JP2005227076A - コア試料保存装置 - Google Patents

コア試料保存装置 Download PDF

Info

Publication number
JP2005227076A
JP2005227076A JP2004034917A JP2004034917A JP2005227076A JP 2005227076 A JP2005227076 A JP 2005227076A JP 2004034917 A JP2004034917 A JP 2004034917A JP 2004034917 A JP2004034917 A JP 2004034917A JP 2005227076 A JP2005227076 A JP 2005227076A
Authority
JP
Japan
Prior art keywords
core sample
oxygen
container
free
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004034917A
Other languages
English (en)
Other versions
JP4392260B2 (ja
Inventor
Kunio Araki
邦夫 荒木
Akifumi Oshika
明文 大鹿
Masao Saito
正男 斎藤
Koji Kiuchi
浩二 木内
Ichiro Seko
一郎 瀬古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Kaihatsu Corp
Original Assignee
Chuo Kaihatsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Kaihatsu Corp filed Critical Chuo Kaihatsu Corp
Priority to JP2004034917A priority Critical patent/JP4392260B2/ja
Publication of JP2005227076A publication Critical patent/JP2005227076A/ja
Application granted granted Critical
Publication of JP4392260B2 publication Critical patent/JP4392260B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】 本発明は、無酸素状態のコア試料や供試体を大気中酸素から遮断した状態を保持しつつ、無酸素環境中で加工の直前・直後まで地下応力を保持した状態で保存可能な可搬型の無酸素試料保存装置の提供を目的とする。
【解決手段】 本発明の三次元加圧ユニット31は、無酸素状態で採取されたコア試料Aを、無酸素状態で保存する可搬型の三次元加圧セル33と、三次元加圧セル33内でコア試料Aを押圧する上面蓋33b及び下面蓋33cと、三次元加圧セル33を収容する外容器35と、コア試料Aを加工するための加工容器3に前記外容器35を接続する接続部38とを備える。
【選択図】 図4

Description

本発明は、地質調査や水文特性調査、環境汚染調査、地化学試験調査、地下微生物調査用に採取したコア試料、及びコア試料から調整された供試体を、その力学的特性を維持しつつ無酸素状態で保存するコア試料保存装置に関するものである。
原子力施設の立地・設計における環境安全事前評価用のコア試料としては、酸素汚染のないものを採取し、供試体を調製する必要がある。また、一般環境調査においても、地下水汚染の原因とされるクローム、砒素、マンガン等は、酸化によって化合物(イオン)の形・溶解度・地中移行速度等が異なってしまうため、酸素存在下において採取されたコア試料では、高精度な環境調査を行うことができないので、酸素汚染のないものを採取し、供試体を調製する必要がある。さらに地下微生物調査においては、嫌気性・好気性の別を問わず、試料採取に伴う地下環境中の酸素濃度あるいは有機物濃度に対する撹乱を避けなければ、高精度の試料採取・環境調査を行うことができない。
このため、試料に対する還元剤の添加や水素添加によって還元的雰囲気を再現しようという努力は、無益であるばかりか、試験・調査に対して有害である。このため、酸素汚染のないものを採取し、さらに空気に触れないよう留意して供試体を所定形状に調製する必要がある。
そこで、従来技術では、コア試料を微酸素環境下においてボーリングにより採取するため、昇温脱気システムや、不活性ガスを吹き込んだ水を掘削水として使用することが考えられてきた。即ち、このシステムは、水を加熱して密封チャンバ内に供給し、密封チャンバの上部に位置する気層から気体を強制脱気することにより、一定の温度で一定量の液体に溶解する気体の量はその気体の圧力(分圧)に比例するというヘンリーの原則を利用して、水に溶存する酸素を気相に追い出して無酸素水を作成し、この無酸素水をビット付きのロッド内へ圧送してコア試料周辺を微酸素環境にするというものである。
このような方法では、水温をある程度高めに上昇させないと、水中に溶存している酸素を十分に取り除くことができず、しかも100℃においてすら酸素は水に対する溶解度から、常温に比較して1/3量に低減するに留まっている。しかもこれを実現するためには、大量の水を、高めの水温になるように加熱するのに大量のエネルギーを必要とするため、コスト高になってしまう。
また密封チャンバ内から温水を下流側に送水ポンプで送る際に、送水ポンプの上流側で気泡を生じがちであるため、キャビテーションの問題が生じる。従って、これを防止するために送水ポンプを密封チャンバに対して相対的に低い位置に設置しなければならず、そのためにボーリングシステム全体の設備設置にも追加の費用と時間がかかるという問題がある。
さらに、従来技術では、採取されたコア試料について、室内試験における供試体形状の制約から、無酸素水中で必要容積に相当する試料長に切断し、さらにこれを難透気性袋中で粉砕・収納し、これを真空容器中に収納し(収納操作中の水及び空気を手早く脱気)、不活性ガスを注入するという方法がとられていた。このように試料調製の重要部分が、水中操作を主体としていたため、地下における環境を保持したまま、試験に適切な任意の形状に加工した供試体として精密加工し、保存・輸送することは困難であった。
また、既存の放射性物質取扱用グローブ容器や微生物取扱用グローブ容器では、通常厳密な負圧管理が行われ、規制上、この負圧管理を破って新たに切断機を搬入することや、冷媒の連続導入・排出により負圧管理が破られる恐れがある使用法や、負圧管理の一要素であるグローブを傷つける恐れのある刃物や回転切断機を使用する作業の実施、グローブ容器内のコア切断に伴う切削粉塵が他の業務に対する悪影響を考慮すると、種々の難問題があった。従って、既存あるいは新規の放射性物質取扱用グローブ容器や微生物取扱用グローブ容器では、経費的、安全確保審査、許認可期間等の理由から、地質調査を主目的とするコア試料を供試体に加工するための刃物や回転切断機・回転研磨による加工・調製を含む工程の実施は、検討の対象になることは有り得なかつた。
さらに、従来技術のブローブ容器では、大型であり、負圧管理する等の制約から、これを可搬型にすること等は、夢想だにされなかった。
また、未半固結堆積土、半固結堆積土、軟岩から採取されたコア試料や、コア試料を精密加工した供試体は、地上では、地下における盤圧が除去されるために、短期または長期間で力学的特性が変化する恐れがあり、また、地上保管や輸送に当たっては、乾燥や振動のために、これが一層加速されることとなっていた。
本発明は、無酸素状態のコア試料や供試体を大気中酸素から遮断した状態を保持しつつ、無酸素環境中で加工の直前・直後まで地下応力を保持した状態で保存可能な可搬型の無酸素試料保存装置の提供を目的とする。
上記課題を解決するため、請求項1記載のコア試料保存装置(三次元加圧ユニット)31に係る発明によれば、コア試料Aを無酸素状態で保存可能な可搬型の保存容器(三次元加圧セル)33と、前記保存容器33内で前記コア試料Aを無酸素水で加圧する加圧装置と、前記保存容器33を収容する外容器35と、前記コア試料Aを加工するための加工容器3に前記外容器35を接続する接続部38とを備えることを特徴とする。
請求項2記載のコア試料保存装置31に係る発明によれば、前記保存容器33内で前記コア試料と共に封入された無酸素水を加圧するための不活性ガスを供給する不活性ガス供給部(不活性ガス供給管)34を備えることを特徴とする。請求項3のコア試料保存装置31に係る発明によれば、前記加圧装置は、前記コア試料Aの周囲に充たされた無酸素水を経由して一定の圧力を加えることを特徴とする。
請求項4記載のコア試料保存装置31に係る発明によれば、前記加圧装置33b,33cは、前記コア試料Aが採取された地圧に応じた圧力を前記コア試料Aに加えることを特徴とする。
請求項5記載のコア試料保存装置31に係る発明によれば、前記接続部38には、前記加工容器3で前記コア試料Aから加工された供試体Bを前記保存容器33内に受け入れる開閉可能なシャッター37を備えることを特徴とする。請求項6記載のコア試料保存装置31に係る発明によれば、前記シャッター37は、前記加工容器3から落下する前記供試体Bに接触するとその重量によって受動的に開放することを特徴とする。
請求項7記載のコア試料保存装置に係る発明によれば、前記シャッター37は、複数の弾性片37a…から構成することを特徴とする。請求項8記載のコア試料保存装置に係る発明によれば、前記外容器35は、前記保存容器33の周囲に無酸素液(無酸素水)を満たすことを特徴とする。
請求項9記載のコア試料保存装置に係る発明によれば、前記接続部38は、前記外容器37と前記加工容器3とを気密に接続可能である。請求項10記載のコア試料保存装置に係る発明によれば、前記外容器37は、前記加工容器3の底部に着脱自在に接続されることを特徴とする。
本発明は、無酸素状態のコア試料や供試体を大気中酸素から遮断した状態を保持しつつ、無酸素環境中で加工の直前・直後まで地下応力を保持した状態を維持することが可能となり、コア試料や供試体の力学的・化学的・微生物学的特性の変化を避けつつ密閉保管・輸送することが可能となる。従って、地下の還元的環境を保持し、岩盤・土質力学試験や、水文学的試験、地化学的試験、地下生物試験用の高品質供試体を提供することができる。
以下、本発明の可搬型無酸素試料加工システム(Portable Airless Core Processing System)、及び可搬型無酸素試料保存装置に関する実施の形態を図面に基づいて説明する。なお、本発明において無酸素とは、実質的にコア試料や供試体の酸化の影響を無視できる程度に酸素を除去した状態を意味する。
図1は、本発明の可搬型無酸素試料加工システムの前提となるコア採取ボーリングシステムの概略図である。コア採取ボーリングシステムは、大きく分けて掘削機103と、無酸素作業部105と無酸素水生成装置107とから構成される。なお、無酸素作業室については、本願出願人による特願2003−124780号、無酸素水生成装置については、本願出願人による特願2003−124781号として、それぞれ特許出願されている。
図1を用いて、コア採取ボーリングシステムの概略を説明する。掘削機103はロッド114を回転し、ロッド114の下端に設けられた掘削用ビットによってコア試料を採取する。掘削機103には無酸素水生成装置107から供給される無酸素水が供給されており、無酸素状態で、コア試料の採取が可能となっている。また、掘削機103の地表面付近には貯水槽133が設けられ、貯水槽133には無酸素水生成装置107が供給する無酸素水が満たされている。貯水槽133内には無酸素作業部105が形成されており、無酸素作業部105は、ロッド114の先端で採取されたコア試料を移動して、無酸素状態のままで処理するものである。
無酸素水生成装置107は、供給水に窒素等の不活性ガスを混合して酸素を拡散させた後、気体成分を除去することにより、酸素を除去した無酸素水を生成するものである。以下、無酸素水生成装置107の構成を説明する。地下水等の供給水151は、窒素ボンベ157から供給される窒素ガスと、第1スタティックミキサ145で混合される。混合された供給水と窒素ガスとは、第1サイクロン気液分離器143で分離され、無酸素水が得られる。さらに、この無酸素水は、第2スタティックミキサ145aに送られ、窒素ボンベ157aから供給される窒素ガスと混合される。第2スタティックミキサ145aで混合された無酸素水と窒素ガスとは、第2サイクロン気液分離器143aで分離され、さらに酸素濃度が低下した無酸素水が得られる。この無酸素水は掘削機103や、無酸素作業部105に供給される。
本発明の可搬型無酸素試料加工システム1を、図2に示して説明する。可搬型無酸素試料加工システム1は、加工容器3と三次元加圧ユニット31とから構成されており、無酸素作業部105に設置されている。加工容器3は可搬型無酸素試料加工システムを可搬とするために、作業者が持ち運び可能な0.5m程度以下の体積の箱体とすることができ、望ましくは0.1m程度の箱体とするものである。また、加工容器3の左側面下部には、不活性ガス流入口5が設けられている。不活性ガスとしては、窒素またはアルゴンを用いることができる。図示しないが、不活性ガス流入口5には酸素濃度計が設置されており、酸素濃度の検出が可能となっている。
また、不活性ガス流出口7は、不活性ガス流入口5から離して、加工容器3の右側面上部に設けられている。また、不活性ガス流出口7には、図示しないが逆止弁が配置されており、当該逆止弁により、加工容器3の外部から酸素等の流入を阻止すると共に、加工容器3の内部から外部への排気を許容する。なお、加工容器3内は、不活性ガスが流されており、大気圧より若干高い圧力、例えば、加工容器3の周囲の雰囲気圧に対して、10mmHg程度の微加圧状態となっている。
さらに、加工容器3の上面には、その内部の機器を外部から操作するために、気密性のゴム手袋9が設けられている。ゴム手袋9は加工容器3上面に設けた左右の取付け口11を介して加工容器3に取り付けられる。また、加工容器3の側面にも、取付け口11が複数設けられており、それぞれにゴム手袋9を取付可能となっている。ゴム手袋9が取り付けられていない状態で、取付け口11は蓋によって密閉されている。取付け口11には手が入る程度の開口があり、作業者は、取付け口11の開口からゴム手袋9に手を入れて加工容器3内部で作業を行う。
また、加工容器3の側面には、アクリル樹脂やガラス等の透明材料による左右の覗き窓13が設けられており、作業者は覗き窓13から加工容器3の内部を見ながら作業を行うことができる。なお、加工容器3全体を透明材料で作成することも可能である。
加工容器3の底面上には、掘削された柱状のコア試料Aの加工移動に用いる自走式移動台15が設置されている。自走式移動台15には、当該移動台15を移動させる移動台駆動装置17が接続されている。自走式移動台15は、移動台駆動装置17によって加工容器3の底面上で図2の左右に移動可能となる。
さらに、自走式移動台15の下面と、加工容器3の底面との間には、後述の加工済のディスク状試料B(供試体)を加工容器3から三次元加圧ユニット31に移動するためのスライドシャッター18が配置されている。スライドシャッター18は閉じられた状態で、自走式移動台15と一体となって移動する。
なお、自走式移動台15には試料落下用開口15aが形成されており、この開口15aからはスライドシャッター18の開閉面が露出している。シャッター18の開閉面の直下に位置する加工容器3の底面には、落下用開口が形成されており、落下用開口に三次元加圧ユニット31が接続される。
また、スライドシャッター18には、開閉用のシャッター摘み18aが設けられており、作業者がシャッター摘み18aを操作することにより、スライドシャッター18が開き、ディスク状試料Bが加工容器3の底面の落下用開口に接続された三次元加圧ユニット31の三次元加圧セル33内に落下する。
コア試料Aは、図1に示したように、無酸素水が満たされた状態で掘削機103下端のビットによって掘削され、三次元加圧ユニット31に収容される。三次元加圧ユニット31は懸吊機構のワイヤで吊り上げられ、無酸素作業部105に移送される。無酸素作業部105内で、三次元加圧ユニット31は加工容器3に接続される。コア試料Aは、加工容器3に接続された三次元加圧ユニット31から加工容器3内に取り出される。この様に、コア試料Aは無酸素状態で掘削され、直ちに加工容器3に収容される。
加工容器3内で、コア試料Aは自走式移動台15の開口15aから露出するスライドシャッター18上に載置される。この状態で、コア試料Aは上固定具19aでその上端部が固定され、下固定具19bでその下端部が固定される。下固定具19bには移動台15と平行にスリット19cが形成されている。
加工容器3内には、回転切削機と回転研磨機の互換的機能を有する精密加工用の回転切削研磨機20が設置されている。この回転切削研磨機20は、無酸素環境中でコア試料Aの切断加工(図2)と、研磨加工(図3)を行うものである。
回転切削研磨機20は、回転切断用のダイヤモンドブレード21と、ダイヤモンドブレード21を回転するために加工容器3底面から立設される回転軸22と、回転軸22を回転するためのモータ等の回転軸駆動装置23とから構成される。コア試料Aの側面には、回転切削研磨機20が位置しており、コア試料Aは、自走式移動台15上で、ダイヤモンドブレード21に向かって移動し、水平回転するダイヤモンドブレード21はスリット19cに沿ってコア試料Aをディスク状にスライスする。
また、ダイヤモンドブレード21がコア試料Aに接触して切断する部分には、無酸素冷却機構24によって、無酸素冷媒が吹き付けられ冷却される。なお、無酸素冷却機構24は、無酸素水、液化アルゴン、揮発性液化フッ化物(例えば低温液状フロン)の少なくとも何れか一つを、無酸素液状冷媒として供給するものである。
また、自走式移動台15、スライドシャッター18、上固定具19a、下固定具19bは、それぞれ図示しないレール等によって、図2の左右に移動可能となっており、コア試料Aを上固定具19a及び下固定具19bによって自走式移動台15及びスライドシャッター18に固定した状態で、これらが一体となってダイヤモンドブレード21に向かって水平移動して、コア試料Aはダイヤモンドブレード21によってスライスされて、ディスク状試料Bとなる。また、加工容器3の左側面下部には、加工容器3内に各種機器を出し入れするための開口が形成されており、この開口は出入用蓋29によって開閉可能となっている。
図3により、ディスク状試料Bの研磨加工に用いる各部の説明を行う。ディスク状試料Bの研磨工程では、作業者は回転切削研磨機20の回転軸22からダイヤモンドブレード21を取り外して、研磨用ダイヤモンドテーブル25に交換する。
これによって、自走式移動台15の側面には、研磨用ダイヤモンドテーブル25が配置される。なお、研磨用ダイヤモンドテーブル25の上面には、ディスク状試料Bを研磨するための工業用ダイヤモンド粒子が付着されている。研磨用ダイヤモンドテーブル25は、回転軸22を介して駆動装置23によって水平に回転される。
ディスク状試料把持具27は、切断されたディスク状試料Bの上部側面を把持して、ディスク状試料Bの下面を、研磨用ダイヤモンドテーブル25の研磨面に接触させることにより、ディスク状試料Bの切断面を研磨することができる。なお、ディスク状試料把持具27は、図1のコア試料Aの切断時には、切断の邪魔にならない位置に移動している。
また、ディスク状試料Bの研磨時に、過熱を防止するため、研磨用ダイヤモンドテーブル25の研磨面と、ディスク状試料Bの下面との間に、無酸素冷却機構24によって、無酸素水等の無酸素冷媒が吹付けられる。無酸素冷却機構24の吹出口は、その位置を変更可能となっているため、切断時と研磨時の両方に適用することができる。
また、加工容器3底面の落下用開口には、三次元加圧ユニット31が着脱自在に接続されている。加工容器3の落下用開口部を介して、三次元加圧ユニット31の内部空間と加工容器3の内部空間とが接続される。
次に、本発明の三次元加圧ユニット31の構成について、図4乃至図6を用いて説明する。三次元加圧ユニット31は、三次元加圧セル33(図4)、外容器35(図5)、及び、受動的可撓性シャッター37(図6)から構成されている。三次元加圧セル33は、外容器35内に収容されるものであり、図4に示すように、三次元加圧セル33の円筒部33aには、縦方向にディスク状試料Bが積み重ねて保存される。なお、図4には、ディスク状試料Bを三次元加圧セル33内に収容した状態を示したが、掘削された直後のコア試料Aも三次元加圧セル33内に収容される。また、三次元加圧セル33の円筒部33aの上面には、上面蓋33bが設けられ、円筒部33aの下面には、下面蓋33cが設けられている。
ディスク状試料Bは高圧状態の地層から掘削されたコア試料Aから加工された供試体であり、掘削後に地下圧力がなくなると、変形して力学的特性が変化する。そこで、この力学的特性の変化を抑制するために、コア試料Aの切断研磨加工後ただちに、ディスク状試料Bを三次元加圧セル33に収容して、加圧される。また、下面蓋33c側には、不活性ガスを三次元加圧セル33内に供給する不活性ガス供給管34と、不活性ガス供給管34からの不活性ガスの供給を制御する供給管弁34aとが設けられ、上面蓋33b側には、不活性ガスを三次元加圧セル33内から排出する不活性ガス排出管36と、不活性ガス排出管36からの不活性ガスの排出を制御する排出管弁36aとが設けられている。従って、三次元加圧セル33内に収容されるコア試料A、又は、ディスク状試料Bは、その周囲が無酸素水で満たされた状態で、無酸素水が不活性ガスにより加圧される。
図5に示すように、外容器35は、上述の三次元加圧セル33を収容する有底筒状の容器であり、耐圧製を確保するために金属製が好ましい。また、三次元加圧セル33の上端開口には、円状の受動的可撓性シャッター37が着脱自在に装着されている。
受動的可撓性シャッター37は、その上面を図6に示すように、複数のゴム製の舌片37aから構成されており、舌片37aの基端は、受動的可撓性シャッター37の周縁部37bに固定され、互いに一部分が重なるように配置されている。この受動的可撓性シャッター37に対して、上からディスク状試料Bが落下すると、ディスク状試料Bの重量により受動的可撓性シャッター37が下方に変形して、ディスク状試料Bが落下し、三次元加圧保存セル31の三次元加圧セル33内に収容される。なお、ディスク状試料Bの受け入れ時には、予め作業者によって、上面蓋33bは加工容器3内からの操作により取り外されている。また、ディスク状試料Bの落下後には、弾性力によって舌片が元の形状に復帰することにより、受動的可撓性シャッター37が閉鎖された状態に戻る。
外容器35上端の加工容器3底面への接続部38には、雄ネジが形成されており、加工容器3底面に形成された落下用開口内面に形成された雌ネジと気密状態で螺合する。このように、三次元加圧ユニット31の加工容器3への取付はねじ込み式であり、三次元加圧ユニット31の取付け操作における不活性ガス擾乱を避けることができる。さらに、三次元加圧セル33は三次元加圧ユニット31内で無酸素水雰囲気下に置かれるため、無酸素で地下応力が復元された状態で、コア試料Aやディスク状試料Bの保存、輸送が可能となる。
次に、コア試料Aの掘削からディスク状試料Bへの加工及び保管までの工程を説明する。図1の掘削機103の先端ビットで掘削された柱状のコア試料Aは、直ちに三次元加圧ユニット31に収容して保存される(第1保存工程)。外容器35内は無酸素水に満たされ(無酸素液供給工程)、外容器35に収容される三次元加圧セル33内で、コア試料Aは不活性ガス雰囲気下で15乃至20気圧に加圧されることにより、無酸素雰囲気を高度に維持しつつ、コア試料Aに加わっていた地下応力が復元される(加圧工程)。コア試料Aを収容した三次元加圧ユニット31は、懸吊機構によって吊り上げられて、貯水槽133の脱酸素作業部105に移送される(移送工程)。脱酸素作業部105に配置された加工容器3に、コア試料Aを収容した三次元加圧ユニット31が装着され、三次元加圧ユニット31からコア試料Aが加工容器3内に取り出される。
無酸素状態の加工容器3内で、コア試料Aは回転切削研磨機20のダイヤモンドブレード21によって切断されて、ディスク状試料B(供試体)に加工される(加工工程)。さらに、無酸素環境中で、ディスク状試料Bの切断面は、回転切削研磨機20の研磨用ダイヤモンドテーブル25によって研磨される(加工工程)。なお、コア試料Aのディスク状試料Bへの加工時には、不活性ガスが供給されて加工容器3内は無酸素雰囲気が維持されている(不活性ガス供給工程)。その後、研磨されたディスク状試料Bは、大気中の酸素に触れることなく、加工容器3の底部の落下用開口から三次元加圧ユニット31に落下して、再び三次元加圧ユニット31内に保存される(第2保存工程)。
さらに三次元加圧ユニット31内で、不活性ガス雰囲気下で、ディスク状試料Bは加圧されて地下応力が復元し、また、その周囲が無酸素水によって覆われるため(第2保存工程)、地下の還元的環境を保持した状態で保存・輸送が可能となる。これによって、力学的・水文学的・地化学試験用に適する高品質供試体を調製することができる。
本発明の前提となるコア採取ボーリングシステムの全体構成を示す概略図である。 本発明の可搬型無酸素試料加工システムによるコア試料の切断状態における構成を示す概略図である。 本発明の可搬型無酸素試料加工システムによるコア試料の研磨状態における構成を示す概略図である。 本発明の三次元加圧ユニットを構成する三次元加圧セルの側面図である。 本発明の三次元加圧ユニットを構成する付属外容器の側面図である。 本発明の三次元加圧ユニットを構成する受動的自動シャッターの上面図である。
符号の説明
A コア試料
B ディスク状試料
1 可搬型無酸素試料加工システム
3 加工ボックス
5 不活性ガス流入口
7 不活性ガス流出口
9 ゴム手袋
11 取付け口
13 覗き窓
15 自走式移動台
15a 試料落下用開口
17 移動台駆動装置
18 スライドシャッター
18a シャッター摘み
19a 上固定具
19b 下固定具
19c スリット
20 回転切削研磨機
21 ダイヤモンドブレード
22 回転軸
23 回転軸駆動装置
24 無酸素冷却機構
25 研磨用ダイヤモンドテーブル
31 三次元加圧ユニット
33 三次元加圧セル
33b 上面蓋
33c 下面蓋
34 不活性ガス供給管
34a 供給管弁
35 外容器
36 不活性ガス排出管
34a 排出管弁
37 受動的自動シャッター
103 掘削機
105 脱酸素作業部
107 脱酸素水生成装置
114 ロッド
133 貯水槽
143 第1サイクロン気液分離器
143a 第2サイクロン気液分離器
145 第1スタティックミキサ
145a 第2スタティックミキサ
151 供給水
157 窒素ボンベ
157a 窒素ボンベ

Claims (10)

  1. コア試料を無酸素状態で保存可能な可搬型の保存容器と、前記保存容器内で前記コア試料を無酸素水で加圧する加圧装置と、前記保存容器を収容する外容器と、前記コア試料を加工するための加工容器に前記外容器を接続する接続部とを備えることを特徴とするコア試料保存装置。
  2. 前記保存容器内で前記コア試料と共に封入された無酸素水を加圧するための不活性ガスを供給する不活性ガス供給部を備えることを特徴とする請求項1記載のコア試料保存装置。
  3. 前記加圧装置は、前記コア試料の周囲に充たされた無酸素水を経由して一定の圧力を加えることを特徴とする請求項1又は2記載のコア試料保存装置。
  4. 前記加圧装置は、前記コア試料が採取された地圧に応じた圧力を前記コア試料に加えることを特徴とする請求項1乃至3の何れか一項に記載のコア試料保存装置。
  5. 前記接続部には、前記加工容器で前記コア試料から加工された供試体を前記保存容器内に受け入れる開閉可能なシャッターを備えることを特徴とする請求項1乃至4の何れか一項に記載のコア試料保存装置。
  6. 前記シャッターは、前記加工容器から落下する前記供試体に接触するとその重量によって受動的に開放することを特徴とする請求項5記載のコア試料保存装置。
  7. 前記シャッターは、複数の弾性片から構成することを特徴とする請求項6記載のコア試料保存装置。
  8. 前記外容器は、前記保存容器の周囲に無酸素液を満たすことを特徴とする請求項1乃至7の何れか一項に記載のコア試料保存装置。
  9. 前記接続部は、前記外容器と前記加工容器とを気密に接続可能であることを特徴とする請求項1乃至8の何れか一項に記載のコア試料保存装置。
  10. 前記外容器は、前記加工容器の底部に着脱自在に接続されることを特徴とする請求項1乃至9の何れか一項に記載のコア試料保存装置。
JP2004034917A 2004-02-12 2004-02-12 コア試料保存装置 Expired - Lifetime JP4392260B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034917A JP4392260B2 (ja) 2004-02-12 2004-02-12 コア試料保存装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004034917A JP4392260B2 (ja) 2004-02-12 2004-02-12 コア試料保存装置

Publications (2)

Publication Number Publication Date
JP2005227076A true JP2005227076A (ja) 2005-08-25
JP4392260B2 JP4392260B2 (ja) 2009-12-24

Family

ID=35001913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034917A Expired - Lifetime JP4392260B2 (ja) 2004-02-12 2004-02-12 コア試料保存装置

Country Status (1)

Country Link
JP (1) JP4392260B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536554A (ja) * 2013-08-08 2016-11-24 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 冷凍保存用途向けの回収アセンブリ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366579B1 (ko) 2012-06-27 2014-02-26 한국지질자원연구원 압력코어 샘플 저장 및 이동시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536554A (ja) * 2013-08-08 2016-11-24 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 冷凍保存用途向けの回収アセンブリ
US10258031B2 (en) 2013-08-08 2019-04-16 Sanofi-Aventis Deutschland Gmbh Recovery assembly for cryopreservation applications

Also Published As

Publication number Publication date
JP4392260B2 (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
US8538697B2 (en) Core sample preparation, analysis, and virtual presentation
US11613950B2 (en) Core sampling and analysis using a sealed pressure vessel
US4884892A (en) Method and apparatus to generate precisely-defined wall shearing stresses
WO2019029489A1 (zh) 一种油气田现场随钻岩屑扫描系统及方法
CN105004849B (zh) 一种气体水合物固态流化开采采掘室内实验装置的方法
JP4392261B2 (ja) コア試料加工システム及びコア試料加工方法
JP4392260B2 (ja) コア試料保存装置
Wilde et al. Chapter A2. Selection of equipment for water sampling
CN110426477B (zh) 零价铁渗透反应格栅的模拟装置的使用方法
CN115326467A (zh) 一种基于氡同位素的土壤非水相污染性液体定位识别方法、系统、装置及存储介质
Sanim et al. Development of an aerial drone system for water analysis and sampling
KR20150047884A (ko) 용존가스를 포함하는 장심도 지하수용 시료채취장치 및 채취방법
TWM612722U (zh) 用於檢測地表下環境污染物的被動式採樣器
Timms et al. Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions
Kennel Advances in rock core VOC analyses for high resolution characterization of chlorinated solvent contamination in a dolostone aquifer
CN216284437U (zh) 一种防串层污染的防治取样设备
CN211927422U (zh) 一种可实现自动取样的气溶胶样品取样装置
CN112067528A (zh) 孔隙度测量装置和孔隙度测量方法
CN207600883U (zh) 一种挥发性有机物表观溶解度的测定装置
Henry Appendix D: MHE push-point sampling tools
CN221545551U (zh) 一种基坑勘察装置
CN209979265U (zh) 一种固态废物采集工具
McMutrtry et al. Hydrocarbon seep monitoring using in situ deep sea mass spectrometry
Hays et al. Sampling and analysis field sampling plan for site investigations and RCRA facility investigations at the Fort Chaffee Facility, Fort Chaffee, Arkansas
Auld Opportunities and Limitations in Achieving Real-Time Observation of Soil Nitrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term