JP2005227227A - Sensor for internal combustion engine - Google Patents

Sensor for internal combustion engine Download PDF

Info

Publication number
JP2005227227A
JP2005227227A JP2004038630A JP2004038630A JP2005227227A JP 2005227227 A JP2005227227 A JP 2005227227A JP 2004038630 A JP2004038630 A JP 2004038630A JP 2004038630 A JP2004038630 A JP 2004038630A JP 2005227227 A JP2005227227 A JP 2005227227A
Authority
JP
Japan
Prior art keywords
mica
heat insulating
rear end
internal combustion
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004038630A
Other languages
Japanese (ja)
Other versions
JP4241919B2 (en
Inventor
Masaaki Murase
昌明 村瀬
Yoshiaki Kuroki
義昭 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004038630A priority Critical patent/JP4241919B2/en
Publication of JP2005227227A publication Critical patent/JP2005227227A/en
Application granted granted Critical
Publication of JP4241919B2 publication Critical patent/JP4241919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for internal combustion engines, capable of suppressing thermal degradation of an elastic seal member and preventing the inside of the sensor from being immersed in water through a rear-end opening part of a casing member, over a long period. <P>SOLUTION: The sensor 100 for internal combustion engines is provided with a detection element 120, having a tip side to be exposed to gases to be measured; a tubular casing member 160 made of metal for surrounding the gas detecting element 120; and a grommet 185 for blocking the rear-end opening part 163b, with a lead wire 170 electrically connected to the detecting element 120 inserted in itself. A lateral mica heat insulating member 111 is arranged in between a tip-side part 185h located on the tip side of the grommet 185, in a direction along at least an axis C and a rear-side surrounding member 163 (the casing member 160). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸素センサ、全領域空燃比センサ、NOxセンサ等のガスセンサや、温度センサなど、高温環境下において使用される各種の内燃機関用センサに関する。   The present invention relates to various sensors for an internal combustion engine used in a high-temperature environment, such as gas sensors such as oxygen sensors, full-range air-fuel ratio sensors, NOx sensors, and temperature sensors.

従来より、酸素センサ、全領域空燃比センサ、NOxセンサ等のガスセンサや、温度センサなど、高温環境下において使用される各種の内燃機関用センサについて、様々なものが提案されている。このような内燃機関用センサのうち酸素センサとしては、例えば、排気管に取付けられて、排気ガス中の酸素濃度を検出するものが挙げられる(例えば、特許文献1、特許文献2参照)。
特開2001−147213号公報 特開平9−178694号公報
Conventionally, various sensors for various internal combustion engines used in a high temperature environment such as an oxygen sensor, a gas sensor such as a full-range air-fuel ratio sensor, a NOx sensor, and a temperature sensor have been proposed. Among such sensors for internal combustion engines, for example, an oxygen sensor that is attached to an exhaust pipe and detects the oxygen concentration in the exhaust gas can be cited (see, for example, Patent Document 1 and Patent Document 2).
JP 2001-147213 A JP-A-9-178694

特許文献1の酸素センサは、検出素子と外部装置とを接続するためのリード線を有しており、このリード線は、ケーシング部材の内部から、ケーシング部材の後端に位置する後端開口部を通じて、ケーシング部材の外部に導出されている。さらに、このケーシング部材の後端開口部を通じて、センサ内部に水などが侵入しないように、自身の内部にリード線を挿通させつつ後端開口部を閉塞するゴム製のシール部材(弾性絶縁部材)が設けられている。しかしながら、この酸素センサは、その先端部が極めて高温(900℃以上)の排気ガスにさらされるため、この排気熱が、金属製のケーシング部材を通じてシール部材(弾性絶縁部材)に伝わり、シール部材(弾性絶縁部材)を耐熱性の高いフッ素ゴム等で形成したとしても、シール部材(弾性絶縁部材)が熱劣化してしまう虞があった。これにより、酸素センサの内部への浸水を防止できなくなる虞があった。   The oxygen sensor of Patent Document 1 has a lead wire for connecting a detection element and an external device, and this lead wire is a rear end opening located at the rear end of the casing member from the inside of the casing member. And led out of the casing member. Further, a rubber seal member (elastic insulating member) that closes the rear end opening while inserting a lead wire into the sensor so that water or the like does not enter the sensor through the rear end opening of the casing member. Is provided. However, since this oxygen sensor is exposed to an exhaust gas having an extremely high temperature (900 ° C. or higher), the exhaust heat is transmitted to the seal member (elastic insulating member) through the metal casing member, and the seal member ( Even if the elastic insulating member is formed of fluorine rubber or the like having high heat resistance, the sealing member (elastic insulating member) may be thermally deteriorated. As a result, there is a possibility that water cannot be prevented from entering the oxygen sensor.

これに対し、特許文献2の酸素センサでは、ゴム製のシール部材(ゴムブッシュ)とケーシング部材の後端部との間に、ゴム製のシール部材(ゴムブッシュ)を取り囲むように、PTFE製のチューブを配置させている。このPTFE製のチューブは、フッ素ゴムよりも耐熱性に優れているため、金属製のケーシング部材を通じて伝わる排気熱によって早期に熱劣化してしまう虞がない。さらに、ゴム製のシール部材(ゴムブッシュ)は、PTFE製のチューブを介して金属製のケーシング部材と接触するため、排気熱による熱劣化が抑制され、長期間にわたってセンサ内部への浸水を防止することができる。   On the other hand, in the oxygen sensor of Patent Document 2, a PTFE made of PTFE so as to surround the rubber seal member (rubber bush) between the rubber seal member (rubber bush) and the rear end portion of the casing member. A tube is placed. Since this PTFE tube has better heat resistance than fluororubber, there is no risk of early thermal degradation due to exhaust heat transmitted through a metal casing member. Furthermore, since the rubber seal member (rubber bush) comes into contact with the metal casing member via the PTFE tube, thermal deterioration due to exhaust heat is suppressed, and water intrusion into the sensor is prevented over a long period of time. be able to.

ところで、近年、内燃機関に用いられるセンサでは、取付けスペース等の関係で、小型化(短小化)の要請が高まっている。しかしながら、センサを短小とすれば、その分、ケーシング部材の後端開口部を閉塞するゴム製のシール部材(弾性シール部材)が熱源に接近するため、より一層、弾性シール部材が熱劣化してしまう虞がある。このように、近年、内燃機関用センサは、弾性シール部材がより一層高温となる条件で使用される傾向にある。
これに対し、特許文献2の酸素センサのように、PTFE製のチューブを設ける手法では、PTFE製のチューブの耐熱温度が300℃程度であるため、このPTFE製のチューブが熱劣化してしまい、センサ内への浸水を防止できなくなる虞があった。
Incidentally, in recent years, there is an increasing demand for downsizing (shortening) of sensors used in internal combustion engines due to the mounting space and the like. However, if the sensor is made short, the rubber seal member (elastic seal member) that closes the rear end opening of the casing member approaches the heat source, so that the elastic seal member is further deteriorated by heat. There is a risk of it. Thus, in recent years, sensors for internal combustion engines tend to be used under conditions where the temperature of the elastic seal member becomes even higher.
On the other hand, in the method of providing a PTFE tube as in the oxygen sensor of Patent Document 2, the PTFE tube has a heat-resistant temperature of about 300 ° C., so the PTFE tube is thermally deteriorated. There is a possibility that water intrusion into the sensor cannot be prevented.

本発明は、かかる現状に鑑みてなされたものであって、弾性シール部材の熱劣化を抑制すると共に、ケーシング部材の後端開口部を通じたセンサ内部への浸水を長期間にわたって防止できる内燃機関用センサを提供することを目的とする。   The present invention has been made in view of the current situation, and is for an internal combustion engine that can suppress thermal deterioration of an elastic seal member and prevent water from entering the sensor through the rear end opening of the casing member for a long period of time. An object is to provide a sensor.

その解決手段は、軸線方向に延び、自身の先端側が被測定ガスに晒される検出素子と、金属からなり、上記ガス検出素子を包囲する筒状のケーシング部材と、上記検出素子と電気的に接続するリード線を自身の内部に挿通させた状態で、上記ケーシング部材の後端に位置する後端開口部を閉塞する弾性シール部材と、を備える内燃機関用センサであって、上記弾性シール部材のうち少なくとも上記軸線方向の先端側に位置する先端側部と、上記ケーシング部材との間には、断熱性部材が配置されてなる内燃機関用センサである。   The solution includes: a detection element that extends in the axial direction and whose tip side is exposed to a gas to be measured; a cylindrical casing member that is made of metal and surrounds the gas detection element; and is electrically connected to the detection element An internal combustion engine sensor comprising: an elastic seal member that closes a rear end opening located at a rear end of the casing member in a state in which the lead wire to be inserted is inserted therein; Of these, a sensor for an internal combustion engine in which a heat insulating member is disposed between at least a tip side portion located on the tip side in the axial direction and the casing member.

従来より、先端側が高温の被測定ガス(熱源)に晒される内燃機関用センサでは、その熱が、特に金属製のケーシング部材を通じて、先端側から後端側に向かって伝わっていく。このため、弾性シール部材は、ケーシング部材と接触する部分のうち、特に、熱源に近く高温となりがちな軸線方向先端側に位置する先端側部が、熱劣化してしまう傾向にあった。
これに対し、本発明の内燃機関用センサでは、弾性シール部材のうち少なくとも軸線方向の先端側に位置する先端側部と、金属製のケーシング部材との間には、断熱性部材が配置されている。これにより、弾性シール部材のうち熱源に近い先端側部に、熱源の熱が伝わるのを抑制できるので、結果として、弾性シール部材の熱劣化を抑制することができる。従って、ケーシング部材の後端開口部を通じたセンサ内部への浸水を長期間にわたって防止できる。
Conventionally, in an internal combustion engine sensor in which the tip side is exposed to a high temperature gas to be measured (heat source), the heat is transmitted from the tip side to the rear end side, particularly through a metal casing member. For this reason, the elastic seal member tends to be thermally deteriorated in the portion in contact with the casing member, in particular, the tip side portion located on the tip end side in the axial direction that tends to be close to the heat source and tends to be high temperature.
On the other hand, in the internal combustion engine sensor according to the present invention, a heat insulating member is disposed between the metal casing member and the tip side portion located at least on the tip side in the axial direction of the elastic seal member. Yes. Thereby, since it can suppress that the heat of a heat source is transmitted to the front end side part near a heat source among elastic seal members, the thermal deterioration of an elastic seal member can be suppressed as a result. Therefore, it is possible to prevent water from entering the sensor through the rear end opening of the casing member for a long period of time.

本発明の内燃機関用センサとしては、例えば、酸素センサ、全領域空燃比センサ、NOxセンサ等のガスセンサや、温度センサなどが挙げられる。
なお、弾性シール部材は、弾性を有し、ケーシング部材の後端開口部を閉塞してセンサ内への浸水を防止できる部材であればいずれのものでも良い。このような弾性シール部材としては、例えば、比較的耐熱性の高いフッ素系ゴムやシリコン系ゴムなどを好適に用いることができる。
Examples of the sensor for an internal combustion engine of the present invention include a gas sensor such as an oxygen sensor, a full-range air-fuel ratio sensor, and a NOx sensor, a temperature sensor, and the like.
The elastic seal member may be any member as long as it has elasticity and can close the rear end opening of the casing member to prevent water from entering the sensor. As such an elastic seal member, for example, fluorine rubber or silicon rubber having relatively high heat resistance can be suitably used.

また、断熱性部材は、弾性シール部材とケーシング部材との間に配置でき、ケーシング部材から弾性シール部材への熱伝導を妨げることができる部材であれば良い。このような断熱性部材としては、例えば、マイカ鱗片が積層されて層状組織をなすマイカ断熱部材や、アスベスト等の繊維状断熱部材を好適に用いることができる。   Moreover, the heat insulation member should just be a member which can be arrange | positioned between an elastic seal member and a casing member, and can prevent the heat conduction from a casing member to an elastic seal member. As such a heat insulating member, for example, a mica heat insulating member in which mica scales are laminated to form a layered structure, or a fibrous heat insulating member such as asbestos can be suitably used.

さらに、上記の内燃機関用センサであって、前記断熱性部材は、マイカ鱗片が積層されて層状組織をなすマイカ断熱部材であり、このマイカ断熱部材は、前記ケーシング部材のうち当該マイカ断熱部材と接触するケーシング側接触面と前記弾性シール部材のうち当該マイカ断熱部材と接触するシール側接触面とが向き合う方向と、当該マイカ断熱部材の積層方向とが一致するように配置されてなる内燃機関用センサとすると良い。   Furthermore, in the sensor for an internal combustion engine, the heat insulating member is a mica heat insulating member in which mica scales are laminated to form a layered structure, and the mica heat insulating member includes the mica heat insulating member of the casing member. For an internal combustion engine in which the casing-side contact surface in contact with the seal-side contact surface in contact with the mica heat insulating member of the elastic seal member and the stacking direction of the mica heat insulating member are aligned. A sensor is recommended.

本発明の内燃機関用センサでは、断熱性部材として、マイカ鱗片が積層されて層状組織をなすマイカ断熱部材を用いており、このマイカ断熱部材を、ケーシング部材のケーシング側接触面と弾性シール部材のシール側接触面とが向き合う方向と、マイカ断熱部材の積層方向とが一致するように配置している。
マイカ断熱部材は、マイカ鱗片の積層方向について熱伝導率が低い性質を有するため、上記のようにマイカ断熱部材を配置することにより、金属製のケーシング部材から弾性シール部材に熱が伝わるのを抑制でき、弾性シール部材の熱劣化を抑制することができる。また、マイカ断熱部材は、マイカ鱗片の積層方向に対する熱拡散率が、マイカ鱗片の積層方向に直交する方向(即ち、結晶平行方向)に対する熱拡散率の1/10程度と小さい性質も有しているため、この観点からも、上記のようにマイカ断熱部材を配置することで、ケーシング部材から弾性シール部材に熱が伝わるのを有効に抑制できる。
なお、マイカ鱗片としては、例えば、層状組織をなしている原料マイカ(雲母)を粉砕して得られた、当該原料マイカの各層を構成していたマイカの破片などが挙げられる。
In the sensor for an internal combustion engine of the present invention, a mica heat insulating member in which mica scales are laminated to form a layered structure is used as the heat insulating member. It arrange | positions so that the direction where a seal side contact surface faces, and the lamination direction of a mica heat insulation member may correspond.
Since the mica heat insulating member has a property of low thermal conductivity in the stacking direction of the mica scales, the heat transfer from the metal casing member to the elastic seal member is suppressed by arranging the mica heat insulating member as described above. And thermal deterioration of the elastic seal member can be suppressed. Further, the mica heat insulating member has a property that the thermal diffusivity in the stacking direction of the mica scale is as small as about 1/10 of the thermal diffusivity in the direction orthogonal to the stacking direction of the mica scale (that is, the crystal parallel direction). Therefore, also from this viewpoint, it is possible to effectively suppress the heat from the casing member to the elastic seal member by arranging the mica heat insulating member as described above.
Examples of mica scales include mica fragments obtained by pulverizing raw material mica (mica) having a layered structure and constituting each layer of the raw material mica.

さらに、上記の内燃機関用センサであって、前記マイカ断熱部材は、軟質マイカからなる前記マイカ鱗片を主成分として含んでなる内燃機関用センサとすると良い。   Further, in the sensor for an internal combustion engine, the mica heat insulating member may be a sensor for an internal combustion engine including the mica scale made of soft mica as a main component.

上述のように、マイカ断熱部材は断熱性に優れているが、この優れた断熱性を発揮するためには、高温環境下での使用に耐えられる耐熱性も有していなければならない。このため、本発明の内燃機関用センサでは、軟質マイカからなるマイカ鱗片を主成分としたマイカ断熱部材を用いている。この軟質マイカ(金雲母)は、マイカの中でも耐熱温度が高く、その熱分解温度は900〜1000℃程度である。このような軟質マイカを主成分とするマイカ断熱部材は、断熱性と共に耐熱性及にも優れているため、高温環境下で用いられる各種内燃機関用センサについて好適に用いることができる。   As described above, the mica heat insulating member is excellent in heat insulating properties, but in order to exhibit this excellent heat insulating property, it must also have heat resistance that can withstand use in a high temperature environment. For this reason, the sensor for internal combustion engines of the present invention uses a mica heat insulating member mainly composed of mica scales made of soft mica. This soft mica (phlogopite) has a high heat resistant temperature among mica, and its thermal decomposition temperature is about 900 to 1000 ° C. Such a mica heat insulating member containing soft mica as a main component is excellent in heat resistance as well as heat insulating properties, and therefore can be suitably used for various internal combustion engine sensors used in a high temperature environment.

さらに、上記いずれかの内燃機関用センサであって、前記マイカ断熱部材は、少なくとも、前記弾性シール部材の前記先端側部の側方に配置された側方マイカ断熱部材を含み、上記側方マイカ断熱部材は、上記弾性シール部材と前記ケーシング部材との間に配置された後、上記弾性シール部材を拡径することによって固定されてなる内燃機関用センサとすると良い。   Furthermore, in any one of the above-mentioned sensors for an internal combustion engine, the mica heat insulating member includes at least a side mica heat insulating member disposed on a side of the tip side portion of the elastic seal member, and the side mica The heat insulating member may be a sensor for an internal combustion engine that is arranged by expanding the diameter of the elastic seal member after being disposed between the elastic seal member and the casing member.

従来の内燃機関用センサでは、ケーシング部材の後端部を径方向内側に加締めることにより、弾性シール部材を固定するようにしていた。しかしながら、このような固定手法では、弾性シール部材の側方にマイカ断熱部材を配置させる場合には、ケーシング部材を加締めたときにマイカ断熱部材が破損してしまう虞がある。
これに対し、本発明の内燃機関用センサでは、弾性シール部材の側方に配置する側方マイカ断熱部材を弾性シール部材とケーシング部材との間に配置した後、ケーシング部材を加締めることなく、弾性シール部材を拡径することによって固定している。このような固定手法によれば、側方マイカ断熱部材の側面全体を弾性的に押圧して固定できるので、側方マイカ断熱部材が破損してしまう虞がない。
In the conventional internal combustion engine sensor, the elastic seal member is fixed by crimping the rear end portion of the casing member radially inward. However, in such a fixing method, when the mica heat insulating member is disposed on the side of the elastic seal member, the mica heat insulating member may be damaged when the casing member is caulked.
On the other hand, in the internal combustion engine sensor of the present invention, after the side mica heat insulating member disposed on the side of the elastic seal member is disposed between the elastic seal member and the casing member, the casing member is not crimped, The elastic seal member is fixed by expanding the diameter. According to such a fixing method, since the entire side surface of the side mica heat insulating member can be elastically pressed and fixed, there is no possibility that the side mica heat insulating member is damaged.

なお、本発明の固定手法としては、例えば、軸孔を有する筒状の弾性シール部材を用い、まず、側方マイカ断熱部材を弾性シール部材とケーシング部材との間に配置した後、弾性シール部材の軸孔内に柱状部材を圧入することにより弾性シール部材を拡径し、側方マイカ断熱部材をケーシング部材の内周面に押圧して固定する手法が挙げられる。   As a fixing method of the present invention, for example, a cylindrical elastic seal member having a shaft hole is used. First, the side mica heat insulating member is disposed between the elastic seal member and the casing member, and then the elastic seal member. A method of expanding the diameter of the elastic seal member by press-fitting a columnar member into the shaft hole and pressing the side mica heat insulating member against the inner peripheral surface of the casing member is included.

次に、本発明の実施例について、図面を参照しつつ説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施例1の内燃機関用センサ100の断面図である。この内燃機関用センサ100は、図示しない排気管に取付けられ、排気中の酸素濃度を検出する酸素センサである。内燃機関用センサ100は、ガス検出素子120、保持部材130、ケーシング部材160、セパレータ190、リード線170、グロメット185を有する。なお、本実施例では、内燃機関用センサ100の軸線Cに沿う方向(図中上下方向)のうち、ガス検出素子120の先端部120b側(図中下側)を軸線方向先端側、その反対側(図中上側)を軸線方向後端側とし、他の実施例においても同様とする。   FIG. 1 is a cross-sectional view of a sensor 100 for an internal combustion engine according to the first embodiment. The internal combustion engine sensor 100 is an oxygen sensor that is attached to an exhaust pipe (not shown) and detects the oxygen concentration in the exhaust gas. The internal combustion engine sensor 100 includes a gas detection element 120, a holding member 130, a casing member 160, a separator 190, a lead wire 170, and a grommet 185. In this embodiment, among the directions along the axis C of the internal combustion engine sensor 100 (the vertical direction in the figure), the tip 120b side (the bottom in the figure) of the gas detection element 120 is the tip in the axial direction, and vice versa. The side (upper side in the figure) is the rear end side in the axial direction, and the same applies to other examples.

ケーシング部材160は、主体金具161、プロテクタ162、及び後端側包囲部材163を有している。
主体金具161はSUS430からなり、略円筒状に形成されている。この主体金具161の内周の先端側には、内周段部161dが、後端側向き拡径状のテーパをなして周設されている。さらに、主体金具161の後端部には、加締め部161bが形成されている。また、この主体金具161の外周には、内燃機関用センサ100を図示しない排気管に取付けるためのネジ部161f、及びトルクレンチ等の取付工具を係合させる取付工具係合部161gが形成されている。
The casing member 160 includes a metal shell 161, a protector 162, and a rear end side surrounding member 163.
The metal shell 161 is made of SUS430 and is formed in a substantially cylindrical shape. An inner peripheral stepped portion 161d is provided on the front end side of the inner periphery of the metal shell 161 so as to have a taper with a diameter increasing toward the rear end. Further, a caulking portion 161 b is formed at the rear end portion of the metal shell 161. Further, on the outer periphery of the metal shell 161, there are formed a screw portion 161f for attaching the internal combustion engine sensor 100 to an exhaust pipe (not shown) and an attachment tool engaging portion 161g for engaging an attachment tool such as a torque wrench. Yes.

プロテクタ162は、SUS310Sからなり、略円筒状を有し、図示しない排気管内の排気を内燃機関用センサ100の内部に導入するための通気孔162bを複数有している。このプロテクタ162は、主体金具161の先端部に固着されている。
後端側包囲部材163は、SUS310Sからなり、略円筒状の筒体で、主体金具161の後端側に全周レーザ溶接により結合され、保持部材130やセパレータ190などを包囲している。なお、後端側包囲部材163の後端側には、径方向内側に向かって屈曲された後端部163cが形成されており、この後端部163cの内面がグロメット185の後端面に密着している。
The protector 162 is made of SUS310S, has a substantially cylindrical shape, and has a plurality of ventilation holes 162b for introducing exhaust gas in an exhaust pipe (not shown) into the internal combustion engine sensor 100. The protector 162 is fixed to the distal end portion of the metal shell 161.
The rear end side surrounding member 163 is made of SUS310S, is a substantially cylindrical tube body, and is coupled to the rear end side of the metal shell 161 by laser welding all around and surrounds the holding member 130, the separator 190, and the like. A rear end portion 163c that is bent radially inward is formed on the rear end side of the rear end side surrounding member 163, and the inner surface of the rear end portion 163c is in close contact with the rear end surface of the grommet 185. ing.

ガス検出素子120は、積層型のガス検出素子であり、図示しないが、チタニア等の金属酸化物感応体からなる感ガス体及びこの感ガス体の周囲を取り囲むアルミナを主成分とする絶縁シートと、Ptからなり感ガス体の一表面と接する一対の検出電極と、アルミナを主成分とする第1基板と、Ptを主成分とする発熱抵抗体と、アルミナを主成分とする第2基板とが、順に積層されている。さらに、図1に示すように、このガス検出素子120の後端側には、Ptからなる端子121〜124が設けられている。このうち、端子122,123は、一対の検出電極から延設されており、端子121,124は、発熱抵抗体から延設されている。この端子121〜124には、それぞれ、金属製のリードフレーム171〜174が接続している。   The gas detection element 120 is a laminated gas detection element, and although not shown, a gas sensitive body made of a metal oxide sensitive body such as titania and an insulating sheet mainly composed of alumina surrounding the gas sensitive body. , A pair of detection electrodes in contact with one surface of the gas-sensitive body, a first substrate mainly composed of alumina, a heating resistor mainly composed of Pt, and a second substrate mainly composed of alumina, Are sequentially stacked. Furthermore, as shown in FIG. 1, terminals 121 to 124 made of Pt are provided on the rear end side of the gas detection element 120. Among these, the terminals 122 and 123 are extended from the pair of detection electrodes, and the terminals 121 and 124 are extended from the heating resistor. Metal lead frames 171 to 174 are connected to the terminals 121 to 124, respectively.

保持部材130は、アルミナを主成分とする絶縁性セラミックからなり、筒形状で、その軸線方向略中央部に径方向外向きに突出した鍔部130cを有している。この保持部材130は、ガス検出素子120を、自身の内部を挿通させた状態で保持している。具体的には、保持部材130の内部を挿通するガス検出素子120が、滑石充填層133と、結晶化ガラス粉末を溶融し凝固させたガラスシール材135によって保持部材130に固着されている。この保持部材130は、先端部130bを主体金具161の内周段部161dに金属パッキン184を介して支持させた状態で、鍔部130cが、主体金具161の加締め部161bによって、金属製の環状パッキン181,182及び滑石充填層183を介して先端側に向けて押圧されている。これにより、ガス検出素子120を保持した保持部材130は、ケーシング部材160の内部に固定される。   The holding member 130 is made of an insulating ceramic whose main component is alumina, has a cylindrical shape, and has a flange portion 130 c that protrudes radially outward at a substantially central portion in the axial direction. The holding member 130 holds the gas detection element 120 in a state of being inserted through the inside thereof. Specifically, the gas detection element 120 inserted through the inside of the holding member 130 is fixed to the holding member 130 by a talc filling layer 133 and a glass sealing material 135 obtained by melting and solidifying crystallized glass powder. In the holding member 130, the end portion 130b is supported by the inner peripheral step portion 161d of the metal shell 161 via the metal packing 184, and the collar portion 130c is made of metal by the crimping portion 161b of the metal shell 161. It is pressed toward the tip side through the annular packings 181 and 182 and the talc filling layer 183. Thereby, the holding member 130 holding the gas detection element 120 is fixed inside the casing member 160.

リード線170は、一端が加締め端子170bに接続され、他端が図示しない外部装置(例えば、ECU)に接続されている。本実施例の内燃機関用センサ100では、このリード線170が4本設けられており、加締め端子170bを介してそれぞれリードフレーム171〜174に電気的に接続されている。これにより、ガス検出素子120の端子121〜124と外部装置(例えば、ECU)とが電気的に接続される。   The lead wire 170 has one end connected to the crimping terminal 170b and the other end connected to an external device (for example, ECU) (not shown). In the internal combustion engine sensor 100 of the present embodiment, four lead wires 170 are provided and are electrically connected to the lead frames 171 to 174 through the crimping terminals 170b, respectively. Thereby, the terminals 121-124 of the gas detection element 120 and an external device (for example, ECU) are electrically connected.

セパレータ190は、アルミナを主成分とする絶縁性セラミックからなり、略円筒形状を有している。このセパレータ190の内部には、各リード線170、加締め端子170b、及びリードフレーム171〜174を挿入する4つの挿入孔191が軸線方向に貫通して形成されている。このため、各リード線170、加締め端子170b、及びリードフレーム171〜174を、セパレータ190の挿入孔191内に挿入することにより、各リード線170、加締め端子170b、及びリードフレーム171〜174は、互いの電気的導通、及び他部材との電気的導通を防止することができる。   The separator 190 is made of an insulating ceramic whose main component is alumina, and has a substantially cylindrical shape. Inside the separator 190, four insertion holes 191 for inserting the lead wires 170, the crimping terminals 170b, and the lead frames 171 to 174 are formed so as to penetrate in the axial direction. For this reason, each lead wire 170, the crimping terminal 170b, and the lead frames 171 to 174 are inserted by inserting the lead wires 170, the crimping terminals 170b, and the lead frames 171 to 174 into the insertion holes 191 of the separator 190. Can prevent mutual electrical continuity and electrical continuity with other members.

グロメット185は、フッ素系ゴムからなり、略円柱状で、リード線170を挿通する4つの貫通孔185b、及び柱状部材187を圧入する軸孔185fを有している。このグロメット185は、各貫通孔185b内に各リード線170を挿通させた状態で、後端側包囲部材163の後端部163cに密着しつつ、後端側包囲部材163の後端開口部163bを閉塞している。このようにして、各リード線170を外部に導出させつつ、後端側包囲部材163の内部への浸水を防止している。   The grommet 185 is made of fluorine rubber, has a substantially cylindrical shape, and has four through holes 185b through which the lead wires 170 are inserted, and a shaft hole 185f into which the columnar member 187 is press-fitted. The grommet 185 is in close contact with the rear end portion 163c of the rear end side surrounding member 163 while the lead wires 170 are inserted into the respective through holes 185b, and the rear end opening portion 163b of the rear end side surrounding member 163. Is blocked. In this way, the lead wires 170 are led out to the outside, and the water intrusion into the rear end side surrounding member 163 is prevented.

ところで、本実施例1の内燃機関用センサ100では、ガス検出素子120の先端側が、排気管内を流通する高温の排気ガス(熱源)に晒されるようにして使用に供される。このため、排気熱が、排気管、主体金具161のネジ部161f、後端側包囲部材163を通じて、あるいは、プロテクタ162、主体金具161、後端側包囲部材163を通じて、内燃機関用センサ100の先端側から後端側に向かって伝わっていく。   By the way, in the internal combustion engine sensor 100 according to the first embodiment, the front end side of the gas detection element 120 is used in such a manner that it is exposed to high-temperature exhaust gas (heat source) circulating in the exhaust pipe. For this reason, the exhaust heat passes through the exhaust pipe, the threaded portion 161f of the metal shell 161, the rear end side surrounding member 163, or through the protector 162, the main metal fitting 161, and the rear end side surrounding member 163. It is transmitted from the side toward the rear end.

これに対し、本実施例1の内燃機関用センサ100では、少なくともグロメット185の先端側部185hの側方に、詳細には、グロメット185の外周面185eと後端側包囲部材163の後端側内周面163eとの間に、円筒形状の側方マイカ断熱部材111を配置している。この側方マイカ断熱部材111は、原料マイカを粉砕して得られた軟質マイカ(金雲母)鱗片を抄造した集成マイカに接着剤を含浸させたものであり、軟質マイカ鱗片が積層されて層状組織をなしている。なお、側方マイカ断熱部材111は、後述するように、軟質マイカ鱗片の積層方向が側方マイカ断熱部材111の径方向に一致(すなわち、グロメット185の径方向に一致)するように形成されており、軟質マイカ鱗片の結晶垂直方向がグロメット185の径方向に略一致している。   On the other hand, in the internal combustion engine sensor 100 according to the first embodiment, at least to the side of the front end side portion 185 h of the grommet 185, specifically, the outer peripheral surface 185 e of the grommet 185 and the rear end side of the rear end surrounding member 163. A cylindrical side mica heat insulating member 111 is disposed between the inner peripheral surface 163e and the inner peripheral surface 163e. The side mica heat insulating member 111 is obtained by impregnating a laminated mica made of soft mica (phlogopite) scales obtained by pulverizing raw material mica and laminating soft mica scales into a lamellar structure. I am doing. The side mica heat insulating member 111 is formed so that the stacking direction of the soft mica scale pieces matches the radial direction of the side mica heat insulating member 111 (that is, matches the radial direction of the grommet 185), as will be described later. The crystal vertical direction of the soft mica scale is substantially coincident with the radial direction of the grommet 185.

マイカ部材においては、マイカ鱗片の積層方向について熱伝導率が低い性質を有するため、円筒形状の側方マイカ断熱部材111では、その軸方向に比して径方向に熱伝導率が低くなっている。そして、本実施例1の内燃機関用センサ100では、グロメット185の外周面185e(グロメット185のうち側方マイカ断熱部材111と接触する面)と後端側包囲部材163の後端側内周面163e(後端側包囲部材163のうち側方マイカ断熱部材111と接触する面)とが向き合う方向(本実施例1では、グロメット185の径方向に一致する)と、側方マイカ断熱部材111の軟質マイカ鱗片の積層方向とが一致するように配置している。これにより、金属製のケーシング部材160(後端側包囲部材163)からグロメット185に排気熱が伝わるのを、効果的に抑制できる。従って、フッ素系ゴムからなるグロメット185の熱劣化を抑制することができるので、後端側包囲部材163の後端開口部163bを通じたセンサ内部への浸水を長期間にわたって防止することができる。   Since the mica member has a property of low thermal conductivity in the stacking direction of the mica scale, the cylindrical side mica heat insulating member 111 has a lower thermal conductivity in the radial direction than in the axial direction. . In the internal combustion engine sensor 100 according to the first embodiment, the outer peripheral surface 185e of the grommet 185 (the surface of the grommet 185 that contacts the side mica heat insulating member 111) and the rear end side inner peripheral surface of the rear end surrounding member 163. 163e (a surface that contacts the side mica heat insulating member 111 of the rear end side surrounding member 163) (in the first embodiment, matches the radial direction of the grommet 185) and the side mica heat insulating member 111 It arrange | positions so that the lamination direction of a soft mica scale piece may correspond. Thereby, it can suppress effectively that exhaust heat is transmitted to the grommet 185 from the metal casing member 160 (rear end side surrounding member 163). Therefore, since thermal degradation of the grommet 185 made of fluorine rubber can be suppressed, it is possible to prevent water from entering the sensor through the rear end opening 163b of the rear end side surrounding member 163 for a long period of time.

特に、本実施例1の内燃機関用センサ100では、軟質マイカからなる軟質マイカ鱗片を主成分とした側方マイカ断熱部材111を用いている。軟質マイカは、マイカの中でも耐熱温度が高く、その熱分解温度は900〜1000℃程度である。このような軟質マイカからなる軟質マイカ鱗片を主成分とする側方マイカ断熱部材111は、断熱性と共に耐熱性にも優れているため、排気熱によって劣化する虞がなく、適切に、グロメット185への熱伝導を抑制することができる。   In particular, the internal combustion engine sensor 100 according to the first embodiment uses the side mica heat insulating member 111 mainly composed of soft mica scales made of soft mica. Soft mica has a high heat-resistant temperature among mica, and its thermal decomposition temperature is about 900 to 1000 ° C. Since the side mica heat insulating member 111 mainly composed of soft mica scales made of such soft mica is excellent in heat resistance as well as heat insulation, there is no possibility of deterioration due to exhaust heat, and appropriately to the grommet 185. Heat conduction can be suppressed.

ところで、従来の内燃機関用センサでは、ケーシング部材(後端側包囲部材)の後端部を径方向内側に加締めることにより、弾性シール部材(グロメット)を固定するようにしていた。しかしながら、このような固定手法では、本実施例1のようにグロメットの側方にマイカ断熱部材を配置させる場合には、マイカは機械的強度が低いため、、後端側包囲部材を加締めたときにマイカ断熱部材が破損してしまう虞がある。   By the way, in the conventional sensor for internal combustion engines, the elastic seal member (grommet) is fixed by crimping the rear end portion of the casing member (rear end side surrounding member) inward in the radial direction. However, in such a fixing method, when the mica heat insulating member is disposed on the side of the grommet as in the first embodiment, since the mica has low mechanical strength, the rear end side surrounding member is crimped. Sometimes the mica heat insulating member may be damaged.

これに対し、本実施例1の内燃機関用センサ100では、側方マイカ断熱部材111を、グロメット185の外周面185eと後端側包囲部材163の後端側内周面163eとの間に配置した後、グロメット185の略中央部に設けた軸孔185f内に、耐熱性樹脂(例えば、PEEK)からなる柱状部材187を圧入することによりグロメット185を拡径し、後端側包囲部材163の後端側内周面163eに押圧して固定している。このような固定手法によれば、側方マイカ断熱部材111の側面全体を弾性的に押圧して固定できるので、側方マイカ断熱部材111が破損してしまう虞がない。   On the other hand, in the internal combustion engine sensor 100 of the first embodiment, the side mica heat insulating member 111 is disposed between the outer peripheral surface 185e of the grommet 185 and the rear end side inner peripheral surface 163e of the rear end side surrounding member 163. After that, the diameter of the grommet 185 is increased by press-fitting a columnar member 187 made of a heat-resistant resin (for example, PEEK) into a shaft hole 185f provided at a substantially central portion of the grommet 185, and the rear end side enclosing member 163 is expanded. The rear end side inner peripheral surface 163e is pressed and fixed. According to such a fixing method, since the entire side surface of the side mica heat insulating member 111 can be elastically pressed and fixed, there is no possibility that the side mica heat insulating member 111 is damaged.

このような内燃機関用センサ100は、次のようにして製造する。
まず、主体金具161とプロテクタ162とを溶接により一体にする。一方、ガス検出素子120の端子121〜124に、リードフレーム171〜174を抵抗溶接によって接続する。次いで、リードフレーム171〜174を接続したガス検出素子120を、保持部材130の筒内に挿入して所定位置に配置させた状態で、保持部材130の筒内に、滑石粉末を押圧充填して滑石充填層133を形成し、さらに、結晶化ガラス粉末を溶融させたものを凝固させてガラスシール材135を形成することで、ガス検出素子120を保持部材130内に固定する。
Such an internal combustion engine sensor 100 is manufactured as follows.
First, the metal shell 161 and the protector 162 are integrated by welding. On the other hand, lead frames 171 to 174 are connected to terminals 121 to 124 of the gas detection element 120 by resistance welding. Next, with the gas detection element 120 connected to the lead frames 171 to 174 inserted into the cylinder of the holding member 130 and disposed at a predetermined position, the cylinder of the holding member 130 is pressed and filled with talc powder. The gas detection element 120 is fixed in the holding member 130 by forming the talc filling layer 133 and further solidifying the melted crystallized glass powder to form the glass sealing material 135.

次いで、主体金具161の内周段部161d上に金属パッキン184を載置させた状態で、ガス検出素子120を保持した保持部材130を、その軸線方向先端側から主体金具161の内部に挿入し、金属パッキン184を介して、保持部材130の先端部130bを主体金具161の内周段部161dに当接させる。次いで、金属パッキン181、滑石充填層183をなす滑石リング、金属パッキン182を、この順に主体金具161内に挿入し、保持部材130の鍔部130c上に載置した後、主体金具161の加締め部161bを加締めて、ガス検出素子120を保持した保持部材130を固定する。   Next, with the metal packing 184 placed on the inner peripheral step portion 161d of the metal shell 161, the holding member 130 holding the gas detection element 120 is inserted into the metal shell 161 from the front end side in the axial direction. The tip 130b of the holding member 130 is brought into contact with the inner peripheral step 161d of the metal shell 161 through the metal packing 184. Next, the metal packing 181, the talc ring forming the talc filling layer 183, and the metal packing 182 are inserted into the metal shell 161 in this order and placed on the flange 130 c of the holding member 130, and then the metal shell 161 is swaged The holding member 130 holding the gas detection element 120 is fixed by caulking the part 161b.

次いで、リードフレーム171〜174を、各リード線170に接続させた加締め端子170bに接続する。次いで、各リード線170を各挿入孔191内に挿入させつつ、後端側からセパレータ190を保持部材130上に配置させる。さらに、各リード線170を各貫通孔185b内に挿入させつつ、後端側からグロメット185をセパレータ190上に配置させる。さらに、側方マイカ断熱部材111を、その筒内に各リード線170を挿入させつつ、グロメット185の側方周囲を包囲するように配置する。   Next, the lead frames 171 to 174 are connected to the crimp terminals 170 b connected to the lead wires 170. Next, the separator 190 is disposed on the holding member 130 from the rear end side while each lead wire 170 is inserted into each insertion hole 191. Further, the grommet 185 is disposed on the separator 190 from the rear end side while inserting each lead wire 170 into each through hole 185b. Further, the side mica heat insulating member 111 is disposed so as to surround the side periphery of the grommet 185 while inserting each lead wire 170 into the cylinder.

次いで、後端側包囲部材163を、その筒内に各リード線170を挿入させつつ、その先端部163dが主体金具161の工具係合部161gの後端面に当接するまで軸線方向先端側に移動させ、後端側包囲部材163を主体金具161に嵌合させた後、後端側包囲部材163の先端部163dを、主体金具161に全周レーザ溶接する。なお、このとき、後端側包囲部材163の後端部163cが、グロメット185の後端面に密着することになる。その後、グロメット185の軸孔185f内に柱状部材187を圧入することにより、グロメット185を拡径させ、側方マイカ断熱部材111を後端側包囲部材163の後端側内周面163eに押圧して固定すると共に、グロメット185の貫通孔185b内にリード線170を密着させる。このようにして、図1に示す内燃機関用センサ100が完成する。   Next, the rear end side surrounding member 163 is moved to the front end side in the axial direction until the front end portion 163d abuts on the rear end surface of the tool engaging portion 161g of the metal shell 161 while inserting each lead wire 170 into the cylinder. Then, after the rear end side surrounding member 163 is fitted to the metal shell 161, the front end portion 163d of the rear end side surrounding member 163 is laser welded to the metal shell 161 all around. At this time, the rear end portion 163c of the rear end side surrounding member 163 comes into close contact with the rear end surface of the grommet 185. Thereafter, the columnar member 187 is press-fitted into the shaft hole 185f of the grommet 185, thereby expanding the diameter of the grommet 185 and pressing the side mica heat insulating member 111 against the rear end side inner peripheral surface 163e of the rear end side surrounding member 163. The lead wire 170 is brought into close contact with the through hole 185b of the grommet 185. In this way, the internal combustion engine sensor 100 shown in FIG. 1 is completed.

次に、本発明の実施例2にかかる内燃機関用センサ200について、図面を参照しつつ説明する。図2は、本実施例2の内燃機関用センサ200の後端側の拡大断面図である。本実施例2の内燃機関用センサ200は、実施例1の内燃機関用センサ100と比較して、マイカ断熱部材212を追加した点が異なり、その他については同様である。   Next, an internal combustion engine sensor 200 according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 2 is an enlarged cross-sectional view of the rear end side of the internal combustion engine sensor 200 according to the second embodiment. The internal combustion engine sensor 200 according to the second embodiment is different from the internal combustion engine sensor 100 according to the first embodiment in that a mica heat insulating member 212 is added, and the others are the same.

マイカ断熱部材212は、図2の断面図を示すように、略円盤形状で、リード線170が挿通する4つの貫通孔212bが周方向に等間隔に形成されている。このマイカ断熱部材212は、側方マイカ断熱部材111と同様に、軟質マイカ鱗片が積層されて層状組織をなしており、上記形状に成形されたものである。なお、マイカ断熱部材212において、軟質マイカ鱗片の積層方向は、マイカ断熱部材212の厚み方向(図中上下方向)に一致している。   As shown in the sectional view of FIG. 2, the mica heat insulating member 212 has a substantially disk shape, and four through holes 212 b through which the lead wires 170 are inserted are formed at equal intervals in the circumferential direction. Similar to the side mica heat insulating member 111, the mica heat insulating member 212 is formed by laminating soft mica scale pieces to form a layered structure, and is formed into the above shape. In the mica heat insulating member 212, the stacking direction of the soft mica scales coincides with the thickness direction (vertical direction in the figure) of the mica heat insulating member 212.

このようなマイカ断熱部材212は、セラミックからなるセパレータ190とグロメット185との間に配置されている。詳細には、セパレータ190の後端側面190b(セパレータ190のうちマイカ断熱部材212と接触する面)とグロメット185の先端側面185c(グロメット185のうちマイカ断熱部材212と接触する面)とが向き合う方向(本実施例2では、軸線Cの方向に一致する)と、マイカ断熱部材212の軟質マイカ鱗片の積層方向とが一致するように配置されている。   Such a mica heat insulating member 212 is disposed between the ceramic separator 190 and the grommet 185. Specifically, the direction in which the rear end side surface 190b of the separator 190 (the surface of the separator 190 that contacts the mica heat insulating member 212) and the front end side surface 185c of the grommet 185 (the surface of the grommet 185 that contacts the mica heat insulating member 212) face each other. (In Example 2, it is arranged so that it coincides with the direction of the axis C) and the lamination direction of the soft mica scales of the mica heat insulating member 212.

このような本実施例2の内燃機関用センサ200では、側方マイカ断熱部材111によって、排気熱がケーシング部材160(後端側包囲部材163)を通じてグロメット185に伝わるのを抑制することができるばかりでなく、マイカ断熱部材212によって、排気熱がセパレータ190を通じてグロメット185に伝わるのも抑制することができる。このため、本実施例2の内燃機関用センサ200は、実施例1の内燃機関用センサ100に比して、より一層、グロメット185の熱劣化を抑制することができ、ひいては、後端側包囲部材163の後端開口部163bを通じたセンサ内部への浸水を長期間にわたって防止できる。   In the internal combustion engine sensor 200 according to the second embodiment, the side mica heat insulating member 111 can suppress the exhaust heat from being transmitted to the grommet 185 through the casing member 160 (rear end side surrounding member 163). In addition, the mica heat insulating member 212 can suppress the exhaust heat from being transmitted to the grommet 185 through the separator 190. For this reason, the internal combustion engine sensor 200 according to the second embodiment can further suppress the thermal degradation of the grommet 185 as compared with the internal combustion engine sensor 100 according to the first embodiment. It is possible to prevent water from entering the sensor through the rear end opening 163b of the member 163 over a long period of time.

次に、本発明の実施例3にかかる内燃機関用センサ300について、図面を参照しつつ説明する。図3は、本実施例3の内燃機関用センサ300の断面図である。本実施例3の内燃機関用センサ300は、実施例1の内燃機関用センサ100と比較して、後端側包囲部材、グロメット、及びマイカ断熱部材を変更した点が異なり、その他については同様である。このため、実施例1の内燃機関用センサ100と異なる点を中心に説明し、その他については説明を省略または簡略化する。   Next, an internal combustion engine sensor 300 according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 3 is a cross-sectional view of the internal combustion engine sensor 300 according to the third embodiment. The internal combustion engine sensor 300 according to the third embodiment is different from the internal combustion engine sensor 100 according to the first embodiment in that the rear end side surrounding member, the grommet, and the mica heat insulating member are changed. is there. For this reason, it demonstrates centering on a different point from the sensor 100 for internal combustion engines of Example 1, and description is abbreviate | omitted or simplified about others.

本実施例3の内燃機関用センサ300は、後端側包囲部材として、第1後端側包囲部材363と第2後端側包囲部材364とを有している。第1後端側包囲部材363は、SUS310Sからなり、略円筒状の筒体で、保持部材130上に配置されたセパレータ190を軸線方向先端側に押圧する形態で、主体金具161の後端側に全周レーザ溶接により結合され、保持部材130やセパレータ190などを包囲している。第2後端側包囲部材364は、SUS304Lからなり、略円筒状の筒体で、グロメット385を軸線方向先端側に押圧しつつ第1後端側包囲部材363の後端側を包囲する形態で、先端部364fが第1後端側包囲部材363と共に径方向内側に加締められて、第1後端側包囲部材363に固定されている。なお、第2後端側包囲部材364には、リード線170が挿通する後端開口部364bが形成されている。   The internal combustion engine sensor 300 according to the third embodiment includes a first rear end side surrounding member 363 and a second rear end side surrounding member 364 as rear end side surrounding members. The first rear end side surrounding member 363 is made of SUS310S, and is a substantially cylindrical tubular body. The first rear end side surrounding member 363 presses the separator 190 disposed on the holding member 130 toward the front end side in the axial direction. Are coupled by laser welding all around, and surround the holding member 130, the separator 190, and the like. The second rear end side surrounding member 364 is made of SUS304L, and is a substantially cylindrical cylindrical body that surrounds the rear end side of the first rear end side surrounding member 363 while pressing the grommet 385 toward the front end side in the axial direction. The distal end portion 364f is crimped radially inward together with the first rear end side surrounding member 363 and fixed to the first rear end side surrounding member 363. The second rear end surrounding member 364 is formed with a rear end opening 364b through which the lead wire 170 is inserted.

グロメット385は、図4の拡大断面図に示すように、実施例1のグロメット185と比較して、先端側及び後端側の角部の位置に、段差部385c,385dが形成されている点のみが異なる。この段差部385c,385dは、後述するように、マイカ断熱部材311,312の位置を位置決めするために設けられている。このようなグロメット385は、マイカ断熱部材312を介して第2後端側包囲部材364の後端部364cに密着しつつ、第2後端側包囲部材364の後端開口部364bを閉塞している。なお、グロメット385に形成されている貫通孔385bには、リード線170が挿入されている。   As shown in the enlarged sectional view of FIG. 4, the grommet 385 has step portions 385 c and 385 d formed at the corners on the front end side and the rear end side as compared with the grommet 185 of the first embodiment. Only the difference. The step portions 385c and 385d are provided to position the mica heat insulating members 311 and 312 as will be described later. The grommet 385 closes the rear end opening 364b of the second rear end side surrounding member 364 while closely contacting the rear end portion 364c of the second rear end side surrounding member 364 via the mica heat insulating member 312. Yes. A lead wire 170 is inserted into the through hole 385b formed in the grommet 385.

マイカ断熱部材311,312は、共に、実施例1の側方マイカ断熱部材111と同様に、軟質マイカ鱗片が積層されて層状組織をなしており、円環板状に成形されている。   Both the mica heat insulating members 311 and 312 have a layered structure formed by laminating soft mica scales, similarly to the side mica heat insulating member 111 of the first embodiment, and are formed in an annular plate shape.

このうち、マイカ断熱部材311は、第1後端側包囲部材363とグロメット385との間に配置されている。具体的には、グロメット385の段差部385cに嵌合する形態で、第1後端側包囲部材363の後端部363c上に配置されている。このマイカ断熱部材311は、第1後端側包囲部材363の後端面363d(第1後端側包囲部材363の後端部363cのうちマイカ断熱部材311と接触する面)とグロメット385の段差面385f(グロメット385の段差部385cのうちマイカ断熱部材311と接触する面)とが向き合う方向(本実施例3では、軸線Cの方向に一致する)と、マイカ断熱部材311の軟質マイカ鱗片の積層方向とが一致するように配置されている。このため、排気熱が、第1後端側包囲部材363を通じてグロメット385に伝わるのを抑制することができる。   Among these, the mica heat insulating member 311 is disposed between the first rear end side surrounding member 363 and the grommet 385. Specifically, it is disposed on the rear end portion 363 c of the first rear end side surrounding member 363 in a form that fits into the stepped portion 385 c of the grommet 385. The mica heat insulating member 311 has a rear end surface 363d of the first rear end side surrounding member 363 (a surface contacting the mica heat insulating member 311 in the rear end portion 363c of the first rear end side surrounding member 363) and a step surface of the grommet 385. 385f (the surface of the stepped portion 385c of the grommet 385 that is in contact with the mica heat insulating member 311) facing (in the third embodiment, coincides with the direction of the axis C) and the lamination of the soft mica scale pieces of the mica heat insulating member 311 It is arranged so that the direction matches. For this reason, it is possible to suppress the exhaust heat from being transmitted to the grommet 385 through the first rear end side surrounding member 363.

また、マイカ断熱部材312は、第2後端側包囲部材364とグロメット385との間に配置されている。具体的には、グロメット385の段差部385dに嵌合するようにグロメット385上に載置され、第2後端側包囲部材364の内側後端部364dと密接している。このマイカ断熱部材312は、第2後端側包囲部材364の内側後端面364d(第2後端側包囲部材364の後端部364cのうちマイカ断熱部材312と接触する面)とグロメット385の段差面385g(グロメット385の段差部385dのうちマイカ断熱部材312と接触する面)とが向き合う方向(本実施例3では、軸線Cの方向に一致する)と、マイカ断熱部材312の軟質マイカ鱗片の積層方向とが一致するように配置されている。このため、排気熱が、第2後端側包囲部材364を通じてグロメット385に伝わるのを抑制することができる。   Further, the mica heat insulating member 312 is disposed between the second rear end side surrounding member 364 and the grommet 385. Specifically, it is placed on the grommet 385 so as to be fitted to the stepped portion 385d of the grommet 385, and is in close contact with the inner rear end portion 364d of the second rear end side surrounding member 364. This mica heat insulating member 312 has a step between the inner rear end surface 364d of the second rear end side surrounding member 364 (the surface of the rear end portion 364c of the second rear end side surrounding member 364 that contacts the mica heat insulating member 312) and the grommet 385. The direction of the surface 385g (the surface of the stepped portion 385d of the grommet 385 that contacts the mica heat insulating member 312) facing (in the third embodiment, the direction of the axis C) and the soft mica scale of the mica heat insulating member 312 They are arranged so that the stacking direction matches. For this reason, it is possible to suppress the exhaust heat from being transmitted to the grommet 385 through the second rear end side surrounding member 364.

なお、実施例1の内燃機関用センサ100では、グロメット185の外周面185eと後端側包囲部材363の後端側内周面363eとの間に、側方マイカ断熱部材111を配置することで断熱を図っていた。これに対し、本実施例3の内燃機関用センサ300では、グロメット385の外周面385eと第2後端側包囲部材364の後端側内周面364eとの間に、マイカ断熱部材を設ける代わりに、間隙を設けている。このように、間隙を設けることによっても、排気熱が、第2後端側包囲部材364を通じてグロメット385に伝わるのを抑制することができる。   In the internal combustion engine sensor 100 according to the first embodiment, the side mica heat insulating member 111 is disposed between the outer peripheral surface 185e of the grommet 185 and the rear end side inner peripheral surface 363e of the rear end side surrounding member 363. I was trying to insulate. On the other hand, in the internal combustion engine sensor 300 of the third embodiment, a mica heat insulating member is not provided between the outer peripheral surface 385e of the grommet 385 and the rear end inner peripheral surface 364e of the second rear end side surrounding member 364. In addition, a gap is provided. Thus, by providing the gap, it is possible to suppress the exhaust heat from being transmitted to the grommet 385 through the second rear end side surrounding member 364.

以上説明したように、本実施例3の内燃機関用センサ300においても、排気熱が、ケーシング部材360(第1,第2後端側包囲部材363,364)を通じてグロメット385に伝わるのを抑制することができるので、グロメット385の熱劣化を抑制することができる。さらに、マイカ断熱部材311,312は、耐熱性に優れた軟質マイカからなる軟質マイカ鱗片を主成分としているため、排気熱によって熱劣化する虞がない。このため、マイカ断熱部材311,312及びグロメット385によって、第2後端側包囲部材364の後端開口部364bを通じたセンサ内部への浸水を長期間にわたって防止することができる。   As described above, also in the internal combustion engine sensor 300 of the third embodiment, the exhaust heat is prevented from being transmitted to the grommet 385 through the casing member 360 (the first and second rear end side surrounding members 363 and 364). Therefore, thermal degradation of the grommet 385 can be suppressed. Furthermore, since the mica heat insulating members 311 and 312 are mainly composed of soft mica scales made of soft mica having excellent heat resistance, there is no possibility of thermal deterioration due to exhaust heat. For this reason, the mica heat insulating members 311 and 312 and the grommet 385 can prevent water from entering the sensor through the rear end opening 364b of the second rear end side surrounding member 364 for a long period of time.

以上において、本発明を実施例1,2,3に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例1,2,3では、断熱性部材として、軟質マイカ(金雲母)からなる軟質マイカ鱗片を主成分とする側方マイカ断熱部材111,212,311,312を用いた。しかし、断熱性部材の材質は、軟質マイカに限定されるものではなく、硬質マイカ(白雲母)など、ケーシング部材(後端側包囲部材)からグロメット(弾性シール部材)への熱伝導を妨げることができる部材であればいずれのものでも良い。但し、熱源からの熱に耐えうる耐熱性を有していなければならず、耐熱性にも優れている点で、軟質マイカ(金雲母)を好適に用いることができる。
In the above, the present invention has been described with reference to Examples 1, 2, and 3. Needless to say.
For example, in Examples 1, 2, and 3, the side mica heat insulating members 111, 212, 311 and 312 mainly composed of soft mica scales made of soft mica (phlogopite) were used as the heat insulating members. However, the material of the heat insulating member is not limited to soft mica, and hinders heat conduction from the casing member (rear end side surrounding member) such as hard mica (muscovite) to the grommet (elastic seal member). Any member can be used as long as it can be used. However, soft mica (phlogopite) can be suitably used because it must have heat resistance that can withstand the heat from the heat source and is excellent in heat resistance.

また、実施例1では、グロメット185の側方(グロメット185の外周面185eと後端側包囲部材163の後端側内周面163eとの間)に配置する側方マイカ断熱部材111の形状を、円筒形状とした。しかし、側方マイカ断熱部材の形状は、円筒形状に限らず、グロメットの外周面と後端側包囲部材(ケーシング部材)の後端側内周面とに沿う形状であればいずれの形状としても良く、例えば、円筒を軸線周りに分割した断面円弧状の形状としても良い。   Further, in the first embodiment, the shape of the side mica heat insulating member 111 disposed on the side of the grommet 185 (between the outer peripheral surface 185e of the grommet 185 and the rear inner peripheral surface 163e of the rear end side surrounding member 163) is set. A cylindrical shape was used. However, the shape of the side mica heat insulating member is not limited to the cylindrical shape, and may be any shape as long as it is a shape along the outer peripheral surface of the grommet and the rear end side inner peripheral surface of the rear end side surrounding member (casing member). For example, it is good also as a cross-sectional arc shape which divided | segmented the cylinder around the axis line.

また、実施例3では、グロメット385の外周面135eと第2後端側包囲部材364の後端側内周面364eとの間に、間隙を設けたが(図4参照)、実施例1と同様に、マイカ断熱部材を配置するようにしても良い。さらに、実施例3では、第2後端側包囲部材364の後端部364cとグロメット385との間にマイカ断熱部材312を配置したが、実施例1と同様に、マイカ断熱部材312を配置することなく、グロメット385を第2後端側包囲部材364の後端部364cに直接密着させるようにしても良い。第2後端側包囲部材364の後端部364cは、第2後端側包囲部材364のうちで最も低温となっているため、グロメット385との間にマイカ断熱部材312を配置しなくてもグロメット385が熱劣化する虞が小さいからである。 In the third embodiment, a gap is provided between the outer peripheral surface 135e of the grommet 385 and the rear inner peripheral surface 364e of the second rear end side surrounding member 364 (see FIG. 4). Similarly, a mica heat insulating member may be arranged. Further, in the third embodiment, the mica heat insulating member 312 is disposed between the rear end portion 364c of the second rear end side surrounding member 364 and the grommet 385. However, similarly to the first embodiment, the mica heat insulating member 312 is disposed. Instead, the grommet 385 may be directly brought into close contact with the rear end portion 364c of the second rear end side surrounding member 364. Since the rear end portion 364c of the second rear end side surrounding member 364 is the lowest temperature among the second rear end side surrounding members 364, the mica heat insulating member 312 is not disposed between the second rear end side surrounding member 364 and the grommet 385. This is because the possibility that the grommet 385 is thermally deteriorated is small.

実施例1にかかる内燃機関用センサ100の断面図である。1 is a cross-sectional view of an internal combustion engine sensor 100 according to Embodiment 1. FIG. 実施例2にかかる内燃機関用センサ200の後端側の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a rear end side of an internal combustion engine sensor 200 according to a second embodiment. 実施例3にかかる内燃機関用センサ300の断面図である。FIG. 6 is a cross-sectional view of an internal combustion engine sensor 300 according to a third embodiment. 実施例3にかかる内燃機関用センサ300の後端側の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of the rear end side of the internal combustion engine sensor 300 according to the third embodiment.

符号の説明Explanation of symbols

100,200,300 内燃機関用センサ
111 側方マイカ断熱部材(断熱性部材)
212,311,312 マイカ断熱部材(断熱性部材)
120 ガス検出素子(検出素子)
160,360 ケーシング部材
170 リード線
163 後端側包囲部材(ケーシング部材)
363 第1後端側包囲部材(ケーシング部材)
364 第2後端側包囲部材(ケーシング部材)
185,385 グロメット(弾性シール部材)
163e 後端側包囲部材163の後端側内周面(ケーシング側接触面)
185e グロメット185の外周面(シール側接触面)
363d 第1後端側包囲部材363の後端面(ケーシング側接触面)
364d 第2後端側包囲部材364の内側後端面(ケーシング側接触面)
385f,385g グロメット385の段差面(シール側接触面)
100, 200, 300 Internal combustion engine sensor 111 Lateral mica heat insulating member (heat insulating member)
212,311,312 Mica heat insulation member (heat insulation member)
120 Gas detection element (detection element)
160, 360 Casing member 170 Lead wire 163 Rear end side surrounding member (casing member)
363 1st rear end side surrounding member (casing member)
364 Second rear end side surrounding member (casing member)
185,385 Grommet (elastic seal member)
163e Rear end side inner peripheral surface (casing side contact surface) of the rear end side surrounding member 163
185e Grommet 185 outer peripheral surface (seal side contact surface)
363d Rear end surface (casing side contact surface) of first rear end side surrounding member 363
364d Inner rear end surface (casing side contact surface) of second rear end side surrounding member 364
385f, 385g Step surface of grommet 385 (sealing side contact surface)

Claims (4)

軸線方向に延び、自身の先端側が被測定ガスに晒される検出素子と、
金属からなり、上記ガス検出素子を包囲する筒状のケーシング部材と、
上記検出素子と電気的に接続するリード線を自身の内部に挿通させた状態で、上記ケーシング部材の後端に位置する後端開口部を閉塞する弾性シール部材と、
を備える内燃機関用センサであって、
上記弾性シール部材のうち少なくとも上記軸線方向の先端側に位置する先端側部と、上記ケーシング部材との間には、断熱性部材が配置されてなる
内燃機関用センサ。
A detection element that extends in the axial direction and whose tip side is exposed to the gas to be measured;
A cylindrical casing member made of metal and surrounding the gas detection element;
An elastic seal member that closes the rear end opening located at the rear end of the casing member, with a lead wire electrically connected to the detection element inserted through the lead wire;
An internal combustion engine sensor comprising:
A sensor for an internal combustion engine in which a heat insulating member is disposed between at least a tip side portion located on the tip side in the axial direction of the elastic seal member and the casing member.
請求項1に記載の内燃機関用センサであって、
前記断熱性部材は、マイカ鱗片が積層されて層状組織をなすマイカ断熱部材であり、
このマイカ断熱部材は、前記ケーシング部材のうち当該マイカ断熱部材と接触するケーシング側接触面と前記弾性シール部材のうち当該マイカ断熱部材と接触するシール側接触面とが向き合う方向と、当該マイカ断熱部材の積層方向とが一致するように配置されてなる
内燃機関用センサ。
The internal combustion engine sensor according to claim 1,
The heat insulating member is a mica heat insulating member in which mica scales are laminated to form a layered structure,
The mica heat insulating member has a direction in which a casing side contact surface that contacts the mica heat insulating member of the casing member faces a seal side contact surface that contacts the mica heat insulating member of the elastic seal member, and the mica heat insulating member. A sensor for an internal combustion engine, which is arranged so that the stacking direction of the two coincides.
請求項2に記載の内燃機関用センサであって、
前記マイカ断熱部材は、軟質マイカからなる前記マイカ鱗片を主成分として含んでなる
内燃機関用センサ。
The internal combustion engine sensor according to claim 2,
The mica heat insulating member is a sensor for an internal combustion engine comprising the mica scale made of soft mica as a main component.
請求項2または請求項3に記載の内燃機関用センサであって、
前記マイカ断熱部材は、少なくとも、前記弾性シール部材の前記先端側部の側方に配置された側方マイカ断熱部材を含み、
上記側方マイカ断熱部材は、上記弾性シール部材と前記ケーシング部材との間に配置された後、上記弾性シール部材を拡径することによって固定されてなる
内燃機関用センサ。
A sensor for an internal combustion engine according to claim 2 or claim 3,
The mica heat insulating member includes at least a side mica heat insulating member disposed on a side of the tip side portion of the elastic seal member,
The sensor for an internal combustion engine, wherein the side mica heat insulating member is disposed by expanding the diameter of the elastic seal member after being disposed between the elastic seal member and the casing member.
JP2004038630A 2004-02-16 2004-02-16 Sensor for internal combustion engine Expired - Fee Related JP4241919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038630A JP4241919B2 (en) 2004-02-16 2004-02-16 Sensor for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038630A JP4241919B2 (en) 2004-02-16 2004-02-16 Sensor for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005227227A true JP2005227227A (en) 2005-08-25
JP4241919B2 JP4241919B2 (en) 2009-03-18

Family

ID=35002042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038630A Expired - Fee Related JP4241919B2 (en) 2004-02-16 2004-02-16 Sensor for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4241919B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276339A (en) * 2008-04-16 2009-11-26 Ngk Spark Plug Co Ltd Sensor
JP2011145269A (en) * 2010-01-18 2011-07-28 Ngk Spark Plug Co Ltd Gas sensor
CN113826005A (en) * 2019-05-16 2021-12-21 株式会社电装 Gas sensor
DE102023105879A1 (en) 2022-03-30 2023-10-05 Ngk Insulators, Ltd. Gas sensor and housing for holding a sensor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276339A (en) * 2008-04-16 2009-11-26 Ngk Spark Plug Co Ltd Sensor
JP2011145269A (en) * 2010-01-18 2011-07-28 Ngk Spark Plug Co Ltd Gas sensor
CN113826005A (en) * 2019-05-16 2021-12-21 株式会社电装 Gas sensor
DE102023105879A1 (en) 2022-03-30 2023-10-05 Ngk Insulators, Ltd. Gas sensor and housing for holding a sensor element

Also Published As

Publication number Publication date
JP4241919B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US7581879B2 (en) Temperature sensor
JP2708915B2 (en) Gas detection sensor
US7399925B2 (en) Structure of gas sensor ensuring stability of electrical connection
JP2006234632A (en) Temperature sensor
JP2003077620A (en) Spark plug and its manufacturing method
JP2010223750A (en) Gas sensor and method of manufacturing the same
JP2007101411A (en) Sensor
JP4241919B2 (en) Sensor for internal combustion engine
JP5139373B2 (en) Gas sensor mounting structure and gas sensor with protective cover
JP5820883B2 (en) Gas sensor
JP2001242128A (en) Lead wire sealing structure, method of manufacturing the same and gas sensor using lead wire sealing structure
JP6239899B2 (en) Gas sensor
JP5524944B2 (en) Gas sensor
JP2003194764A (en) Gas sensor
JP7251527B2 (en) gas sensor
JP2007218741A (en) Oxygen sensor and method of manufacturing same
JP2007155517A (en) Gas sensor
JP6890061B2 (en) Gas sensor
JP4934072B2 (en) Gas sensor
JP2010236940A (en) Gas sensor
JP2005207907A (en) Oxygen sensor
JP6175004B2 (en) Sensor
JP5934638B2 (en) Gas sensor
JP2004219268A (en) Gas sensor
JP2005241346A (en) Oxygen sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees