JP2005227127A - System for determining gas leak - Google Patents

System for determining gas leak Download PDF

Info

Publication number
JP2005227127A
JP2005227127A JP2004036043A JP2004036043A JP2005227127A JP 2005227127 A JP2005227127 A JP 2005227127A JP 2004036043 A JP2004036043 A JP 2004036043A JP 2004036043 A JP2004036043 A JP 2004036043A JP 2005227127 A JP2005227127 A JP 2005227127A
Authority
JP
Japan
Prior art keywords
gas
gas leak
pressure
valve
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036043A
Other languages
Japanese (ja)
Other versions
JP4211000B2 (en
Inventor
Sadao Takagi
定夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004036043A priority Critical patent/JP4211000B2/en
Publication of JP2005227127A publication Critical patent/JP2005227127A/en
Application granted granted Critical
Publication of JP4211000B2 publication Critical patent/JP4211000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas leak detection system which performs gas leak detection in a short time and without errors, even if there are variations and malfunctions in the regulator and the cutoff valve. <P>SOLUTION: The gas leak detection system for detecting gas leak in a gas circulation system comprises monitoring means (P2, 20) which cut off gas circulation in sections to be inspected (SV2 to SV3), which are the objects to be inspected concerning gas leak, and monitor the amount of state change of a gas in a transient state in the sections to be inspected, and inspection means (20) which performs gas leak inspection in the sections to be inspected, when the amount of state change of the gas becomes equal to or lower than a predetermined value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池システムに係り、特に燃料ガスのガス漏れを検出するためのガス漏れ検出方法の改良に関する。   The present invention relates to a fuel cell system, and more particularly to an improvement in a gas leak detection method for detecting a gas leak of fuel gas.

燃料電池システムにおける水素ガスのガス漏れ検出方法としては、例えば特開平8―329965号公報に記載されているように、燃料電池の上流と下流に元止め弁と先止め弁を設け、発電運転開始前に燃料ガスを封入してその圧力変化を圧力報知手段で検知して封入圧力の低下から漏洩の発生を検知していた(特許文献1)。また特開平10―103547号公報に記載の方法では、弁開閉による圧力が安定する所定時間経過後にガス漏れ検査のための圧力測定を行うべく、待機タイマで所定時間を計測して、その後に圧力測定して漏れ判定を行っていた(特許文献2)。   As a method for detecting hydrogen gas leak in a fuel cell system, for example, as described in JP-A-8-329965, a stop valve and a stop valve are provided upstream and downstream of the fuel cell, and power generation operation is started. Previously, the fuel gas was sealed and the pressure change was detected by the pressure notification means, and the occurrence of leakage was detected from the drop in the sealing pressure (Patent Document 1). Further, in the method described in Japanese Patent Laid-Open No. 10-103547, a predetermined time is measured by a standby timer after the predetermined time when the pressure due to valve opening and closing becomes stable, and then the pressure is measured. Leakage determination was performed by measuring (Patent Document 2).

ガス漏れ量が多い程封入圧力が下がるため、このような方法によってガス漏れの存在を察知することができていた。
特開平8―329965号公報 特開平10―103547号公報
The greater the amount of gas leakage, the lower the sealing pressure. Therefore, it was possible to detect the presence of gas leakage by such a method.
JP-A-8-329965 Japanese Patent Laid-Open No. 10-103547

しかしながら、レギュレータや遮断弁における応答速度にはバラツキがあり、また、閉弁不良が生じる場合があり、閉弁直後では封入したガスの圧力が安定しておらず、このような不安定な状態でガス漏れ検出を実施すると誤検出する可能性があった。一方、このようなことに対処するため一定期間待ち時間を設ける特許文献2の公知技術では、余裕を見た待ち時間設定をせざるを得なかったため、無駄な待ち時間が発生することがあり、迅速な測定が行えなかった。また、閉弁不良で長い期間圧力が安定しなかった場合にもガス漏れ判定が実施されてしまい、誤判定となることがあった。   However, there are variations in the response speed of regulators and shutoff valves, and there may be a case where valve closing failure occurs. Immediately after valve closing, the pressure of the enclosed gas is not stable, and such an unstable state If gas leak detection is performed, there is a possibility of false detection. On the other hand, in the known technology of Patent Document 2 that provides a waiting time for a certain period in order to deal with such a situation, it is necessary to set a waiting time with an allowance, so a wasteful waiting time may occur. Rapid measurement was not possible. Further, even when the pressure is not stable for a long time due to poor valve closing, the gas leakage determination is performed, and an erroneous determination may occur.

そこで本発明は、このような課題に鑑み、レギュレータや遮断弁のバラツキや動作不良があっても、可能な限り短時間に、かつ、誤り無くガス漏れを検出することが可能なガス漏れ判定装置を提供することを目的とする。   Therefore, in view of such a problem, the present invention provides a gas leak determination device capable of detecting a gas leak in as short a time as possible without error even if there are variations or malfunction of regulators and shut-off valves. The purpose is to provide.

上記課題を解決するために、本発明は、ガス流通システムのガス漏れを検出するガス漏れ判定装置であって、ガス漏れの検査対象となる検査対象区間のガスの流通を遮断し、当該検査対象区間におけるガスの過渡状態における状態変化量を監視する監視手段と、ガスの状態変化量が所定値以下となった場合に、当該検査対象区間におけるガス漏れ検査を実行する検査手段と、を備えることを特徴とする。   In order to solve the above problems, the present invention is a gas leak determination device for detecting a gas leak in a gas distribution system, which interrupts the gas flow in an inspection target section to be inspected for a gas leak, and A monitoring unit that monitors a state change amount in a transition state of the gas in the section, and an inspection unit that performs a gas leak inspection in the inspection target section when the gas state change amount becomes a predetermined value or less. It is characterized by.

ガスを扱うシステムがガス漏れ判定その他の事情で特定の検査対象区間のガス流通を遮断すると、その遮断にかかる調圧弁や遮断弁の応答特性やガスの性質から、ガスの状態が安定するまでにガスの状態が変化し続ける過渡期間が発生する。上記構成によれば、監視手段がこの状態変化を監視し、状態変化量が所定値以下になったこと、すなわち過渡的な状態遷移がガス漏れ測定可能な程度に収束したことを検出してからガス漏れ検査が実行される。このため、過渡期間における状態変化が終了し次第ガス漏れ検査ができるので、無駄な待ち時間が無く迅速であり、また、過渡期間における状態変化中にガス漏れ検査されてしまうことによる誤検出も防止できる。   When the gas handling system shuts off the gas flow in a specific inspection section due to gas leakage judgment or other reasons, the gas condition becomes stable due to the response characteristics of the pressure regulating valve and shutoff valve and the nature of the gas. A transition period occurs in which the gas state continues to change. According to the above configuration, after the monitoring means monitors this state change and detects that the amount of state change has become a predetermined value or less, that is, has detected that the transient state transition has converged to such an extent that gas leakage can be measured. A gas leak test is performed. For this reason, gas leak inspection can be performed as soon as the state change in the transition period is completed, so there is no wasteful waiting time, and erroneous detection due to gas leakage inspection during the state change in the transition period is prevented. it can.

ここで「ガス流通システム」は任意のガス(水素、プロパン等の燃料ガス、空気等の混合ガス等)を流通させるシステムであり、安全性や環境に対する配慮からガス漏れを判定する必要があるシステムをいう。   Here, the “gas distribution system” is a system that distributes any gas (fuel gas such as hydrogen and propane, mixed gas such as air), and it is necessary to determine gas leakage from the safety and environmental considerations. Say.

また「検査対象区間」とは、ガス漏れの有無を確かめたいシステムの区間をいい、純粋な配管の一部区間をいう他、一以上の部材(ポンプ、電池、弁類等)を含んで構成される広範な区間をも含む。例えばこの区間は調圧弁や遮断弁によって遮断される。   In addition, “inspection section” refers to a section of the system in which it is desired to check for gas leaks, and includes a section of pure piping and includes one or more members (pumps, batteries, valves, etc.). Including a wide range of sections. For example, this section is blocked by a pressure regulating valve or a shut-off valve.

また「状態変化量」とはガスの遮断に纏わる過渡的な変化を定量化できる指標であり、例えば圧力変化量や流量変化量が挙げられるが、限定はない。   Further, the “state change amount” is an index capable of quantifying a transient change related to the shutoff of the gas, and includes, for example, a pressure change amount and a flow rate change amount, but there is no limitation.

ここで、本発明における監視は、当該ガス流通システムの間欠運転におけるシステム停止期間に行われる。例えば燃料電池システムでは間欠運転が実施される。この間欠運転のうちシステム休止時に本発明のガス漏れ判定を行えば、システム休止期間を有効に使える。   Here, the monitoring in the present invention is performed during the system stop period in the intermittent operation of the gas distribution system. For example, intermittent operation is performed in a fuel cell system. If the gas leakage determination of the present invention is performed during the system outage during the intermittent operation, the system outage period can be used effectively.

本発明では、監視において、一定時間以上ガス漏れ検査が実行できなかった場合には異常処理を実行する。もしもある程度以上の規模のガス漏れが発生していた場合に本発明におけるガスの状態変化を監視すると、いつまでもガス圧が下がり続けることになり、ガス漏れ検査自体に入れない。この点、この構成によれば、ガス漏れが原因でガスの状態変化が何時までも継続していても、一定時間経過後にはその事実を検出して何らかの異常が起こっているものとして異常処理が行える。   In the present invention, in the monitoring, when the gas leakage inspection cannot be executed for a certain time or more, the abnormality process is executed. If a gas leak of a certain level or more has occurred, if the gas state change in the present invention is monitored, the gas pressure will continue to drop indefinitely, and the gas leak inspection itself cannot be entered. In this regard, according to this configuration, even if the gas state change continues for many hours due to gas leakage, the abnormality is detected as having detected an abnormality after a certain period of time has passed and the abnormality processing has occurred. Yes.

当該発明によれば、監視手段がガスの状態変化を監視し、状態変化量が所定値以下になったことを検出してからガス漏れ検査が実行されるため、過渡期間における状態変化が終了し次第、ガス漏れ検査ができるので、無駄な待ち時間が無く迅速である。また、過渡期間中の状態変化中にガス漏れ検査がされてしまうことによる誤検出を防止できる。   According to the present invention, since the monitoring means monitors the gas state change and detects that the amount of state change is equal to or less than the predetermined value, the gas leak inspection is executed, so that the state change in the transient period ends. As soon as the gas leak inspection can be performed, there is no wasteful waiting time and it is quick. Further, it is possible to prevent erroneous detection due to a gas leak inspection being performed during a state change during the transition period.

次に本発明を実施するための好適な実施形態を、図面を参照しながら説明する。   Next, preferred embodiments for carrying out the present invention will be described with reference to the drawings.

本発明の実施形態は、電気自動車等の移動体に搭載する燃料電池システムに本発明のガス漏れ判定装置を適用したものである。以下の実施形態は本発明の一形態に過ぎず、本発明はこれに限定されずに適用可能である。本発明の漏れ判定の対象となるガスとして水素ガスの場合を例示してある。   In the embodiment of the present invention, the gas leak determination device of the present invention is applied to a fuel cell system mounted on a moving body such as an electric vehicle. The following embodiment is merely one embodiment of the present invention, and the present invention is not limited thereto and can be applied. The case of hydrogen gas is illustrated as the gas subject to the leak determination of the present invention.

図1に本燃料電池システムのシステム全体図を示す。図1に示すように、当該燃料電池システムは、燃料電池スタック10に燃料である水素ガスを供給するための系統、空気を供給するための系統、及び燃料電池スタック10を冷却するための系統を備えて構成されている。   FIG. 1 shows an overall system diagram of the fuel cell system. As shown in FIG. 1, the fuel cell system includes a system for supplying hydrogen gas as fuel to the fuel cell stack 10, a system for supplying air, and a system for cooling the fuel cell stack 10. It is prepared for.

燃料電池スタック10は、水素ガス、空気、冷却水の流路を有するセパレータと、一対のセパレータで挟み込まれたMEA(Membrane Electrode Assembly)とから構成されるセルとを複数積層したスタック構造を備えている。MEAは高分子電解質膜を燃料極及び空気極の二つの電極を挟み込んだ構造をしている。燃料極は燃料極用触媒層を多孔質支持層状に設けてあり、空気極は空気極用触媒層を多孔質支持層上に設けてある。 The fuel cell stack 10, a hydrogen gas, air, and a separator having a flow path of the cooling water, MEA sandwiched by a pair of separators (M embrane E lectrode A ssembly) stacked and configured cells from the stacks structure It has. The MEA has a structure in which a polymer electrolyte membrane is sandwiched between two electrodes, a fuel electrode and an air electrode. The fuel electrode has a fuel electrode catalyst layer provided in the form of a porous support layer, and the air electrode has an air electrode catalyst layer provided on the porous support layer.

燃料電池スタック10に水素ガスを供給するための系統は、水素ガスの供給源から順に、水素タンク11、元弁SV1、調圧弁RG、燃料電池入口遮断弁SV2、燃料電池スタック10を経て燃料電池出口遮断弁SV3、気液分離器12及び遮断弁SV4、水素ポンプ13、パージ遮断弁SV5、及び逆止弁RVを備えている。   A system for supplying hydrogen gas to the fuel cell stack 10 is a fuel cell through a hydrogen tank 11, a main valve SV1, a pressure regulating valve RG, a fuel cell inlet shut-off valve SV2, and the fuel cell stack 10 in order from the hydrogen gas supply source. An outlet cutoff valve SV3, a gas-liquid separator 12 and a cutoff valve SV4, a hydrogen pump 13, a purge cutoff valve SV5, and a check valve RV are provided.

本実施形態では、燃料電池入口遮断弁SV2と燃料電池出口遮断弁SV3とで区分される検査対象区間におけるガス漏れ判定を例示するが、検査対象区間が元弁SV1−調圧弁RG間、調圧弁RG−燃料電池入口遮断弁SV2間、燃料電池出口遮断弁SV3−水素ポンプ13間であっても同様に検査可能である。   In the present embodiment, the gas leakage determination in the inspection target section divided by the fuel cell inlet cutoff valve SV2 and the fuel cell outlet cutoff valve SV3 is illustrated, but the inspection target section is between the main valve SV1 and the pressure regulating valve RG, and the pressure regulating valve. The same inspection can be performed between the RG and the fuel cell inlet cutoff valve SV2 and between the fuel cell outlet cutoff valve SV3 and the hydrogen pump 13.

圧力センサP1は元弁SV1−調圧弁RG間の圧力を検出する。圧力センサP2は燃料電池入口遮断弁SV2−燃料電池出口遮断弁SV3間の圧力(燃料電池スタック10の内圧)を、温度センサT1はその区間の温度を検出する。圧力センサP3は燃料電池出口遮断弁SV3−水素ポンプ13入口間の圧力を検出する。   The pressure sensor P1 detects the pressure between the main valve SV1 and the pressure regulating valve RG. The pressure sensor P2 detects the pressure between the fuel cell inlet cutoff valve SV2 and the fuel cell outlet cutoff valve SV3 (internal pressure of the fuel cell stack 10), and the temperature sensor T1 detects the temperature in that section. The pressure sensor P3 detects the pressure between the fuel cell outlet cutoff valve SV3 and the hydrogen pump 13 inlet.

水素タンク11は、高圧水素タンクであるが、高圧水素タンクに代えて、水素吸蔵合金を用いた水素タンク、改質ガスによる水素供給機構、液体水素タンクから水素を供給するタンク、液化ガス燃料を貯蔵するタンク等を適用可能である。   The hydrogen tank 11 is a high-pressure hydrogen tank. Instead of the high-pressure hydrogen tank, a hydrogen tank using a hydrogen storage alloy, a hydrogen supply mechanism using a reformed gas, a tank for supplying hydrogen from a liquid hydrogen tank, a liquefied gas fuel A storage tank or the like is applicable.

元弁SV1は、水素タンク11からの水素ガス供給の有無を制御する。燃料電池入口遮断弁SV2は、遮断弁SV2より上流側である調圧弁RGまで、さらに調圧弁RGをほぼ開放状態とした場合には元弁SV1までの検査対象区間のガス漏れ判定時に遮断される。燃料電池出口遮断弁SV3は、遮断弁SV3から燃料電池入口遮断弁SV2まで、すなわち燃料電池スタック10内を検査対象区間とした場合のガス漏れ判定時に遮断される。気液分離器12は、通常運転時において燃料電池スタック10の電気化学反応により発生する水分その他の不純物を水素オフガス中から除去し、遮断弁SV4を通じて外部に放出する。水素ポンプ13は、遮断弁SV2、SV3、逆止弁RVを経る水素ガスの循環経路において水素ガスを強制循環させる。パージ遮断弁SV5は、パージ時に開放されるが、通常の運転状態及び本発明のガス漏れ判定時には遮断されている。逆止弁RVは水素ガスの逆流を防止する。パージ遮断弁SV5からパージされた水素オフガスは図示しない希釈器を含む排気系で処理される。   The main valve SV1 controls the presence or absence of hydrogen gas supply from the hydrogen tank 11. The fuel cell inlet shut-off valve SV2 is shut off at the time of gas leak determination in the section to be inspected up to the original valve SV1 up to the pressure regulating valve RG upstream of the shut-off valve SV2 and further when the pressure regulating valve RG is substantially opened. . The fuel cell outlet shut-off valve SV3 is shut off from the shut-off valve SV3 to the fuel cell inlet shut-off valve SV2, that is, when a gas leak is determined when the inside of the fuel cell stack 10 is an inspection target section. The gas-liquid separator 12 removes moisture and other impurities generated by the electrochemical reaction of the fuel cell stack 10 during normal operation from the hydrogen off-gas and discharges them to the outside through the shut-off valve SV4. The hydrogen pump 13 forcibly circulates hydrogen gas in a hydrogen gas circulation path that passes through the shut-off valves SV2, SV3 and the check valve RV. The purge shut-off valve SV5 is opened at the time of purging, but is shut off at the time of normal operation and gas leak determination of the present invention. The check valve RV prevents the backflow of hydrogen gas. The hydrogen off gas purged from the purge shutoff valve SV5 is processed in an exhaust system including a diluter (not shown).

燃料電池スタック10に空気を供給するための系統としては、エアクリーナ21、コンプレッサ22、加湿器23等を備えている。エアクリーナ21は、外気を浄化して燃料電システムに取り入れる。コンプレッサ22は、取り入れられた空気を制御部20の制御に従って圧縮し供給する空気量や空気圧を変更するようになっている。加湿器23は圧縮された空気に対し、空気オフガスと水分の交換を行って適度な湿度を加える。燃料電池スタック10から排出された空気オフガスは図示しない希釈器においてパージ制御弁SV5からの水素オフガスを希釈して排気系に排出される。   As a system for supplying air to the fuel cell stack 10, an air cleaner 21, a compressor 22, a humidifier 23, and the like are provided. The air cleaner 21 purifies the outside air and takes it into the fuel electric system. The compressor 22 changes the amount of air and the air pressure supplied by compressing the introduced air according to the control of the control unit 20. The humidifier 23 adds an appropriate humidity to the compressed air by exchanging air off-gas and moisture. The air off-gas discharged from the fuel cell stack 10 is diluted in a diluter (not shown) and the hydrogen off-gas from the purge control valve SV5 is diluted and discharged to the exhaust system.

燃料電池スタック10の冷却系は、ラジエタ11、ファン12、及び冷却ポンプ13を備え、冷却水が燃料電池スタック10内部に循環供給されるようになっている。   The cooling system of the fuel cell stack 10 includes a radiator 11, a fan 12, and a cooling pump 13, and cooling water is circulated and supplied into the fuel cell stack 10.

制御部20はECU等の公知のコンピュータシステムであり、複数のコンピュータの相互通信によって構成されていてもよい。これらコンピュータは、内蔵ROM等に格納されているソフトウェアプログラムを順次実行することにより、当該システムを本発明のガス漏れ判定装置として動作させることが可能になっている。すなわち、後に説明する手順(図2)によって、制御部20は、各弁SV1〜5の開閉を制御する制御信号及び水素ポンプ13やコンプレッサ22の駆動量を決定する制御信号を出力し、圧力センサP1〜P3からの検出信号に基づいてガス漏れ判定を実行するようになっている。   The control unit 20 is a known computer system such as an ECU, and may be configured by mutual communication of a plurality of computers. These computers can operate the system as the gas leak determination apparatus of the present invention by sequentially executing software programs stored in a built-in ROM or the like. That is, according to the procedure (FIG. 2) described later, the control unit 20 outputs a control signal for controlling the opening and closing of the valves SV1 to SV5 and a control signal for determining the driving amount of the hydrogen pump 13 and the compressor 22, and the pressure sensor. Gas leak determination is executed based on detection signals from P1 to P3.

次に図2のフローチャートを参照しながら本実施形態におけるガス漏れ判定方法を説明する。当該フローチャートにおけるガス漏れ判定方法は単なる例示である。また、図3にこのようなガス漏れ判定方法に関係して、制御部20内部におけるフラグのセット・リセットがどのように行われているか、圧力センサP1及びP2、温度センサT1によるガス圧や燃料電池内部温度Tfcがどのように変化していくかのタイミングチャートを示す。   Next, a gas leak determination method in the present embodiment will be described with reference to the flowchart of FIG. The gas leak determination method in the flowchart is merely an example. Further, FIG. 3 shows how the flag is set and reset in the control unit 20 in relation to such a gas leak determination method, and the gas pressure and fuel by the pressure sensors P1 and P2 and the temperature sensor T1. The timing chart of how battery internal temperature Tfc changes is shown.

このフローチャートに示すガス漏れ判定方法は、定期的に(例えば周期Tとする)繰り返し実行されるものである。総てのフラグはシステム初期状態においてリセットされているものとする。   The gas leak determination method shown in this flowchart is repeatedly executed periodically (for example, with a period T). All flags are reset in the initial system state.

以下の処理では間欠フラグと漏れ判定条件フラグという二つのフラグを参照する。前者の間欠フラグは、システムが間欠運転の休止期間に入るべきか否かを示すフラグである。また後者の漏れ判定条件フラグは本発明に係り、弁手段の閉鎖直後に生ずる過渡状態が収束したか否かを示すものである。   The following processing refers to two flags, an intermittent flag and a leakage determination condition flag. The former intermittent flag is a flag indicating whether or not the system should enter an intermittent operation suspension period. The latter leakage determination condition flag relates to the present invention and indicates whether or not the transient state occurring immediately after the valve means is closed has converged.

まず、制御部20は、間欠フラグがセットされているか否かを検査する(S1)。間欠フラグの状態によって、間欠運転の休止期間に入ったと判断される場合には(NO)、当該ガス漏れ判定処理には移行しないが、間欠運転の休止期間に入ったと判断された場合には(YES)、ガス漏れ判定処理のために各弁やポンプの遮断・休止措置を取る(S2:時刻t0)。制御部20は、各種制御信号を出力して、遮断弁SV1を閉鎖し、水素ポンプ13の運転を停止させ、燃料電池入口遮断弁SV2及び出口遮断弁SV3を閉鎖し、パージ遮断弁SV5を閉鎖する。   First, the control unit 20 checks whether or not the intermittent flag is set (S1). If it is determined that the intermittent operation pause period has been entered due to the state of the intermittent flag (NO), the process does not proceed to the gas leakage determination process, but if it is determined that the intermittent operation suspension period has been entered ( YES), a shutoff / pause measure for each valve or pump is taken for the gas leak determination process (S2: time t0). The control unit 20 outputs various control signals, closes the shutoff valve SV1, stops the operation of the hydrogen pump 13, closes the fuel cell inlet shutoff valve SV2 and the outlet shutoff valve SV3, and closes the purge shutoff valve SV5. To do.

図3に示すように、燃料電池入口遮断弁SV2が閉鎖されると、この弁の応答特性に応じて水素タンク11からのガス供給が絞られていき、元弁SV1の下流側の圧力が下がり始める。一方、燃料電池入口遮断弁SV2の二次側の圧力が上昇していく。これらの圧力状態が安定するまで若干の期間を要する。   As shown in FIG. 3, when the fuel cell inlet shutoff valve SV2 is closed, the gas supply from the hydrogen tank 11 is throttled according to the response characteristics of this valve, and the pressure on the downstream side of the main valve SV1 decreases. start. On the other hand, the pressure on the secondary side of the fuel cell inlet shutoff valve SV2 increases. It takes some time for these pressure states to stabilize.

本実施形態では、この過渡状態を圧力変化量から監視する(S3)。過渡状態が終了したら漏れ判定条件フラグがセットされるが、それまではリセットされた状態である。制御部20は、漏れ判定条件フラグがセットされていれば(S3:YES)漏れ判定を実行するが(S10)、漏れ判定条件フラグがリセットされている場合には(S3:NO)、水素ガスの圧力変化を監視する期間中であると判断して監視処理に移行する。   In the present embodiment, this transient state is monitored from the pressure change amount (S3). When the transient state ends, the leak judgment condition flag is set, but until then, it has been reset. If the leak determination condition flag is set (S3: YES), the control unit 20 performs a leak determination (S10), but if the leak determination condition flag is reset (S3: NO), hydrogen gas It is determined that it is during the period of monitoring the pressure change, and the process proceeds to the monitoring process.

圧力センサP2からの検出信号を参照して、制御部20は燃料電池入口遮断弁SV2の下流の圧力p2を検出する(S4)。次いで前回測定された圧力p2’と今回測定された圧力p2との差分を計算して圧力変化量Δpを演算する(S5)。間欠動作の休止期間に入って初めて圧力を測定した場合には、前回測定の圧力p2’はゼロであるとして計算する。   With reference to the detection signal from the pressure sensor P2, the control unit 20 detects the pressure p2 downstream of the fuel cell inlet shutoff valve SV2 (S4). Next, the difference between the pressure p2 'measured last time and the pressure p2 measured this time is calculated to calculate the pressure change amount Δp (S5). When the pressure is measured for the first time after entering the period of intermittent operation, it is calculated that the previously measured pressure p2 'is zero.

その結果、圧力変化量Δpが所定のしきい値Pth以下になっていた場合には(S6:YES)、過渡状態がほぼ終わり、圧力が安定してきたことを意味している。そこで、制御部20は漏れ条件フラグをセットし(S9)、ガス漏れ判定処理への移行を許可する。ここでしきい値Pthは、ガス漏れ判定を行っても誤検出の無い程度の圧力変化率を識別可能な値に選択する。   As a result, when the pressure change amount Δp is equal to or less than the predetermined threshold value Pth (S6: YES), it means that the transient state is almost finished and the pressure has stabilized. Therefore, the control unit 20 sets a leak condition flag (S9) and permits the shift to the gas leak determination process. Here, the threshold value Pth is selected to be a value that can identify a pressure change rate that does not cause erroneous detection even if a gas leak determination is made.

図3において、圧力変化量がΔp1であった場合、まだ圧力変化の過渡状態でありガス漏れ判定を判定するには圧力が急激に変化しすぎている。一方、圧力変化量がΔp2のようになれば、圧力変化が極めて緩慢になっており、ガス漏れ判定をしても差し支えない。しきい値Pthはこのような圧力変化の状態を識別可能なように設定する。   In FIG. 3, when the pressure change amount is Δp1, the pressure change is still in a transient state, and the pressure changes too rapidly to determine the gas leak determination. On the other hand, if the pressure change amount becomes Δp2, the pressure change becomes extremely slow, and it is possible to make a gas leak determination. The threshold value Pth is set so that such a pressure change state can be identified.

漏れ判定条件フラグがセットされガス漏れ判定が可能ならば、制御部20は公知のガス漏れ判定処理を実行する(S10)。そしてガス漏れ判定が終了したならば(S11:YES)、ガス漏れ判定完了フラグをセットしてこれ以降のガス漏れ判定を禁止する(S12)。ガス漏れ判定の最中であるならば(S11:NO)、引き続き次のルーチン実行タイミングまで待つ。   If the leak determination condition flag is set and the gas leak determination is possible, the control unit 20 executes a known gas leak determination process (S10). If the gas leak determination is completed (S11: YES), a gas leak determination completion flag is set and the subsequent gas leak determination is prohibited (S12). If it is in the middle of the gas leak determination (S11: NO), it waits until the next routine execution timing.

さて、希にガス漏れが発生しておりその規模が大きいため、上記ステップS6で計算される前回測定の圧力と今回測定の圧力との差分である圧力差Δpがいつまで経っても下がらない場合がある。つまり、ガス漏れが継続的に発生しているため、閉弁後も配管の圧力が低下し続ける場合である。このような場合はステップS10におけるガス漏れ判定を待たずに異常であると判定できる。   Now, since the gas leak rarely occurs and the scale thereof is large, there is a case where the pressure difference Δp, which is the difference between the pressure of the previous measurement calculated in step S6 and the pressure of the current measurement, does not decrease indefinitely. is there. That is, since gas leaks are continuously generated, the pressure of the pipe continues to decrease even after the valve is closed. In such a case, it can be determined that there is an abnormality without waiting for the gas leak determination in step S10.

そこで制御部20は、圧力変化量Δpがしきい値Pth以下に下がらない場合であって(S6:NO)、監視を開始してから一定時間を経過していた場合には(S7:YES)、何らかのガス漏れが継続的に発生しているものとして異常処理をする(S8)。この異常処理としては、警告ランプの点灯や次回の運転再開時における水素ガス圧の低減、もしくは運転開始の禁止などがある。なお、圧力変化量Δpがしきい値Pthより大きいがまだ一定時間が経過していない場合には(S7:NO)、引き続き監視を続行する。   Therefore, the control unit 20 is a case where the pressure change amount Δp does not fall below the threshold value Pth (S6: NO), and when a certain time has elapsed since the start of monitoring (S7: YES). Then, abnormality processing is performed on the assumption that some kind of gas leakage continuously occurs (S8). Examples of the abnormality processing include lighting of a warning lamp, reduction of hydrogen gas pressure at the next restart of operation, or prohibition of operation start. If the pressure change amount Δp is larger than the threshold value Pth but the predetermined time has not yet passed (S7: NO), the monitoring is continued.

ここで一定時間は、おおよそ異常の無いシステムであれば十分に圧力が安定するであろうと考えられる程度の時間に設定する。この時間はシステムごとに異なるものである。   Here, the fixed time is set to a time at which it is considered that the pressure will be sufficiently stabilized in a system having no abnormality. This time varies from system to system.

上記処理では圧力変化の監視処理とそれに基づくガス漏れ判定処理とを一つのルーチンで行っているが、別個のルーチンで実施してもよい。   In the above process, the pressure change monitoring process and the gas leak determination process based on the pressure change monitoring process are performed in one routine, but may be performed in separate routines.

本実施形態によれば、図3のフラグF0のタイミングに示すように、監視処理によってガスの圧力変化量が所定のしきい値Pthに入り次第、ガス漏れが実施できるので、正確なガス漏れ判定を遅滞なく実施できる。このため、フラグF1に示すように、圧力変化の激しい過渡状態においてガス漏れ判定が実施されガス漏れと誤判定したり、従来技術と同様にフラグF2に示すように、一定の待ち時間Tw待ってからガス漏れ判定をすることにより、本来ガス漏れ可能な状態になってからさらに過剰な時間Tdだけガス漏れ判定が遅延することとなったりすることを防止できる。   According to the present embodiment, as shown in the timing of the flag F0 in FIG. 3, the gas leakage can be performed as soon as the gas pressure change amount reaches the predetermined threshold value Pth by the monitoring process. Can be implemented without delay. For this reason, as shown in the flag F1, a gas leak determination is performed in a transient state where the pressure change is severe, and it is erroneously determined as a gas leak, or as shown in the flag F2 as in the prior art, wait for a certain waiting time Tw. Therefore, it is possible to prevent the gas leakage determination from being delayed by an excessive time Td after the gas leakage can be originally performed.

したがって、過渡期間における状態変化が終了し次第、ガス漏れ判定できるので、無駄な待ち時間が無く迅速である。また、過渡期間中の状態変化中にガス漏れ検査がされてしまうことによる誤検出を防止できる。   Accordingly, since the gas leak can be determined as soon as the state change in the transition period is completed, there is no wasteful waiting time, and it is quick. Further, it is possible to prevent erroneous detection due to a gas leak inspection being performed during a state change during the transition period.

(その他の実施形態)
本発明は上記実施形態以外にも種々に変更して適用することが可能である。
(Other embodiments)
The present invention can be applied with various modifications other than the above embodiment.

例えば、上記実施形態は燃料電池システムに当該ガス漏れ判定装置を適用した例であったが、燃料電池以外のガスを利用するシステムにも本ガス漏れ判定装置を適用することが可能である。   For example, although the said embodiment was an example which applied the said gas leak determination apparatus to the fuel cell system, it is possible to apply this gas leak determination apparatus also to the system using gas other than a fuel cell.

また水素ガスの圧力変化量判定も圧力センサに限定されることなく、圧力の大小に対応して変化する物理量(例えば温度や水蒸気量)を参照して圧力判定を行ってもよい。   Further, the pressure change determination of the hydrogen gas is not limited to the pressure sensor, and the pressure determination may be performed with reference to a physical quantity (for example, temperature or water vapor amount) that changes according to the pressure level.

またガスの状態変化としては、圧力変化に限らず、他のパラメータ、例えば流量変化を検出することも可能である。   Further, the gas state change is not limited to the pressure change, and other parameters such as a flow rate change can be detected.

またフローチャート図2も単なる例示であり、システムの構成によって処理判断の順序や内容は種々変更可能である。   Also, the flowchart of FIG. 2 is merely an example, and the order and contents of processing determination can be variously changed depending on the system configuration.

実施形態に係る燃料電池システムのブロック図。1 is a block diagram of a fuel cell system according to an embodiment. 実施形態に係るガス漏れ判定処理を説明するフローチャート。The flowchart explaining the gas leak determination process which concerns on embodiment. 実施形態に係るガス漏れ判定処理における圧力変化の説明図。Explanatory drawing of the pressure change in the gas leak determination process which concerns on embodiment.

符号の説明Explanation of symbols

SV1…元弁、SV2…燃料電池入口遮断弁、SV3…燃料電池出口遮断弁、SV4…遮断弁、SV5…パージ遮断弁、RV…逆止弁、RG…調圧弁、P1〜P3…圧力センサ、10…燃料電池スタック、20…制御部、11…水素タンク、12…気水分離器、13…水素ポンプ、21…エアクリーナ、22…コンプレッサ、23…加湿器、31…ラジエタ、32…ファン、33…冷却水ポンプ   SV1 ... main valve, SV2 ... fuel cell inlet shutoff valve, SV3 ... fuel cell outlet shutoff valve, SV4 ... shutoff valve, SV5 ... purge shutoff valve, RV ... check valve, RG ... pressure regulating valve, P1-P3 ... pressure sensor, DESCRIPTION OF SYMBOLS 10 ... Fuel cell stack, 20 ... Control part, 11 ... Hydrogen tank, 12 ... Air-water separator, 13 ... Hydrogen pump, 21 ... Air cleaner, 22 ... Compressor, 23 ... Humidifier, 31 ... Radiator, 32 ... Fan, 33 ... Cooling water pump

Claims (3)

ガス流通システムのガス漏れを検出するガス漏れ判定装置であって、
ガス漏れの検査対象となる検査対象区間のガスの流通を遮断し、当該検査対象区間における前記ガスの過渡状態における状態変化量を監視する監視手段と、
前記ガスの状態変化量が所定値以下となった場合に、当該検査対象区間におけるガス漏れ検査を実行する検査手段と、を備えることを特徴とするガス漏れ判定装置。
A gas leak determination device for detecting a gas leak in a gas distribution system,
A monitoring means for interrupting the flow of gas in the inspection target section to be inspected for gas leakage, and monitoring the amount of state change in the transient state of the gas in the inspection target section;
A gas leakage determination device, comprising: an inspection unit that performs a gas leakage inspection in the inspection target section when the gas state change amount is equal to or less than a predetermined value.
前記監視は、当該ガス流通システムの間欠運転におけるシステム停止期間に行われる、請求項1に記載のガス漏れ判定装置。   The gas leakage determination device according to claim 1, wherein the monitoring is performed during a system stop period in intermittent operation of the gas distribution system. 前記監視において、一定時間以上ガス漏れ検査が実行できなかった場合には異常処理を実行する、請求項1または2に記載のガス漏れ判定装置。

3. The gas leak determination device according to claim 1, wherein in the monitoring, an abnormal process is executed when a gas leak inspection cannot be executed for a predetermined time or more.

JP2004036043A 2004-02-13 2004-02-13 Gas leak judgment device Expired - Fee Related JP4211000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036043A JP4211000B2 (en) 2004-02-13 2004-02-13 Gas leak judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036043A JP4211000B2 (en) 2004-02-13 2004-02-13 Gas leak judgment device

Publications (2)

Publication Number Publication Date
JP2005227127A true JP2005227127A (en) 2005-08-25
JP4211000B2 JP4211000B2 (en) 2009-01-21

Family

ID=35001960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036043A Expired - Fee Related JP4211000B2 (en) 2004-02-13 2004-02-13 Gas leak judgment device

Country Status (1)

Country Link
JP (1) JP4211000B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093918A (en) * 2007-10-09 2009-04-30 Toyota Motor Corp Fuel cell system
JP2012054148A (en) * 2010-09-02 2012-03-15 Honda Motor Co Ltd Film breakage detecting method for fuel battery
JP2015197360A (en) * 2014-04-01 2015-11-09 株式会社デンソー leak tester
CN106641737A (en) * 2016-12-20 2017-05-10 重庆国际复合材料有限公司 Heat exchange tube system and pressure maintaining and testing device and method of shell-and-tube heat exchanger
CN112819097A (en) * 2021-02-26 2021-05-18 浙大城市学院 Risk evaluation method for hydrogen energy equipment in hydrogen refueling station

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093918A (en) * 2007-10-09 2009-04-30 Toyota Motor Corp Fuel cell system
JP2012054148A (en) * 2010-09-02 2012-03-15 Honda Motor Co Ltd Film breakage detecting method for fuel battery
JP2015197360A (en) * 2014-04-01 2015-11-09 株式会社デンソー leak tester
CN106641737A (en) * 2016-12-20 2017-05-10 重庆国际复合材料有限公司 Heat exchange tube system and pressure maintaining and testing device and method of shell-and-tube heat exchanger
CN112819097A (en) * 2021-02-26 2021-05-18 浙大城市学院 Risk evaluation method for hydrogen energy equipment in hydrogen refueling station
CN112819097B (en) * 2021-02-26 2022-07-26 浙大城市学院 Risk evaluation method for hydrogen energy equipment in hydrogen refueling station

Also Published As

Publication number Publication date
JP4211000B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US7581431B2 (en) Gas leak detection device and method for same
JP5105218B2 (en) Abnormality judgment device
JP4434525B2 (en) Abnormality detection method for fuel cell
US8232014B2 (en) Fuel cell operational methods for hydrogen addition after shutdown
US8524405B2 (en) Detection of small anode leaks in fuel cell systems
US8431277B2 (en) Fuel cell system and generation control device
WO2005096428A1 (en) Fuel cell system and method of controlling the same
WO2007013668A1 (en) Fuel cell system
WO2006048983A1 (en) Fuel cell system
JP5110415B2 (en) Fuel cell system and gas leak detection method
JP2007280671A (en) Gas fuel system and its abnormality detection method
KR102614135B1 (en) Air supply control method and control system for fuel cell
JP2006253096A (en) Abnormality detection device of fuel cell
JP5899000B2 (en) Method for judging leakage abnormality of fuel cell system
JP4211000B2 (en) Gas leak judgment device
JP2005201822A (en) Gas leakage determination device
JP5077723B2 (en) Fuel cell deterioration diagnosis device
JP4715138B2 (en) Fuel cell system for abnormality detection processing
JP2009087652A (en) Fuel cell system
JP2006210055A (en) Abnormality detecting device
JP4582390B2 (en) Fuel cell deterioration diagnosis device
JP2007005266A (en) Fuel cell system and its gas leak detection method
US20070292726A1 (en) Fuel Cell System And Method For Inspecting Gas Leakage Of Same
JP2006216310A (en) Gas leakage detection device
JP2009094000A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4211000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees