JP2004360296A - Flood-control branch pipe - Google Patents

Flood-control branch pipe Download PDF

Info

Publication number
JP2004360296A
JP2004360296A JP2003159898A JP2003159898A JP2004360296A JP 2004360296 A JP2004360296 A JP 2004360296A JP 2003159898 A JP2003159898 A JP 2003159898A JP 2003159898 A JP2003159898 A JP 2003159898A JP 2004360296 A JP2004360296 A JP 2004360296A
Authority
JP
Japan
Prior art keywords
pipe
sewage
sewer
discharge
intercepting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003159898A
Other languages
Japanese (ja)
Inventor
Takaiku Yoshii
孝育 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003159898A priority Critical patent/JP2004360296A/en
Publication of JP2004360296A publication Critical patent/JP2004360296A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined sewer system which allows sewage and rainwater to flow therein together without construction of a large-scale concrete building etc., thereby solving the problems of limitation on a construction site for the building and increase in construction costs of the same, wherein the combined sewer system has a flood-control means for preventing an overflow of sewage in a sewer main pipe when the sewage is increased caused by raining etc. without construction of a structure such as a manhole. <P>SOLUTION: There is provided a flood-control branch pipe in order to prevent an overflow of sewage in the sewer main pipe, which is formed of a sewage inflow portion, a branch portion for branching the sewage flowing from the sewage inflow portion to an intercepting sewer and an effluent pipe, an intercepting sewer outflow portion connected to the intercepting sewer, and an effluent pipe outflow portion connected to the effluent pipe. According to the structure of the flood-control branch pipe, the branch portion between the intercepting sewer outflow portion and the effluent pipe outflow portion, has an overflow weir arranged in the vicinity of an inflow port to the effluent pipe outflow portion. The overflow weir is extended from a pipe bottom to partially block a pipe line. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、汚水と雨水とを混合して流下する合流式下水道管路の分水に用いられる分水分岐管に関する。
【0002】
【従来の技術】
合流式下水道管路では、汚水と雨水とを混合して同一管渠に流す。この下水は、下水処理場において地域毎に定められた放流規制値に適合する水質に処理されて、公共水域に放流される。合流式下水道を流れる下水は、降雨のない時には殆どが生活排水等にかかる汚水であるが、降雨時には雨水が流入するために流量が急激に増加する。しかしながら、流量が増加して下水処理場の処理能力を超えてしまうと、処理しきれなくなってしまうため、増水した一部の下水を河川等の公共水域に放流する場合がある。放流される下水は、汚水と雨水とが混合されており、汚水が雨水によって希釈された状態となっている。
【0003】
従来、管渠から下水の一部を分岐して放流する場合、管渠に越流堰を設け、それを超えた下水を河川等に導くように、増水時の排水管路を設けることが行われる。このような越流堰の一例を図7に示す。越流堰は、下水管路途中に雨水吐き室として分水人孔(A)を設け、その中に鉄筋コンクリートの構造物として設置される。このものは、流入管(B)と放流管(D)と遮集管(C)とを備えた分水人孔即ち雨水吐き室(A)内に越流堰(E)を設け、放流管(D)を越流堰(E)を超えた側に設け、遮集管(C)を越流堰(E)の流入管(B)と同じ側に設けるものである(例えば、非特許文献1参照。)。
【0004】
【非特許文献1】「下水道施設計画・設計指針と解説、前編(’01年度版)」、(社)日本下水道協会編、第8節雨水吐き室(第262頁〜第265頁)
【0005】
【発明が解決しようとする課題】
【0006】
しかしながら、分水手段として、非特許文献1の分水人孔を設置する場合には、大規模な鉄筋コンクリート等の構築物を建築するので、設備が大掛かりとなって大きな設置場所が必要なだけでなく、推奨される設置場所として、なるべく放流水域の近くで、原則として計画外水位の時でも充分に放流できる場所を選定するのが望ましいとされるように、一定の制約があったり、工事日数が掛かり工事コストが高くなるという問題点がある。
【0007】
本発明は、上記従来の分水手段が有する問題点、即ち大規模なコンクリート等の構築物を建設することにより建設場所の制約を受けたり、工事コストがかさむという問題点を解決し、汚水と雨水とを同時に流す合流式下水道管渠において、降雨等によって下水が増水した場合に、人孔等の構築物を建設することなく降雨時に増水した下水が下水本管に溢れることを防止する分水手段を提供する目的でなされたものである。
【0008】
【課題を解決するための手段】
上記課題を解決するための本発明の請求項1記載の分水分岐管(発明1)は、下水を分水して遮集管及び放流管に流出するための分水分岐管であって、上記分水分岐管は、下水流入部と、該下水流入部から流入した下水を分水して遮集管及び放流管にそれぞれ流出させる分岐部と、遮集管及び放流管にそれぞれ接続される遮集管流出部及び放流管流出部とを有しており、かつ上記遮集管流出部と放流管流出部の分岐部分の内、放流管流出部への流入口付近に、管底から管路を部分的に塞ぐように越流堰が設けられていることを特徴とする。
【0009】
請求項2記載の発明(発明2)は、下水流入部と放流管流出部との管径が略同じであり、越流堰の高さが、遮集管の管径の2分の1以上でかつ放流管流出部の管径の3分の2以下であることを特徴とする発明1の分水分岐管である。
【0010】
請求項3記載の発明(発明3)は、越流堰が繊維強化合成樹脂からなる
ことを特徴とする発明1又は2の分水分岐管である。
【0011】
合流式下水道における分水分岐管は、流入管と少なくとも2方向への流出管とからなる。即ち、流出管は、通常汚水を下水処理場に流す遮集管と、降雨時に増水した水を公共水域に流す放流管である。遮集管は越流堰の流入管と同じ側に設けられ、放流管は越流堰を超えた側に設けられて越流した下水が流される。
【0012】
分水分岐管本体、即ち流入管、遮集管又は放流管は、通常、いずれも塩化ビニル樹脂、ポリエチレン、ポリプロピレン等合成樹脂類;FRP(繊維強化合成樹脂)、FRPM(繊維強化レジンコンクリート)等複合樹脂類;鉄筋コンクリート等で構成される。また、越流堰も同じ材料であっても良く、他にステンレススチール、防食された鉄、アルミニウム、銅等の金属類等が適用されても良い。
【0013】
特に、合成樹脂類を用いることにより、従来の鉄筋コンクリート構築物であった分水人孔が有している耐腐食性が低いという問題点が回避される。また、分水分岐管は、個々の管路の設計に応じて分岐管や越流堰の形状が決められるため、成型時に自由な形状に成型し易いFRPが特に好適である。FRPであれば、耐腐食性や耐摩耗性にも優れた管路を形成できる。
【0014】
汚水の流量は、その下水道を利用する地域の住民数によって決められる設計推量を満足出来る管径とされる。従って、通常、流入管又は放流管は大口径とされ、遮集管は設計汚水量により決まる口径とされるので、流入管又は放流管の口径より小口径とされる。
【0015】
越流堰は、放流管の分岐流出部の管断面の管底部下から上方に、管を部分的に塞ぐように設けられる。下水流は、越流堰を越流しない場合、即ち定常時には下水処理場に導かれるので、越流堰の高さは、遮集管設計水量以下の下水量が遮集管に流れる高さとされる。
【0016】
その高さは、好ましくは、遮集管の管径の2分の1以上でかつ放流管流出部の管径の3分の2以下とされる。通常、遮集管の管径の2分の1程度を満たす水量の汚水が流入することがあるため、越流堰高さが遮集管の管径の2分の1未満であれば、少量の降水量でも汚水が越流堰を超えて放流管側に流れ、公共水域に放流されてしまうという問題点があり、放流管流出部の管径の3分の2より大であれば、放流管流入部の管径の大部分が越流堰によって閉塞されることになるので、大量の雨水が遮集管側に流れてしまうという問題点がある。
【0017】
一般的な内径の寸法を採用している下水管路においては、越流堰高さは、遮集管の内径と同程度とされることが多い。即ち、定常時の下水水量の方が降雨時より遙かに少なく、下水管の内径やその勾配は、地域によってその最大瞬間降雨量を基礎に計算されて設計されるので、必然的に、遮集管の内径<放流管の内径となり、それ故に放流管の内径は流入管の内径と同程度に設計されるのである。
【0018】
流入管の管軸方向と遮集管の管軸方向と放流管の管軸方向とは、それぞれ勝手な方向とされていても構わない。但し、施工時に、例えば流入管の管軸方向は、遮集管と放流管の管軸方向とがなす平面と同一平面上か、若しくはその平面より上方を向くように施工されなければならないことはいうまでもない。
【0019】
本発明の分水分岐管施行後の遮集管の管底高さは、流入管の管底高さよりも高くなってはならない。定常時に下水がスムースに流れることが必要だからである。また、放流管の管底高さと流入管の管底高さとの関係も同様である。
【0020】
越流堰の越流部の形状は、直線であっても鋸型とされていても良い。鋸型であれば、鋸波形ピッチや鋸歯高さの調節により、越流水量の調節が容易で確実となる。
【0021】
又、越流堰の板部の形状は、平板状のみならず、遮集管への下水の流れがスムースになるように、曲面状とされていても良い。更に、遮集管の外径が越流堰高さより小さい場合には、板部に遮集管が嵌着される貫通孔を設け、この貫通孔に遮集管を挿入して嵌着し固定しても良い。又、越流堰には、流入した下水流が衝突して荷重がかかるので、管と堰との固定部をリブ等で補強しても良い。
【0022】
このような分水分岐管を得る方法の一例を以下に示す。即ち、分水分岐管本体は、適用される材料によって適宜選択して製造されれば良く、その製造方法は、特に限定されない。通常、分水分岐管は、流入管、遮集管、放流管と同じ材料で製造される場合が多いが、例えば一例として、FRP製である場合は、一般的な分岐管製造方法と同じ方法で製造されれば良い。
【0023】
例えば一例として、通常のFRPM製曲管の背側凸曲面状管壁に貫通孔を設け、この貫通孔に、遮集管を、例えばFRPハンドレイアップ法等で接続固定し、同じくFRP製堰板を、その堰高さ調節して放流管と遮集管との分岐部に、FRPハンドレイアップ法固定されれば良い。FRPの材質としては、一般的な補強繊維例えばガラス繊維、炭素繊維等と、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂等の合成樹脂類との複合樹脂類が好適に使用される。又、ガラス繊維を使用する場合は、汚水による耐腐食性を増すために、ECRガラス、Cガラス等の耐酸性を有するものが望ましい。
【0024】
越流堰を分水分岐管に取り付ける方法は、越流堰の材料と分水分岐管の材料とを考慮して、最も適当な方法で取り付けられれば良く、一般的な方法であればそのような方法であっても構わない。例えば分水分岐管がFRPM製であり、越流堰がステンレススチール製等金属板である場合には、FRPハンドレイアップ法、又はねじ止め等で取り付けられれば良い。また、分水分岐管を(鉄筋)コンクリート製のプレキャスト品とした場合には、越流堰は、分水分岐管と同じ材料で、分水分岐管の成型時に同時に一体として成型されても良い。
【0025】
分水分岐管と下水管渠との接続、即ち流入管と上流側下水管、遮集管と下流側下水管、放流管と放流側下水管とは、それぞれ通常のゴム輪を併用した防震継手とされれば良く、特に限定した形状や接続方法とされる必要はない。従って、分水箇所においては、通常の管継手を接続施工する場合と同じ作業となり、管渠接続後は、常法に従って埋め戻し埋設されれば良い。
【0026】
更に、分水分岐管内部の点検や清掃を行う必要が生じた場合に備えて、地表から分水分岐管内部に到達する人孔等を設ける場合には、分水分岐管の地表側管壁面に貫通孔を設け、この貫通孔に、例えばFRPM製等の縦管を接続して人孔とし、必要に応じてその内部に梯子等を設ければ良く、コンクリート等による構造物を建設することはない。
【0027】
(作用)
本発明では、合流下水を分水分岐管で分水する。分水分岐管は合成樹脂、繊維強化合成樹脂、又はプレキャスト鉄筋コンクリート等で予め製造されたものであり、管渠建設現場に搬入されて、通常の管渠の構築時と同じ作業で設けることが出来る。従って、管渠建設現場で、分水人孔をコンクリート建築物として建設する必要がなくなる。特に、耐食性に優れた合成樹脂類、強化合成樹脂類であれば、防食対策が必要なく、従来のような人孔の更新もその必要がなくなる。
【0028】
【発明の実施の形態】
次に、本発明の分水分岐管の一例を、図面を参照して説明する。図1は本発明の分水分岐管の一例の横断面図である。図2は図1の分水分岐管の縦断面図である。図3(a)は越流部が直線形状である越流堰の一例の越流部分側面図、図3(b)は越流部が鋸歯形状である越流堰の一例の越流部分側面図である。図4は分水分岐管の別の一例(遮集管が下向きに接続される例)の縦断面図である。図5は縦管を接続した一例の縦断面図である。図6(a)は堰板に遮集管が接続された一例の横断面図、図6(b)は図6(a)の堰板の正面図である。
【0029】
分水分岐管1は、汚水と雨水等とが合流されて流れる上流側下水管路に接続される流入管2と、下水処理場に向かう下流側下水管路に接続される遮集管3と、公共水域に向かう放流側下水管路に接続される放流管4と、遮集管3と放流管とを分離する越流堰5とから構成されている。
【0030】
流入管2、遮集管3又は放流管4はFRPM製であり、越流堰は、FRP製平板をハンドレイアップ法で放流管分岐部に固定してある。
【0031】
流入管2の口径は、その下水管路が受け持つ地域住民の将来予想数と単位使用水量とから算出される汚水量に3倍程度の安全率を見越した水量(以降、設計汚水量という。)、及びその地域の降雨量とから計算される水量(以降、合流下水量という。)で設計される上流側下水管を接続可能な口径とされる。遮集管3の口径は、設計汚水量から設計される下流側下水管を接続可能な口径とされ、放流管4の口径は流入管2と同じ口径とされている。
【0032】
上流側下水管路と流入管2との接続、下流側下水管路と遮集管3との接続、放流側下水管路と放流管4との接続は、下水管路の接続と同じ構造とされれば良い。例えば、一般的なゴム輪付き継手と同じ受け口或いは挿し口構造等が挙げられる。
【0033】
越流堰5の取り付け場所は、下水が遮集管3と放流管4とに分離されさえすれば、流入管2のどこに設けられていても構わない。例えば一例として、流入管2が遮集管3と放流管4とに分れる分岐部の放流管分岐口部とされると、この位置であれば、堰板の形状を平板状としたり、流入管2から放流管4への下水の漏水を防止しつつ分岐管への固定方法が比較的容易となり易い。
【0034】
越流堰5の高さは、流入する下水量が設計水量を超えたら堰5を越流して放流管4側に流れる高さとされる。越流堰の越流部形状は、直線形状(図3(a)参照。)であっても良く、鋸形状(図3(b)参照。)であっても良い。越流部は、堰本体の板とは別の板状部材としてこれに長孔等を設け、ボルト等を用いて堰本体板の上部に、多少の傾斜を許可するようにかつ上下方向の任意の位置に固定可能として取り付けても良い。こうすれば、分水分岐管を施工した際に、その越流部の水平位置が若干ずれたとしても、修正がし易くなる。
【0035】
遮集管3の管軸方向は、上方から見て、流入管2の管軸方向と同じ線上になるようにされることが望ましい。このようにされると、通常時に汚水がスムースに流れ易くなる。但し、降雨水量が非常に多い地域では、増水する水量をスムースに流すために、放流管4の管軸方向を、上から見て流入管2の管軸と同じ線上としても良い。勿論、上から見て、遮集管3の管軸と放流管4の管軸が、いずれも流入管2の管軸と異なる線になっていても構わないことはいうまでもない。
【0036】
なお、図4に示されるように、流入管2、遮集管3及び放流管4のそれぞれの管軸方向は、流入管2と遮集管3とのそれぞれの管軸がなす平面を、地面と略水平に配置した場合に、放流管4の管軸が略水平又は下方に向くように配置されるような形状であっても良い。
【0037】
図5は、分水分岐管1の内部の清掃や点検を要する場合には、図5に示されるように、縦管6を設けても良い。縦管6は、人が入れる管径のFRP、FRPM等製管であれば良く、その内部壁に梯子等ステップ61を設けられたものであれば良い。縦管6は、分水分岐管1の上側管壁の適当な箇所に縦管6と同じ直径の貫通孔を開け、縦管6を接続固定する。接続固定の方法は、通常の方法によれば良く、例えば一例として、縦管6に分水分岐管1の外形に沿ったフランジ62を固定し、そのフランジ62を分水分岐管1に接続固定する方法や、貫通孔に縦管6を挿入し縦管6と分水分岐管1とをFRPハンドレイアップ法(ハンドレイアップされたFRP層は図示せず。)で接続固定する方法などが挙げられる。通常、これらの接続部分にはコンクリート63等を巻いて補強される。
【0038】
図6に、遮集管3の外径が放流管4の内径の2分の1以下の場合の、遮集管3の取り付け方法の別の一例を示す。本例では、堰板5本体に貫通孔を設けその貫通孔に放流管4を接続固定する。放流管4は分水継手1の管壁を貫通して突出されて接続口が設けられ、放流側下水管に接続される。放流管4と堰板5本体又は分水分岐管1の管壁とはFRPハンドレイアップ法等で、漏水しないように固定される。
【0039】
【発明の効果】
以上の通りであるから、本発明の分水分岐管は、汚水と雨水とを同時に流す合流式下水道管渠において、降雨等によって下水が増水した場合に、人孔等の構築物を建設することなく同時に、降雨時に増水した下水が下水本管に溢れることを防止する分水手段となるのである。
【図面の簡単な説明】
【図1】本発明の分水分岐管の一例の横断面図である。
【図2】図1の分水分岐管の縦断面図である。
【図3】(a) 越流堰の越流部が直線形状である一例の側面図である。
(b) 越流堰の越流部が鋸歯形状である一例の側面図である。
【図4】分水分岐管の別の一例(遮集管が下向きに接続される例)の縦断面図である。
【図5】縦管を接続した一例の縦断面図である。
【図6】(a) 堰板に遮集管が接続された一例の横断面図である。
(b) 堰板の正面図である
【図7】従来の分水人孔の一例の平面図である。
【符号の説明】
1 分水分岐管
2 流入管
3 遮集管
4 放流管
5 越流堰
6 縦管
61 ステップ
62 フランジ
63 補強コンクリート
A 分水人孔(雨水吐き室)
B 流入管
C 遮集管
D 放流管
E 越流堰
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water distribution branch pipe used for water separation of a combined sewer pipe that mixes and flows sewage and rainwater.
[0002]
[Prior art]
In the combined sewer pipe, sewage and rainwater are mixed and flowed to the same sewer. This sewage is treated at a sewage treatment plant to a water quality that conforms to a discharge regulation value set for each region, and discharged to public waters. Most of the sewage flowing through the combined sewer is sewage that is used for domestic drainage and the like when there is no rainfall, but the amount of water rapidly increases during rainfall because rainwater flows in. However, if the flow rate increases and exceeds the treatment capacity of the sewage treatment plant, the sewage treatment plant will not be able to completely treat the sewage treatment plant, and a part of the increased sewage may be discharged to public water bodies such as rivers. The sewage discharged is a mixture of sewage and rainwater, and the sewage is diluted with rainwater.
[0003]
Conventionally, when a part of sewage is branched from a sewer and discharged, an overflow weir is installed in the sewer and a drainage pipe is installed at the time of water increase so as to guide the sewage beyond that to a river. Is An example of such an overflow weir is shown in FIG. The overflow weir is provided with a diversion manhole (A) as a rainwater discharge chamber in the middle of the sewer pipe, and is installed therein as a reinforced concrete structure. According to this apparatus, an overflow weir (E) is provided in a diversion manhole or rainwater discharge chamber (A) provided with an inflow pipe (B), a discharge pipe (D), and a shielding pipe (C). (D) is provided on the side beyond the overflow weir (E), and the intercepting pipe (C) is provided on the same side as the inflow pipe (B) of the overflow weir (E) (for example, Non-Patent Document) 1).
[0004]
[Non-patent document 1] "Sewerage facility planning / design guideline and commentary, Part 1 ('01 edition)", edited by Japan Sewer Association, 8th storm drainage room (pages 262 to 265)
[0005]
[Problems to be solved by the invention]
[0006]
However, when the diversion manhole of Non-patent Document 1 is installed as a diversion means, since a large-scale structure such as reinforced concrete is constructed, not only the equipment becomes large, but also a large installation place is required. However, there are certain restrictions and the number of construction days is recommended so that it is desirable to select a location that is as close to the discharge area as possible and that, in principle, should be able to discharge water sufficiently even at unplanned water levels. There is a problem that the construction cost is high.
[0007]
The present invention solves the problems of the above-mentioned conventional water diversion means, that is, the problem that the construction site is restricted by constructing a large-scale concrete structure or the like, and the construction cost is increased. In the case of a combined sewer sewer that simultaneously feeds water, if the sewage increases due to rainfall, etc., there is a water diversion means to prevent the sewage increased during rainfall from overflowing to the sewage main without constructing structures such as human holes. It was made for the purpose of providing.
[0008]
[Means for Solving the Problems]
A water diversion pipe according to claim 1 of the present invention for solving the above-mentioned problem (Invention 1) is a water diversion pipe for diverting sewage and flowing out to a shielding pipe and a discharge pipe, The diversion branch pipe is connected to the sewage inflow section, the branch section that diverts the sewage flowing from the sewage inflow section and flows out to the interception pipe and the discharge pipe, respectively, and the interception pipe and the discharge pipe. A pipe having an intercepting pipe outflow section and a discharge pipe outflow section, and a pipe from the pipe bottom near the inlet to the outflow pipe outflow section of the branch section between the intercepting pipe outflow section and the outflow pipe outflow section. An overflow weir is provided so as to partially block the road.
[0009]
In the invention (invention 2) according to claim 2, the pipe diameters of the sewage inflow section and the discharge pipe outflow section are substantially the same, and the height of the overflow weir is at least half the pipe diameter of the interceptor pipe. The diversion branch pipe according to Invention 1, characterized in that the pipe diameter is not more than two thirds of the pipe diameter of the discharge pipe outlet part.
[0010]
The invention according to claim 3 (invention 3) is the water distribution branch pipe according to invention 1 or 2, wherein the overflow weir is made of a fiber-reinforced synthetic resin.
[0011]
The diversion branch pipe in the combined sewerage system includes an inflow pipe and an outflow pipe in at least two directions. In other words, the outflow pipes are normally intercepting pipes for flowing sewage to a sewage treatment plant, and discharge pipes for flowing water increased during rainfall to public water bodies. The intercepting pipe is provided on the same side of the overflow weir as the inflow pipe, and the discharge pipe is provided on the side beyond the overflow weir to allow the overflowed sewage to flow.
[0012]
The branching pipe main body, that is, the inflow pipe, the intercepting pipe or the discharge pipe, is usually a synthetic resin such as vinyl chloride resin, polyethylene, or polypropylene; FRP (fiber reinforced synthetic resin), FRPM (fiber reinforced resin concrete), or the like. Composite resins; made of reinforced concrete or the like. In addition, the overflow weir may be made of the same material, and other metals such as stainless steel, anticorrosive iron, aluminum, and copper may be used.
[0013]
In particular, the use of synthetic resins avoids the problem of low corrosion resistance of the diversion manhole, which was a conventional reinforced concrete structure. In addition, since the shape of the branch pipe and the overflow weir is determined according to the design of each pipe, the FRP that is easily formed into a free shape at the time of molding is particularly suitable. With FRP, a pipeline having excellent corrosion resistance and wear resistance can be formed.
[0014]
The flow rate of the sewage is a pipe diameter that can satisfy the design guess determined by the number of residents in the area that uses the sewer. Therefore, usually, the inlet pipe or the discharge pipe has a large diameter, and the interceptor pipe has a diameter determined by the designed sewage amount. Therefore, the inlet pipe or the discharge pipe has a smaller diameter than the inlet pipe or the discharge pipe.
[0015]
The overflow weir is provided upward from below the bottom of the pipe cross section of the branch outflow portion of the discharge pipe so as to partially block the pipe. The sewage flow is guided to the sewage treatment plant when the sewage does not overflow the overflow weir, that is, in a steady state. You.
[0016]
The height is preferably not less than one-half the pipe diameter of the interceptor pipe and not more than two-thirds of the pipe diameter of the discharge pipe outlet. Normally, the amount of sewage that fills about half of the diameter of the interceptor pipe may flow in. Therefore, if the overflow weir height is less than half of the diameter of the interceptor pipe, a small amount There is a problem that even in the rainfall, the sewage flows over the overflow weir to the discharge pipe side and is discharged to the public waters. Since most of the pipe diameter at the pipe inflow section is blocked by the overflow weir, there is a problem that a large amount of rainwater flows to the interceptor pipe side.
[0017]
In sewage pipes that adopt a general inner diameter, the overflow weir height is often about the same as the inner diameter of the interceptor pipe. That is, the amount of sewage in the steady state is much smaller than that in the rainfall, and the inner diameter of the sewer pipe and its gradient are calculated and designed based on the maximum instantaneous rainfall in some regions. The inside diameter of the collecting pipe is smaller than the inside diameter of the discharge pipe, and therefore the inside diameter of the discharge pipe is designed to be substantially the same as the inside diameter of the inflow pipe.
[0018]
The pipe axis direction of the inflow pipe, the pipe axis direction of the intercepting pipe, and the pipe axis direction of the discharge pipe may be arbitrary directions. However, at the time of construction, for example, it must be constructed so that the pipe axis direction of the inflow pipe is on the same plane as the plane between the intercepting pipe and the pipe axis direction of the discharge pipe, or faces upward from that plane. Needless to say.
[0019]
The pipe bottom height of the interceptor pipe after the diversion branch pipe of the present invention is implemented must not be higher than the pipe bottom height of the inflow pipe. This is because the sewage needs to flow smoothly in a steady state. The same applies to the relationship between the pipe bottom height of the discharge pipe and the pipe bottom height of the inflow pipe.
[0020]
The shape of the overflow section of the overflow weir may be straight or saw-toothed. In the case of the saw type, the overflow water amount is easily and reliably adjusted by adjusting the saw waveform pitch and the saw tooth height.
[0021]
Further, the shape of the plate portion of the overflow weir is not limited to a flat plate shape, and may be a curved surface shape so that the flow of sewage to the interceptor pipe is smooth. Furthermore, when the outer diameter of the interceptor is smaller than the overflow weir height, a through hole is provided in the plate portion where the interceptor is fitted, and the interceptor is inserted and fitted into the through hole and fixed. You may. Further, since the inflow sewage flow collides with the overflow weir and a load is applied thereto, a fixing portion between the pipe and the weir may be reinforced with a rib or the like.
[0022]
An example of a method for obtaining such a water branching pipe will be described below. That is, the water branching pipe main body may be appropriately selected and manufactured depending on the material to be applied, and the manufacturing method is not particularly limited. Normally, the water distribution branch pipe is often made of the same material as the inflow pipe, the intercepting pipe, and the discharge pipe. However, for example, when the pipe is made of FRP, for example, the same method as a general branch pipe manufacturing method is used. It should just be manufactured in.
[0023]
For example, as an example, a through hole is provided in the back wall of a curved tube made of a normal FRPM curved tube, and an intercepting tube is connected and fixed to the through hole by, for example, an FRP hand lay-up method. What is necessary is just to fix the board to the branch part of the discharge pipe and the intercepting pipe by adjusting the height of the weir and fix it by the FRP hand lay-up method. As a material of the FRP, a composite resin of general reinforcing fibers such as glass fiber and carbon fiber and a synthetic resin such as an unsaturated polyester resin, a vinyl ester resin and an epoxy resin is preferably used. When glass fibers are used, those having acid resistance such as ECR glass and C glass are desirable in order to increase corrosion resistance due to sewage.
[0024]
The method of attaching the overflow weir to the diversion branch pipe may be the most appropriate method, taking into account the material of the overflow weir and the material of the diversion branch pipe, and if it is a general method, such a method is used. Method may be used. For example, when the water branch pipe is made of FRPM and the overflow weir is a metal plate made of stainless steel or the like, it may be attached by the FRP hand lay-up method, screwing, or the like. When the water distribution branch pipe is made of a precast product made of (reinforced) concrete, the overflow weir may be made of the same material as the water distribution branch pipe, and may be integrally formed simultaneously with the formation of the water distribution branch pipe. .
[0025]
The connection between the water distribution branch pipe and the sewer pipe, i.e., the inflow pipe and the upstream sewer pipe, the intercepting pipe and the downstream sewer pipe, and the discharge pipe and the discharge sewer pipe are each a seismic joint using a normal rubber ring. It is not necessary that the shape or connection method be limited in particular. Therefore, at the water diversion point, the operation is the same as in the case of connecting and connecting a normal pipe joint.
[0026]
In addition, in the event that inspection or cleaning of the inside of the diversion pipe is required, if a human hole or the like reaching the inside of the diversion pipe from the ground surface is provided, A through hole may be provided in the through hole, and a vertical pipe made of, for example, FRPM may be connected to the through hole to form a human hole, and a ladder or the like may be provided therein as necessary. There is no.
[0027]
(Action)
In the present invention, the combined sewage is separated by a separation branch pipe. The water branch pipe is made of synthetic resin, fiber reinforced synthetic resin, precast reinforced concrete, or the like, and is carried into a sewer construction site, and can be provided by the same operation as that for constructing a normal sewer. . Therefore, there is no need to construct the diversion hole as a concrete building at the sewer construction site. In particular, if synthetic resins and reinforced synthetic resins are excellent in corrosion resistance, no anticorrosion measures are required, and the renewal of the conventional human hole is not required.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an example of the water distribution branch pipe of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of one example of the water distribution branch pipe of the present invention. FIG. 2 is a longitudinal sectional view of the water distribution branch pipe of FIG. FIG. 3A is an overflow partial side view of an example of an overflow weir in which an overflow portion has a linear shape, and FIG. 3B is an overflow partial side view of an example of an overflow weir in which an overflow portion has a sawtooth shape. FIG. FIG. 4 is a longitudinal sectional view of another example of the water distribution branch pipe (an example in which the intercepting pipe is connected downward). FIG. 5 is a longitudinal sectional view of an example in which vertical tubes are connected. FIG. 6A is a cross-sectional view of an example in which an interceptor tube is connected to a weir plate, and FIG. 6B is a front view of the weir plate of FIG. 6A.
[0029]
The water distribution branch pipe 1 includes an inflow pipe 2 connected to an upstream sewage pipe in which sewage water and rainwater and the like flow, and an intercepting pipe 3 connected to a downstream sewage pipe toward a sewage treatment plant. A discharge pipe 4 connected to a discharge-side sewage pipe toward a public water area, and an overflow weir 5 separating the intercepting pipe 3 and the discharge pipe.
[0030]
The inflow pipe 2, the interception pipe 3, or the discharge pipe 4 is made of FRPM, and the overflow weir is formed by fixing a flat plate made of FRP to the discharge pipe branch portion by a hand lay-up method.
[0031]
The caliber of the inflow pipe 2 is a water quantity (hereinafter, referred to as a design sewage quantity) that allows for a safety factor of about three times as much as the sewage quantity calculated from the expected future number of local residents and the unit water usage of the sewage pipe. , And the amount of water calculated from the rainfall in the area (hereinafter referred to as the combined sewage). The diameter of the intercepting pipe 3 is set to a diameter capable of connecting a downstream sewer pipe designed based on the designed amount of sewage, and the diameter of the discharge pipe 4 is set to be the same as the diameter of the inflow pipe 2.
[0032]
The connection between the upstream sewer pipe and the inflow pipe 2, the connection between the downstream sewer pipe and the interceptor pipe 3, and the connection between the discharge sewer pipe and the discharge pipe 4 have the same structure as the connection of the sewer pipe. Just do it. For example, the same receiving port or insertion port structure as a general joint with a rubber ring may be used.
[0033]
The mounting position of the overflow weir 5 may be provided anywhere in the inflow pipe 2 as long as the sewage is separated into the intercepting pipe 3 and the discharge pipe 4. For example, as an example, if the inflow pipe 2 is a discharge pipe branch opening of a branch part divided into the intercepting pipe 3 and the discharge pipe 4, at this position, the shape of the weir plate may be flat, The method of fixing the sewage from the pipe 2 to the discharge pipe 4 to the branch pipe while preventing leakage of sewage is relatively easy.
[0034]
The height of the overflow weir 5 is set to a height at which the overflowing weir 5 overflows the weir 5 and flows toward the discharge pipe 4 when the inflow sewage amount exceeds the design water amount. The overflow portion shape of the overflow weir may be a straight shape (see FIG. 3A) or a saw-like shape (see FIG. 3B). The overflow section is provided as a plate-like member separate from the plate of the weir main body, and is provided with an elongated hole or the like. May be attached so that it can be fixed at the position. In this way, when the water distribution branch pipe is constructed, even if the horizontal position of the overflow portion slightly shifts, the correction becomes easy.
[0035]
It is desirable that the tube axis direction of the intercepting tube 3 be on the same line as the tube axis direction of the inflow tube 2 when viewed from above. This makes it easier for the sewage to flow smoothly in normal times. However, in an area where the amount of rainwater is extremely large, the pipe axis direction of the discharge pipe 4 may be on the same line as the pipe axis of the inflow pipe 2 when viewed from above in order to smoothly flow the increasing water quantity. Of course, when viewed from above, it goes without saying that both the pipe axis of the intercepting pipe 3 and the pipe axis of the discharge pipe 4 may be different from the pipe axis of the inflow pipe 2.
[0036]
As shown in FIG. 4, the pipe axis directions of the inflow pipe 2, the interception pipe 3, and the discharge pipe 4 correspond to the plane formed by the respective pipe axes of the inflow pipe 2 and the interception pipe 3, and When arranged substantially horizontally, the discharge pipe 4 may be arranged so that the pipe axis thereof is oriented substantially horizontally or downward.
[0037]
In FIG. 5, when cleaning or inspection of the inside of the water distribution branch pipe 1 is required, a vertical pipe 6 may be provided as shown in FIG. The vertical pipe 6 may be a pipe made of FRP, FRPM, or the like having a diameter that can be inserted by a person, and may be any pipe provided with a step 61 such as a ladder on its inner wall. The vertical pipe 6 has a through hole having the same diameter as the vertical pipe 6 at an appropriate position on the upper pipe wall of the water distribution branch pipe 1, and the vertical pipe 6 is connected and fixed. The connection and fixing method may be a conventional method. For example, as an example, a flange 62 along the outer shape of the water distribution branch pipe 1 is fixed to the vertical pipe 6, and the flange 62 is connected and fixed to the water separation branch pipe 1. Or a method in which the vertical pipe 6 is inserted into the through hole and the vertical pipe 6 and the water distribution branch pipe 1 are connected and fixed by the FRP hand lay-up method (the hand laid-up FRP layer is not shown). No. Usually, these connecting portions are reinforced by winding concrete 63 or the like.
[0038]
FIG. 6 shows another example of a method of attaching the interceptor tube 3 when the outer diameter of the interceptor tube 3 is equal to or less than half the inner diameter of the discharge pipe 4. In this example, a through hole is provided in the main body of the weir plate 5, and the discharge pipe 4 is connected and fixed to the through hole. The discharge pipe 4 protrudes through the pipe wall of the water splitting joint 1, is provided with a connection port, and is connected to the discharge-side sewer pipe. The discharge pipe 4 and the main body of the weir plate 5 or the pipe wall of the water splitting branch pipe 1 are fixed by the FRP hand lay-up method or the like so as not to leak water.
[0039]
【The invention's effect】
As described above, the diversion branch pipe of the present invention can be used in a combined sewer pipe in which sewage and rainwater flow simultaneously, when sewage increases due to rainfall or the like, without constructing a structure such as a human hole. At the same time, it serves as a diversion means to prevent the sewage that has increased during rainfall from overflowing into the sewage mains.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a water distribution branch pipe of the present invention.
FIG. 2 is a longitudinal sectional view of the water distribution branch pipe of FIG. 1;
FIG. 3A is a side view of an example in which an overflow section of an overflow weir has a linear shape.
(B) It is a side view of an example in which the overflow portion of the overflow weir has a sawtooth shape.
FIG. 4 is a longitudinal sectional view of another example of the water distribution branch pipe (an example in which the intercepting pipe is connected downward).
FIG. 5 is a longitudinal sectional view of an example in which vertical tubes are connected.
FIG. 6 (a) is a cross-sectional view of an example in which an interceptor tube is connected to a weir plate.
(B) It is a front view of a dam board. [FIG. 7] It is a top view of an example of the conventional diversion manhole.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water distribution branch pipe 2 Inflow pipe 3 Interception pipe 4 Discharge pipe 5 Overflow weir 6 Vertical pipe 61 Step 62 Flange 63 Reinforced concrete A Water diversion manhole (rainwater discharge chamber)
B Inflow pipe C Interceptor pipe D Discharge pipe E Overflow weir

Claims (3)

下水を分水して遮集管及び放流管に流出するための分水分岐管であって、
上記分水分岐管は、下水流入部と、該下水流入部から流入した下水を分水して遮集管及び放流管にそれぞれ流出させる分岐部と、
遮集管及び放流管にそれぞれ接続される遮集管流出部及び放流管流出部とを有しており、
かつ上記遮集管流出部と放流管流出部の分岐部分の内、放流管流出部への流入口付近に、管底から管路を部分的に塞ぐように越流堰が設けられている
ことを特徴とする分水分岐管。
A diversion branch pipe for diverting sewage and flowing out to intercepting pipes and discharge pipes,
The diversion branch pipe, a sewage inflow section, and a branch section that diverts the sewage flowing from the sewage inflow section and flows out to the intercepting pipe and the discharge pipe,
It has an interceptor outlet and an outlet outlet connected to the interceptor and the outlet respectively,
In addition, an overflow weir is provided near the inlet to the outlet of the discharge pipe in the branch portion of the outlet of the intercepting pipe and the outlet of the discharge pipe so as to partially block the pipe from the pipe bottom. A water branching pipe characterized by the following.
下水流入部と放流管流出部との管径が略同じであり、
越流堰の高さが、遮集管の管径の2分の1以上でかつ放流管流出部の管径の3分の2以下である
ことを特徴とする請求項1記載の分水分岐管。
The pipe diameters of the sewage inflow section and the discharge pipe outflow section are substantially the same,
2. The diversion branch according to claim 1, wherein the height of the overflow weir is not less than one half of the diameter of the interceptor and not more than two thirds of the diameter of the outlet of the discharge pipe. tube.
越流堰が繊維強化合成樹脂からなる
ことを特徴とする請求項1又は2記載の分水分岐管。
3. The diversion branch pipe according to claim 1, wherein the overflow weir is made of a fiber-reinforced synthetic resin.
JP2003159898A 2003-06-04 2003-06-04 Flood-control branch pipe Withdrawn JP2004360296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159898A JP2004360296A (en) 2003-06-04 2003-06-04 Flood-control branch pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159898A JP2004360296A (en) 2003-06-04 2003-06-04 Flood-control branch pipe

Publications (1)

Publication Number Publication Date
JP2004360296A true JP2004360296A (en) 2004-12-24

Family

ID=34052840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159898A Withdrawn JP2004360296A (en) 2003-06-04 2003-06-04 Flood-control branch pipe

Country Status (1)

Country Link
JP (1) JP2004360296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023939A (en) * 2011-07-22 2013-02-04 Taisei Corp Member and method for switching sewage flow, and method for reconstructing manhole
CN112240052A (en) * 2020-09-27 2021-01-19 付正东 Energy-concerving and environment-protective automation prevents stifled pipe installation
CN113531254A (en) * 2021-07-30 2021-10-22 南京汇仁化工设备有限公司 Dynamic wave overflow weir
CN113906185A (en) * 2019-05-30 2022-01-07 小田收平 Sewer system
CN113906185B (en) * 2019-05-30 2024-05-31 小田收平 Sewer system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023939A (en) * 2011-07-22 2013-02-04 Taisei Corp Member and method for switching sewage flow, and method for reconstructing manhole
CN113906185A (en) * 2019-05-30 2022-01-07 小田收平 Sewer system
CN113906185B (en) * 2019-05-30 2024-05-31 小田收平 Sewer system
CN112240052A (en) * 2020-09-27 2021-01-19 付正东 Energy-concerving and environment-protective automation prevents stifled pipe installation
CN113531254A (en) * 2021-07-30 2021-10-22 南京汇仁化工设备有限公司 Dynamic wave overflow weir

Similar Documents

Publication Publication Date Title
JP7000199B2 (en) Stormwater drainage system
JP5406694B2 (en) Vertical pipe with spiral guide
US7882856B2 (en) Separated sanitary and storm sewer system
JP6069779B2 (en) Multi-layer sewer pipe
JP7164303B2 (en) drainage system
US7021338B2 (en) Separated sanitary and storm sewer system
CN207878209U (en) A kind of road rainwater concentration discharge structure
JP2004360296A (en) Flood-control branch pipe
CN106013407B (en) Overflow mechanism and cistern
CN206090797U (en) Integration vatch basin
JP2008214948A (en) Structure of inflow section of riser with spiral guide passage
US7066195B2 (en) Two-way trap
DE19545047A1 (en) Flow retardation system for waste water settlement plant
KR200256151Y1 (en) A storm overflow diverging tank
JP2007308961A (en) Horizontal piping joint and drain pipeline structure using it
CN101688387B (en) Junction device and system for fluid drainage
CN109629410A (en) A kind of hydrocone type rain drainage system for overpass
JP2005226406A (en) Water permeation method for manhole, water permeation structure for manhole
KR20020078270A (en) A storm overflow diverging tank
Marsudi et al. Study on the Optimum Flushing Volume of the Sewer System in South Tangerang City
KR20070106903A (en) Vertical joint pipe with built-in overflow pipe
CN217974708U (en) Backflow prevention device
Field An overview of the US Environmental Protection Agency's storm and combined sewer program collection system research
KR100931929B1 (en) Manipulator for variable inverter type with FRP reinforcement and manhole using the same
KR200342276Y1 (en) Sewerage with channel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080717