JP2005227180A - Infrared detector - Google Patents

Infrared detector Download PDF

Info

Publication number
JP2005227180A
JP2005227180A JP2004037225A JP2004037225A JP2005227180A JP 2005227180 A JP2005227180 A JP 2005227180A JP 2004037225 A JP2004037225 A JP 2004037225A JP 2004037225 A JP2004037225 A JP 2004037225A JP 2005227180 A JP2005227180 A JP 2005227180A
Authority
JP
Japan
Prior art keywords
infrared
infrared detector
incident
detector according
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004037225A
Other languages
Japanese (ja)
Other versions
JP4042707B2 (en
Inventor
Kazuaki Watanabe
和明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004037225A priority Critical patent/JP4042707B2/en
Priority to DE102005003658A priority patent/DE102005003658B4/en
Priority to FR0501203A priority patent/FR2866427B1/en
Publication of JP2005227180A publication Critical patent/JP2005227180A/en
Application granted granted Critical
Publication of JP4042707B2 publication Critical patent/JP4042707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0414Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0477Prisms, wedges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/065Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturized and inexpensive infrared detector which can detect incident infrared rays from different directions and which is packaged. <P>SOLUTION: The infrared detector 100 is packaged, wherein a plurality of sensor chips 10t<SB>1</SB>and 10t<SB>2</SB>which are housed in a case consisting of a cap 40 with a stem 30 and filters 40fa and 40fb, as a window for transmitting the infrared rays and in which infrared detection elements for sensing the infrared rays are formed are accommodated. In the infrared detector 100, the incident infrared rays L1 and L2 transmitted through the window from the different directions are detected by the plurality of sensor chips 10t<SB>1</SB>and 10t<SB>2</SB>, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パッケージ化された小型の赤外線検出器に関する。   The present invention relates to a packaged small infrared detector.

パッケージ化された小型の赤外線検出器が、例えば、特開2003−270047号公報(特許文献1)に開示されている。   A packaged small infrared detector is disclosed in, for example, Japanese Patent Laid-Open No. 2003-270047 (Patent Document 1).

図9は、特許文献1に開示された赤外線検出器の模式的な断面図である。   FIG. 9 is a schematic cross-sectional view of the infrared detector disclosed in Patent Document 1. As shown in FIG.

図9に示す赤外線検出器90は、赤外線を感知するセンサ素子91と、センサ素子91の出力信号を処理する信号処理回路が形成された回路基板92とが、別体として形成されている。センサ素子91は、薄肉部として形成されたメンブレン部91aと厚肉部91bからなり、熱電対(図示省略)の温接点がメンブレン部91a上に配置され、熱電対の冷接点が厚肉部91b上に配置されている。このようなメンブレン部91aを有するセンサ素子91は、赤外線検出部である温接点の熱が厚肉部91b側に逃げ難く、高感度の赤外線検出が可能である。   In the infrared detector 90 shown in FIG. 9, a sensor element 91 that senses infrared rays and a circuit board 92 on which a signal processing circuit that processes an output signal of the sensor element 91 is formed are formed separately. The sensor element 91 includes a membrane part 91a and a thick part 91b formed as a thin part, a hot junction of a thermocouple (not shown) is disposed on the membrane part 91a, and a cold junction of the thermocouple is a thick part 91b. Is placed on top. The sensor element 91 having such a membrane portion 91a is capable of highly sensitive infrared detection because the heat of the hot junction that is the infrared detection portion does not easily escape to the thick portion 91b side.

また、赤外線検出器90では、センサ素子91が回路基板92上に積層して配置され、これらがステム93とキャップ94およびフィルタ95からなるケース内に収容されている。このように、センサ素子91と回路基板92をスタック構造とした赤外線検出器90は、センサ素子91と回路基板92を並んで配置する赤外線検出器に較べて、小型化することができる。
特開2003−270047号公報
In the infrared detector 90, the sensor element 91 is disposed on the circuit board 92 and is housed in a case made up of a stem 93, a cap 94 and a filter 95. As described above, the infrared detector 90 in which the sensor element 91 and the circuit board 92 are stacked can be downsized as compared with the infrared detector in which the sensor element 91 and the circuit board 92 are arranged side by side.
JP 2003-270047 A

図9に示す赤外線検出器90を用いて異なる方向から入射する赤外線を検出しようとすると、検出方向の数だけ赤外線検出器90を準備して各方向に向けて配置するか、あるいは1個の赤外線検出器90を各検出方向で走査させる必要がある。しかしながら、いずれの場合も、検出器全体が大型化し、検出器全体のコストが増大する。   If the infrared detector 90 shown in FIG. 9 is used to detect infrared rays incident from different directions, the infrared detectors 90 are prepared in the number of detection directions and arranged in each direction, or one infrared ray is detected. It is necessary to scan the detector 90 in each detection direction. However, in either case, the entire detector becomes larger and the cost of the entire detector increases.

そこで本発明は、異なる方向から入射する赤外線の検出が可能で、パッケージ化された小型で安価な赤外線検出器を提供することを目的としている。   Accordingly, an object of the present invention is to provide a packaged small and inexpensive infrared detector capable of detecting infrared rays incident from different directions.

請求項1に記載の赤外線検出器は、赤外線を透過する窓が設けられたケース内に、赤外線を感知する赤外線検出素子が形成されたセンサチップが複数個収容されてなるパッケージ化された赤外線検出器であって、前記複数個のセンサチップにより、それぞれ、前記窓を透過して異なる方向から入射する赤外線が検出されることを特徴としている。   The infrared detector according to claim 1 is a packaged infrared detector in which a plurality of sensor chips each having an infrared detection element for sensing infrared rays are housed in a case provided with a window that transmits infrared rays. An infrared ray that is transmitted through the window and incident from a different direction is detected by the plurality of sensor chips.

当該赤外線検出器においては、ケースに設けられた窓を透過して異なる方向から入射する赤外線がそれぞれ対応するセンサチップの赤外線検出素子に照射されるように、窓とセンサチップを配置することができる。これによって、窓を透過して異なる方向から入射する赤外線の検出が可能な赤外線検出器とすることができる。また、当該赤外線検出器は、検出方向の数だけ赤外線検出器を準備したり、赤外線検出器を走査させたりする場合に較べて、検出器全体を小型化することができ、検出器全体のコストも低減することができる。従って、当該赤外線検出器は、異なる方向から入射する赤外線の検出が可能で、パッケージ化された小型で安価な赤外線検出器とすることができる。   In the infrared detector, the window and the sensor chip can be arranged so that infrared rays that are transmitted through a window provided in the case and incident from different directions are irradiated to the infrared detection elements of the corresponding sensor chip. . Thereby, it can be set as the infrared detector which can detect the infrared rays which permeate | transmit the window and enter from a different direction. In addition, the infrared detector can be reduced in size as compared with the case where infrared detectors are prepared in the number of detection directions or the infrared detectors are scanned, and the cost of the entire detector can be reduced. Can also be reduced. Therefore, the infrared detector can detect infrared rays incident from different directions, and can be a packaged small and inexpensive infrared detector.

請求項2に記載の赤外線検出器は、赤外線の入射方向を制御する入射制御手段を備え、当該入射制御手段を介して、前記複数個のセンサチップにより、それぞれ、前記窓を透過して異なる方向から入射する赤外線が検出されることを特徴としている。   The infrared detector according to claim 2 includes an incident control unit that controls an incident direction of infrared rays, and the plurality of sensor chips transmit the window through the incident control unit, respectively, so as to be in different directions. It is characterized in that infrared rays incident from are detected.

当該赤外線検出器においては、入射制御手段を用いることで、検出する方向の赤外線をより確実に選択することができ、異なる方向から入射する赤外線の高精度な検出が可能となる。   In the infrared detector, by using the incident control means, it is possible to more reliably select the infrared ray in the direction of detection, and it is possible to detect infrared rays incident from different directions with high accuracy.

前記入射制御手段は、請求項3に記載のように、プリズムとすることができる。また、請求項4に記載のように、遮光板とすることもできる。さらに、請求項5に記載のように、反射板とすることもできる。これらの入射制御手段は、いずれも小さな部品であり、複数個のセンサチップと共にパッケージ化することができる。   The incident control means may be a prism as described in claim 3. Moreover, it can also be set as a light-shielding plate. Furthermore, as described in claim 5, a reflecting plate may be used. These incident control means are all small components and can be packaged together with a plurality of sensor chips.

請求項6に記載のように、前記赤外線検出器は、前記センサチップの入出力制御回路が形成された回路チップを備える赤外線検出器であって、前記回路チップが前記パッケージ内に収容されてなることが好ましい。これによって、センサチップと回路チップを別パッケージとする場合に較べて、検出器全体を小型化することができ、検出器全体のコストも低減することができる。   7. The infrared detector according to claim 6, wherein the infrared detector includes a circuit chip on which an input / output control circuit for the sensor chip is formed, and the circuit chip is accommodated in the package. It is preferable. As a result, as compared with the case where the sensor chip and the circuit chip are provided in separate packages, the entire detector can be reduced in size, and the cost of the entire detector can be reduced.

請求項7に記載のように、前記赤外線検出器においては、前記複数個のセンサチップのそれぞれに対応する各入出力制御回路が、1個の回路チップ内に形成されてなることが好ましい。これによって、各センサチップに対応した個別の回路チップを設ける場合に較べて、検出器全体を小型化することができ、検出器全体のコストも低減することができる。   According to a seventh aspect of the present invention, in the infrared detector, each input / output control circuit corresponding to each of the plurality of sensor chips is preferably formed in one circuit chip. As a result, the entire detector can be downsized and the cost of the entire detector can be reduced as compared with the case where individual circuit chips corresponding to each sensor chip are provided.

請求項8に記載のように、前記センサチップは、前記回路チップ上に積層配置されてなることが好ましい。これによって、センサチップと回路チップを並べて配置する場合に較べて、検出器全体を小型化することができ、検出器全体のコストも低減することができる。   The sensor chip is preferably stacked on the circuit chip. As a result, as compared with the case where the sensor chip and the circuit chip are arranged side by side, the entire detector can be reduced in size, and the cost of the entire detector can be reduced.

請求項9に記載のように、前記入射制御手段は、前記パッケージ内に収容されることが好ましい。これによれば、入射制御手段が外部に露出しないため、当該入射制御手段の保守が容易になる。   As described in claim 9, it is preferable that the incident control means is accommodated in the package. According to this, since the incident control means is not exposed to the outside, maintenance of the incident control means becomes easy.

請求項10に記載のように、前記赤外線検出器は、前記センサチップが、薄肉部として形成されたメンブレンを有する基板からなり、前記赤外線検出素子が、前記基板上に形成された熱電対と赤外線吸収膜とからなり、前記熱電対の温接点が前記メンブレン上に形成され、前記熱電対の冷接点が前記メンブレンの外側の基板上に形成され、前記赤外線吸収膜が、前記温接点を被覆するようにメンブレン上に形成され、前記赤外線検出素子が、赤外線を受光したときに前記熱電対における温接点と冷接点との間に生じる温度差によって熱電対の起電力を変化させ、その変化した起電力に基づいて赤外線を検出する赤外線検出器に好適である。   The infrared detector according to claim 10, wherein the sensor chip includes a substrate having a membrane formed as a thin portion, and the infrared detection element includes a thermocouple formed on the substrate and an infrared ray. An absorptive film, a hot junction of the thermocouple is formed on the membrane, a cold junction of the thermocouple is formed on a substrate outside the membrane, and the infrared absorbing film covers the hot junction When the infrared detection element receives infrared rays, the electromotive force of the thermocouple is changed by a temperature difference generated between the hot junction and the cold junction in the thermocouple, and the changed electromotive force is generated. It is suitable for an infrared detector that detects infrared rays based on electric power.

上記のようなメンブレンを有するセンサチップは、熱電対の温接点における熱が基板側に逃げ難く、高精度の赤外線検出が可能である。このような高精度のセンサチップを複数個、前記入射制御手段と共にパッケージ化することで、異なる方向から入射する赤外線を高精度で検出することが可能となる。従って、当該赤外線検出器は、パッケージ化された小型で安価な赤外線検出器であって、高精度の赤外線検出器とすることができる。   The sensor chip having the membrane as described above is capable of highly accurate infrared detection because the heat at the hot junction of the thermocouple does not easily escape to the substrate side. By packaging a plurality of such high-precision sensor chips together with the incident control means, it is possible to detect infrared rays incident from different directions with high accuracy. Therefore, the infrared detector is a packaged small and inexpensive infrared detector, and can be a highly accurate infrared detector.

請求項11に記載のように、前記赤外線検出素子は、前記熱電対が、基板の上に異種材料の膜が交互に複数組直列に延設され、一つおきの接合部が前記温接点と冷接点となる、いわゆるサーモパイル式赤外線検出素子であることが好ましい。   In the infrared detection element according to claim 11, the thermocouple includes a plurality of sets of films made of different materials alternately extending in series on a substrate, and every other junction is connected to the hot junction. A so-called thermopile type infrared detecting element serving as a cold junction is preferable.

サーモパイル式赤外線検出素子は、大きなセンサ出力が得られ、高感度である。このような高感度の赤外線検出素子が形成されたセンサチップを複数個、前記入射制御手段と共にパッケージ化することで、異なる方向から入射する赤外線を高感度で検出することが可能となる。従って、当該赤外線検出器は、パッケージ化された小型で安価な赤外線検出器であって、高感度の赤外線検出器とすることができる。   The thermopile type infrared detection element can obtain a large sensor output and has high sensitivity. By packaging a plurality of sensor chips on which such highly sensitive infrared detecting elements are formed together with the incident control means, it is possible to detect infrared rays incident from different directions with high sensitivity. Therefore, the infrared detector is a packaged small and inexpensive infrared detector, and can be a highly sensitive infrared detector.

請求項12に記載のように、前記基板は半導体基板であり、前記赤外線検出素子は、絶縁膜を介して、前記半導体基板上に形成されることが好ましい。半導体基板を用いることで、一般的な半導体製造技術により容易にメンブレンを有する基板とすることができ、メンブレンを有するセンサチップを、低コストで製造することができる。   Preferably, the substrate is a semiconductor substrate, and the infrared detection element is formed on the semiconductor substrate via an insulating film. By using a semiconductor substrate, a substrate having a membrane can be easily formed by a general semiconductor manufacturing technique, and a sensor chip having a membrane can be manufactured at low cost.

半導体基板におけるメンブレンの形成は、例えば請求項13に記載のように、
前記半導体基板が、前記赤外線検出素子の形成される面と反対の裏面側からエッチングされて、メンブレンが形成されるようにしてもよい。また、例えば請求項14に記載のように、前記半導体基板が、前記赤外線検出素子の形成される面と同じ主面側からエッチングされて、メンブレンが形成されるようにしてもよい。
The formation of the membrane in the semiconductor substrate is, for example, as described in claim 13,
The semiconductor substrate may be etched from the back side opposite to the surface on which the infrared detection element is formed to form a membrane. For example, as described in claim 14, the semiconductor substrate may be etched from the same main surface side as the surface on which the infrared detection element is formed to form a membrane.

以下、本発明を実施するための最良の形態を、図に基づいて説明する。
(第1の実施形態)
図1は、本実施形態における赤外線検出器100の模式的な断面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic cross-sectional view of an infrared detector 100 in the present embodiment.

図1に示す赤外線検出器100は、赤外線検出素子が形成された2個のセンサチップ10t,10tと、赤外線検出素子の入出力を制御する制御回路が形成された2個の回路チップ20t,20tを有する。センサチップ10t,10tは、回路チップ20t,20t上に積層して配置され、これらがステム30と赤外線を透過する窓であるフィルタ40fa,40fbが付いたキャップ40からなるケース内に収容され、パッケージ化されている。尚、ステム30とキャップ40は溶接されており、ケース内には窒素が封入される。 An infrared detector 100 shown in FIG. 1 includes two sensor chips 10t 1 and 10t 2 on which infrared detection elements are formed, and two circuit chips 20t on which a control circuit for controlling input / output of the infrared detection elements is formed. 1 and 20t 2 . The sensor chips 10t 1 and 10t 2 are arranged on the circuit chips 20t 1 and 20t 2 in a stacked manner, and these are placed in a case made up of a cap 40 with a stem 30 and filters 40fa and 40fb which are windows that transmit infrared rays. Contained and packaged. The stem 30 and the cap 40 are welded, and nitrogen is enclosed in the case.

図1における2個のセンサチップ10t,10tおよび2個の回路チップ20t,20tは、それぞれ、同じ構造のものである。 The two sensor chips 10t 1 and 10t 2 and the two circuit chips 20t 1 and 20t 2 in FIG. 1 have the same structure.

図2に、センサチップの詳細を示す。図2(a)は、センサチップ10tの模式的な断面図であり、図2(b)は、模式的な上面図である。また、図2(c)は、センサチップ10tに形成された赤外線検出素子10の構成およびセンサ出力の取り出しを示す模式図である。   FIG. 2 shows details of the sensor chip. FIG. 2A is a schematic cross-sectional view of the sensor chip 10t, and FIG. 2B is a schematic top view. FIG. 2C is a schematic diagram showing the configuration of the infrared detection element 10 formed on the sensor chip 10t and the extraction of the sensor output.

図2(a)に示すように、センサチップ10tはシリコン(Si)半導体基板1からなり、裏面からエッチングされて薄肉部として形成されたメンブレン10mを有する。半導体基板1上には、赤外線検出素子10が、絶縁膜2を介して形成されている。半導体基板1上に形成された赤外線検出素子10は、熱電対10aと赤外線吸収膜10bとからなる。   As shown in FIG. 2A, the sensor chip 10t is made of a silicon (Si) semiconductor substrate 1 and has a membrane 10m formed as a thin portion by etching from the back surface. An infrared detection element 10 is formed on the semiconductor substrate 1 with an insulating film 2 interposed therebetween. The infrared detection element 10 formed on the semiconductor substrate 1 includes a thermocouple 10a and an infrared absorption film 10b.

図2(b)に示すように、熱電対10aは、メンブレン10mを取り囲むように配置される。尚、見やすくするために、図2(b)と図2(c)では、赤外線吸収膜10bの図示が省略されている。   As shown in FIG. 2B, the thermocouple 10a is disposed so as to surround the membrane 10m. In addition, in order to make it easy to see, illustration of the infrared rays absorption film 10b is abbreviate | omitted in FIG.2 (b) and FIG.2 (c).

図2(c)に示すように、熱電対10aは、半導体基板1の上に異種材料10ax,10ayの膜が交互に複数組直列に延設され(サーモパイル)、一つおきの接合部が温接点10ahと冷接点10acとなる。異種材料10ax,10ayの膜の組み合せとしては、例えば、アルミニウム膜とポリシリコン膜の組み合せが用いられる。図2(a),(c)に示すように、熱電対10aの温接点10ahは、熱容量の小さいメンブレン10m上に形成されている。一方、熱電対10aの冷接点10acは、メンブレン10mの外側における熱容量の大きい厚肉部10n上に形成されている。また、図2(a)に示すように、赤外線検出素子10においては、温接点10ahを被覆するようにして、赤外線吸収膜10bが、メンブレン10m上に形成される。   As shown in FIG. 2C, in the thermocouple 10a, a plurality of sets of films of different materials 10ax and 10ay are alternately extended in series on the semiconductor substrate 1 (thermopile), and every other junction is heated. It becomes the contact 10ah and the cold junction 10ac. As a combination of films of different materials 10ax and 10ay, for example, a combination of an aluminum film and a polysilicon film is used. As shown in FIGS. 2A and 2C, the hot junction 10ah of the thermocouple 10a is formed on a membrane 10m having a small heat capacity. On the other hand, the cold junction 10ac of the thermocouple 10a is formed on the thick portion 10n having a large heat capacity outside the membrane 10m. Further, as shown in FIG. 2A, in the infrared detection element 10, an infrared absorption film 10b is formed on the membrane 10m so as to cover the hot junction 10ah.

人体などから赤外線が照射されると、赤外線吸収膜10bに赤外線が吸収されて、温度上昇が起こる。その結果、赤外線吸収膜10bの下に配置された温接点10ahの温度が上昇する。一方、冷接点10acの温度は、厚肉部10nがヒートシンクとなって温度が上昇しないため、温度測定の基準点となる。このように、赤外線検出素子10は、赤外線を受光したときの温接点10ahと冷接点10acとの間に生じる温度差により熱電対10aの起電力を変化(ゼーペック効果)させ、その変化した起電力に基づいて赤外線を検出する。尚、図2(c)に示す熱電対10aはサーモパイルとなっているため、各異種材料10ax,10ayの組で発生する起電力の総和が、赤外線検出素子10の出力となる。   When infrared rays are irradiated from a human body or the like, the infrared rays are absorbed by the infrared absorption film 10b, and the temperature rises. As a result, the temperature of the hot junction 10ah disposed below the infrared absorption film 10b increases. On the other hand, the temperature of the cold junction 10ac serves as a reference point for temperature measurement because the thick portion 10n serves as a heat sink and the temperature does not increase. As described above, the infrared detecting element 10 changes the electromotive force of the thermocouple 10a due to the temperature difference generated between the hot junction 10ah and the cold junction 10ac when receiving infrared rays (seepec effect), and the changed electromotive force. Infrared detection based on Since the thermocouple 10a shown in FIG. 2 (c) is a thermopile, the sum of electromotive forces generated by the combination of the different materials 10ax and 10ay becomes the output of the infrared detecting element 10.

図2(a)〜(c)に示すメンブレン10mを有するセンサチップ10tは、熱電対10aの温接点10ahにおける熱が厚肉部10nに逃げ難く、高精度の赤外線検出が可能である。また、サーモパイルとなっている熱電対10aは、大きな起電力(センサ出力)が得られ、高感度で高精度な赤外線検出素子とすることができる。   The sensor chip 10t having the membrane 10m shown in FIGS. 2 (a) to 2 (c) allows heat at the hot junction 10ah of the thermocouple 10a to hardly escape to the thick portion 10n, and enables highly accurate infrared detection. Moreover, the thermocouple 10a which is a thermopile can obtain a large electromotive force (sensor output), and can be a highly sensitive and highly accurate infrared detection element.

図1に示す赤外線検出器100では、赤外線の透過窓であるフィルタ40fa,40fbを透過して異なる方向から入射する赤外線L1,L2を検出することができる。赤外線検出器100においては、キャップ40に設けられたフィルタ40fa,40fbを透過して上方から入射する太い点線矢印で示した赤外線L0は、図に示すように、各センサチップ10t,10tに等しく照射される。一方、フィルタ40fa,40fbを透過して異なる方向から入射する太い実線矢印で示した赤外線L1,L2は、図に示すように、それぞれ対応するセンサチップ10t,10tの赤外線検出素子に照射されるように、フィルタ40fa,40fbとセンサチップ10t,10tの配置が適宜設定されている。このようにして、図1の赤外線検出器100は、赤外線の透過窓であるフィルタ40fa,40fbを透過して異なる方向から入射する赤外線L1,L2の検出が可能な赤外線検出器となっている。 The infrared detector 100 shown in FIG. 1 can detect infrared rays L1 and L2 that are transmitted through filters 40fa and 40fb, which are infrared transmission windows, and are incident from different directions. In the infrared detector 100, the infrared rays L0 indicated by the thick dotted arrows that pass through the filters 40fa and 40fb provided on the cap 40 and enter from above are applied to the sensor chips 10t 1 and 10t 2 as shown in the figure. Irradiated equally. On the other hand, the infrared rays L1 and L2 indicated by thick solid arrows that pass through the filters 40fa and 40fb and enter from different directions are irradiated to the infrared detection elements of the corresponding sensor chips 10t 2 and 10t 1 as shown in the figure. As described above, the arrangement of the filters 40fa and 40fb and the sensor chips 10t 1 and 10t 2 is appropriately set. In this manner, the infrared detector 100 in FIG. 1 is an infrared detector that can detect the infrared rays L1 and L2 that are transmitted through the filters 40fa and 40fb, which are infrared transmission windows, and are incident from different directions.

図1の赤外線検出器100は、検出方向の数だけ赤外線検出器を準備したり、赤外線検出器を走査させたりする場合に較べて、検出器全体を小型化することができ、検出器全体のコストも低減することができる。また、図1の赤外線検出器100は、センサチップ10t,10tだけでなく、センサチップ10t,10tの入出力制御回路が形成された回路チップ20t,20tも同じケース内に収容され、パッケージ化されている。これによっても、センサチップと回路チップを別パッケージとした赤外線検出器に較べて、検出器全体を小型化することができ、検出器全体のコストも低減することができる。さらに、図1の赤外線検出器100は、センサチップ10t,10tと回路チップ20t,20tが積層配置されている。従って、センサチップと回路チップを全て並べて配置する赤外線検出器に較べても、小型化された赤外線検出器となっている。 The infrared detector 100 in FIG. 1 can reduce the size of the entire detector as compared with the case where infrared detectors are prepared in the number of detection directions or the infrared detectors are scanned. Cost can also be reduced. In addition, the infrared detector 100 of FIG. 1 includes not only the sensor chips 10t 1 and 10t 2 but also circuit chips 20t 1 and 20t 2 in which input / output control circuits for the sensor chips 10t 1 and 10t 2 are formed. Contained and packaged. This also makes it possible to reduce the size of the entire detector and reduce the cost of the entire detector as compared with an infrared detector in which the sensor chip and the circuit chip are separately packaged. Further, in the infrared detector 100 of FIG. 1, sensor chips 10t 1 and 10t 2 and circuit chips 20t 1 and 20t 2 are stacked. Therefore, it is a miniaturized infrared detector as compared with an infrared detector in which all sensor chips and circuit chips are arranged side by side.

以上のようにして、図1の赤外線検出器100は、異なる方向から入射する赤外線L1,L2の検出が可能で、パッケージ化された小型で安価な赤外線検出器となっている。   As described above, the infrared detector 100 of FIG. 1 is capable of detecting the infrared rays L1 and L2 incident from different directions, and is a packaged small and inexpensive infrared detector.

図3に、別の赤外線検出器101の模式的な断面図を示す。尚、図3に示す赤外線検出器101において、図1の赤外線検出器100と同様の部分については同じ符号を付した。   FIG. 3 shows a schematic cross-sectional view of another infrared detector 101. In addition, in the infrared detector 101 shown in FIG. 3, the same code | symbol was attached | subjected about the part similar to the infrared detector 100 of FIG.

図3の赤外線検出器101においては、2個のセンサチップ10t,10tのそれぞれに対応する各入出力制御回路が、1個の回路チップ20t内に形成されている。これによって、各センサチップ10t,10tに対応する個別の回路チップ20t,20tが設けられた図1の赤外線検出器100と較べて、ステム31とキャップ41が小さくなっており、検出器全体が小型化されている。また、1個の回路チップ20tとすることで、検出器全体のコストも低減することができる。尚、図3に示す赤外線検出器101についても、図1に示す赤外線検出器100と同様にして、フィルタ40fa,40fbを透過して異なる方向から入射する赤外線L1,L2を検出することができる。 In the infrared detector 101 of FIG. 3, each input / output control circuit corresponding to each of the two sensor chips 10t 1 and 10t 2 is formed in one circuit chip 20t. As a result, the stem 31 and the cap 41 are smaller than the infrared detector 100 of FIG. 1 in which the individual circuit chips 20t 1 and 20t 2 corresponding to the sensor chips 10t 1 and 10t 2 are provided. The entire vessel is downsized. Moreover, the cost of the whole detector can be reduced by using one circuit chip 20t. Note that the infrared detector 101 shown in FIG. 3 can also detect infrared rays L1 and L2 that pass through the filters 40fa and 40fb and enter from different directions in the same manner as the infrared detector 100 shown in FIG.

図4に、別の赤外線検出器102の模式的な断面図を示す。尚、図4に示す赤外線検出器102において、図3の赤外線検出器101と同様の部分については同じ符号を付した。   FIG. 4 shows a schematic cross-sectional view of another infrared detector 102. In addition, in the infrared detector 102 shown in FIG. 4, the same code | symbol was attached | subjected about the part similar to the infrared detector 101 of FIG.

図4の赤外線検出器102は、図3の赤外線検出器101と較べて、キャップ42の形状と、赤外線の透過窓であるフィルタ40fa,40fbの2個のセンサチップ10t,10tに対する配置が異なっている。図3の赤外線検出器101では、上方から入射する赤外線L0に対して、側方から入射する赤外線L1,L2の割合が小さい。これに対して、図4の赤外線検出器102では、側方から入射する赤外線L1,L2に対してキャップ42がより大きく開口されているため、上方から入射する赤外線L0に対する側方から入射する赤外線L1,L2の割合がより大きくなる。従って、図4の赤外線検出器102では、上方から入射する赤外線L0の影響が小さくなり、フィルタ40fa,40fbを透過して異なる方向から入射する赤外線L1,L2をより確実に検出することができる。
(第2の実施形態)
第1実施形態の赤外線検出器は、ケースに設けられた窓を透過して異なる方向から入射する赤外線が検出される赤外線検出器であった。本実施形態は、さらに、赤外線の入射方向を制御する入射制御手段を備える赤外線検出器に関する。以下、本実施形態について、図に基づいて説明する。
Compared with the infrared detector 101 in FIG. 3, the infrared detector 102 in FIG. 4 has a shape of the cap 42 and the arrangement of the filters 40fa and 40fb, which are infrared transmission windows, with respect to the two sensor chips 10t 1 and 10t 2 . Is different. In the infrared detector 101 of FIG. 3, the ratio of the infrared rays L1 and L2 incident from the side is smaller than the infrared ray L0 incident from above. On the other hand, in the infrared detector 102 of FIG. 4, since the cap 42 is opened larger than the infrared rays L1 and L2 incident from the side, the infrared rays incident from the side with respect to the infrared ray L0 incident from above. The ratio of L1 and L2 becomes larger. Therefore, in the infrared detector 102 of FIG. 4, the influence of the infrared ray L0 incident from above is reduced, and the infrared rays L1 and L2 incident through different directions through the filters 40fa and 40fb can be detected more reliably.
(Second Embodiment)
The infrared detector according to the first embodiment is an infrared detector that detects infrared rays that are transmitted through a window provided in a case and incident from different directions. The present embodiment further relates to an infrared detector including an incident control means for controlling the incident direction of infrared rays. Hereinafter, the present embodiment will be described with reference to the drawings.

図5(a),(b)は、本実施形態における赤外線検出器103,104の模式的な断面図である。   5A and 5B are schematic cross-sectional views of the infrared detectors 103 and 104 in the present embodiment.

図5(a),(b)に示す赤外線検出器103,104は、それぞれ、図1の赤外線検出器100と図3の赤外線検出器101に対して、赤外線の入射方向を制御する入射制御手段として、プリズム50a,50bを追加した赤外線検出器である。尚、図5(a),(b)においては、簡単化のために上方から入射する赤外線L0の図示を省略している。   Infrared detectors 103 and 104 shown in FIGS. 5A and 5B are incident control means for controlling the incident direction of infrared rays with respect to the infrared detector 100 in FIG. 1 and the infrared detector 101 in FIG. As an infrared detector to which prisms 50a and 50b are added. In FIGS. 5A and 5B, the illustration of the infrared ray L0 incident from above is omitted for simplicity.

プリズム50a,50bが設けられた赤外線検出器103,104では、図に示すように、異なる方向から入射する赤外線L3,L4がプリズム50a,50bで屈折されて、各センサチップ10t,10tに照射される。赤外線検出器103,104においては、プリズム50a,50bの頂角を適宜設定することで、検出する方向の赤外線L3,L4をより確実に選択することができる。これによって、異なる方向から入射する赤外線L3,L4の高精度な検出が可能となる。 In the infrared detectors 103 and 104 provided with the prisms 50a and 50b, as shown in the drawing, infrared rays L3 and L4 incident from different directions are refracted by the prisms 50a and 50b, and are transmitted to the sensor chips 10t 1 and 10t 2 . Irradiated. In the infrared detectors 103 and 104, by appropriately setting the apex angles of the prisms 50a and 50b, it is possible to more reliably select the infrared rays L3 and L4 in the direction to be detected. Thereby, the infrared rays L3 and L4 incident from different directions can be detected with high accuracy.

尚、図5(a),(b)の赤外線検出器103,104においては、プリズム50a,50bがキャップ40,41の外側に配置されているが、キャップ40,41の内側に配置して、パッケージ内に収容してもよい。この場合には、プリズム50a,50bが外部に露出していないため、プリズム50a,50bの保守が容易になる。   In the infrared detectors 103 and 104 of FIGS. 5A and 5B, the prisms 50a and 50b are arranged outside the caps 40 and 41, but are arranged inside the caps 40 and 41. You may accommodate in a package. In this case, since the prisms 50a and 50b are not exposed to the outside, maintenance of the prisms 50a and 50b is facilitated.

図6(a),(b)は、本実施形態における別の赤外線検出器105,106の模式的な断面図である。   6A and 6B are schematic cross-sectional views of other infrared detectors 105 and 106 in the present embodiment.

図6(a),(b)に示す赤外線検出器105,106は、それぞれ、図1の赤外線検出器100と図3の赤外線検出器101に対して、赤外線の入射方向を制御する入射制御手段として、遮光板60a,60bを追加した赤外線検出器である。   Infrared detectors 105 and 106 shown in FIGS. 6A and 6B are incident control means for controlling the incident direction of infrared rays with respect to the infrared detector 100 in FIG. 1 and the infrared detector 101 in FIG. As an infrared detector to which light shielding plates 60a and 60b are added.

図6(a),(b)の赤外線検出器105,106では、図に示すように、上方から入射する赤外線L0が、遮光板60a,60bに遮られて、各センサチップ10t,10tに照射されない。従って、赤外線検出器105,106においては、上方から入射する赤外線L0の影響をなくすことができ、検出する方向の赤外線L1,L2をより確実に選択することができる。これによって、異なる方向から入射する赤外線L1,L2の高精度な検出が可能となる。 In the infrared detectors 105 and 106 shown in FIGS. 6A and 6B, as shown in the drawing, the infrared rays L0 incident from above are blocked by the light shielding plates 60a and 60b, so that each of the sensor chips 10t 1 and 10t 2. Is not irradiated. Therefore, in the infrared detectors 105 and 106, the influence of the infrared ray L0 incident from above can be eliminated, and the infrared rays L1 and L2 in the detection direction can be selected more reliably. Thereby, the infrared rays L1 and L2 incident from different directions can be detected with high accuracy.

図7(a)〜(c)は、本実施形態における別の赤外線検出器107〜109の模式的な断面図である。   7A to 7C are schematic cross-sectional views of other infrared detectors 107 to 109 in the present embodiment.

図7(a),(b)に示す赤外線検出器107,108は、それぞれ、図1の赤外線検出器100と図3の赤外線検出器101に対して、赤外線の入射方向を制御する入射制御手段として、反射板70,71を追加した赤外線検出器である。尚、図7(a),(b)においては、簡単化のために上方から入射する赤外線L0の図示を省略している。   Infrared detectors 107 and 108 shown in FIGS. 7A and 7B are incident control means for controlling the incident direction of infrared rays with respect to the infrared detector 100 in FIG. 1 and the infrared detector 101 in FIG. As an infrared detector to which reflectors 70 and 71 are added. In FIGS. 7A and 7B, illustration of the infrared ray L0 incident from above is omitted for simplification.

図1の赤外線検出器100と図3の赤外線検出器101では、フィルタ40faを透過した赤外線L1がセンサチップ10tに照射され、フィルタ40fbを透過した赤外線L2がセンサチップ10tに照射されていた。一方、反射板70,71を設けた図7(a),(b)の赤外線検出器107,108では、フィルタ40faを透過した赤外線L1がセンサチップ10tに照射され、フィルタ40fbを透過した赤外線L2がセンサチップ10tに照射される。 The infrared detector 101 of an infrared detector 100 and 3 in Figure 1, infrared L1 transmitted through the filter 40fa is irradiated to the sensor chip 10t 2, infrared L2 which has passed through the filter 40fb has been irradiated to the sensor chip 10t 1 . Infrared On the other hand, FIG. 7 in which a reflection plate 70, 71 (a), the infrared detector 107, 108 (b), the infrared L1 having passed through the filter 40fa is irradiated to the sensor chip 10t 1, passed through the filter 40fb L2 is irradiated on the sensor chip 10t 2.

反射板70,71が設けられた赤外線検出器107,108においては、反射板70,71の面の角度を適宜設定することで、検出する方向の赤外線L1,L2をより確実に選択することができる。これによって、異なる方向から入射する赤外線L1,L2の高精度な検出が可能となる。   In the infrared detectors 107 and 108 provided with the reflection plates 70 and 71, the infrared rays L1 and L2 in the direction to be detected can be more reliably selected by appropriately setting the angles of the surfaces of the reflection plates 70 and 71. it can. As a result, the infrared rays L1 and L2 incident from different directions can be detected with high accuracy.

図7(c)に示す赤外線検出器109は、3個のセンサチップ10t〜10tと、1個の回路チップ21tを有する。3個のセンサチップ10t〜10tは、回路チップ21t上に積層して配置され、これらがステム32と赤外線を透過する窓であるフィルタ40fa〜40fcが付いたキャップ43からなるケース内に収容され、パッケージ化されている。図7(c)の赤外線検出器109についても、赤外線の入射方向を制御する入射制御手段として、反射板72,73が設けられている。 The infrared detector 109 shown in FIG. 7C includes three sensor chips 10t 1 to 10t 3 and one circuit chip 21t. The three sensor chips 10t 1 to 10t 3 are stacked on the circuit chip 21t, and are housed in a case made up of a cap 43 having a stem 32 and filters 40fa to 40fc which are windows that transmit infrared rays. And packaged. The infrared detector 109 of FIG. 7C is also provided with reflecting plates 72 and 73 as incident control means for controlling the incident direction of infrared rays.

図7(c)の赤外線検出器109においては、図に示すように、3つの方向の異なる方向から入射する赤外線L0〜L2の検出が可能である。尚、反射板72,73のセンサチップ10t側の面は、上方から入射する赤外線L0の選択を確実にするため、赤外線の反射が起きないようにコーティングされている。 In the infrared detector 109 of FIG. 7C, as shown in the figure, infrared rays L0 to L2 incident from three different directions can be detected. The surface of the sensor chip 10t 2 side reflectors 72 and 73, to ensure the selection of an infrared L0 incident from above is coated so reflection does not occur in the infrared.

図5〜図7に示した本実施形態の赤外線検出器103〜109は、赤外線の入射方向を制御する入射制御手段として、プリズム、遮光板もしくは反射板を備え、これらの入射制御手段を介して、複数個のセンサチップにより、それぞれ、窓を透過して異なる方向から入射する赤外線が検出される。本実施形態の赤外線検出器103〜109においては、入射制御手段を用いることで、検出する方向の赤外線をより確実に選択することができ、異なる方向から入射する赤外線の高精度な検出が可能となる。   The infrared detectors 103 to 109 of the present embodiment shown in FIGS. 5 to 7 include a prism, a light shielding plate, or a reflector as incident control means for controlling the incident direction of infrared rays, and through these incident control means. The infrared rays incident from different directions through the window are detected by the plurality of sensor chips. In the infrared detectors 103 to 109 of the present embodiment, by using the incident control means, it is possible to more reliably select the infrared ray in the direction to be detected, and it is possible to detect infrared rays incident from different directions with high accuracy. Become.

また、プリズム、遮光板、反射板等の入射制御手段は、いずれも小さな部品であり、複数個のセンサチップと共にケース内に収容し、パッケージ化することができる。   In addition, incident control means such as a prism, a light shielding plate, and a reflecting plate are all small components, and can be housed in a case together with a plurality of sensor chips and packaged.

以上のようにして、図5〜図7に示した本実施形態の赤外線検出器103〜109は、異なる方向から入射する赤外線の高精度検出が可能で、パッケージ化された小型で安価な赤外線検出器とすることができる。尚、図5〜図7に示した赤外線検出器103〜109は、プリズム、遮光板もしくは反射板を単独で用いていたが、これらを組み合わせて用いてもよい。
(他の実施形態)
図1〜図7に示した赤外線検出器100〜109におけるセンサチップ10t〜10tは、図2において詳しく示したように、半導体基板にメンブレンが形成されたセンサチップであった。また、メンブレンは、半導体基板が赤外線検出素子の形成される面と反対の裏面側からエッチングされて、形成されていた。しかしながら、本発明の赤外線検出器に用いられるセンサチップはこれに限らず、メンブレンは、半導体基板が赤外線検出素子の形成される面と同じ主面側からエッチングされて、形成されてもよい。
As described above, the infrared detectors 103 to 109 of the present embodiment shown in FIGS. 5 to 7 can detect infrared rays incident from different directions with high accuracy, and can be packaged in a small and inexpensive infrared detector. Can be a container. In addition, although the infrared detectors 103-109 shown in FIGS. 5-7 used the prism, the light-shielding plate, or the reflecting plate independently, you may use these in combination.
(Other embodiments)
The sensor chips 10t 1 to 10t 3 in the infrared detectors 100 to 109 shown in FIGS. 1 to 7 are sensor chips in which a membrane is formed on a semiconductor substrate as shown in detail in FIG. Further, the membrane is formed by etching the semiconductor substrate from the back side opposite to the surface on which the infrared detection element is formed. However, the sensor chip used in the infrared detector of the present invention is not limited to this, and the membrane may be formed by etching the semiconductor substrate from the same main surface side as the surface on which the infrared detection element is formed.

図8(a)〜(c)に、そのようなセンサチップ11t,11tが用いられた、本発明の赤外線検出器110〜112の模式的な断面図を示す。 FIGS. 8A to 8C are schematic cross-sectional views of the infrared detectors 110 to 112 of the present invention in which such sensor chips 11t 1 and 11t 2 are used.

赤外線検出素子が形成されるセンサチップとして、半導体基板を用いた場合には、一般的な半導体製造技術により容易にメンブレンを形成することができ、低コストで製造できるため好ましい。しかしながら、赤外線検出素子が形成されるセンサチップはこれに限らず、ガラス等の任意の材料を用いた基板であってよい。高感度の赤外線検出素子とするために、基板にメンブレンを形成することが好ましいが、メンブレンを有しないセンサチップであっても効果的である。また、赤外線検出素子は、熱電対を用いたものに限らず、薄膜抵抗体の温度による抵抗値変化を利用して赤外線を検出するものであってもよい。   When a semiconductor substrate is used as the sensor chip on which the infrared detection element is formed, it is preferable because a membrane can be easily formed by a general semiconductor manufacturing technique and can be manufactured at a low cost. However, the sensor chip on which the infrared detection element is formed is not limited to this, and may be a substrate using any material such as glass. In order to obtain a highly sensitive infrared detection element, it is preferable to form a membrane on the substrate, but even a sensor chip having no membrane is effective. Further, the infrared detection element is not limited to the one using a thermocouple, but may be one that detects infrared rays by using a resistance value change due to the temperature of the thin film resistor.

第1実施形態における赤外線検出器の模式的な断面図である。It is a typical sectional view of the infrared detector in a 1st embodiment. センサチップの詳細を示す図で、(a)は模式的な断面図であり、(b)は模式的な上面図であり、(c)は赤外線検出素子の構成およびセンサ出力の取り出しを示す模式図である。It is a figure which shows the detail of a sensor chip, (a) is typical sectional drawing, (b) is a typical top view, (c) is a schematic which shows the structure of an infrared detection element, and extraction of a sensor output FIG. 第1実施形態における別の赤外線検出器の模式的な断面図である。It is a typical sectional view of another infrared detector in a 1st embodiment. 第1実施形態における別の赤外線検出器の模式的な断面図である。It is a typical sectional view of another infrared detector in a 1st embodiment. (a),(b)は、第2実施形態における赤外線検出器の模式的な断面図である。(A), (b) is typical sectional drawing of the infrared detector in 2nd Embodiment. (a),(b)は、第2実施形態における別の赤外線検出器の模式的な断面図である。(A), (b) is typical sectional drawing of another infrared detector in 2nd Embodiment. (a)〜(c)は、第2実施形態における別の赤外線検出器の模式的な断面図である。(A)-(c) is typical sectional drawing of another infrared detector in 2nd Embodiment. (a)〜(c)は、他の実施形態における赤外線検出器の模式的な断面図である。(A)-(c) is typical sectional drawing of the infrared detector in other embodiment. 従来の赤外線検出器の模式的な断面図である。It is typical sectional drawing of the conventional infrared detector.

符号の説明Explanation of symbols

90,100〜112 赤外線検出器
10t,10t〜10t,11t,11t センサチップ
1 半導体基板
2 絶縁膜
10 赤外線検出素子
10m メンブレン
10n 厚肉部
10a 熱電対
10ah 温接点
10ac 冷接点
10b 赤外線吸収膜
20t,21t,20t,20t 回路チップ
30〜32 ステム
40〜43 キャップ
40fa,40fb,40fc フィルタ
50a,50b プリズム
60a,60b 遮光板
70〜73 反射板
L0,L1,L2 赤外線
90,100~112 infrared detector 10t, 10t 1 ~10t 3, 11t 1, 11t 2 sensor chip 1 semiconductor substrate 2 insulating film 10 infrared detector 10m membrane 10n thick portion 10a thermocouple 10ah hot junction 10ac cold junction 10b infrared absorbing film 20t, 21t, 20t 1, 20t 2 circuit chip 30 to 32 stems 40-43 cap 40fa, 40fb, 40fc filter 50a, 50b prism 60a, 60b light shielding plate 70-73 reflector L0, L1, L2 infrared

Claims (14)

赤外線を透過する窓が設けられたケース内に、赤外線を感知する赤外線検出素子が形成されたセンサチップが複数個収容されてなるパッケージ化された赤外線検出器であって、
前記複数個のセンサチップにより、それぞれ、前記窓を透過して異なる方向から入射する赤外線が検出されることを特徴とする赤外線検出器。
A packaged infrared detector in which a plurality of sensor chips each formed with an infrared detection element for sensing infrared rays are housed in a case provided with a window that transmits infrared rays,
An infrared detector, wherein the plurality of sensor chips respectively detect infrared rays that are transmitted through the window and incident from different directions.
前記赤外線検出器が、赤外線の入射方向を制御する入射制御手段を備え、
当該入射制御手段を介して、前記複数個のセンサチップにより、それぞれ、前記窓を透過して異なる方向から入射する赤外線が検出されることを特徴とする請求項1に記載の赤外線検出器。
The infrared detector comprises an incident control means for controlling the incident direction of infrared rays,
2. The infrared detector according to claim 1, wherein infrared rays that are transmitted through the window and incident from different directions are detected by the plurality of sensor chips via the incident control unit.
前記入射制御手段が、プリズムであることを特徴とする請求項2に記載の赤外線検出器。   The infrared detector according to claim 2, wherein the incident control means is a prism. 前記入射制御手段が、遮光板であることを特徴とする請求項2に記載の赤外線検出器。   The infrared detector according to claim 2, wherein the incident control means is a light shielding plate. 前記入射制御手段が、反射板であることを特徴とする請求項2に記載の赤外線検出器。   The infrared detector according to claim 2, wherein the incident control means is a reflector. 前記赤外線検出器が、
前記センサチップの入出力制御回路が形成された回路チップを備える赤外線検出器であって、
前記回路チップが前記パッケージ内に収容されてなることを特徴とする請求項1乃至5のいずれか一項に記載の赤外線検出器。
The infrared detector is
An infrared detector comprising a circuit chip on which an input / output control circuit of the sensor chip is formed,
The infrared detector according to claim 1, wherein the circuit chip is housed in the package.
前記複数個のセンサチップのそれぞれに対応する各入出力制御回路が、1個の回路チップ内に形成されてなることを特徴とする請求項6に記載の赤外線検出器。   The infrared detector according to claim 6, wherein each input / output control circuit corresponding to each of the plurality of sensor chips is formed in one circuit chip. 前記センサチップが、前記回路チップ上に積層配置されてなることを特徴とする請求項6または7に記載の赤外線検出器。   The infrared detector according to claim 6 or 7, wherein the sensor chip is stacked on the circuit chip. 前記入射制御手段が、前記パッケージ内に収容されてなることを特徴とする請求項6乃至8のいずれか一項に記載の赤外線検出器。   The infrared detector according to claim 6, wherein the incident control unit is accommodated in the package. 前記センサチップが、薄肉部として形成されたメンブレンを有する基板からなり、
前記赤外線検出素子が、前記基板上に形成された熱電対と赤外線吸収膜とからなり、
前記熱電対の温接点が前記メンブレン上に形成され、前記熱電対の冷接点が前記メンブレンの外側の基板上に形成され、
前記赤外線吸収膜が、前記温接点を被覆するようにメンブレン上に形成され、
前記赤外線検出素子が、赤外線を受光したときに前記熱電対における温接点と冷接点との間に生じる温度差によって熱電対の起電力を変化させ、その変化した起電力に基づいて赤外線を検出することを特徴とする請求項1乃至9のいずれか一項に記載の赤外線検出器。
The sensor chip is composed of a substrate having a membrane formed as a thin part,
The infrared detection element comprises a thermocouple and an infrared absorption film formed on the substrate,
A hot junction of the thermocouple is formed on the membrane, and a cold junction of the thermocouple is formed on a substrate outside the membrane;
The infrared absorbing film is formed on the membrane so as to cover the hot junction;
When the infrared detection element receives infrared rays, the electromotive force of the thermocouple is changed by a temperature difference generated between a hot junction and a cold junction in the thermocouple, and infrared rays are detected based on the changed electromotive force. The infrared detector according to any one of claims 1 to 9, wherein
前記熱電対が、基板の上に異種材料の膜が交互に複数組直列に延設され、一つおきの接合部が前記温接点と冷接点となることを特徴とする請求項10に記載の赤外線検出器。   11. The thermocouple according to claim 10, wherein a plurality of sets of films of different materials are alternately extended in series on the substrate, and every other junction becomes the hot junction and the cold junction. Infrared detector. 前記基板が半導体基板であり、
前記赤外線検出素子が、絶縁膜を介して、前記半導体基板上に形成されることを特徴とする請求項10または11に記載の赤外線検出器。
The substrate is a semiconductor substrate;
The infrared detector according to claim 10, wherein the infrared detection element is formed on the semiconductor substrate via an insulating film.
前記半導体基板が、前記赤外線検出素子の形成される面と反対の裏面側からエッチングされて、
前記メンブレンが形成されてなることを特徴とする請求項12に記載の赤外線検出器。
The semiconductor substrate is etched from the back side opposite to the surface on which the infrared detection element is formed,
The infrared detector according to claim 12, wherein the membrane is formed.
前記半導体基板が、前記赤外線検出素子の形成される面と同じ主面側からエッチングされて、
前記メンブレンが形成されてなることを特徴とする請求項12に記載の赤外線検出器。
The semiconductor substrate is etched from the same main surface side as the surface on which the infrared detection element is formed,
The infrared detector according to claim 12, wherein the membrane is formed.
JP2004037225A 2004-02-13 2004-02-13 Infrared detector Expired - Fee Related JP4042707B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004037225A JP4042707B2 (en) 2004-02-13 2004-02-13 Infrared detector
DE102005003658A DE102005003658B4 (en) 2004-02-13 2005-01-26 Modular built infrared radiation detector
FR0501203A FR2866427B1 (en) 2004-02-13 2005-02-07 INFRARED RADIATION DETECTOR DETECTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037225A JP4042707B2 (en) 2004-02-13 2004-02-13 Infrared detector

Publications (2)

Publication Number Publication Date
JP2005227180A true JP2005227180A (en) 2005-08-25
JP4042707B2 JP4042707B2 (en) 2008-02-06

Family

ID=34805948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037225A Expired - Fee Related JP4042707B2 (en) 2004-02-13 2004-02-13 Infrared detector

Country Status (3)

Country Link
JP (1) JP4042707B2 (en)
DE (1) DE102005003658B4 (en)
FR (1) FR2866427B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095599A (en) * 2012-11-08 2014-05-22 Mitsubishi Electric Corp Capacitor degradation diagnosis device, inverter device, and home electric appliance
TWI632531B (en) * 2016-03-22 2018-08-11 松下知識產權經營股份有限公司 Infrared detection device
JP2019045279A (en) * 2017-08-31 2019-03-22 パナソニックIpマネジメント株式会社 Infrared detector and douser used therein
CN112701211A (en) * 2020-12-29 2021-04-23 上海烨映微电子科技股份有限公司 Infrared thermopile packaging structure and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220229A1 (en) 2014-10-07 2016-04-07 Robert Bosch Gmbh Optical detector device and corresponding manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958118A (en) * 1975-02-03 1976-05-18 Security Organization Supreme-Sos-Inc. Intrusion detection devices employing multiple scan zones
JPH01116419A (en) * 1987-10-29 1989-05-09 Sumitomo Metal Mining Co Ltd Infrared detector
JPH07104202B2 (en) * 1991-05-24 1995-11-13 株式会社大真空 Pyroelectric infrared sensor
JPH05256704A (en) * 1992-03-11 1993-10-05 Toshiba Corp Radiation heat temperature sensor
US5543620A (en) * 1994-11-30 1996-08-06 Opto Tech Corporation Wide-view-angle and planarized-packing structure for IR heat sensing elements
US5929445A (en) * 1996-09-13 1999-07-27 Electro-Optic Technologies, Llc Passive infrared detector
JP3733847B2 (en) * 2000-08-07 2006-01-11 セイコーエプソン株式会社 Thermometer
JP2003270047A (en) * 2002-03-15 2003-09-25 Denso Corp Infrared sensor
JP3743394B2 (en) * 2002-05-31 2006-02-08 株式会社村田製作所 Infrared sensor and electronic device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095599A (en) * 2012-11-08 2014-05-22 Mitsubishi Electric Corp Capacitor degradation diagnosis device, inverter device, and home electric appliance
TWI632531B (en) * 2016-03-22 2018-08-11 松下知識產權經營股份有限公司 Infrared detection device
JP2019045279A (en) * 2017-08-31 2019-03-22 パナソニックIpマネジメント株式会社 Infrared detector and douser used therein
JP7065337B2 (en) 2017-08-31 2022-05-12 パナソニックIpマネジメント株式会社 Infrared detector
CN112701211A (en) * 2020-12-29 2021-04-23 上海烨映微电子科技股份有限公司 Infrared thermopile packaging structure and method

Also Published As

Publication number Publication date
DE102005003658B4 (en) 2013-07-04
FR2866427A1 (en) 2005-08-19
FR2866427B1 (en) 2007-11-16
DE102005003658A1 (en) 2005-08-25
JP4042707B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP2006214758A (en) Infrared detector
US6448557B2 (en) Thermal infrared detector provided with shield for high fill factor
KR101427431B1 (en) Infrared absorber and thermal infrared detector
JP2006071601A (en) Infrared sensor, infrared type gas detector, and infrared ray source
JP2006047085A (en) Infrared sensor device and its manufacturing method
JP2005208009A (en) Infrared detection type gas sensor
JP2005043381A (en) Thermal type infrared detector and its manufacturing method
JP4042707B2 (en) Infrared detector
JP2004257885A (en) Multi-element type infrared detector
JP5564681B2 (en) Infrared sensor
KR100971962B1 (en) Non-contact ir temperature sensor module and method for manufacturing the same
EP3462149B1 (en) Infrared device
JP2011179828A (en) Multi-wavelength infrared array sensor
JP2003304005A (en) Thermal infrared detecting element and light receiving element
JP2012037407A (en) Pyroelectric type detector, pyroelectric type detecting device and electronic apparatus
JP2006208177A (en) Infrared detector
JP3608427B2 (en) Infrared absorber and thermal infrared sensor using the infrared absorber
JP6826484B2 (en) Manufacturing method of infrared detector
KR20190140167A (en) Infrared detection sensor module and thermal imaging camera module including the module
WO2024105713A1 (en) Thermal infrared detector and method for manufacturing thermal infrared detector
JP2013160708A (en) Pyroelectric detector, pyroelectric detection device and electronic apparatus
JP2005147768A (en) Infrared detector
JP5456810B2 (en) Thermal infrared detector
JPH1144582A (en) Infrared detector and gas detector using the same
JP2013253896A (en) Photo detector, camera, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees