JP2003304005A - Thermal infrared detecting element and light receiving element - Google Patents

Thermal infrared detecting element and light receiving element

Info

Publication number
JP2003304005A
JP2003304005A JP2002106398A JP2002106398A JP2003304005A JP 2003304005 A JP2003304005 A JP 2003304005A JP 2002106398 A JP2002106398 A JP 2002106398A JP 2002106398 A JP2002106398 A JP 2002106398A JP 2003304005 A JP2003304005 A JP 2003304005A
Authority
JP
Japan
Prior art keywords
infrared
absorption layer
reflected
absorbing member
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002106398A
Other languages
Japanese (ja)
Inventor
Masaki Hirota
正樹 廣田
Yasushi Nakajima
靖志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002106398A priority Critical patent/JP2003304005A/en
Publication of JP2003304005A publication Critical patent/JP2003304005A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To make a thermal infrared detecting element gain a high sensitivity, by enhancing the infrared absorptance of an infrared absorbing member through sufficient reduction of its effective reflectance and improving the efficiency of converting infrared into thermal energy. <P>SOLUTION: The infrared absorbing member 10 has a laminated structure comprising a lower absorption layer 11 and upper absorption layers 13 each of which is separated by spaces formed by recessions 14 and is formed on the lower absorption layer 11. The upper surfaces of the upper absorption layers 13 function as upper reflection surfaces 15, while the parts of the upper surface of the lower absorption layer 11 that are exposed to the outside by the recessions 14 function as lower reflection surfaces 16. Respective reflected infrared rays that are reflected on the upper reflection layers 15 and on the lower reflection layers 16 are made to interfere with each other to effectively reduce the effective reflectance of the infrared absorbing member 10. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線を吸収して
熱エネルギに変換する赤外線吸収部材の実効反射率の低
減が図られた熱型赤外線検出素子、及び、実効反射率の
低減が図られた受光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared detecting element in which the effective reflectance of an infrared absorbing member that absorbs infrared rays and converts it into heat energy is reduced, and the effective reflectance is reduced. And a light receiving element.

【0002】[0002]

【従来の技術】対象物からの放射赤外線を検出する赤外
線検出素子は、その検出方式の違いによって、量子型と
熱型とに大別される。量子型の赤外線検出素子は、光導
電や光起電力の効果を利用して光を量子として検知する
ものであり、感度や応答速度に優れている反面、熱雑音
の影響を受けやすいために冷却が必要で、取り扱いが煩
雑であるといった問題がある。
2. Description of the Related Art Infrared detecting elements for detecting infrared rays emitted from an object are roughly classified into a quantum type and a thermal type, depending on the difference in detection method. Quantum infrared detectors detect light as quantum by utilizing the effects of photoconductivity and photoelectromotive force, and while they have excellent sensitivity and response speed, they are easily affected by thermal noise, so they are cooled. Is required and the handling is complicated.

【0003】一方、熱型の赤外線検出素子は、入射赤外
線を熱エネルギに変換してこの熱エネルギに応じた検知
部の特性変化を利用するものであり、量子型の赤外線検
出素子に比べると感度や応答速度が劣るものの、冷却が
不要で取り扱い性に優れ、また、波長選択性を有しない
ため、様々な分野で広く利用されている。このような熱
型赤外線検出素子としては、検出原理に様々な方式が検
討されており、代表的なものとしては、熱電対の熱起電
力を利用するサーモパイル型や、抵抗体の温度変化に伴
う抵抗値変化を利用するボロメータ型等が実用化され、
普及している。
On the other hand, the thermal type infrared detecting element converts incident infrared rays into heat energy and utilizes the characteristic change of the detecting portion according to the heat energy, and is more sensitive than the quantum type infrared detecting element. Although it has poor response speed and response speed, it is widely used in various fields because it does not require cooling, is easy to handle, and has no wavelength selectivity. As such a thermal infrared detection element, various methods have been studied for its detection principle. Typical examples include a thermopile type that uses thermoelectromotive force of a thermocouple and a temperature change of a resistor. Practical applications of bolometer type, etc. that utilize resistance change,
It is popular.

【0004】このような熱型赤外線検出素子は、その検
出感度が、対象物からの放射赤外線の熱エネルギへの変
換効率に依存することになる。そこで、熱型赤外線検出
素子では、通常、赤外線の吸収率が高い物質よりなる赤
外線吸収部材を設けて、この赤外線吸収部材で赤外線を
吸収して熱エネルギに変換することで、検出感度の向上
を図るようにしている。
The detection sensitivity of such a thermal-type infrared detecting element depends on the conversion efficiency of the infrared radiation emitted from the object into heat energy. Therefore, in the thermal infrared detection element, usually, an infrared absorption member made of a substance having a high infrared absorption rate is provided, and the infrared absorption is converted into heat energy by the infrared absorption member to improve the detection sensitivity. I am trying.

【0005】ところで、対象物からの放射赤外線を赤外
線吸収部材に十分に吸収させるためには、この赤外線吸
収部材での実効的反射率を極力低減して、赤外線吸収部
材での反射による損失を抑制することが重要である。
By the way, in order to make the infrared absorbing member sufficiently absorb the infrared rays emitted from the object, the effective reflectance of the infrared absorbing member is reduced as much as possible to suppress the loss due to the reflection at the infrared absorbing member. It is important to.

【0006】このような赤外線吸収部材での反射に対す
る対策としては、従来、例えば特開2000−2059
44号公報に記載されているように、赤外線吸収部材か
らλ/4n離れた位置に全反射膜を設け、赤外線吸収部
材にて反射される反射赤外線と、赤外線吸収部材を透過
して全反射膜にて反射される反射赤外線とを干渉させて
相互に打ち消しあうようにして、赤外線吸収部材の実効
的反射率を低減させるようにしているのが一般的であ
る。なお、λは赤外線の波長、nは赤外線吸収部材から
全反射膜の間に介在する物質の屈折率である。
As a measure against the reflection on the infrared absorbing member, a conventional method is disclosed in, for example, Japanese Patent Laid-Open No. 2000-2059.
As described in Japanese Patent Laid-Open No. 44-44, a total reflection film is provided at a position λ / 4n away from the infrared absorption member, and the reflected infrared light reflected by the infrared absorption member and the total reflection film transmitted through the infrared absorption member. It is common to reduce the effective reflectance of the infrared absorbing member by interfering with the reflected infrared rays reflected by and canceling each other out. Here, λ is the wavelength of infrared rays, and n is the refractive index of the substance interposed between the infrared absorbing member and the total reflection film.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た特開2000−205944号公報に記載されている
ような従来の方法では、原理的に、赤外線吸収部材にて
反射される反射赤外線の強度と全反射膜にて反射される
反射赤外線の強度とが異なることになるため、これらの
反射赤外線を相互干渉によって完全に打ち消すことがで
きないという問題がある。
However, in the conventional method as described in the above-mentioned Japanese Patent Laid-Open No. 2000-205944, in principle, the intensity of the reflected infrared light reflected by the infrared absorbing member and the total Since the intensity of the reflected infrared rays reflected by the reflection film is different, there is a problem that these reflected infrared rays cannot be completely canceled by mutual interference.

【0008】すなわち、全反射膜にて反射される反射赤
外線は、赤外線吸収部材を透過する透過光であるため、
赤外線吸収部材を透過する際にその一部が赤外線吸収部
材により吸収されて減衰することになる。そして、この
減衰した反射赤外線を赤外線吸収部材にて反射される反
射赤外線と干渉させても、赤外線吸収部材にて反射され
る反射赤外線を完全に打ち消すことができず、赤外線吸
収部材の実効的反射率を十分に低減させて、赤外線の吸
収率を効果的に高めることが困難である。
That is, since the reflected infrared light reflected by the total reflection film is the transmitted light that passes through the infrared absorbing member,
When passing through the infrared absorbing member, a part of the infrared absorbing member is absorbed and attenuated by the infrared absorbing member. Even if the attenuated reflected infrared rays interfere with the reflected infrared rays reflected by the infrared absorbing member, the reflected infrared rays reflected by the infrared absorbing member cannot be completely canceled out, and the effective reflection of the infrared absorbing member is prevented. It is difficult to reduce the rate sufficiently to effectively increase the infrared absorption rate.

【0009】特に、赤外線吸収部材は、上述したよう
に、赤外線を吸収して熱エネルギへの変換効率を高める
目的で設けられており、赤外線の吸収率が高い物質より
なるため、この赤外線吸収部材を透過する赤外線の減衰
分は大きくなる傾向にある。したがって、以上のような
方法では、赤外線吸収部材の実効的反射率を十分に低減
させることはできず、赤外線吸収部材の吸収率を十分に
高めることができないのが実情である。
In particular, the infrared absorbing member is provided for the purpose of absorbing infrared rays and increasing the efficiency of conversion into heat energy as described above, and is made of a substance having a high infrared absorption rate. The amount of attenuation of infrared rays that pass through tends to increase. Therefore, in the above method, the effective reflectance of the infrared absorbing member cannot be sufficiently reduced, and the absorptance of the infrared absorbing member cannot be sufficiently increased.

【0010】本発明は、以上のような従来の実情に鑑み
て創案されたものであって、赤外線吸収部材の実効的反
射率を十分に低減させて赤外線の吸収率を高め、赤外線
の熱エネルギへの変換効率を向上させて高い感度が得ら
れるようにした熱型赤外線検出素子、及び、実効反射率
を低減させて高い感度が得られるようにした受光素子を
提供することを目的としている。
The present invention was conceived in view of the conventional circumstances as described above, and the effective reflectance of the infrared absorbing member is sufficiently reduced to increase the infrared absorption rate, and the infrared thermal energy is increased. It is an object of the present invention to provide a thermal-type infrared detection element having improved conversion efficiency to obtain high sensitivity and a light-receiving element having reduced effective reflectance to obtain high sensitivity.

【0011】[0011]

【課題を解決するための手段】本発明に係る熱型赤外線
検出素子は、入射赤外線を赤外線吸収部材で吸収して熱
エネルギに変換し、この熱エネルギに応じた検知部の特
性変化を利用して、前記入射赤外線の強度に応じた出力
値を出力するものであり、前記赤外線吸収部材が、下部
吸収層と、凹部によって空間的に分離された状態で前記
下部吸収層の上部に配置された複数の上部吸収層とを有
し、前記上部吸収層の上面が上部反射面とされていると
共に、前記凹部により外部に露出される前記下部吸収層
の上面が下部反射面とされて、前記上部反射面にて反射
される反射赤外線と前記下部反射面にて反射される反射
赤外線とが互いに干渉することで実効的反射率が低減さ
れていることを特徴としている。
A thermal infrared detecting element according to the present invention absorbs incident infrared rays by an infrared absorbing member to convert it into thermal energy, and utilizes a characteristic change of a detecting portion in accordance with this thermal energy. And outputs an output value according to the intensity of the incident infrared ray, and the infrared absorbing member is disposed above the lower absorbing layer in a state of being spatially separated from the lower absorbing layer by the concave portion. A plurality of upper absorption layers, and the upper surface of the upper absorption layer serves as an upper reflection surface, and the upper surface of the lower absorption layer exposed to the outside by the recess serves as a lower reflection surface. It is characterized in that the reflected infrared rays reflected by the reflecting surface and the reflected infrared rays reflected by the lower reflecting surface interfere with each other to reduce the effective reflectance.

【0012】この本発明に係る熱型赤外線検出素子で
は、赤外線吸収部材の上部反射面と下部反射面との双方
に対して、空気中を伝播する赤外線がそれぞれ直接照射
されることになるので、上部反射面にて反射される反射
赤外線の強度と、下部反射面にて反射される反射赤外線
の強度とがほぼ等しくなっている。そして、これら強度
が等しい反射赤外線同士を相互に干渉させるようにして
いるので、赤外線吸収部材での反射赤外線がほぼ完全に
打ち消され、赤外線吸収部材の実効的反射率が効果的に
低減されることになる。
In the thermal infrared detecting element according to the present invention, since infrared rays propagating in the air are directly irradiated to both the upper reflecting surface and the lower reflecting surface of the infrared absorbing member, The intensity of the reflected infrared rays reflected by the upper reflecting surface and the intensity of the reflected infrared rays reflected by the lower reflecting surface are substantially equal. Since the reflected infrared rays having the same intensity are made to interfere with each other, the reflected infrared rays at the infrared absorbing member are almost completely canceled out, and the effective reflectance of the infrared absorbing member is effectively reduced. become.

【0013】この本発明に係る熱型赤外線検出素子にお
いて、赤外線吸収部材の下部吸収層は、一体の赤外線吸
収膜よりなるようにしてもよいし、また、空間的に分離
されて上部吸収層と異なる位置にそれぞれ配置されるよ
うにしてもよい。赤外線吸収部材の下部吸収層を一体の
赤外線吸収膜よりなるようにした場合には、赤外線吸収
部材の作製が容易となり、空間的に分離されて上部吸収
層と異なる位置にそれぞれ配置されるようにした場合に
は、熱容量が低減されるので応答速度の向上を図る上で
有利となる。
In the thermal infrared detecting element according to the present invention, the lower absorbing layer of the infrared absorbing member may be an integral infrared absorbing film, or it may be spatially separated from the upper absorbing layer. You may make it arrange | position each at a different position. When the lower absorption layer of the infrared absorption member is made of an integral infrared absorption film, the infrared absorption member is easily manufactured, and the infrared absorption member is spatially separated and placed in a position different from that of the upper absorption layer. In this case, the heat capacity is reduced, which is advantageous in improving the response speed.

【0014】また、赤外線吸収部材の下部吸収層が、空
間的に分離されて上部吸収層と異なる位置にそれぞれ配
置されるようにした場合には、この下部吸収層に、例え
ばサーモパイル等を有する検出部の配線部材としての機
能を持たせることもでき、熱型赤外線検出素子の構造を
簡素化できると共に、熱型赤外線検出素子全体の薄型化
を図る上で有利となる。
When the lower absorption layer of the infrared absorbing member is spatially separated and arranged at a position different from that of the upper absorption layer, the lower absorption layer has, for example, a thermopile or the like. The thermal infrared detection element can be simplified in structure, and it is advantageous in reducing the thickness of the thermal infrared detection element as a whole.

【0015】また、この本発明に係る熱型赤外線検出素
子において、赤外線吸収部材の上部吸収層と下部吸収層
との間には、これら上部吸収層や下部吸収層と異なる物
質よりなる中間層を設けるようにしてもよい。このよう
に、赤外線吸収部材の上部吸収層と下部吸収層との間に
中間層を設けるようにした場合には、上部吸収層の作製
精度を向上させ、また、下部吸収層の損傷を低減させる
ことが期待できる。
Further, in the thermal infrared detecting element according to the present invention, an intermediate layer made of a substance different from the upper absorbing layer and the lower absorbing layer is provided between the upper absorbing layer and the lower absorbing layer of the infrared absorbing member. It may be provided. In this way, when the intermediate layer is provided between the upper absorption layer and the lower absorption layer of the infrared absorption member, the manufacturing accuracy of the upper absorption layer is improved and the damage of the lower absorption layer is reduced. Can be expected.

【0016】また、この本発明に係る熱型赤外線検出素
子において、赤外線吸収部材の上部吸収層と下部吸収層
とは、入射赤外線に対して同等の反射特性を有する物
質、或いは同一の物質よりなることが望ましい。このよ
うに、上部吸収層と下部吸収層とを入射赤外線に対して
同等の反射特性を有する物質、或いは同一の物質で作製
した場合には、上部反射面にて反射される反射赤外線と
下部反射面にて反射される反射赤外線とで振幅及び位相
特性を揃えることができ、赤外線吸収部材の実効的反射
率をより効果的に低減させることができる。
Further, in the thermal infrared detecting element according to the present invention, the upper absorption layer and the lower absorption layer of the infrared absorption member are made of a material having the same reflection characteristic with respect to incident infrared rays, or the same material. Is desirable. As described above, when the upper absorption layer and the lower absorption layer are made of a material having the same reflection characteristics with respect to the incident infrared rays or the same material, the reflected infrared rays and the lower reflection rays reflected by the upper reflection surface are reflected. Amplitude and phase characteristics can be matched with the reflected infrared rays reflected by the surface, and the effective reflectance of the infrared absorbing member can be reduced more effectively.

【0017】また、本発明に係る受光素子は、空間的に
分離された上部反射面と、光が直接入射される下部反射
面とを有し、前記上部反射面にて反射される反射光と前
記下部反射面にて反射される反射光とが互いに干渉する
ことで実効的反射率が低減されていることを特徴として
いる。
Further, the light receiving element according to the present invention has a spatially separated upper reflection surface and a lower reflection surface on which light is directly incident, and reflected light reflected by the upper reflection surface. It is characterized in that the reflected light reflected by the lower reflection surface interferes with each other to reduce the effective reflectance.

【0018】この本発明に係る受光素子では、上部反射
面にて反射される反射光の強度と、下部反射面にて反射
される反射光の強度とがほぼ等しくなり、これら強度が
等しい反射光同士が相互干渉によってほぼ完全に打ち消
されるので、実効的反射率が効果的に低減されることに
なる。
In the light receiving element according to the present invention, the intensity of the reflected light reflected by the upper reflecting surface and the intensity of the reflected light reflected by the lower reflecting surface become substantially equal, and the reflected light having the same intensity is obtained. Since the mutual interference is almost completely canceled by the mutual interference, the effective reflectance is effectively reduced.

【0019】[0019]

【発明の効果】本発明に係る熱型赤外線検出素子によれ
ば、赤外線吸収部材の上部反射面にて反射される反射赤
外線と下部反射面にて反射される反射赤外線とが相互干
渉によってほぼ完全に打ち消され、赤外線吸収部材の実
効的反射率が効果的に低減されるので、検出対象物から
の放射赤外線を高い吸収率で赤外線吸収部材に吸収させ
て、赤外線の熱エネルギへの変換効率を良好なものと
し、検出感度の向上を実現することができる。
According to the thermal infrared ray detecting element of the present invention, the reflected infrared ray reflected by the upper reflecting surface and the reflected infrared ray reflected by the lower reflecting surface of the infrared absorbing member are almost completely interfered with each other. Since the effective reflectance of the infrared absorbing member is effectively reduced, the infrared radiation emitted from the object to be detected is absorbed by the infrared absorbing member at a high absorption rate, and the conversion efficiency of infrared rays into heat energy is improved. As a result, it is possible to improve the detection sensitivity.

【0020】また、本発明に係る受光素子によれば、上
部反射面にて反射される反射光と下部反射面にて反射さ
れる反射光とが相互干渉によってほぼ完全に打ち消さ
れ、実効的反射率が効果的に低減されるので、検出感度
の向上を実現することができる。
Further, according to the light receiving element of the present invention, the reflected light reflected by the upper reflecting surface and the reflected light reflected by the lower reflecting surface are almost completely canceled by mutual interference, and effective reflection is achieved. Since the rate is effectively reduced, the detection sensitivity can be improved.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。なお、ここでは、多数の熱電対を
直列に接続してこれら熱電対の熱起電力を利用して検出
対象物からの放射赤外線を検出するようにしたサーモパ
イル型の熱型赤外線検出素子に本発明を適用した例を挙
げて具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. Here, the present invention relates to a thermopile type thermal infrared detecting element in which a large number of thermocouples are connected in series and the infrared radiation from a detection target is detected by utilizing the thermoelectromotive force of these thermocouples. Will be specifically described with reference to an example to which is applied.

【0022】(第1の実施形態)本発明を適用したサー
モパイル型の熱型赤外線検出素子の一構成例を図1に断
面図で示す。この図1に示す熱型赤外線検出素子1は、
熱分離用の空洞2aを有するシリコン基板2の主面部上
に、メンブレン3を介してサーモパイルを有する検出部
4が設けられ、この検出部4上に赤外線吸収部材10が
設けられた構造となっている。
(First Embodiment) FIG. 1 is a sectional view showing a structural example of a thermopile type thermal infrared detecting element to which the present invention is applied. The thermal infrared detection element 1 shown in FIG.
The detection unit 4 having a thermopile is provided on the main surface of the silicon substrate 2 having the cavity 2a for heat separation via the membrane 3, and the infrared absorption member 10 is provided on the detection unit 4. There is.

【0023】メンブレン3は、検出部4及び赤外線吸収
部材10をシリコン基板2の空洞2a上に位置させてシ
リコン基板2から熱分離させた状態で支持するものであ
り、例えば窒化膜等よりなる。なお、シリコン基板2の
空洞2aは、例えば、シリコン基板2の主面部上にメン
ブレン3、検出部4、赤外線吸収部材10となる各膜を
順次積層形成した後、メンブレン3となる窒化膜の一部
にドライエッチング等の手法でエッチング液供給孔を形
成し、温めた抱水ヒドラジン等の異方性エッチング液で
シリコン基板2をエッチングすることによって形成され
る。
The membrane 3 supports the detecting portion 4 and the infrared absorbing member 10 in a state of being positioned above the cavity 2a of the silicon substrate 2 and thermally separated from the silicon substrate 2, and is made of, for example, a nitride film or the like. The cavity 2a of the silicon substrate 2 is formed, for example, on the main surface portion of the silicon substrate 2 by sequentially laminating the films forming the membrane 3, the detection unit 4, and the infrared absorbing member 10, and then forming one of the nitride films forming the membrane 3. The silicon substrate 2 is formed by forming an etching solution supply hole in the portion by a method such as dry etching and etching the silicon substrate 2 with a heated anisotropic etching solution such as hydrazine hydrate.

【0024】検出部4は、温度変化に応じた起電力を発
生させるものであり、複数のp型ポリシリコン5とn型
ポリシリコン6とを有している。これら複数のp型ポリ
シリコン5とn型ポリシリコン6は、コンタクトホール
を介してアルミニウム等の導電材料よりなる配線部材7
により交互に直列接続されて、1つのサーモパイルを構
成している。なお、これらp型ポリシリコン5やn型ポ
リシリコン6、配線部材7は、それぞれ酸化膜8により
覆われて表面の保護が図られている。
The detecting section 4 is for generating an electromotive force according to a temperature change, and has a plurality of p-type polysilicons 5 and n-type polysilicons 6. The plurality of p-type polysilicons 5 and n-type polysilicons 6 are connected to each other via the contact holes by a wiring member 7 made of a conductive material such as aluminum.
Are alternately connected in series to form one thermopile. The p-type polysilicon 5, the n-type polysilicon 6, and the wiring member 7 are covered with an oxide film 8 to protect the surface.

【0025】赤外線吸収部材10は、検出対象物からの
放射赤外線を吸収して熱エネルギに変換するものであ
り、検出部4の配線部材7を覆う酸化膜8上に形成され
ている。本発明を適用した熱型赤外線検出素子1におい
ては、この赤外線吸収部材10の実効的反射率が大幅に
低減されて、赤外線吸収率の向上が図られている。な
お、この赤外線吸収部材10については、詳細を後述す
る。
The infrared absorbing member 10 absorbs infrared rays emitted from the object to be detected and converts it into heat energy, and is formed on the oxide film 8 covering the wiring member 7 of the detecting section 4. In the thermal infrared detecting element 1 to which the present invention is applied, the effective reflectance of the infrared absorbing member 10 is significantly reduced, and the infrared absorbing rate is improved. The infrared absorbing member 10 will be described in detail later.

【0026】以上のように構成される本発明を適用した
熱型赤外線検出素子1では、検出対象物からの放射赤外
線が赤外線吸収部材10に入射すると、この入射した赤
外線が赤外線吸収部材10を通過する際にこの赤外線吸
収部材10によって吸収され、熱エネルギに変換され
る。この赤外線吸収部材10は、後述するように、実効
的反射率が低減されて赤外線の吸収率が高められている
ので、赤外線の熱エネルギへの変換効率が良好となる。
In the thermal type infrared detecting element 1 to which the present invention having the above-mentioned structure is applied, when the infrared ray radiated from the object to be detected is incident on the infrared absorbing member 10, the incident infrared ray passes through the infrared absorbing member 10. When this is done, it is absorbed by this infrared absorbing member 10 and converted into heat energy. As will be described later, the infrared ray absorbing member 10 has a reduced effective reflectance and an increased infrared ray absorptivity, so that the infrared ray is efficiently converted into heat energy.

【0027】赤外線吸収部材10によって赤外線から変
換された熱エネルギは、熱伝導によって検出部4の酸化
膜8を介して赤外線吸収部材10の近傍に位置する接点
部(温接点)に伝達され、この温接点のp型ポリシリコ
ン5及びn型ポリシリコン6の温度を上昇させる。この
とき、温接点の下部には熱分離用の空洞2aが形成され
ているため、温接点からの熱はシリコン基板2に伝わら
ず、メンブレン3上に形成された各膜のみを通って伝達
されていくことになる。しかしながら、メンブレン3上
に形成された各膜は薄く熱抵抗が大きいために、温接点
からの熱は、赤外線吸収部材10から離れた位置の接点
部(冷接点)にはなかなか伝達されず、温接点と冷接点
との間に温度差が生じることになる。その結果、ベーゼ
ック効果により起電力が生じて、入射赤外線の強度に応
じた電圧値が出力されることになる。
The thermal energy converted from infrared rays by the infrared absorbing member 10 is transferred to the contact portion (warm contact) located near the infrared absorbing member 10 through the oxide film 8 of the detecting portion 4 by heat conduction, The temperature of the p-type polysilicon 5 and the n-type polysilicon 6 of the hot junction is raised. At this time, since the cavity 2a for heat separation is formed in the lower part of the hot junction, the heat from the hot junction is not transmitted to the silicon substrate 2 but is transmitted only through each film formed on the membrane 3. I will go. However, since each film formed on the membrane 3 is thin and has high thermal resistance, the heat from the hot junction is not easily transmitted to the contact portion (cold junction) located away from the infrared absorbing member 10, and the heat is not transmitted. There will be a temperature difference between the contact and the cold junction. As a result, an electromotive force is generated due to the Bezek effect, and a voltage value according to the intensity of incident infrared rays is output.

【0028】ここで、本発明を適用した熱型赤外線検出
素子1において特徴部分となる赤外線吸収部材10につ
いて、図2を参照して更に詳しく説明する。
Here, the infrared absorbing member 10, which is a characteristic part of the thermal infrared detecting element 1 to which the present invention is applied, will be described in more detail with reference to FIG.

【0029】この赤外線吸収部材10は、検出部4の酸
化膜8上に形成され、下部吸収層11、中間層12、上
部吸収層13がこの順で積層された積層構造となってい
る。
The infrared absorbing member 10 is formed on the oxide film 8 of the detecting section 4 and has a laminated structure in which a lower absorbing layer 11, an intermediate layer 12 and an upper absorbing layer 13 are laminated in this order.

【0030】下部吸収層11は、例えば、光吸収材料と
なる金属微粒子が混合、混濁されたシリコン酸化膜等よ
りなり、検出部4の酸化膜8上に一体の膜として形成さ
れている。そして、この下部吸収層11上に、凹部14
によって空間的に分離された状態で、複数の上部吸収層
13が中間層12を介して積層されている。なお、下部
吸収層11の材料としては、赤外線に対して反射が少な
く吸収が多いものが何れも適用可能であり、例えば、金
属黒色膜等を下部吸収層11としてもよい。
The lower absorption layer 11 is made of, for example, a silicon oxide film or the like in which fine metal particles serving as a light absorbing material are mixed and turbid, and is formed as an integral film on the oxide film 8 of the detection unit 4. Then, the recess 14 is formed on the lower absorption layer 11.
The plurality of upper absorption layers 13 are laminated with the intermediate layer 12 interposed therebetween in the state of being spatially separated by. As the material of the lower absorption layer 11, any material that reflects less infrared light and absorbs much infrared light can be applied. For example, a black metal film or the like may be used as the lower absorption layer 11.

【0031】複数の上部吸収層13は、例えば、下部吸
収層11と同様に、金属微粒子が混合、混濁されたシリ
コン酸化膜等よりなり、赤外線の入射方向に対して直交
する方向に、凹部14を挟んで隣接して配置されてい
る。この上部吸収層13の材料も、下部吸収層11の材
料と同様に、赤外線に対して反射が少なく吸収が多いも
のが何れも適用可能である。なお、下部吸収層11と上
部吸収層13は、入射する赤外線に対して同等の反射特
性を有する材料、或いは同一の材料よりなることが望ま
しい。
Like the lower absorption layer 11, the plurality of upper absorption layers 13 are made of, for example, a silicon oxide film in which fine metal particles are mixed and turbid, and the recesses 14 are formed in a direction orthogonal to the incident direction of infrared rays. They are placed adjacent to each other. As the material of the upper absorption layer 13, as with the material of the lower absorption layer 11, any material that reflects less infrared light and absorbs much infrared light is applicable. The lower absorption layer 11 and the upper absorption layer 13 are preferably made of a material having the same reflection characteristic with respect to incident infrared rays, or the same material.

【0032】また、中間層12は、ゲルマニウム薄膜等
よりなり、上部吸収層13と同様に凹部14によって空
間的に分離した状態で、下部吸収層11と上部吸収層1
3との間に配置されている。この中間層12は、赤外線
吸収部材10における入射赤外線の吸収に殆ど寄与しな
いので、必ずしも設ける必要はないが、下部吸収層11
と上部吸収層13との間に中間層12を設けるようにし
た場合には、上部吸収層13の作製精度を向上させ、ま
た、下部吸収層11の損傷を低減させることが期待でき
る。
Further, the intermediate layer 12 is made of a germanium thin film or the like and, like the upper absorption layer 13, is spatially separated by the recess 14, and the lower absorption layer 11 and the upper absorption layer 1 are separated from each other.
It is arranged between 3 and 3. The intermediate layer 12 does not necessarily contribute to the absorption of the incident infrared rays in the infrared absorbing member 10, so it is not necessarily provided, but the lower absorption layer 11
When the intermediate layer 12 is provided between the upper absorption layer 13 and the upper absorption layer 13, it is expected that the manufacturing accuracy of the upper absorption layer 13 is improved and the damage of the lower absorption layer 11 is reduced.

【0033】以上のような構造の赤外線吸収部材10
は、リフトオフ等の一般的な半導体作製工程によって容
易に作製できる。具体的には、例えば、検出部4の酸化
膜8上に下部吸収層11を薄膜形成した後に、この下部
吸収層11上に、凹部14の形成位置を覆うパターン形
状のレジストマスクを形成する。そして、このレジスト
マスクが形成された下部吸収層11上に、中間層12の
材料及び上部吸収層13の材料を順次成膜し、凹部14
の形成位置を覆うレジストマスクを、このレジストマス
ク上に成膜された材料と共に剥離する。これにより、中
間層12及び上部吸収層13が凹部14によって空間的
に分離された状態で下部吸収層11上に積層された構造
の赤外線吸収部材10が作製されることになる。
The infrared absorbing member 10 having the above structure
Can be easily manufactured by a general semiconductor manufacturing process such as lift-off. Specifically, for example, after forming a lower absorption layer 11 on the oxide film 8 of the detection unit 4, a patterned resist mask that covers the formation position of the recess 14 is formed on the lower absorption layer 11. Then, the material of the intermediate layer 12 and the material of the upper absorption layer 13 are sequentially formed on the lower absorption layer 11 on which the resist mask is formed, and the recess 14 is formed.
The resist mask covering the formation position of is removed together with the material formed on the resist mask. Thereby, the infrared absorbing member 10 having a structure in which the intermediate layer 12 and the upper absorption layer 13 are spatially separated by the recess 14 and stacked on the lower absorption layer 11 is manufactured.

【0034】以上のような赤外線吸収部材10は、断面
形状が櫛形の形状とされており、検出対象から放射され
て空気中を伝播する赤外線が、上部吸収層13の上面
(上部反射面15)と、下部吸収層11の上面で凹部1
4によって外部に露出している部分(下部反射面16)
との双方に、直接照射されることになる。そして、検出
対象からの赤外線が、これら上部反射面15及び下部反
射面16の双方でそれぞれ反射されることになる。仮
に、上部吸収層13及び下部吸収層11が共に屈折率n
1の材料で形成されているとすると、((n1−1)/
(n1+1))の反射が上部反射面15及び下部反射
面16の双方で発生することになる。
The infrared absorbing member 10 as described above has a comb-shaped cross section, and the infrared rays radiated from the detection object and propagating in the air are the upper surface of the upper absorption layer 13 (the upper reflection surface 15). And the concave portion 1 on the upper surface of the lower absorption layer 11.
Part exposed to the outside by 4 (lower reflecting surface 16)
Both will be directly irradiated. Then, the infrared rays from the detection target are reflected by both the upper reflecting surface 15 and the lower reflecting surface 16. If the upper absorption layer 13 and the lower absorption layer 11 both have a refractive index n.
If it is formed of the material of No. 1, ((n1-1) /
The reflection of (n1 + 1) 2 will occur on both the upper reflecting surface 15 and the lower reflecting surface 16.

【0035】本発明を適用した熱型赤外線検出素子1の
赤外線吸収部材10では、これら上部反射面15と下部
反射面16との高さ方向の間隔D、すなわち、中間層1
2及び上部吸収層13の総厚Dが、λ/4nに設定され
ている。なお、λは検出対象からの放射赤外線の波長で
あり、nは赤外線が伝播する媒質の屈折率(本例では赤
外線が空気中を伝播するのでn=1と考えてよい。)で
ある。具体的には、例えば、検出対象が人体で放射赤外
線の波長λが約10μmとすると、上部反射面15と下
部反射面16との間隔Dは、約2.5μmに設定されて
いる。
In the infrared absorbing member 10 of the thermal infrared detecting element 1 to which the present invention is applied, the distance D between the upper reflecting surface 15 and the lower reflecting surface 16 in the height direction, that is, the intermediate layer 1
2 and the total thickness D of the upper absorption layer 13 is set to λ / 4n. It should be noted that λ is the wavelength of infrared rays emitted from the detection target, and n is the refractive index of the medium in which the infrared rays propagate (in this example, infrared rays propagate in the air, so n = 1 may be considered). Specifically, for example, when the detection target is a human body and the wavelength λ of infrared radiation is about 10 μm, the distance D between the upper reflecting surface 15 and the lower reflecting surface 16 is set to about 2.5 μm.

【0036】また、赤外線吸収部材10の隣接する上部
吸収層13間の距離L、すなわち、凹部14の幅Lは、
検出対象からの放射赤外線の波長λの2倍以下、望まし
くは検出対象からの放射赤外線の波長λ以下に設定され
る。具体的には、例えば、検出対象が人体で放射赤外線
の波長λが約10μmとすると、隣接する上部吸収層1
3間の距離Lは20μm以下に設定される。
The distance L between the adjacent upper absorption layers 13 of the infrared absorbing member 10, that is, the width L of the recess 14 is
The wavelength is set to be equal to or less than twice the wavelength λ of infrared radiation emitted from the detection target, and preferably to be equal to or less than the wavelength λ of infrared radiation emitted from the detection target. Specifically, for example, when the detection target is a human body and the wavelength λ of the infrared radiation is about 10 μm, the adjacent upper absorption layer 1
The distance L between the three is set to 20 μm or less.

【0037】赤外線吸収部材10が以上のような構造を
有していることにより、上部反射面15にて反射された
反射赤外線と下部反射面16にて反射された反射赤外線
との光路差はλ/2となり、上部反射面15にて反射さ
れた反射赤外線の位相と下部反射面16にて反射された
反射赤外線の位相とが180°異なったものとなる。ま
た、これらの反射赤外線は共に空気中を伝播しているの
で、伝播の過程で殆ど減衰されない。したがって、これ
ら上部反射面15にて反射された反射赤外線と下部反射
面16にて反射された反射赤外線は、その振幅がほぼ等
しく且つその位相が互いに逆位相となっているので、こ
れらの反射赤外線同士が相互干渉することで、赤外線吸
収部材10での反射赤外線がほぼ完全に打ち消され、赤
外線吸収部材10の実効的反射率が効果的に低減される
ことになる。特に、下部吸収層11と上部吸収層13と
を、入射する赤外線に対して同等の反射特性を有する材
料、或いは同一の材料で形成した場合には、上部反射面
15にて反射される反射赤外線と下部反射面16にて反
射される反射赤外線とで振幅及び位相特性をほぼ完全に
揃えることができ、赤外線吸収部材10の実効的反射率
がより効果的に低減されることになる。これにより、赤
外線吸収部材10での赤外線の吸収率が高められ、赤外
線の熱エネルギへの変換効率が良好となる。
Since the infrared absorbing member 10 has the above structure, the optical path difference between the reflected infrared light reflected by the upper reflecting surface 15 and the reflected infrared light reflected by the lower reflecting surface 16 is λ. / 2, and the phase of the reflected infrared light reflected by the upper reflection surface 15 and the phase of the reflected infrared light reflected by the lower reflection surface 16 are different by 180 °. Further, since both of these reflected infrared rays propagate in the air, they are hardly attenuated in the process of propagation. Therefore, the reflected infrared rays reflected by the upper reflecting surface 15 and the reflected infrared rays reflected by the lower reflecting surface 16 have substantially the same amplitude and opposite phases to each other. The mutual interference between them cancels out the reflected infrared rays from the infrared absorbing member 10 almost completely, and effectively reduces the effective reflectance of the infrared absorbing member 10. In particular, when the lower absorption layer 11 and the upper absorption layer 13 are made of a material having the same reflection characteristic with respect to the incident infrared rays or the same material, the reflected infrared rays reflected by the upper reflection surface 15 The amplitude and phase characteristics can be almost completely matched by the reflected infrared rays reflected by the lower reflection surface 16, and the effective reflectance of the infrared absorbing member 10 can be more effectively reduced. Thereby, the absorption rate of infrared rays in the infrared absorbing member 10 is increased, and the efficiency of conversion of infrared rays into heat energy is improved.

【0038】本発明を適用した熱型赤外線検出素子1で
は、以上のように、赤外線吸収部材10の実効的反射率
が低減されて赤外線の吸収率が高められ、検出対象から
の放射赤外線が効率良く熱エネルギに変換されるように
なっているので、極めて高い感度で検出対象からの放射
赤外線を検出することができる。
In the thermal infrared detecting element 1 to which the present invention is applied, as described above, the effective reflectance of the infrared absorbing member 10 is reduced and the infrared absorptivity is increased, so that the infrared radiation emitted from the object to be detected is efficient. Since it is well converted into heat energy, it is possible to detect infrared rays emitted from the detection target with extremely high sensitivity.

【0039】なお、以上説明した熱型赤外線検出素子1
では、本発明の目的を達成しうる範囲で細部の様々な構
造変更等が可能である。具体的には、以上の例では、赤
外線吸収部材10の下部吸収層11を一体の膜として構
成しているが、本発明を適用した熱型赤外線検出素子1
では、下部吸収層11を空間的に分離して上部吸収層1
3と異なる位置に配置するようにしても同等の効果を得
ることができる。ただし、赤外線吸収部材10の下部吸
収層11を一体の膜として構成した場合には、赤外線吸
収部材10の作製を容易に行うことができる。一方、赤
外線吸収部材10の下部吸収層11を空間的に分離して
上部吸収層13と異なる位置に配置するようにした場合
には、下部吸収層11における熱容量が低減されるの
で、応答速度の向上を図る上で有利となる。
The thermal infrared detecting element 1 described above is used.
Then, various structural changes in details can be made within a range in which the object of the present invention can be achieved. Specifically, in the above example, the lower absorption layer 11 of the infrared absorption member 10 is configured as an integral film, but the thermal infrared detection element 1 according to the present invention is applied.
Then, the lower absorption layer 11 is spatially separated and the upper absorption layer 1 is separated.
Even if they are arranged at positions different from 3, the same effect can be obtained. However, when the lower absorption layer 11 of the infrared absorbing member 10 is formed as an integral film, the infrared absorbing member 10 can be easily manufactured. On the other hand, when the lower absorption layer 11 of the infrared absorption member 10 is spatially separated and disposed at a position different from that of the upper absorption layer 13, the heat capacity of the lower absorption layer 11 is reduced, so that the response speed It is advantageous for improvement.

【0040】(第2の実施形態)本発明を適用した熱型
赤外線検出素子の他の構成例を図3に断面図で示す。こ
の図3に示す熱型赤外線検出素子20は、基本構成を上
述した熱型赤外線検出素子1と同様とし、赤外線吸収部
材10の下部吸収層11が空間的に分離されて、凹部1
4の直下に位置する検出部4の酸化膜8に埋め込まれ、
且つ、この下部吸収層11が検出部4の温接点における
配線部材7として機能するようになっている点を特徴と
するものである。なお、この図3に示す熱型赤外線検出
素子20において、上述した熱型赤外線検出素子1と同
様の構成については図中同一の符号を付して、詳細な説
明を省略する。
(Second Embodiment) FIG. 3 is a sectional view showing another structural example of the thermal infrared detecting element to which the present invention is applied. The thermal infrared detection element 20 shown in FIG. 3 has the same basic configuration as the thermal infrared detection element 1 described above, and the lower absorption layer 11 of the infrared absorption member 10 is spatially separated to form the concave portion 1.
Embedded in the oxide film 8 of the detector 4 located immediately below
The lower absorption layer 11 is characterized in that it functions as the wiring member 7 at the hot junction of the detection unit 4. In the thermal infrared detecting element 20 shown in FIG. 3, the same components as those of the thermal infrared detecting element 1 described above are denoted by the same reference numerals in the figure, and detailed description thereof will be omitted.

【0041】この熱型赤外線検出素子20では、赤外線
吸収部材10の下部吸収層11が空間的に分離されるこ
とで、この下部吸収層11自体の熱容量が低減されてい
る。また、空間的に分離された下部吸収層11が検出部
4の酸化膜8に埋め込まれ、温接点における配線部材7
として機能するようになっているので、上述した熱型赤
外線検出素子1のように下部吸収層11と配線部材7と
を酸化膜8で絶縁する必要がなく、その分、酸化膜8を
薄くすることが可能である。その結果、全体での熱容量
を更に低減することができるようになっている。
In this thermal infrared detecting element 20, the lower absorption layer 11 of the infrared absorption member 10 is spatially separated, so that the heat capacity of the lower absorption layer 11 itself is reduced. In addition, the spatially separated lower absorption layer 11 is embedded in the oxide film 8 of the detection unit 4, and the wiring member 7 at the hot junction is formed.
Since it is not necessary to insulate the lower absorption layer 11 and the wiring member 7 with the oxide film 8 as in the thermal infrared ray detecting element 1 described above, the oxide film 8 is thinned accordingly. It is possible. As a result, the total heat capacity can be further reduced.

【0042】この熱型赤外線検出素子20では、以上の
ように、赤外線吸収部材10の下部吸収層11が空間的
に分離されて、凹部14の直下に位置する検出部4の酸
化膜8に埋め込まれ、且つ、この下部吸収層11が検出
部4の温接点における配線部材7として機能する構造と
され、熱容量の大幅な低減が実現されているので、上述
した熱型赤外線検出素子1と同様に高感度での検出が可
能となることに加え、応答速度の向上も図られることに
なる。
In this thermal infrared detecting element 20, as described above, the lower absorption layer 11 of the infrared absorbing member 10 is spatially separated and embedded in the oxide film 8 of the detecting portion 4 located immediately below the recess 14. In addition, since the lower absorption layer 11 has a structure that functions as the wiring member 7 at the hot junction of the detection unit 4 and a large reduction in heat capacity is realized, like the thermal infrared detection element 1 described above. In addition to enabling highly sensitive detection, the response speed will be improved.

【0043】また、この熱型赤外線検出素子20では、
赤外線吸収部材10の下部吸収層11が検出部4の温接
点における配線部材7として機能するようになっている
ので、構造が簡素化されて作製工程の削減が実現できる
と共に、検出部4及び赤外線吸収部材10の薄型化を実
現して、これらを支持するメンブレン10の力学特性を
改善することができる。
Further, in this thermal infrared detecting element 20,
Since the lower absorption layer 11 of the infrared absorption member 10 functions as the wiring member 7 at the hot junction of the detection unit 4, the structure can be simplified and the number of manufacturing steps can be reduced, and the detection unit 4 and infrared rays can be reduced. The absorbing member 10 can be made thinner, and the mechanical characteristics of the membrane 10 supporting them can be improved.

【0044】(第3の実施形態)本発明を適用した熱型
赤外線検出素子の更に他の構成例を図4に断面図で示
す。この図4に示す熱型赤外線検出素子30は、基本構
成を上述した熱型赤外線検出素子1と同様とし、赤外線
吸収部材10の上部吸収層13の上面である上部反射面
15と、下部吸収層11の上面で凹部14によって外部
に露出している部分である下部反射面16との双方が、
中間層12の材料と同様に、ゲルマニウム等の赤外線に
対する透過率の高い材料よりなるカバー層17で覆われ
ている点を特徴とするものである。なお、この図4に示
す熱型赤外線検出素子30において、上述した熱型赤外
線検出素子1と同様の構成については図中同一の符号を
付して、詳細な説明を省略する。
(Third Embodiment) FIG. 4 is a sectional view showing still another example of the structure of a thermal infrared detecting element to which the present invention is applied. The thermal infrared detection element 30 shown in FIG. 4 has the same basic configuration as the thermal infrared detection element 1 described above, and has an upper reflection surface 15 which is the upper surface of the upper absorption layer 13 of the infrared absorption member 10 and a lower absorption layer. Both the lower reflection surface 16 which is a portion exposed to the outside by the concave portion 14 on the upper surface of 11 is
Similar to the material of the intermediate layer 12, it is characterized in that it is covered with a cover layer 17 made of a material having a high transmittance for infrared rays such as germanium. In the thermal infrared detecting element 30 shown in FIG. 4, the same components as those of the thermal infrared detecting element 1 described above are denoted by the same reference numerals in the figure, and detailed description thereof will be omitted.

【0045】この熱型赤外線検出素子30では、カバー
層17を透過する赤外線が、赤外線吸収部材10の上部
反射面15及び下部反射面16に照射されることにな
る。この場合、例えばカバー層17の材料として屈折率
nが4のゲルマニウムを用い、赤外線の波長λが約10
μmとすると、上部反射面15と下部反射面16との間
隔Dは、約0.6μmに設定される。また、この場合に
は、カバー層17表面における実効反射率の低減も考慮
する必要があるので、上部反射面15上に形成されたカ
バー層17の表面と下部反射面16上に形成されたカバ
ー層17の表面との間隔は、約2.5μmに設定するこ
とが望ましい。
In this thermal infrared detecting element 30, the infrared rays transmitted through the cover layer 17 are applied to the upper reflecting surface 15 and the lower reflecting surface 16 of the infrared absorbing member 10. In this case, for example, germanium having a refractive index n of 4 is used as the material of the cover layer 17, and the infrared wavelength λ is about 10
If the distance is μm, the distance D between the upper reflecting surface 15 and the lower reflecting surface 16 is set to about 0.6 μm. Further, in this case, it is necessary to consider the reduction of the effective reflectance on the surface of the cover layer 17, so that the cover formed on the upper reflective surface 15 and the cover formed on the lower reflective surface 16 are covered. The distance from the surface of the layer 17 is preferably set to about 2.5 μm.

【0046】この熱型赤外線検出素子30では、以上の
ように、赤外線吸収部材10の上部反射面15及び下部
反射面16がそれぞれカバー層17で覆われた構造とな
っているので、上述した熱型赤外線検出素子1と同様に
高感度での検出が可能となることに加え、赤外線吸収部
材10の経時劣化等を有効に防止して、長寿命化を図る
ことができる。
As described above, the thermal infrared detecting element 30 has a structure in which the upper reflecting surface 15 and the lower reflecting surface 16 of the infrared absorbing member 10 are covered with the cover layer 17, respectively. In addition to enabling high-sensitivity detection as in the case of the infrared detector 1, the infrared absorbing member 10 can be effectively prevented from deteriorating with time, and the service life can be extended.

【0047】なお、以上は、サーモパイル型の熱型赤外
線検出素子に本発明を適用した例を挙げて具体的に説明
したが、本発明は、以上の例に限定されるものではな
く、他の方式で赤外線を検出する赤外線検出素子に対し
ても同様に適用可能である。更に、本発明の原理は、赤
外線検出素子に限らず、あらゆるタイプの受光素子に有
効に適用可能である。
In the above, the present invention has been specifically described with reference to an example in which the present invention is applied to a thermopile type thermal infrared detecting element, but the present invention is not limited to the above examples and other examples. The same can be applied to an infrared detection element that detects infrared rays by the method. Further, the principle of the present invention can be effectively applied not only to the infrared detecting element but also to any type of light receiving element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した熱型赤外線検出素子の一構成
例を示す断面図である。
FIG. 1 is a cross-sectional view showing one structural example of a thermal infrared detection element to which the present invention is applied.

【図2】前記熱型赤外線検出素子の赤外線吸収部材を拡
大して示す断面図である。
FIG. 2 is an enlarged sectional view showing an infrared absorbing member of the thermal infrared detecting element.

【図3】本発明を適用した熱型赤外線検出素子の他の構
成例を示す断面図である。
FIG. 3 is a cross-sectional view showing another configuration example of the thermal infrared detection element to which the present invention is applied.

【図4】本発明を適用した熱型赤外線検出素子の他の構
成例を示す断面図である。
FIG. 4 is a cross-sectional view showing another configuration example of the thermal infrared detection element to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 熱型赤外線検出素子 4 検出部 7 配線部材 10 赤外線吸収部材 11 下部吸収層 12 中間層 13 上部吸収層 14 凹部 15 上部反射面 16 下部反射面 20 熱型赤外線検出素子 30 熱型赤外線検出素子 1 Thermal infrared detector 4 detector 7 wiring members 10 Infrared absorbing member 11 Lower absorption layer 12 Middle class 13 Upper absorption layer 14 recess 15 Upper reflective surface 16 Lower reflective surface 20 Thermal infrared detector 30 Thermal infrared detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01J 5/02 H01L 27/14 K Fターム(参考) 2G065 AB02 BA11 BB24 BB50 DA20 2G066 BA08 BA55 BA60 4M118 AA01 AB01 BA05 BA30 CA03 CA14 CA32 CA34 CB07 EA01 EA04 GA10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) // G01J 5/02 H01L 27/14 K F term (reference) 2G065 AB02 BA11 BB24 BB50 DA20 2G066 BA08 BA55 BA60 4M118 AA01 AB01 BA05 BA30 CA03 CA14 CA32 CA34 CB07 EA01 EA04 GA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 入射赤外線を赤外線吸収部材で吸収して
熱エネルギに変換し、この熱エネルギに応じた検知部の
特性変化を利用して、前記入射赤外線の強度に応じた出
力値を出力する熱型赤外線検出素子において、 前記赤外線吸収部材が、下部吸収層と、凹部によって空
間的に分離された状態で前記下部吸収層の上部に配置さ
れた複数の上部吸収層とを有し、前記上部吸収層の上面
が上部反射面とされていると共に、前記凹部により外部
に露出される前記下部吸収層の上面が下部反射面とされ
て、前記上部反射面にて反射される反射赤外線と前記下
部反射面にて反射される反射赤外線とが互いに干渉する
ことで実効的反射率が低減されていることを特徴とする
熱型赤外線検出素子。
1. An incident infrared ray is absorbed by an infrared absorbing member and converted into heat energy, and an output value corresponding to the intensity of the incident infrared ray is output by utilizing a characteristic change of a detection unit according to the heat energy. In the thermal infrared detection element, the infrared absorption member has a lower absorption layer and a plurality of upper absorption layers arranged above the lower absorption layer in a state of being spatially separated by a recess, and the upper part The upper surface of the absorbing layer is an upper reflecting surface, and the upper surface of the lower absorbing layer exposed to the outside by the recess is a lower reflecting surface, and the infrared rays reflected by the upper reflecting surface and the lower infrared ray. A thermal infrared detecting element characterized in that effective infrared reflectance is reduced by mutual interference with reflected infrared rays reflected by a reflecting surface.
【請求項2】 前記赤外線吸収部材の下部吸収層が、一
体の赤外線吸収膜よりなることを特徴とする請求項1に
記載の熱型赤外線検出素子。
2. The thermal infrared detection element according to claim 1, wherein the lower absorption layer of the infrared absorption member is an integral infrared absorption film.
【請求項3】 前記赤外線吸収部材の下部吸収層が、空
間的に分離されて前記上部吸収層と異なる位置にそれぞ
れ配置されていることを特徴とする請求項1に記載の熱
型赤外線検出素子。
3. The thermal infrared detecting element according to claim 1, wherein the lower absorption layer of the infrared absorption member is spatially separated and arranged at a position different from that of the upper absorption layer. .
【請求項4】 前記赤外線吸収部材の下部吸収層が、前
記検知部の配線部材としての機能を有することを特徴と
する請求項3に記載の熱型赤外線検出素子。
4. The thermal infrared detection element according to claim 3, wherein the lower absorption layer of the infrared absorption member has a function as a wiring member of the detection unit.
【請求項5】 前記赤外線吸収部材が、前記下部吸収層
と前記上部吸収層との間にこれらと異なる物質よりなる
中間層を有することを特徴とする請求項1乃至4の何れ
かに記載の熱型赤外線検出素子。
5. The infrared absorbing member according to claim 1, wherein the infrared absorbing member has an intermediate layer made of a different substance between the lower absorbing layer and the upper absorbing layer. Thermal infrared detector.
【請求項6】 前記赤外線吸収部材の前記下部吸収層と
前記上部吸収層とが、前記入射赤外線に対して同等の反
射特性を有する物質、或いは同一の物質よりなることを
特徴とする請求項1乃至5の何れかに記載の熱型赤外線
検出素子。
6. The lower absorption layer and the upper absorption layer of the infrared absorbing member are made of a material having the same reflection characteristics with respect to the incident infrared rays, or the same material. 6. The thermal infrared detecting element according to any one of 1 to 5.
【請求項7】 空間的に分離された上部反射面と、光が
直接入射される下部反射面とを有し、前記上部反射面に
て反射される反射光と前記下部反射面にて反射される反
射光とが互いに干渉することで実効的反射率が低減され
ていることを特徴とする受光素子。
7. A spatially separated upper reflection surface and a lower reflection surface on which light is directly incident, wherein reflected light reflected on the upper reflection surface and reflected light on the lower reflection surface. A light-receiving element characterized in that the effective reflectance is reduced by the interference of the reflected light with each other.
JP2002106398A 2002-04-09 2002-04-09 Thermal infrared detecting element and light receiving element Pending JP2003304005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106398A JP2003304005A (en) 2002-04-09 2002-04-09 Thermal infrared detecting element and light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106398A JP2003304005A (en) 2002-04-09 2002-04-09 Thermal infrared detecting element and light receiving element

Publications (1)

Publication Number Publication Date
JP2003304005A true JP2003304005A (en) 2003-10-24

Family

ID=29390732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106398A Pending JP2003304005A (en) 2002-04-09 2002-04-09 Thermal infrared detecting element and light receiving element

Country Status (1)

Country Link
JP (1) JP2003304005A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121047A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Infrared sensor
WO2010114001A1 (en) * 2009-03-31 2010-10-07 パナソニック電工株式会社 Infrared array sensor
JP2010237117A (en) * 2009-03-31 2010-10-21 Panasonic Electric Works Co Ltd Infrared array sensor
JP2012163347A (en) * 2011-02-03 2012-08-30 Nissan Motor Co Ltd Infrared detecting device
US8426864B2 (en) 2008-09-25 2013-04-23 Panasonic Corporation Infrared sensor
US8643133B2 (en) 2011-02-23 2014-02-04 Seiko Epson Corporation Thermal detector, thermal detection device, and electronic instrument
WO2014199583A1 (en) * 2013-06-10 2014-12-18 パナソニックIpマネジメント株式会社 Infrared sensor
US9000372B2 (en) 2010-01-26 2015-04-07 Seiko Epson Corporation Thermal detector, thermal detection device and electronic instrument, and method for manufacturing thermal detector
WO2023238277A1 (en) * 2022-06-08 2023-12-14 ソニーグループ株式会社 Thermal detection element, method for manufacturing thermal detection element, and image sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121047A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Infrared sensor
US8426864B2 (en) 2008-09-25 2013-04-23 Panasonic Corporation Infrared sensor
US8445848B2 (en) 2009-03-31 2013-05-21 Panasonic Corporation Infrared array sensor
JP2010237118A (en) * 2009-03-31 2010-10-21 Panasonic Electric Works Co Ltd Infrared array sensor
JP2010237117A (en) * 2009-03-31 2010-10-21 Panasonic Electric Works Co Ltd Infrared array sensor
WO2010114001A1 (en) * 2009-03-31 2010-10-07 パナソニック電工株式会社 Infrared array sensor
US9000372B2 (en) 2010-01-26 2015-04-07 Seiko Epson Corporation Thermal detector, thermal detection device and electronic instrument, and method for manufacturing thermal detector
JP2012163347A (en) * 2011-02-03 2012-08-30 Nissan Motor Co Ltd Infrared detecting device
US8643133B2 (en) 2011-02-23 2014-02-04 Seiko Epson Corporation Thermal detector, thermal detection device, and electronic instrument
WO2014199583A1 (en) * 2013-06-10 2014-12-18 パナソニックIpマネジメント株式会社 Infrared sensor
JPWO2014199583A1 (en) * 2013-06-10 2017-02-23 パナソニックIpマネジメント株式会社 Infrared sensor
US10119865B2 (en) 2013-06-10 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor having improved sensitivity and reduced heat generation
WO2023238277A1 (en) * 2022-06-08 2023-12-14 ソニーグループ株式会社 Thermal detection element, method for manufacturing thermal detection element, and image sensor

Similar Documents

Publication Publication Date Title
JP3514681B2 (en) Infrared detector
JP3597069B2 (en) Thermal infrared array sensor for detecting multiple infrared wavelength bands
KR101427431B1 (en) Infrared absorber and thermal infrared detector
US9171885B2 (en) Infrared detector and infrared image sensor including the same
JP3399399B2 (en) Infrared sensor and method of manufacturing the same
JP2006214758A (en) Infrared detector
WO2017048189A1 (en) Bolometer, method of fabricating the same, and bolometric method
JP2003304005A (en) Thermal infrared detecting element and light receiving element
JP3580126B2 (en) Infrared sensor
JP2007121047A (en) Infrared sensor
JP3339276B2 (en) Infrared detector
JPH1164111A (en) Infrared detecting element
JP2001153722A (en) Heat type infrared detecting element and image pickup device using same
JPH0249124A (en) Thermopile
RU2325729C1 (en) Uncooled metallic bolometer
Ashraf et al. Fabrication and characterization of a SU-8 epoxy membrane-based thermopile detector with an integrated multilayered absorber structure for the Mid-IR region
JPH06137943A (en) Thermal infrared sensor
JP4915898B2 (en) Infrared sensor
JP2002071451A (en) Thermal infrared detecting element and infrared image pickup device using it
JP4042707B2 (en) Infrared detector
JP2006208177A (en) Infrared detector
JP2011123023A (en) Photosensor
JP5456810B2 (en) Thermal infrared detector
JPH11326039A (en) Thermal infrared image pick up device and thermal infrared light receiving element
JP6230652B2 (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905