JP2005226406A - Water permeation method for manhole, water permeation structure for manhole - Google Patents

Water permeation method for manhole, water permeation structure for manhole Download PDF

Info

Publication number
JP2005226406A
JP2005226406A JP2004038580A JP2004038580A JP2005226406A JP 2005226406 A JP2005226406 A JP 2005226406A JP 2004038580 A JP2004038580 A JP 2004038580A JP 2004038580 A JP2004038580 A JP 2004038580A JP 2005226406 A JP2005226406 A JP 2005226406A
Authority
JP
Japan
Prior art keywords
pipe
manhole
downstream
upstream
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004038580A
Other languages
Japanese (ja)
Inventor
Hiromi Furuya
博美 古谷
Heiji Nakamura
兵次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Consultants Co Ltd
Original Assignee
Pacific Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Consultants Co Ltd filed Critical Pacific Consultants Co Ltd
Priority to JP2004038580A priority Critical patent/JP2005226406A/en
Publication of JP2005226406A publication Critical patent/JP2005226406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water permeation method for a manhole and water permeation structure for a manhole capable of avoiding such as an accident of water overflowing from the manhole even in a heavy rainfall. <P>SOLUTION: An outflow opening of an upstream pipe line and an inflow opening of a downstream pipe line facing the outflow opening are provided at the wall face of a manhole formed of a pit and the outflow opening of the upstream pipe line is connected to the inflow opening of the downstream pipe line through a groove-formed invert to construct a manhole water permeation structure. Joint pipes are arranged respectively in the outflow opening of the upstream pipe line and the inflow opening of the downstream pipe line. Mutual joint pipes are connected by connection pipe having the same sectional area with a pipe constituting the upstream pipe line and the downstream pipe line. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は下水道に設けられるマンホールの通水方法及びマンホール通水構造に関し、特に通水性能の向上をもたらし、強降雨時でもマンホールが溢れるような事故の発生を軽減することができるマンホールの通水方法及びマンホール通水構造を提案するものである。   TECHNICAL FIELD The present invention relates to a manhole water flow method and a manhole water flow structure provided in a sewer, and in particular, improves the water flow performance, and can reduce the occurrence of an accident in which a manhole overflows even during heavy rain. A method and a manhole water flow structure are proposed.

図9に一般的なマンホールの内部構造を示す。図中10は地表、20は地下に構築したマンホール、30は上流側管路、40は下流側管路、50はインバートをそれぞれ示す。
マンホール20は一般によく知られているように地表10から地中に向って掘り下げられた竪穴で構成され、竪穴の壁面に上流側管路30の流出口31が設けられ、この流出口31と対向して下流側管路40の流入口41が設けられる。マンホール20の底面はコンクリートで床面が形成される。床面は流出口31から流入口41に向って漸次低くなる向の傾斜面とされ、その傾斜面に半管状の溝で構成されるインバート50が形成される。
通常ではインバート50を伝わって下水は流れるが、ピーク流量時はインバート50を溢れる場合もある。
FIG. 9 shows the internal structure of a general manhole. In the figure, 10 is the ground surface, 20 is a manhole built underground, 30 is an upstream pipeline, 40 is a downstream pipeline, and 50 is an invert.
As is generally well known, the manhole 20 is composed of a pit that is dug down from the ground surface 10 into the ground, and an outlet 31 of the upstream pipe 30 is provided on the wall of the pit and is opposed to the outlet 31. Thus, the inlet 41 of the downstream pipe 40 is provided. The bottom surface of the manhole 20 is made of concrete and has a floor surface. The floor surface is an inclined surface that gradually decreases from the outlet 31 toward the inlet 41, and an invert 50 composed of a semi-tubular groove is formed on the inclined surface.
Normally, the sewage flows through the invert 50, but the invert 50 may overflow at the peak flow rate.

ところで豪雨のように多量の雨が短時間に降った場合には道路の側溝等から下水管に雨水が集中して流れ込むために、上流側管路30及び下流側管路40は満水の状態で水を流す状況となる。この状況下でマンホール20内では流出側には急拡による損失と、流入側には急縮による損失が存在する。この損失が存在するために豪雨の状態が長時間に達するとマンホール20内に徐々に水が溜り出し、悪くするとマンホール20の蓋を吹き上げて地表10に水が溢れ出る事故が発生する。   By the way, when heavy rain falls in a short time, such as heavy rain, rainwater concentrates on the sewer pipe from the side ditch etc. of the road, so the upstream pipeline 30 and the downstream pipeline 40 are in a full state. It will be the situation to pour water. Under this condition, in the manhole 20, there is a loss due to rapid expansion on the outflow side and a loss due to rapid contraction on the inflow side. Due to the presence of this loss, when heavy rain reaches a long time, water gradually accumulates in the manhole 20, and if it worsens, an accident occurs in which the lid of the manhole 20 is blown up and the surface 10 overflows.

ここでマンホール20の内部で発生する急拡による損失と急縮による損失について簡単に説明する。図12に急拡部と急縮部のモデルを示す。図12Aは急拡部、図12Bは急縮部を示す。
急拡部では管径D1の管路を流速V1で流れてきた水が管径D2に放出され、その流速がV2に変化した様子を示す。
また、急縮部では管径D1の流路を流速V1で流れている状況から管径D2の管路に移り、その流速がV2に変化した様子を示す。
Here, the loss due to sudden expansion and the loss due to rapid contraction occurring inside the manhole 20 will be briefly described. FIG. 12 shows models of the rapid expansion portion and the rapid contraction portion. FIG. 12A shows a rapid expansion section, and FIG. 12B shows a rapid contraction section.
In the rapid expansion portion, water flowing at the flow velocity V1 through the pipe line having the tube diameter D1 is discharged to the tube diameter D2, and the flow velocity is changed to V2.
In the abrupt contraction portion, the state in which the flow rate of the pipe diameter D1 is changed from the state of flowing at the flow velocity V1 to the pipe passage of the pipe diameter D2 and the flow velocity is changed to V2 is shown.

このモデルに示したパラメータを用いて急拡による損失水頭と急縮による損失水頭を求めるための一般式は、
(急拡による損失水頭hse)
hse=(V1−V2)/2g =(1−A1/A2)・V1/2g
={1−(D1/D2)}・V1/2g
=fse・V1/2g …(1)
ここに
hse:急拡による損失水頭(m)(一般値:0.5)
fse:{1−(A1/A2)}:急拡損失係数
V1、V2:急拡、急縮前後の管内流速(m/s)
A1、A2:急拡、急縮前後の管断面積(m
D1、D2:急拡、急縮前後の管径(m)
(急縮による損失水頭hsc)
hsc=(1/Cc−1)・V2/2g=fsc・V2/2g …(2)
ここに
hsc:急縮による損失水頭(m)(一般値:1.0)
Cc:縮流係数
fsc:{(1/Cc)−1}:急縮損失係数
V2:急縮後の管内流速(m/s)
(急拡・急縮による損失水頭h)
h=hsc+hgc=fsc(V1/2g)+fsc(V2/2g) …(3)
ここに
hsc:急拡による損失水頭(m)
hge:漸拡による損失水頭(m)
fsc:{1−(A1/A2)}:急縮損失係数
V2:急縮後の管内流速(m/s)
これらの一般式により下水道管渠の流速に対する損失水頭の試算結果を図13に示す。一般的には流速が0.6〜3.0(m/s)の範囲で設計するように管路の径等を設定しているが、その損失水頭は0.028m〜0.689mとなり、マンホール内の水位の上昇は避けられない。特に下水道の上流に向う程水位の上昇は顕著に表れる。
Using the parameters shown in this model, the general formula for calculating the loss head due to rapid expansion and the loss head due to rapid contraction is:
(Loss head due to rapid expansion hse)
hse = (V1−V2) 2 / 2g = (1−A1 / A2) 2 · V1 2 / 2g
= {1- (D1 / D2) 2 } · V1 2 / 2g
= Fse · V1 2 / 2g (1)
Where hse: head of loss due to rapid expansion (m) (general value: 0.5)
fse: {1- (A1 / A2)} 2 : Rapid expansion loss coefficient V1, V2: Pipe flow velocity before and after rapid expansion and contraction (m / s)
A1, A2: Pipe cross-sectional area before and after rapid expansion and contraction (m 2 )
D1, D2: Pipe diameter before and after rapid expansion and contraction (m)
(Loss head hsc due to rapid contraction)
hsc = (1 / Cc−1) 2 · V2 2 / 2g = fsc · V2 2 / 2g (2)
Where hsc: head loss due to rapid contraction (m) (general value: 1.0)
Cc: contraction coefficient fsc: {(1 / Cc) -1} 2 : rapid contraction loss coefficient V2: pipe flow velocity after rapid contraction (m / s)
(Head loss due to rapid expansion / contraction h)
h = hsc + hgc = fsc (V1 2 / 2g) + fsc (V2 2 / 2g) (3)
Where hsc: head of loss due to rapid expansion (m)
hge: Loss head due to gradual expansion (m)
fsc: {1- (A1 / A2)} 2 : Rapid contraction loss coefficient V2: Pipe flow velocity after rapid contraction (m / s)
FIG. 13 shows a trial calculation result of the loss head with respect to the flow rate of the sewer pipe according to these general formulas. Generally, the diameter of the pipeline is set so that the flow velocity is designed in the range of 0.6 to 3.0 (m / s), but the loss head is 0.028 m to 0.689 m. A rise in the water level in the manhole is inevitable. In particular, the water level rises more markedly toward the upstream of the sewer.

この発明では、竪穴で構成されたマンホールの壁面に上流側管路の流出口と、この流出口と対向して下流側管路の流入口とを設け、これら上流側管路の流出口と下流側管路の流入口との間を溝状のインバートで接続して下水を通水させるマンホールの通水方法において、マンホール内部において、上流側管路及び下流側管路の断面積にほぼ等しい断面積の管路で下水を通水するマンホールの通水方法を提案する。
この発明では更に、竪穴で構成されたマンホールの壁面に上流側管路の流出口と、この流出口と対向して下流側管路の流入口とが設けられ、これら上流側管路の流出口と下流側管路の流入口との間を溝状のインバートで接続して構成されるマンホール通水構造において、上流側管路の流出口及び下流側管路の流入口のそれぞれに継手管を配設し、継手管の相互を上流側管路及び下流側管路を構成する管と同等の断面積を持つ接続管で接続した構造としたマンホール通水構造を提案する。
In the present invention, the outlet of the upstream pipeline and the inlet of the downstream pipeline are provided on the wall surface of the manhole constituted by the pits, and the outlet of the upstream pipeline and the downstream are opposed to the outlet. In the manhole water passing method in which the sewage is passed through a groove-shaped invert between the inlet and the inlet of the side pipe, a section approximately equal to the cross-sectional area of the upstream pipe and the downstream pipe in the manhole. We propose a manhole flow method that allows sewage to flow through an area pipe.
In the present invention, further, an outlet of the upstream pipe line and an inlet of the downstream pipe line are provided on the wall surface of the manhole composed of the pits so as to face the outlet, and the outlets of these upstream pipe lines are provided. In the manhole water flow structure configured by connecting the inlet of the downstream pipe and the inlet of the downstream pipe with a grooved invert, a joint pipe is provided at each of the outlet of the upstream pipe and the inlet of the downstream pipe. A manhole water flow structure is proposed in which the joint pipes are connected and connected to each other with a connecting pipe having a cross-sectional area equivalent to that of the pipes constituting the upstream side pipe and the downstream side pipe.

この発明では更に、請求項2記載のマンホール通水構造において、継手管は管軸方向のほぼ中央にフランジを具備し、フランジで分割された一方の管のそれぞれを上流側管路及び下流側管路の双方に挿入し、他方の管のそれぞれをマンホールの内部に突出させ、この突出された継手管の相互に接続管を接続する構造としたマンホール通水構造を提案する。
この発明では更に、請求項2又は3記載のマンホール通水構造の何れかにおいて、接続管は周方向に分割できる分割管で構成するマンホール通水構造を提案する。
According to the present invention, in the manhole water passage structure according to claim 2, the joint pipe has a flange at a substantially central portion in the pipe axis direction, and one of the pipes divided by the flange is connected to the upstream pipe and the downstream pipe. A manhole water passage structure is proposed in which the pipes are inserted into both sides of the road, and the other pipes are protruded into the manholes, and the connecting pipes are connected to each other of the protruding joint pipes.
The present invention further proposes a manhole water passage structure according to any one of claims 2 and 3, wherein the connection pipe is constituted by a divided pipe which can be divided in a circumferential direction.

この発明では更に、請求項2又は3記載のマンホール通水構造の何れかにおいて、接続管は上面側に開口蓋を具備している構造としたマンホール通水構造を提案する。
この発明では更に、請求項2乃至5記載のマンホール通水構造の何れかにおいて、接続管の上面側に雨水吸込用孔を具備しているマンホール通水構造を提案する。
The present invention further proposes a manhole water passage structure according to any one of claims 2 and 3, wherein the connection pipe has an opening lid on the upper surface side.
The present invention further proposes a manhole water passage structure according to any one of claims 2 to 5, wherein a rainwater suction hole is provided on the upper surface side of the connection pipe.

この発明の請求項1及び請求項2で提案したマンホールの通水方法及びマンホール通水構造によればマンホールの内部でも、上流側の管路と下流側の管路とを上流側と下流側の管路の断面積にほぼ等しい断面積の接続管で接続したから、流出口及び流入口の双方で急拡による損失及び急縮による損失が発生することを回避することができる。この結果、マンホール毎に水位が上昇する現象を防ぐことができる。
この発明の請求項3で提案したマンホール通水構造によれば、マンホール内に設ける接続管はフランジを具備した継手管で流出口及び流入口に接続されるから、構造が簡単でありながら、強固に接続状態を維持することができ、増水時でも安全に耐えることができる。
According to the manhole water passing method and the manhole water passing structure proposed in claim 1 and claim 2 of the present invention, the upstream side pipe and the downstream side pipe are connected to the upstream side and the downstream side even in the manhole. Since connection pipes having a cross-sectional area substantially equal to the cross-sectional area of the pipe line are connected, it is possible to avoid loss due to sudden expansion and loss due to sudden contraction at both the outlet and the inlet. As a result, the phenomenon that the water level rises for each manhole can be prevented.
According to the manhole water passage structure proposed in claim 3 of the present invention, the connecting pipe provided in the manhole is connected to the outlet and the inlet by the joint pipe provided with the flange. The connection state can be maintained, and it can endure safely even when the water volume increases.

更に、この発明の請求項4で提案したマンホール通水構造によれば接続管を周方向に分割できる構造としたから、接続管の内部の点検を簡単に行うことができる。
更に、この発明の請求項5で提案したマンホール通水構造によれば、接続管に蓋を設けた構造とするから、この蓋を開ければ接続管の内部を点検することができる。従って、保安、点検を更に容易に行うことができるマンホール通水構造を得ることができる。
また、この発明の請求項6で提案したマンホール通水構造によれば接続管の上面に雨水吸込用孔を設けたから、マンホールの蓋の部分からマンホールの内部に雨水が侵入し、この雨水がマンホールの内部に溜まったとしても、接続管を流れる下水の量が定常状態、つまり管径の半分程度の流量に戻れば、この雨水吸込用孔を通じてマンホールの内部に溜まった雨水は接続管の内部に吸い込まれ、下流側の管路に吸い込まれる。従って、マンホールの内部にいつまでも雨水が溜まることはない。
Furthermore, according to the manhole water passage structure proposed in claim 4 of the present invention, since the connecting pipe can be divided in the circumferential direction, the inside of the connecting pipe can be easily inspected.
Furthermore, according to the manhole water passage structure proposed in claim 5 of the present invention, since the connection pipe is provided with a lid, the inside of the connection pipe can be inspected by opening the lid. Therefore, it is possible to obtain a manhole water passage structure that can perform security and inspection more easily.
According to the manhole water passage structure proposed in claim 6 of the present invention, since the rainwater suction hole is provided on the upper surface of the connecting pipe, rainwater enters the manhole from the manhole cover and the rainwater enters the manhole. However, if the amount of sewage flowing through the connection pipe returns to a steady state, that is, about half the pipe diameter, the rainwater collected in the manhole through this rainwater suction hole will enter the connection pipe. It is sucked and sucked into the downstream pipe line. Therefore, rainwater does not accumulate in the manhole forever.

この発明では、マンホールの壁面に設けられた上流側管路の流出口と下流側管路の流入口との間を上流側及び下流側管路の断面積にほぼ等しい断面積の接続管で接続し、マンホールの内部でも流路の断面積を変化させない通水方法を提案したから、マンホール毎に発生する急拡による損失及び急縮による損失の何れもが発生することを阻止することができる。更に、接続管の上面に雨水吸込用孔を設けたマンホール通水構造としたから地表からマンホールに直接雨水が進入しても、その雨水は接続管に吸い込まれ、マンホール内に溜まることはない。   In the present invention, the connection pipe having a cross-sectional area substantially equal to the cross-sectional area of the upstream and downstream pipes is connected between the outlet of the upstream pipe provided on the wall surface of the manhole and the inlet of the downstream pipe. And since the water flow method which does not change the cross-sectional area of a flow path inside the manhole was proposed, it can prevent that both the loss by the rapid expansion and the loss by rapid contraction which generate | occur | produce for every manhole are generated. Further, since the manhole water-passing structure is provided with a rainwater suction hole on the upper surface of the connecting pipe, even if rainwater enters the manhole directly from the ground surface, the rainwater is sucked into the connecting pipe and does not accumulate in the manhole.

図1乃至図5を用いてこの発明によるマンホールの通水方法及びマンホール通水構造の一実施例を説明する。図9乃至図11と対応する部分には同一符号を付して示す。この発明では、マンホール20の壁面に開口された上流側管路30の流出口31と、下流側管路40の流入口41との間に上流側管路30と下流側管路40の断面積にほぼ等しい断面積の接続管60を接続し、マンホール20の内部も上流側管路30と下流側管路40の断面積とほぼ等しい断面積の管路で通水する通水方法及び通水構造とするものである。
このために流出口31と流入口41の双方に継手管70を配設し、この継手管70を介して流出口31と流入口41との間を接続管60で接続する。継手管70は図3に示すように管軸方向のほぼ中央にフランジ71を具備し、フランジ71で2分された一方の管72を流出口31及び流入口41に差し込む。図3に示す例では流入口41に管72を差し込んだ状態を示す。フランジ71で2分された他方の管73をマンホール20の内壁面から突出させ、この突出した管73の相互を接続管60で接続する。継手管70及び接続管60はそれぞれ上流側管路30及び下流側管路40のそれぞれに用いられている管の断面積にほぼ等しい断面積の管を用いる。尚、図1に示す80は接続管60を床面に固定するためのアンカーを示す。
An embodiment of a manhole water passing method and a manhole water passing structure according to the present invention will be described with reference to FIGS. Portions corresponding to those in FIGS. 9 to 11 are denoted by the same reference numerals. In the present invention, the cross-sectional area of the upstream pipeline 30 and the downstream pipeline 40 is between the outlet 31 of the upstream pipeline 30 opened in the wall surface of the manhole 20 and the inlet 41 of the downstream pipeline 40. And a water flow method in which a connecting pipe 60 having a cross-sectional area substantially equal to the cross-sectional area is connected, and the inside of the manhole 20 is also passed through a pipe having a cross-sectional area substantially equal to the cross-sectional areas of the upstream pipe 30 and the downstream pipe 40. It is a structure.
For this purpose, joint pipes 70 are provided at both the outlet 31 and the inlet 41, and the outlet 31 and the inlet 41 are connected via the joint pipe 70 via the connection pipe 60. As shown in FIG. 3, the joint pipe 70 includes a flange 71 at the substantially center in the pipe axis direction, and one pipe 72 divided into two by the flange 71 is inserted into the outlet 31 and the inlet 41. In the example shown in FIG. 3, the pipe 72 is inserted into the inlet 41. The other pipe 73 divided by the flange 71 is projected from the inner wall surface of the manhole 20, and the projecting pipes 73 are connected to each other by the connecting pipe 60. The joint pipe 70 and the connecting pipe 60 are pipes having a cross-sectional area substantially equal to the cross-sectional areas of the pipes used for the upstream side pipe line 30 and the downstream side pipe line 40, respectively. In addition, 80 shown in FIG. 1 shows the anchor for fixing the connecting pipe 60 to a floor surface.

接続管60は図4に示すように周方向に2分割され、2分割された半割管で継手管70を挟み込んで継手管70の管73の相互に差し渡される。図4に示す例では半割された接続管60をワイヤー81で結束した場合を示す。尚、接続管60とインバート50との間に例えば樹脂系又はモルタルのような充填体を充填し、接続管60とインバート50との間にすき間が形成されないように塞ぐことができる。
更に、この発明では接続管60の上面側に雨水吸込用孔61を形成する。雨水吸込用孔61は図5に示すように接続管60の長手方向に均一に分布させて形成すればよい。この雨水吸込用孔61を設けておくことにより、マンホール20の蓋の部分から直接雨水が侵入し、この雨水がマンホール20内に蓄積されたとしても、マンホール20内における雨水の水位が接続管60に形成した雨水吸込用孔61の位置に達すると、雨水は雨水吸込用孔61から接続管60に吸い込まれる。従って、マンホール20に直接侵入した雨水の水位は雨水吸込用孔61の位置から大きく上昇することはなく、マンホール20内に多量の雨水が溜まることを阻止することができる。
As shown in FIG. 4, the connecting pipe 60 is divided into two in the circumferential direction, and the joint pipe 70 is sandwiched between the two divided pipes, and the pipes 73 of the joint pipe 70 are passed between each other. In the example shown in FIG. 4, a case where the divided connection pipe 60 is bundled with a wire 81 is shown. It is to be noted that a filling body such as a resin system or mortar is filled between the connection pipe 60 and the invert 50, and the gap can be closed so that no gap is formed between the connection pipe 60 and the invert 50.
Further, in the present invention, a rainwater suction hole 61 is formed on the upper surface side of the connection pipe 60. The rain water suction holes 61 may be formed uniformly distributed in the longitudinal direction of the connecting pipe 60 as shown in FIG. By providing the rainwater suction hole 61, even if rainwater enters directly from the lid portion of the manhole 20 and the rainwater is accumulated in the manhole 20, the water level of the rainwater in the manhole 20 is connected to the connecting pipe 60. When reaching the position of the rainwater suction hole 61 formed in the rainwater, the rainwater is sucked into the connection pipe 60 from the rainwater suction hole 61. Therefore, the rainwater level that has directly entered the manhole 20 does not rise significantly from the position of the rainwater suction hole 61, and a large amount of rainwater can be prevented from accumulating in the manhole 20.

尚、雨水吸込用孔61の位置まで溜まった雨水はマンホール20の床面と周壁との間のすき間から染み出すか、或は接続管60と継手管70との間のすき間等を通じて下水管に吸い込まれ自然解消される。
マンホール20に直接侵入する雨水はマンホールの蓋に形成されたガス抜き孔を通じて侵入するものと考えられる。つまり、径600mmの標準蓋の場合、ガス抜き孔は22個形成され、各ガス抜き孔の径は約14mm程度である。また、径750mmの標準蓋の場合も、径が14mmのガス抜き孔が22個形成される。従って接続管60に形成する雨水吸込用孔61もガス抜き孔と同等の数と直径の孔を用意すればよい。
The rainwater collected up to the position of the rainwater suction hole 61 oozes out from the gap between the floor surface of the manhole 20 and the peripheral wall, or passes through the gap between the connecting pipe 60 and the joint pipe 70 into the sewer pipe. It is sucked and nature is canceled.
Rainwater that directly enters the manhole 20 is considered to enter through the vent holes formed in the manhole cover. That is, in the case of a standard lid with a diameter of 600 mm, 22 gas vent holes are formed, and the diameter of each gas vent hole is about 14 mm. In the case of a standard lid with a diameter of 750 mm, 22 gas vent holes with a diameter of 14 mm are formed. Therefore, the rain water suction holes 61 formed in the connection pipe 60 may be prepared with holes having the same number and diameter as the gas vent holes.

図6に接続管60の実施例2を示す。この実施例2では継手管70を用いて上流側と下流側に接続管60を差し渡す構造は実施例1と同じであるが、接続管60の締結構造に特徴を有するものである。つまり接続管60を上下に2分割し、分割した分割面の外周に補強リブ62とフランジ63を形成し、フランジ63の相互をボルト64で締結する構造とした場合を示す。この場合も上部側に雨水吸込用孔61を形成し、この雨水吸込用孔61によりマンホール20に直接侵入した雨水を吸い込む構造とされる。
この実施例2の構造によればボルト64を緩め、ボルト64を取り外すことにより接続管60の上半部を取り外すことができる。この結果接続管60の内部の点検を容易に行うことができる利点が得られる。
FIG. 6 shows a second embodiment of the connecting pipe 60. In the second embodiment, the structure for passing the connecting pipe 60 to the upstream side and the downstream side using the joint pipe 70 is the same as that of the first embodiment, but the fastening structure of the connecting pipe 60 is characteristic. That is, a case is shown in which the connecting pipe 60 is divided into two in the vertical direction, the reinforcing rib 62 and the flange 63 are formed on the outer periphery of the divided dividing surface, and the flange 63 is fastened with the bolt 64. Also in this case, a rainwater suction hole 61 is formed on the upper side, and the rainwater directly entering the manhole 20 is sucked through the rainwater suction hole 61.
According to the structure of the second embodiment, the upper half of the connecting pipe 60 can be removed by loosening the bolt 64 and removing the bolt 64. As a result, there is an advantage that the inside of the connecting pipe 60 can be easily inspected.

図7に接続管60の実施例3を示す。この実施例3でも継手管70を用いて上流側と下流側に接続管60を差し渡す構造は実施例1と同じであるが、接続管60を周方向に3分割する構造とした場合を示す。つまり、接続管60を構成する上半部を更に2分割し、2分割した半部を下半部とヒンジ65で回動自在に連結し、上端部に形成したフランジ66の相互をボルト64で締結する構造とした場合を示す。
この実施例3の構造によれば、ボルト64を緩めて取り外すことにより、接続管60の上半部をヒンジ65により回動させ、管を開くことができる。この結果、実施例2の構造より更に簡単に接続管60の内部と点検することができる利点が得られる。
FIG. 7 shows a third embodiment of the connection pipe 60. Even in the third embodiment, the structure in which the connecting pipe 60 is passed to the upstream side and the downstream side using the joint pipe 70 is the same as that in the first embodiment, but the case where the connecting pipe 60 is divided into three in the circumferential direction is shown. . That is, the upper half constituting the connecting pipe 60 is further divided into two parts, the half parts divided into two are rotatably connected to the lower half part by the hinge 65, and the flange 66 formed on the upper end part is connected to each other by the bolt 64. The case where it is set as the structure to fasten is shown.
According to the structure of the third embodiment, by loosening and removing the bolt 64, the upper half portion of the connection pipe 60 can be rotated by the hinge 65 to open the pipe. As a result, there is an advantage that the inside of the connection pipe 60 can be inspected more easily than the structure of the second embodiment.

図8に接続管60の実施例4を示す。図8において、Aは断面図、Bは平面図を示す。この実施例4では接続管60の上部に開口蓋67を設けた構造とした場合を示す。開口蓋67は平素は例えばワイヤーロープ81で接続管60に締結しておくが、点検が必要な場合は、ワイヤーロープ81の締結を解放し、開口蓋67を接続管60の上部から取り外すことにより開口蓋67を除去した部分に開口を形成することができ、この開口を通じて作業員が接続管60の内部に入るか、或は接続管60の外部から接続管60の内部の様子を点検することができる。68は開口蓋67を取り外す場合に用いる取っ手を示す。   FIG. 8 shows a fourth embodiment of the connection pipe 60. In FIG. 8, A is a sectional view and B is a plan view. In the fourth embodiment, a case where an opening lid 67 is provided on the upper portion of the connection pipe 60 is shown. The opening lid 67 is normally fastened to the connection pipe 60 with, for example, a wire rope 81. When inspection is necessary, the fastening of the wire rope 81 is released and the opening lid 67 is removed from the upper part of the connection pipe 60. An opening can be formed in the portion from which the opening lid 67 is removed, and an operator can enter the inside of the connecting pipe 60 through this opening or check the inside of the connecting pipe 60 from the outside of the connecting pipe 60. Can do. Reference numeral 68 denotes a handle used when the opening lid 67 is removed.

この発明によるマンホール通水方法及びマンホール通水構造は公共企業体、或は企業が運用する下水道施設に適用して好適である。   The manhole water passing method and the manhole water passing structure according to the present invention are suitable for application to a public corporation or a sewerage facility operated by a company.

この発明の実施例1を説明するための断面図。Sectional drawing for demonstrating Example 1 of this invention. 図1を上部から見た平面図。The top view which looked at FIG. 1 from the upper part. この発明の要部となる接続管の接続構造を説明するための断面図。Sectional drawing for demonstrating the connection structure of the connecting pipe used as the principal part of this invention. この発明の要部となる接続管の実施例1を説明するための断面図。Sectional drawing for demonstrating Example 1 of the connecting pipe used as the principal part of this invention. 図4に示した雨水吸込用孔の配置の例を説明するための平面図。The top view for demonstrating the example of arrangement | positioning of the rain water suction hole shown in FIG. この発明の実施例2を説明するための断面図。Sectional drawing for demonstrating Example 2 of this invention. この発明の実施例3を説明するための断面図。Sectional drawing for demonstrating Example 3 of this invention. この発明の実施例4を説明するための断面図。Sectional drawing for demonstrating Example 4 of this invention. 従来の技術を説明するための断面図。Sectional drawing for demonstrating the prior art. 図9に示した断面図の90°異なる方向から見た断面図。FIG. 10 is a cross-sectional view seen from a direction different from 90 ° of the cross-sectional view shown in FIG. 9. 図9を上部から見た平面図。The top view which looked at FIG. 9 from the upper part. 従来のマンホール内で発生している急拡による損失と急縮による損失を説明するための図。The figure for demonstrating the loss by the rapid expansion which has generate | occur | produced in the conventional manhole, and the loss by rapid contraction. 図12を用いて説明した下水道管渠の流速に対する損失水頭の試算値を示す図。The figure which shows the trial calculation value of the loss head with respect to the flow velocity of the sewer pipe explained using FIG.

符号の説明Explanation of symbols

10 地表 62 補強リブ
20 マンホール 63、66 フランジ
30 上流側管路 64 ボルト
31 流出口 65 ヒンジ
40 下流側管路 67 開口蓋
41 流入口 68 取っ手
50 インバート 70 継手管
60 接続管 71 フランジ
61 雨水吸込用孔 72 一方の管
73 他方の管
10 Ground 62 Reinforcement ribs
20 Manhole 63, 66 Flange 30 Upstream pipe 64 Bolt 31 Outlet 65 Hinge 40 Downstream pipe 67 Opening lid 41 Inlet 68 Handle 50 Invert 70 Joint pipe 60 Connection pipe 71 Flange 61 Rain water suction hole 72 One pipe
73 The other pipe

Claims (6)

竪穴で構成されたマンホールの壁面に上流側管路の流出口と、この流出口と対向して下流側管路の流入口とが設けられ、これら上流側管路の流出口と下流側管路の流入口との間を溝状のインバートで接続して下水を通水させるマンホールの通水方法において、
マンホール内部において、上記上流側管路及び下流側管路の断面積にほぼ等しい断面積の管路で下水を通水することを特徴とするマンホールの通水方法。
An outlet of the upstream pipeline and an inlet of the downstream pipeline are provided on the wall surface of the manhole constituted by the pits, and the outlet of the upstream pipeline and the downstream pipeline are opposed to the outlet. In the manhole water flow method of connecting sewage with a grooved invert between the inlet and
A manhole water passing method, wherein sewage is passed through a pipe having a cross-sectional area substantially equal to a cross-sectional area of the upstream pipe and the downstream pipe inside the manhole.
竪穴で構成されたマンホールの壁面に上流側管路の流出口と、この流出口と対向して下流側管路の流入口とが設けられ、これら上流側管路の流出口と下流側管路の流入口との間を溝状のインバートで接続して構成されるマンホール通水構造において、
上記上流側管路の流出口及び下流側管路の流入口のそれぞれに継手管を配設し、継手管の相互を上記上流側管路及び下流側管路を構成する管と同等の断面積を持つ接続管で接続した構造としたことを特徴とするマンホール通水構造。
An outlet of the upstream pipeline and an inlet of the downstream pipeline are provided on the wall surface of the manhole constituted by the pits, and the outlet of the upstream pipeline and the downstream pipeline are opposed to the outlet. In the manhole water flow structure that is configured by connecting the inflow port with a groove-shaped invert,
A joint pipe is provided at each of the outlet of the upstream pipe and the inlet of the downstream pipe, and the joint pipes have a cross-sectional area equivalent to that of the pipe constituting the upstream pipe and the downstream pipe. Manhole water flow structure characterized by a structure connected by a connecting pipe with
請求項2記載のマンホール通水構造において、上記継手管のそれぞれは管軸方向のほぼ中央にフランジを具備し、フランジで分割された一方の管のそれぞれを上記上流側管路及び下流側管路の双方に挿入し、他方の管のそれぞれをマンホールの内部に突出させ、この突出された継手管の相互に上記接続管を接続する構造としたことを特徴とするマンホール通水構造。   3. The manhole water passage structure according to claim 2, wherein each of the joint pipes has a flange at a substantially center in the pipe axis direction, and each of the pipes divided by the flange is connected to the upstream pipe line and the downstream pipe line. A manhole water-passing structure characterized by being inserted into both of the pipes, projecting the other pipe into the manhole, and connecting the connecting pipe to the projected joint pipe. 請求項2又は3記載のマンホール通水構造の何れかにおいて、上記接続管は周方向に分割できる分割管で構成することを特徴とするマンホール通水構造。   4. The manhole water passage structure according to claim 2, wherein the connection pipe is constituted by a divided pipe that can be divided in a circumferential direction. 5. 請求項2又は3記載のマンホール通水構造の何れかにおいて、上記接続管は上面側に開口蓋を具備している構造としたことを特徴とするマンホール通水構造。   4. The manhole water passage structure according to claim 2, wherein the connection pipe has an opening lid on the upper surface side. 5. 請求項2乃至5記載のマンホール通水構造の何れかにおいて、上記接続管の上面側に雨水吸込用孔を具備していることを特徴とするマンホール通水構造。   6. The manhole passage structure according to claim 2, further comprising a rainwater suction hole on an upper surface side of the connection pipe.
JP2004038580A 2004-02-16 2004-02-16 Water permeation method for manhole, water permeation structure for manhole Pending JP2005226406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038580A JP2005226406A (en) 2004-02-16 2004-02-16 Water permeation method for manhole, water permeation structure for manhole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038580A JP2005226406A (en) 2004-02-16 2004-02-16 Water permeation method for manhole, water permeation structure for manhole

Publications (1)

Publication Number Publication Date
JP2005226406A true JP2005226406A (en) 2005-08-25

Family

ID=35001339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038580A Pending JP2005226406A (en) 2004-02-16 2004-02-16 Water permeation method for manhole, water permeation structure for manhole

Country Status (1)

Country Link
JP (1) JP2005226406A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222749A (en) * 2006-02-22 2007-09-06 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and method
JP2016188494A (en) * 2015-03-30 2016-11-04 大成建設株式会社 Tube sewer construction method and underground flow channel
CN109680732A (en) * 2019-01-18 2019-04-26 江苏南通六建建设集团有限公司 A kind of observing and controlling tool built for closing in type circular inspection well
CN111962636A (en) * 2020-08-17 2020-11-20 中电建生态环境集团有限公司 Pipeline connection device and method
CN111962633A (en) * 2020-08-17 2020-11-20 中电建生态环境集团有限公司 Pipeline connection device and pipeline connection method
CN112112245A (en) * 2020-08-17 2020-12-22 中电建生态环境集团有限公司 Pipeline connection device and pipeline connection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222749A (en) * 2006-02-22 2007-09-06 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and method
JP2016188494A (en) * 2015-03-30 2016-11-04 大成建設株式会社 Tube sewer construction method and underground flow channel
CN109680732A (en) * 2019-01-18 2019-04-26 江苏南通六建建设集团有限公司 A kind of observing and controlling tool built for closing in type circular inspection well
CN109680732B (en) * 2019-01-18 2024-04-02 江苏南通六建建设集团有限公司 Measurement and control tool for closed-type circular inspection well masonry
CN111962636A (en) * 2020-08-17 2020-11-20 中电建生态环境集团有限公司 Pipeline connection device and method
CN111962633A (en) * 2020-08-17 2020-11-20 中电建生态环境集团有限公司 Pipeline connection device and pipeline connection method
CN112112245A (en) * 2020-08-17 2020-12-22 中电建生态环境集团有限公司 Pipeline connection device and pipeline connection method

Similar Documents

Publication Publication Date Title
JP6713264B2 (en) Drainage system
JP6574657B2 (en) Rainwater drainage storage equipment
KR102200336B1 (en) Street inlet and its manufacturing method for preventing backflow of odor and rainwater
JP6069779B2 (en) Multi-layer sewer pipe
JP2005226406A (en) Water permeation method for manhole, water permeation structure for manhole
KR100623240B1 (en) Manhole integrated with drainage
KR101193342B1 (en) Preventing equipment for bad smell and backflow of rain receptacle
JP2988647B2 (en) Rehabilitation basin and rehabilitation sewage pipeline
KR101562759B1 (en) Wall plate assembly for storm overflow chamber
KR20190076949A (en) Apparatus for sewerage system including French drainage
JP2017218817A (en) Manhole repair method and manhole repair structure
JP2907369B2 (en) Rehabilitation basin and sewer pipe
JP5469807B2 (en) 接合 Joining structure and installation method
JP3756794B2 (en) Sealed invert manhole
KR20090040746A (en) Multi-layered manhole and construction method thereof
JP4152667B2 (en) Drainage pipe fitting
JP2004270395A (en) Rainwater storage system
JP6626354B2 (en) Rainwater storage system
JP2021050553A (en) Rainwater storage pipe structure
JP5473013B2 (en) Basic through-pipe structure
JP2004360296A (en) Flood-control branch pipe
KR100613881B1 (en) Cast invert for sewerage manhole
KR100931929B1 (en) Manipulator for variable inverter type with FRP reinforcement and manhole using the same
KR101987910B1 (en) Assembly Type Concrete Structre Having Water Permeable Function And Construction Method Of Concrete Structre
KR101796825B1 (en) A wall plate assembly using concrete block

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212