後、再び室温での仮乾燥を再開する。仮乾燥不十分の状態でチューブを水平にすることにより、誘電体層の形状は自重により変化し、膜厚分布を形成することができる。   Here, in order to form the dielectric layer 4 having a film thickness distribution, a method based on its own weight and a method based on bending can be considered. In the self-weight method, the temporary drying step after the liquid feeding step is temporarily interrupted in a time shorter than that generally performed, the tube is temporarily placed again, and then the temporary drying at room temperature is resumed. When the tube is leveled in a state where the provisional drying is insufficient, the shape of the dielectric layer changes due to its own weight, and a film thickness distribution can be formed.

曲げによる方法は、送液工程、仮乾燥工程を行った後、チューブを一定の曲げ半径で保持した状態で加熱乾燥を行う。曲げ半径の大きさにより膜厚分布の形状をコントロール可能となる。   In the bending method, after performing the liquid feeding step and the temporary drying step, the tube is heated and dried in a state where the tube is held at a constant bending radius. The shape of the film thickness distribution can be controlled by the size of the bending radius.

「外付け法」は、棒状の芯材を回転速度を1周の周期内で変化させ、芯材の回転周期に同期して誘電体となるターゲット材をスパッタリングして誘電体層4を形成する。その後、誘電体層4の周面に金属層3を形成し、金属層3の周面にチューブを着膜形成するが、例えば、Niを着膜することによりチューブを形成することができる。   In the “external method”, the dielectric layer 4 is formed by changing the rotational speed of a rod-shaped core material within one cycle and sputtering a target material that becomes a dielectric in synchronization with the rotation cycle of the core material. . Thereafter, the metal layer 3 is formed on the peripheral surface of the dielectric layer 4, and a tube is formed on the peripheral surface of the metal layer 3. For example, the tube can be formed by depositing Ni.

図2は、誘電体層4の層厚分布の一例を示す。誘電体層4の周方向θにおける厚さtは、最大厚さをt1、最小厚さをt2とするとき、次の式(1)で表される。
t=t2+(t1-t2)・|cos(θ/2)| ・・・(1)
FIG. 2 shows an example of the layer thickness distribution of the dielectric layer 4. The thickness t in the circumferential direction θ of the dielectric layer 4 is expressed by the following formula (1), where t 1 is the maximum thickness and t 2 is the minimum thickness.
t = t 2 + (t 1 -t 2 ) · | cos (θ / 2) | (1)

このように構成された中空導波路1内に光が入射すると、その光は、中空部5と誘電体層4との境界、および誘電体層4と金属層3との境界で反射を繰り返して伝搬する。誘電体層4の最大厚さt1〜最小厚さt2のうち光を反射させる部分の層厚さを選択することにより、伝送特性が変化するので、使用時に伝送可能な光の波長帯や出力強度を変化させることが可能となり、また、使用時に伝送する光の伝送損失を変化させることが可能となる。 When light enters the hollow waveguide 1 configured as described above, the light is repeatedly reflected at the boundary between the hollow portion 5 and the dielectric layer 4 and at the boundary between the dielectric layer 4 and the metal layer 3. Propagate. Since the transmission characteristics change by selecting the layer thickness of the portion that reflects light among the maximum thickness t 1 to the minimum thickness t 2 of the dielectric layer 4, the wavelength band of light that can be transmitted during use, The output intensity can be changed, and the transmission loss of light transmitted during use can be changed.

図3は、本発明の第2の実施の形態に係る中空導波路を示す。この中空導波路1は、第1の実施の形態とは、誘電体層4の厚さ分布のみが異なる。この誘電体層4の周方向θの厚さ分布は、同図に示すように、最大厚さt1および最小厚さt2の部分を2箇所有する。 FIG. 3 shows a hollow waveguide according to the second embodiment of the present invention. This hollow waveguide 1 differs from the first embodiment only in the thickness distribution of the dielectric layer 4. The thickness distribution in the circumferential direction θ of the dielectric layer 4 has two portions having a maximum thickness t 1 and a minimum thickness t 2 as shown in FIG.

誘電体層4の周方向θにおける厚さtは、最大厚さをt1、最小厚さをt2とするとき、次の式(2)で表される。
t=t2+(t1-t2)・|cos(θ)| ・・・(2)
このような構成においても、上記第1の実施の形態と同様に、膜厚分布を有する誘電体層4を形成することが可能であり、伝送可能な光の波長帯や出力強度を変化させることができる。
The thickness t in the circumferential direction θ of the dielectric layer 4 is expressed by the following equation (2), where the maximum thickness is t 1 and the minimum thickness is t 2 .
t = t 2 + (t 1 -t 2 ) · | cos (θ) | (2)
Even in such a configuration, as in the first embodiment, it is possible to form the dielectric layer 4 having a film thickness distribution, and to change the wavelength band and output intensity of light that can be transmitted. Can do.

図4は、本発明の第3の実施の形態に係る中空導波路応用デバイスを示す。この中空導波路応用デバイス10は、少なくとも1箇所に緩やかな曲げ半径の曲げ部12を有するアルミニウム,銅,ステンレス等からなる金属パイプ11内に、第1の実施の形態の中空導波路1を挿入した構成となっている。   FIG. 4 shows a hollow waveguide application device according to the third embodiment of the present invention. In this hollow waveguide application device 10, the hollow waveguide 1 of the first embodiment is inserted into a metal pipe 11 made of aluminum, copper, stainless steel or the like having a bending portion 12 having a gentle bending radius at least at one place. It has become the composition.

このように構成された中空導波路応用デバイス10において、層厚が周方向θで異なる誘電体層4を有する中空導波路1を回すことにより、曲げ部12の内側12aとは反対側12bで反射する光は、誘電体層4の層厚に依存した反射特性を示すため、中空導波路1を回すことにより、異なる伝送特性を発揮することができる。この伝送特性の変化を図面を用いてさらに説明する。   In the hollow waveguide application device 10 configured as described above, the hollow waveguide 1 having the dielectric layer 4 having a different layer thickness in the circumferential direction θ is rotated to reflect on the side 12b opposite to the inner side 12a of the bent portion 12. Since the light to be shown exhibits a reflection characteristic depending on the thickness of the dielectric layer 4, different transmission characteristics can be exhibited by turning the hollow waveguide 1. This change in transmission characteristics will be further described with reference to the drawings.

図5は、曲げ部12の外側12bの誘電体層4の層厚が一番厚くなる場合と、一番薄くなる場合の中空導波路1の伝送特性を示す。この例では、外側12bに位置する誘電体層4の層厚が薄くなるように中空導波路1を回した場合に、使用波長の伝送損失が最も小さくなり、中空導波路1を回していくに従い伝送損失が大きくなり、外側12bに位置する誘電体層4の層厚が最も厚くなるように中空導波路1を回した場合に、伝送損失が最も大きくなっていることから、中空導波路1を回すことにより、中空導波路1からの出力光の強度を変化させることができることが分かる。   FIG. 5 shows the transmission characteristics of the hollow waveguide 1 when the thickness of the dielectric layer 4 on the outer side 12b of the bent portion 12 is the thickest and the thinnest. In this example, when the hollow waveguide 1 is turned so that the thickness of the dielectric layer 4 located on the outer side 12b is thin, the transmission loss of the used wavelength becomes the smallest, and as the hollow waveguide 1 is turned, When the hollow waveguide 1 is rotated so that the transmission loss becomes large and the thickness of the dielectric layer 4 located on the outer side 12b becomes the largest, the transmission loss becomes the largest. It turns out that the intensity | strength of the output light from the hollow waveguide 1 can be changed by turning.

また、図5から分かるように、伝送損失が小さくなる波長帯は、中空導波路1を回すことにより適宜変えることが可能であるため、一つの中空導波路1で様々な波長の光を伝送することも可能となる。   Further, as can be seen from FIG. 5, the wavelength band in which the transmission loss is reduced can be changed as appropriate by turning the hollow waveguide 1, so that light of various wavelengths is transmitted through one hollow waveguide 1. It is also possible.

なお、中空導波路1側を回す代わりに、金属パイプ11側を回してもよい。また、金属パイプ11が可撓性を有するものである場合には、真直ぐな金属パイプ11内に中空導波路1を挿入した後、金属パイプ11を曲げてもよい。これらによっても出力光の強度や使用波長を変化させることができる。また、曲げ部12は複数の個所に設けてもよい。これによれば、出力光の強度や使用波長をより変化させることができる。また、誘電体層4の厚さ分布は、上記各実施の形態に限定されず、種々な分布が可能である。   Instead of turning the hollow waveguide 1 side, the metal pipe 11 side may be turned. When the metal pipe 11 is flexible, the metal pipe 11 may be bent after the hollow waveguide 1 is inserted into the straight metal pipe 11. Also by these, the intensity | strength and use wavelength of output light can be changed. Moreover, you may provide the bending part 12 in several places. According to this, the intensity | strength and use wavelength of output light can be changed more. Further, the thickness distribution of the dielectric layer 4 is not limited to the above embodiments, and various distributions are possible.

本発明の第1の実施の形態に係る中空導波路を示す図である。It is a figure which shows the hollow waveguide based on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る中空導波路の誘電体層の層厚分布を示す図である。It is a figure which shows layer thickness distribution of the dielectric material layer of the hollow waveguide which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る中空導波路を示す図である。It is a figure which shows the hollow waveguide based on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る中空導波路応用デバイスを示す図である。It is a figure which shows the hollow waveguide application device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る中空導波路の損失波長特性を示す図である。It is a figure which shows the loss wavelength characteristic of the hollow waveguide which concerns on the 3rd Embodiment of this invention. 従来の中空導波路を示す図である。It is a figure which shows the conventional hollow waveguide.

1 中空導波路
2 ガラスキャピラリーチューブ
3 金属層
4,14 誘電体層
5 中空部
10 中空導波路応用デバイス
11 金属パイプ
12 曲げ部
12a 内側
12b 外側
1 最も厚い厚さ
2 最も薄い厚さ
θ 周方向
DESCRIPTION OF SYMBOLS 1 Hollow waveguide 2 Glass capillary tube 3 Metal layers 4, 14 Dielectric layer 5 Hollow part 10 Hollow waveguide application device 11 Metal pipe 12 Bending part 12a Inner 12b Outer t 1 Thickest thickness t 2 Thinnest thickness θ circumference direction

Claims (6)

チューブの内面に金属層を内装し、この金属層の内面に誘電体層を内装した中空導波路において、
前記誘電体層は、厚さが周方向で異なることを特徴とする中空導波路。
In a hollow waveguide with a metal layer inside the tube and a dielectric layer inside the metal layer,
The hollow waveguide according to claim 1, wherein the dielectric layers have different thicknesses in the circumferential direction.
前記チューブは、ガラスキャピラリーチューブであることを特徴とする請求項1記載の中空導波路。   The hollow waveguide according to claim 1, wherein the tube is a glass capillary tube. 前記誘電体層の周方向θにおける厚さtは、最大厚さをt1、最小厚さをt2とするとき、
t=t2+(t1-t2)・|cos(nθ/2)|(但しnは1または2)
で表されることを特徴とする請求項1記載の中空導波路。
The thickness t in the circumferential direction θ of the dielectric layer has a maximum thickness t 1 and a minimum thickness t 2 .
t = t 2 + (t 1 -t 2 ) · | cos (nθ / 2) | (where n is 1 or 2)
The hollow waveguide according to claim 1, wherein:
前記金属層は、金、銀、銅又はアルミニウムから形成されたことを特徴とする請求項1記載の中空導波路。   The hollow waveguide according to claim 1, wherein the metal layer is made of gold, silver, copper, or aluminum. 予めあるいは使用時に少なくとも1箇所に曲げ部を有する金属パイプと、この金属パイプ内に挿通され、チューブの内面に金属層を内装し、この金属層の内面に誘電体層を内装した中空導波路とを備えた中空導波路応用デバイスにおいて、
前記中空導波路の前記誘電体層は、厚さが周方向で異なることを特徴とする中空導波路応用デバイス。
A metal pipe having a bent portion at least in one place in advance or when used, a hollow waveguide inserted into the metal pipe, having a metal layer on the inner surface of the tube, and having a dielectric layer on the inner surface of the metal layer; In hollow waveguide application device comprising:
The hollow waveguide application device, wherein the dielectric layers of the hollow waveguide have different thicknesses in the circumferential direction.
前記金属パイプおよび前記中空導波路は、周方向に相対変位可能であることを特徴とする請求項5記載の中空導波路応用デバイス。   The hollow waveguide application device according to claim 5, wherein the metal pipe and the hollow waveguide can be relatively displaced in a circumferential direction.
JP2004038633A 2004-02-16 2004-02-16 Hollow waveguide and its application device Expired - Fee Related JP4135652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038633A JP4135652B2 (en) 2004-02-16 2004-02-16 Hollow waveguide and its application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038633A JP4135652B2 (en) 2004-02-16 2004-02-16 Hollow waveguide and its application device

Publications (2)

Publication Number Publication Date
JP2005227707A true JP2005227707A (en) 2005-08-25
JP4135652B2 JP4135652B2 (en) 2008-08-20

Family

ID=35002447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038633A Expired - Fee Related JP4135652B2 (en) 2004-02-16 2004-02-16 Hollow waveguide and its application device

Country Status (1)

Country Link
JP (1) JP4135652B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198728A (en) * 2008-02-20 2009-09-03 Hitachi Cable Ltd Hollow fiber and method for fabricating the same
JP2009204683A (en) * 2008-02-26 2009-09-10 Hitachi Cable Ltd Hollow fiber and manufacturing method of the same
WO2010014099A1 (en) * 2008-07-31 2010-02-04 Hewlett-Packard Development Company, L.P. Nano-wire optical block devices for amplifying, modulating, and detecting optical signals
JP2010535357A (en) * 2007-07-31 2010-11-18 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Photonic guide device
US8270795B2 (en) 2008-02-20 2012-09-18 Hitachi Cable, Ltd. Hollow fiber formed using metal nano particles
JP2013015858A (en) * 2012-09-18 2013-01-24 Hewlett-Packard Development Company L P Polarization maintenance large core hollow waveguide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535357A (en) * 2007-07-31 2010-11-18 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Photonic guide device
JP2009198728A (en) * 2008-02-20 2009-09-03 Hitachi Cable Ltd Hollow fiber and method for fabricating the same
US8270795B2 (en) 2008-02-20 2012-09-18 Hitachi Cable, Ltd. Hollow fiber formed using metal nano particles
JP2009204683A (en) * 2008-02-26 2009-09-10 Hitachi Cable Ltd Hollow fiber and manufacturing method of the same
WO2010014099A1 (en) * 2008-07-31 2010-02-04 Hewlett-Packard Development Company, L.P. Nano-wire optical block devices for amplifying, modulating, and detecting optical signals
CN102112901A (en) * 2008-07-31 2011-06-29 惠普开发有限公司 Nano-wire optical block devices for amplifying, modulating, and detecting optical signals
US8873893B2 (en) 2008-07-31 2014-10-28 Hewlett-Packard Development Company, L.P. Nano-wire optical block devices for amplifying, modulating, and detecting optical signals
JP2013015858A (en) * 2012-09-18 2013-01-24 Hewlett-Packard Development Company L P Polarization maintenance large core hollow waveguide

Also Published As

Publication number Publication date
JP4135652B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US9703055B2 (en) AAO-based light guiding structure and fabrication thereof
KR100348170B1 (en) Coherent, flexible, coated-bore hollow-fiber waveguide, and method of making same
JP4135652B2 (en) Hollow waveguide and its application device
US7664356B2 (en) Hollow waveguide and method of manufacturing the same
JPH10282348A (en) Hollow waveguide and its manufacture
JP7086860B2 (en) Optical fiber core wire
JP2009505166A5 (en)
WO2015009901A1 (en) Housing for the oct probe, oct probe assembly, and a method of making such assembly
US20060088798A1 (en) Light tip for dental use
CN103592719B (en) Metal capillary attenuated total reflectance attenuated total refraction infrared hollow optical fiber making method and optical fiber thereof
JP2016067526A (en) Laser light irradiation apparatus
JP2007078715A (en) Plastic optical component and optical unit using the same, and method of forming inorganic moistureproof film on plastic optical component
WO2010075066A1 (en) Hollow core fiber power combiner and divider
RU2009111233A (en) DEVICE FOR MANUFACTURE OF OPTICAL FIBER AND METHOD FOR MANUFACTURE OF OPTICAL FIBER
RU2002132185A (en) METHOD FOR PRODUCING AN OPTICAL FIBER
JP2009139775A (en) Optical system, and optical equipment having the same
RU2009113170A (en) METAL PIPE WITH PLASTIC COATING AND METHOD FOR ITS MANUFACTURE
JP2004174142A (en) Photo-thermal actuator and device equipped with photo-thermal actuator
CA3091749C (en) Device for treatment of body tissue
JP2007286315A (en) Heat-resistant infrared hollow fiber
JP3718127B2 (en) Medical laser transmission equipment
JP5022654B2 (en) Optical element and manufacturing method thereof
WO2012049271A1 (en) Integrated microtoroids monolithically coupled with integrated waveguides
Shi et al. Properties of hollow bent output tips in CO2 laser light delivery system
JP2010061876A (en) Tubular heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees