JP2005225722A - Cement composition, cavity filling material, and usage thereof - Google Patents

Cement composition, cavity filling material, and usage thereof Download PDF

Info

Publication number
JP2005225722A
JP2005225722A JP2004036647A JP2004036647A JP2005225722A JP 2005225722 A JP2005225722 A JP 2005225722A JP 2004036647 A JP2004036647 A JP 2004036647A JP 2004036647 A JP2004036647 A JP 2004036647A JP 2005225722 A JP2005225722 A JP 2005225722A
Authority
JP
Japan
Prior art keywords
cement
cement composition
glass powder
water
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036647A
Other languages
Japanese (ja)
Other versions
JP4498768B2 (en
Inventor
Keisuke Nakamura
圭介 中村
Masaru Morijiri
優 森尻
Katsuaki Iriuchijima
克明 入内島
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004036647A priority Critical patent/JP4498768B2/en
Publication of JP2005225722A publication Critical patent/JP2005225722A/en
Application granted granted Critical
Publication of JP4498768B2 publication Critical patent/JP4498768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement composition enabling the recycling of industrial wastes and having effects such as quick viscosity increase, excellent strength development, and anti-washout properties, to provide a cavity filling material, and to provide a usage thereof. <P>SOLUTION: The cement composition comprises a cement, a glass powder, and a plasticizer. In one embodiment, the glass powder is present in an amount of at least 25 pts per 100 pts. wt. cement. In another embodiment, the fineness of the glass powder is 4,000 cm<SP>2</SP>/g or higher in terms of a Blaine specific surface area. In yet another embodiment, the plasticizer is an alkali-thickenable polymer emulsion. In still yet another embodiment, the cement composition further contains a curing accelerator. The cavity filling material comprises the cement composition. The method for using the cavity filling material comprises premixing the cement, the glass powder, and water to form liquid A, mixing the plasticizer with water to form liquid B, and mixing liquids A and B immediately prior to use. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、土木・建築分野で使用するセメント組成物、空洞充填材、及びその使用方法に関し、特に、地山の空洞や空隙部分の裏込め材において、セメント組成物を使用したセメントミルク、セメントモルタル、又はコンクリートの粘度を急激に上昇させる必要がある用途に使用するセメント組成物、空洞充填材、及びその使用方法に関する。   The present invention relates to a cement composition used in the field of civil engineering / architecture, a cavity filler, and a method of using the cement composition, and in particular, cement milk and cement using a cement composition in a backfill material for a cavity or void in a natural mountain. The present invention relates to a cement composition used for applications in which the viscosity of mortar or concrete needs to be rapidly increased, a cavity filler, and a method of using the same.

トンネルの覆工において、施工時や施工後に、その背面に空洞が発生する場合があり、その空洞に裏込め材を充填してトンネルの安定化を図る必要があった。
従来、裏込め材として、通常、セメントベントナイトが用いられてきたが、流動性が大きすぎ、裏込め材が遠方まで不必要に逸流する、湧水があると裏込め材が流出するなどの課題があった。
In tunnel lining, a cavity may be formed on the back side of the tunnel during or after the construction, and it was necessary to stabilize the tunnel by filling the cavity with a backfill material.
Conventionally, cement bentonite has usually been used as a backfilling material, but the fluidity is too large, the backfilling material unnecessarily flows far away, and if there is spring water, the backfilling material flows out. There was a problem.

また、二重管ダブルパッカー工法では特殊スリーブ管と地山の隙間にシール材を充填する必要があり、従来、シール材としてセメントベントナイトが用いられてきた。
しかしながら、強度発現性が小さいため、一次注入や二次注入に移るまでに時間がかかる、粘性が小さく、材料分離しやすいため、特殊スリーブ管の上部と下部に強度差が生じやすいなどの課題があった。
Further, in the double pipe double packer method, it is necessary to fill a gap between the special sleeve pipe and the natural ground with a sealing material, and conventionally, cement bentonite has been used as the sealing material.
However, since strength development is small, it takes time to move to primary injection and secondary injection, and there are problems such as low viscosity and easy material separation, resulting in a difference in strength between the upper and lower parts of the special sleeve tube. there were.

そこで、高吸水性樹脂を添加してその粘度を大きくする方法や水ガラスを添加して硬化促進する方法が提案されている(特許文献1、特許文献2参照)。   Therefore, a method for increasing the viscosity by adding a highly water-absorbent resin and a method for promoting curing by adding water glass have been proposed (see Patent Document 1 and Patent Document 2).

しかしながら、いずれの方法も、粘度が上昇するまでに時間がかかるうえ、高吸水性樹脂を添加する方法は高吸水性樹脂が高価であり、水ガラスを添加する方法はpH値が13以上と高く、扱いづらいという課題があった。   However, both methods take time until the viscosity increases, and the method of adding a superabsorbent resin is expensive, and the method of adding water glass has a high pH value of 13 or more. There was a problem that it was difficult to handle.

特開平10−237446号公報JP-A-10-237446 特開平11−061123号公報Japanese Patent Laid-Open No. 11-061123

本発明者は、種々検討を重ねた結果、特定のセメント組成物を用いることにより、急激な粘度上昇を示す、強度の発現性に優れる、水中不分離性がある、pH値が水ガラスを用いた場合に比べ低くできるなどの知見を得て本発明を完成するに至った。   As a result of repeated studies, the present inventor has used a specific cement composition to show a sudden increase in viscosity, excellent strength development, non-separability in water, and pH value using water glass. The present invention has been completed with the knowledge that it can be made lower than in the case of the present invention.

本発明は、セメント、ガラス粉末、及び可塑剤を含有してなるセメント組成物であり、ガラス粉末が、セメント100部に対して、25部以上である、また、ガラス粉末の粉末度が、ブレーン比表面積値4,000cm2/g以上である該セメント組成物であり、可塑剤がアルカリ増粘型ポリマーエマルジョンである該セメント組成物であり、アルカリ増粘型ポリマーエマルジョンが、不飽和カルボン酸類とエチレン性不飽和化合物の共重合により得られるポリマーエマルジョンである該セメント組成物であり、硬化促進剤を含有してなる該セメント組成物であり、該セメント組成物を含有してなる空洞充填材であり、セメント、ガラス粉末、及び水をあらかじめ混合してA液とし、可塑剤と水とを混合してB液とし、使用直前に、A液とB液とを混合する空洞充填材の使用方法である。 The present invention is a cement composition comprising cement, glass powder, and a plasticizer, wherein the glass powder is 25 parts or more with respect to 100 parts of cement, and the fineness of the glass powder is brain. The cement composition having a specific surface area value of 4,000 cm 2 / g or more, wherein the plasticizer is an alkali thickened polymer emulsion, and the alkali thickened polymer emulsion comprises unsaturated carboxylic acids and ethylene The cement composition, which is a polymer emulsion obtained by copolymerization of a polymerizable unsaturated compound, the cement composition containing a curing accelerator, and the cavity filler comprising the cement composition Cement, glass powder, and water are mixed in advance to form liquid A, plasticizer and water are mixed to form liquid B, and a cavity in which liquid A and liquid B are mixed immediately before use. It is a method use of Hamazai.

以下、本発明を詳細に説明する。
なお、本発明でいう部や%は特に規定のない限り質量基準である。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.

本発明で使用するセメントは特に限定されるものではなく、通常のセメントが使用可能であり、具体的には、普通、早強、及び超早強等の各種ポルトランドセメントなどが挙げられる。   The cement used in the present invention is not particularly limited, and ordinary cement can be used. Specific examples thereof include various portland cements such as normal, early strength, and ultra early strength.

本発明で使用するガラス粉末としては、使用済みのガラス瓶を粉砕したものや、通常使用されるガラス類の廃材を粉砕処理したものなどが挙げられる。
ガラス粉末は細かければ細かいほど硬化発現性や充填性の面で好ましい。ブレーン比表面積(以下、ブレーン値という)で4,000cm2/g以上が好ましく、8,000cm2/g以上がより好ましい。
ガラス粉末の使用量は、ガラス粉末の種類や品質により変わるため一義的に規定することはできないが、一般的には、セメント100部に対して、25〜300部が好ましく、50〜200部がより好ましい。25部未満では粘度が上昇せず、フローが大きくなり、水中不分離性が悪くなる場合があり、300部を超えると強度発現が悪くなる場合がある。
Examples of the glass powder used in the present invention include those obtained by pulverizing used glass bottles and those obtained by pulverizing normally used glass waste materials.
The finer the glass powder, the more preferable in terms of curing development and filling properties. Blaine specific surface area (hereinafter, referred to as Blaine value) is preferably at least 4,000 cm 2 / g in, 8,000cm 2 / g or more is more preferable.
Since the amount of glass powder used varies depending on the type and quality of the glass powder, it cannot be uniquely defined. Generally, it is preferably 25 to 300 parts, preferably 50 to 200 parts, per 100 parts of cement. More preferred. If it is less than 25 parts, the viscosity does not increase, the flow becomes large, and the inseparability in water may deteriorate, and if it exceeds 300 parts, the strength expression may deteriorate.

本発明で使用する可塑剤とは、セメントを主材とした流動性の懸濁液を可塑状固結に変質させる材料であり、具体的には、水ガラス、アルミニウム塩、粘土鉱物、高吸水性ポリマー、及びアルカリ増粘型ポリマーエマルジョンなどが挙げられ、そのうち、速効性、経済性、及び安全性の面から、アルカリ増粘型ポリマーエマルジョンが好ましい。   The plasticizer used in the present invention is a material that transforms a fluid suspension containing cement as a main material into plastic solidification, and specifically includes water glass, aluminum salt, clay mineral, high water absorption. Examples thereof include alkaline polymers and alkali-thickened polymer emulsions. Of these, alkali-thickened polymer emulsions are preferred from the viewpoint of rapid action, economy, and safety.

本発明で使用するアルカリ増粘型ポリマーエマルジョン(以下、本エマルジョンという)とは、アルカリにより増粘するポリマーエマルジョンをいう。   The alkali thickened polymer emulsion (hereinafter referred to as the present emulsion) used in the present invention refers to a polymer emulsion thickened by alkali.

本エマルジョンとしては、例えば、不飽和カルボン酸類、不飽和カルボン酸類とエチレン性不飽和化合物の共重合物等、種々挙げられるが、より優れた効果を示す面で、不飽和カルボン酸類とエチレン性不飽和化合物の共重合により得られるポリマーエマルジョンが好ましい。
不飽和カルボン酸類とエチレン性不飽和化合物の重合方法としては、乳化重合、懸濁重合、溶液重合、又は塊状重合等の方法により、共重合する方法等が挙げられる。
Examples of the emulsion include various unsaturated carboxylic acids, copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds, and the like. Polymer emulsions obtained by copolymerization of saturated compounds are preferred.
Examples of the polymerization method of the unsaturated carboxylic acid and the ethylenically unsaturated compound include a method of copolymerization by a method such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization.

不飽和カルボン酸類としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、アコニット酸、及びクロトン酸等の不飽和カルボン酸、無水マレイン酸や無水シトラコン酸等の不飽和カルボン酸無水物、並びに、イタコン酸モノメチル、イタコン酸モノブチル、及びマレイン酸モノエチルなどの不飽和カルボン半エステルが挙げられ、これらの中では、より優れた効果を示す面で、不飽和カルボン酸が好ましく、アクリル酸及び/又はメタクリル酸がより好ましい。   Examples of unsaturated carboxylic acids include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, aconitic acid, and crotonic acid, and unsaturated carboxylic acids such as maleic anhydride and citraconic anhydride. Acid anhydrides, and unsaturated carboxylic half-esters such as monomethyl itaconate, monobutyl itaconate, and monoethyl maleate are mentioned, and among these, unsaturated carboxylic acids are preferred in terms of showing more excellent effects, Acrylic acid and / or methacrylic acid are more preferred.

エチレン性不飽和化合物としては、エチレン、アクリルニトリルやメタクリロニチリルなどのシアノビニルモノマー、メチルアクリレート、エチルアクリレート、及びブチルアクリレートなどのアクリル酸エステルモノマー、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ヒドロキシエチルメタクリレート、及びグリシジルメタクリレートなどのメタクリル酸エステルモノマー、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、及びネオデカン酸ビニルエステルなどのC3〜18脂肪族カルボン酸ビニルエステル、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、及びフェニルビニルエーテルなどのビニルエーテルモノマー、並びに、アリルメタクリレートなどの多官能性ビニルモノマーなどが挙げられ、そのうち、より優れた効果を示す面で、アクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマーが好ましい。   Examples of ethylenically unsaturated compounds include ethylene, cyanovinyl monomers such as acrylonitrile and methacrylonitrile, acrylic acid ester monomers such as methyl acrylate, ethyl acrylate, and butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and hydroxyethyl. Methacrylic acid ester monomers such as methacrylate and glycidyl methacrylate, C3-18 aliphatic carboxylic acid vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl stearate, vinyl octylate, and neodecanoic acid vinyl ester, Vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, and phenyl vinyl ether; Such polyfunctional vinyl monomers such as methacrylate and the like, of which, in terms of showing the superior effects, ester monomers and / or methacrylic acid ester monomers of acrylic acid are preferred.

本エマルジョンの不飽和カルボン酸類とエチレン性不飽和化合物の共重合比は、より優れた効果を示す面で、不飽和カルボン酸類:エチレン性不飽和化合物=20:1〜1:20が好ましく、5:1〜1:5がより好ましい。この範囲外では良好なアルカリ増粘性が得られない場合がある。   The copolymerization ratio of unsaturated carboxylic acids and ethylenically unsaturated compounds in the emulsion is preferably unsaturated carboxylic acids: ethylenically unsaturated compounds = 20: 1 to 1:20, in view of more excellent effects. : 1-1: 5 is more preferable. Outside this range, good alkali thickening may not be obtained.

本エマルジョンの使用量は、セメント100部に対して、固形分換算で0.1〜2部が好ましく、0.2〜1部がより好ましい。0.1部未満では増粘効果が少なくなり、フローが大きくなり、水中不分離性が悪くなる場合があり、2部を超えると初期強度発現性が悪くなる場合がある。   The amount of the emulsion used is preferably 0.1 to 2 parts, more preferably 0.2 to 1 part, in terms of solid content, with respect to 100 parts of cement. If the amount is less than 0.1 part, the thickening effect is reduced, the flow becomes large, and the inseparability in water may be deteriorated.

本発明では、強度発現性や材料の分離抵抗性の面から、例えば、アルミン酸塩と硫酸塩を含有する硬化促進剤を併用することは好ましい。   In the present invention, from the viewpoint of strength development and material separation resistance, for example, it is preferable to use a curing accelerator containing aluminate and sulfate together.

ここで、アルミン酸塩としては、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、及びアルミン酸カルシウムなどが挙げられ、強度発現性の面でアルミン酸カルシウムが好ましい。   Here, examples of the aluminate include lithium aluminate, sodium aluminate, potassium aluminate, and calcium aluminate, and calcium aluminate is preferable in terms of strength development.

アルミン酸カルシウムとは、カルシアを含む原料と、アルミナを含む原料等とを混合して、キルンでの焼成や、電気炉での溶融等の熱処理をして得られる、CaOとAl2O3とを主たる成分とし、水和活性を有する物質の総称であり、CaO及び/又はAl2O3の一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した物質、あるいは、CaOとAl2O3とを主成分とするものに、これらが固溶した物質である。鉱物形態としては、結晶質、非晶質いずれであってもよい。
これらの中では、反応活性の面で、非晶質のアルミン酸カルシウムが好ましく、12CaO・7Al2O3組成に対応する熱処理物を急冷した非晶質のアルミン酸カルシウムがより好ましい。
アルミン酸カルシウムの粒度は、ブレーン値で3,000cm2/g以上が好ましく、5,000cm2/g以上がより好ましい。3,000cm2/g未満では初期強度発現性が低下する場合がある。
本発明では、本発明の目的を阻害しない範囲でClやFなどのハロゲン類等を含有していても差し支えない。
なお、本発明において、アルミン酸カルシウムは硫酸塩と併用せず、単独でも本エマルジョンの可塑化助剤として使用することが可能である。
Calcium aluminate is a mixture of a raw material containing calcia and a raw material containing alumina, and is obtained by calcining in a kiln or heat treatment such as melting in an electric furnace, and CaO and Al 2 O 3 Is a general term for substances having hydration activity, and part of CaO and / or Al 2 O 3 is an alkali metal oxide, an alkaline earth metal oxide, silicon oxide, titanium oxide, iron oxide, These are solid substances that are substituted with alkali metal halides, alkaline earth metal halides, alkali metal sulfates, alkaline earth metal sulfates, etc., or those containing CaO and Al 2 O 3 as main components. It is a dissolved substance. The mineral form may be either crystalline or amorphous.
Among these, amorphous calcium aluminate is preferable in terms of reaction activity, and amorphous calcium aluminate obtained by quenching the heat-treated product corresponding to the 12CaO · 7Al 2 O 3 composition is more preferable.
The particle size of the calcium aluminate is preferably 3,000 cm 2 / g or more in Blaine value, 5,000 cm 2 / g or more is more preferable. If it is less than 3,000 cm 2 / g, the initial strength development may decrease.
In the present invention, halogens such as Cl and F may be contained as long as the object of the present invention is not impaired.
In the present invention, calcium aluminate is not used in combination with sulfate, and can be used alone as a plasticizing aid for the emulsion.

硫酸塩としては、硫酸リチウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、カリウム明礬、硫酸カルシウム、硫酸アルミニウム、及び硫酸鉄等が挙げられ、強度発現性の面で、硫酸カルシウム及び/又は硫酸アルミニウムが好ましい。
硫酸カルシウムとしては、無水石膏、半水石膏、又は二水石膏等が挙げられ、これらの中では、強度発現性の面で、無水石膏が好ましい。
硫酸塩の粒度は、ブレーン値で3,000cm2/g以上が好ましく、5,000cm2/g以上がより好ましい。3,000cm2/g未満では強度発現性が低下する場合がある。
Examples of the sulfate include lithium sulfate, sodium sulfate, magnesium sulfate, potassium sulfate, potassium alum, calcium sulfate, aluminum sulfate, and iron sulfate. In terms of strength development, calcium sulfate and / or aluminum sulfate is preferable. .
Examples of calcium sulfate include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Among these, anhydrous gypsum is preferable in terms of strength development.
The particle size of the sulfate is preferably from 3,000 cm 2 / g or more in Blaine value, 5,000 cm 2 / g or more is more preferable. If it is less than 3,000 cm 2 / g, strength development may be reduced.

アルミン酸塩と硫酸塩の配合割合は、アルミン酸塩100部に対して、20〜500部が好ましく、50〜150部がより好ましい。20部未満では強度発現性が小さくなる場合があり、500部を超えるとフローが大きくなり、水中不分離性が悪くなり、長期強度発現性が小さくなる場合がある。   The blending ratio of the aluminate and the sulfate is preferably 20 to 500 parts, more preferably 50 to 150 parts with respect to 100 parts of the aluminate. If it is less than 20 parts, the strength development may be reduced, and if it exceeds 500 parts, the flow becomes large, the inseparability in water deteriorates, and the long-term strength development may be reduced.

硬化促進剤の使用量は、セメント100部に対して、1〜30部が好ましく、2〜20部がより好ましい。1部未満ではフローが大きくなり、水中不分離性が悪くなり、強度発現性が小さくなる場合があり、30部を超えると長期強度が小さくなる場合がある。   The amount of the curing accelerator used is preferably 1 to 30 parts, more preferably 2 to 20 parts, relative to 100 parts of cement. If it is less than 1 part, the flow becomes large, the inseparability in water becomes poor, and the strength development may be reduced. If it exceeds 30 parts, the long-term strength may be reduced.

本発明のセメント組成物に、砂や砂利等の骨材、減水剤、及び防凍剤等を併用することも可能である。   Aggregates such as sand and gravel, water reducing agents, antifreezing agents, and the like can be used in combination with the cement composition of the present invention.

本発明でセメントと混合する水の量は特に限定されるものではないが、セメント100部に対して、100〜250部が好ましく、150〜200部がより好ましい。100部未満では空洞充填材の混練が困難になる場合があり、250部を超えるとフローが大きくなり、水中不分離性が悪くなる場合がある。   The amount of water to be mixed with cement in the present invention is not particularly limited, but is preferably 100 to 250 parts, more preferably 150 to 200 parts with respect to 100 parts of cement. If it is less than 100 parts, the kneading of the hollow filler may be difficult, and if it exceeds 250 parts, the flow becomes large and the inseparability in water may deteriorate.

本発明の空洞充填材は、セメント、ガラス粉末、及び本エマルジョンを混合して得られる。
空洞充填材の混合方法は特に規定されるものではないが、セメントとガラス粉末をあらかじめ水と混合したセメント-ガラス粉末液をA液とし、本エマルジョンと水とを混合してなる混合物を混合した本エマルジョン液をB液とし、使用直前にA液とB液とを混合することにより粘度を急激に上昇させる方法が好ましい。なお、本エマルジョンをあらかじめ水と混合して溶液又は懸濁液とすることは、混合性が良好となり、増粘性の面から好ましい。
The cavity filler of the present invention is obtained by mixing cement, glass powder, and the present emulsion.
The method for mixing the hollow filler is not particularly specified, but a cement-glass powder solution prepared by mixing cement and glass powder with water in advance is used as solution A, and a mixture obtained by mixing the emulsion and water is mixed. A method of rapidly increasing the viscosity by using the emulsion liquid as the B liquid and mixing the A liquid and the B liquid immediately before use is preferable. In addition, mixing this emulsion with water in advance to form a solution or suspension is preferable from the standpoint of increasing the viscosity and improving the viscosity.

実際の使用にあたって本エマルジョンや硬化促進剤は、添加混合がしやすい面から、水と混合して使用することが好ましい。
その場合の水の使用量は特に限定されるものではないが、本エマルジョンの場合は、本エマルジョンの固形分の5倍から20倍の水で希釈することが好ましく、硬化促進剤の場合は、その1倍から3倍に希釈することが好ましい。水の量がこれより少ないと粘性が高くなり混合性が悪くなる場合があり、水の量が多くなると、その希釈水の希釈効果が多くなり、水中不分離性が悪くなる場合がある。
In actual use, the emulsion and the curing accelerator are preferably mixed with water from the viewpoint of easy addition and mixing.
The amount of water used in that case is not particularly limited, but in the case of this emulsion, it is preferable to dilute with 5 to 20 times the solid content of this emulsion, and in the case of a curing accelerator, It is preferable to dilute 1 to 3 times. If the amount of water is less than this, the viscosity may increase and the mixing property may deteriorate, and if the amount of water increases, the dilution effect of the diluted water increases and the inseparability in water may deteriorate.

空洞充填材の合流混合の方法としては、Y字管等の混合管を使用する方法、三重管を使用する方法、及び本エマルジョン液のB液と硬化促進剤液のC液を、それぞれシャワー状にセメント-石炭灰液のA液に合流混合させるためのインレットピースを使用する方法等が挙げられる。
また、空洞充填材をより均一に混合するため、合流混合後の管中にスパイラル状のミキサをセットし、さらに空洞充填材を混合する方法も挙げられる。
As a method of merging and mixing the hollow filler, a method using a mixing tube such as a Y-shaped tube, a method using a triple tube, and a liquid B of this emulsion and a liquid C of a curing accelerator are respectively in a shower form. And a method of using an inlet piece for mixing and mixing with cement-coal ash solution A.
Moreover, in order to mix a cavity filler more uniformly, the method of setting a spiral mixer in the pipe | tube after merging and mixing and also mixing a cavity filler is also mentioned.

本発明の空洞充填材及びその注入工法は、有効に産業廃棄物を利用することができ、急激な粘度上昇を示し、強度の発現性に優れる、水中不分離性があるなど、その性能も優れることがわかる。   The hollow filler and the injection method of the present invention can effectively use industrial waste, exhibit a rapid increase in viscosity, have excellent strength, and have excellent performance such as inseparability in water. I understand that.

以下、本発明の実施例を示し、本発明をさらに説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although the Example of this invention is shown and this invention is demonstrated further, this invention is not limited to these.

セメント100部に対して、表1に示すガラス粉末と水をミキサーで混練してA剤を作製した。
次に、セメント100部に対して、固形分換算で0.5部の本エマルジョンαと水5部を混合してB剤とした。A剤に、B剤を投入し、5秒間混練し、混練物を調製した。調製した混練物の、フロー、水中不分離性、及び圧縮強度を測定した。結果を表1に併記する。
With respect to 100 parts of cement, the glass powder shown in Table 1 and water were kneaded with a mixer to prepare agent A.
Next, 0.5 parts of this emulsion α and 5 parts of water were mixed with 100 parts of cement to obtain B agent. B agent was added to A agent and kneaded for 5 seconds to prepare a kneaded product. The prepared kneaded product was measured for flow, inseparability in water, and compressive strength. The results are also shown in Table 1.

<使用材料>
セメント :普通ポルトランドセメント、市販品
ガラス粉末A:廃ガラス粉末、市販品、ブレーン値3,000cm2/g
ガラス粉末B:廃ガラス粉末、市販品、ブレーン値4,000cm2/g
ガラス粉末C:廃ガラス粉末、市販品、ブレーン値8,000cm2/g
ガラス粉末D:廃ガラス粉末、市販品、ブレーン値10,000cm2/g
本エマルジョンα:固形分濃度30%、エチルアクリレート/メタクリル酸=45/55のエチルアクリレート/メタクリル酸共重合ポリマーエマルジョン
<Materials used>
Cement: Ordinary Portland cement, commercially available glass powder A: Waste glass powder, commercially available, brain value 3,000 cm 2 / g
Glass powder B: Waste glass powder, commercially available, brain value 4,000 cm 2 / g
Glass powder C: Waste glass powder, commercial product, brain value 8,000cm 2 / g
Glass powder D: Waste glass powder, commercially available, brain value 10,000 cm 2 / g
This emulsion α: ethyl acrylate / methacrylic acid copolymer polymer emulsion having a solid content concentration of 30% and ethyl acrylate / methacrylic acid = 45/55

<測定方法>
フロー :内径80mm、高さ80mmのシリンダーに混練物を入れ、シリンダーを引き抜いた後の広がりを2分後に測定
水中不分離性:土木学会の水中不分離コンクリート設計施工指針付属書の水中分離度試験に準じて実施、水の濁りが全くない場合を優、水の濁りがわずかにある場合を良、水の濁りはあるが実用可能の場合を可、及び材料が分離し、水の濁りが大の場合を不可とした。
圧縮強度 :JIS R 5201に準じて測定
<Measurement method>
Flow: Put the kneaded material into a cylinder with an inner diameter of 80mm and a height of 80mm, and measure the spread after pulling out the cylinder after 2 minutes. Performed according to the above, excellent when there is no turbidity of water, good when there is slight turbidity of water, acceptable when there is turbidity of water but is practical, and the material is separated and the turbidity of water is large In the case of.
Compressive strength: Measured according to JIS R 5201

Figure 2005225722
Figure 2005225722

セメント100部、表2に示すガラス粉末200部、及び水180部をミキサーで混練してA剤を作製し、セメント100部に対して、固形分換算で表2に示す本エマルジョンと、本エマルジョンの10倍量の水とを混合してB剤としたこと以外は実施例1と同様に行った。結果を表2に併記する。
なお、比較のため、本エマルジョンの代わりにアルカリ増粘性を有さない非本エマルジョンを用いて同様な実験を行った。
100 parts of cement, 200 parts of glass powder shown in Table 2 and 180 parts of water are kneaded with a mixer to prepare agent A. The emulsion shown in Table 2 in terms of solid content and the emulsion are added to 100 parts of cement. The same procedure as in Example 1 was conducted except that the B agent was mixed with 10 times the amount of water. The results are also shown in Table 2.
For comparison, a similar experiment was conducted using a non-emulsion having no alkali thickening instead of the present emulsion.

<使用材料>
本エマルジョンβ:固形分濃度30%、エチルアクリレート/メタクリル酸=45/55のエチレン/酢酸ビニル共重合ポリマーエマルジョン70部と、エチレン/酢酸ビニル=18/82のエチルアクリレート/アクリル酸共重合ポリマーエマルジョン30部の混合物
非本エマルジョン:固形分濃度30%、スチレン/2-エチルヘキシルアクリレート=45/55のスチレン/2-エチルヘキシルアクリレート共重合ポリマーエマルジョン
<Materials used>
This emulsion β: 70 parts of an ethylene / vinyl acetate copolymer emulsion having a solid content of 30%, ethyl acrylate / methacrylic acid = 45/55, and an ethyl acrylate / acrylic acid copolymer emulsion having an ethylene / vinyl acetate = 18/82 30 parts of mixture non-main emulsion: styrene / 2-ethylhexyl acrylate copolymer emulsion having a solid content of 30% and styrene / 2-ethylhexyl acrylate = 45/55

Figure 2005225722
Figure 2005225722

セメント100部、ガラス粉末B300部、及び水180部をミキサーで混練してA剤を作製し、セメント100部に対して、固形分換算でセメント100部に対して0.1部の本エマルジョンαと、本エマルジョンの10倍量の水とを混合してB剤とし、セメント100部に対して、表3に示す硬化促進剤と該硬化促進剤の10倍量の水とを混合してC剤とし、A剤、B剤、及びC剤を混練したこと以外は実施例1と同様に行った。結果を表3に併記する。   100 parts of cement, 300 parts of glass powder B, and 180 parts of water are kneaded with a mixer to prepare agent A, and for 100 parts of cement, 0.1 part of this emulsion α with respect to 100 parts of cement in terms of solid content, Mixing 10 times the amount of water with this emulsion to make agent B, and mixing 100 parts of cement with the curing accelerator shown in Table 3 and 10 times the amount of water to make C agent. , A agent, B agent, and C agent were carried out in the same manner as in Example 1 except that they were kneaded. The results are also shown in Table 3.

<使用材料>
硬化促進剤:12CaO・7Al2O3組成に対応する熱処理物を急冷した非晶質で、ブレーン値6,000cm2/gのアルミン酸カルシウム4部と、ブレーン値5,400cm2/gの無水石膏の1部の混合物
<Materials used>
Curing accelerator: in 12CaO · 7Al 2 O 3 amorphous quenched with corresponding heat-treated product to the composition, and Blaine 6,000 2 / g calcium 4 parts aluminate, Blaine 5,400cm 2 / g of anhydrous gypsum 1 part mixture

Figure 2005225722
Figure 2005225722

Claims (8)

セメント、ガラス粉末、及び可塑剤を含有してなるセメント組成物。   A cement composition comprising cement, glass powder, and a plasticizer. ガラス粉末が、セメント100部に対して、25部以上であることを特徴とする請求項1に記載のセメント組成物。   The cement composition according to claim 1, wherein the glass powder is 25 parts or more with respect to 100 parts of cement. ガラス粉末の粉末度が、ブレーン比表面積値4,000cm2/g以上であることを特徴とする請求項1又は請求項2に記載のセメント組成物。 The cement composition according to claim 1 or 2, wherein the fineness of the glass powder is a Blaine specific surface area value of 4,000 cm 2 / g or more. 可塑剤がアルカリ増粘型ポリマーエマルジョンであることを特徴とする請求項1〜3のうちの1項に記載のセメント組成物。   The cement composition according to any one of claims 1 to 3, wherein the plasticizer is an alkali thickening polymer emulsion. アルカリ増粘型ポリマーエマルジョンが、不飽和カルボン酸類とエチレン性不飽和化合物の共重合により得られるポリマーエマルジョンであることを特徴とする請求項4に記載のセメント組成物。   The cement composition according to claim 4, wherein the alkali thickening polymer emulsion is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound. さらに、硬化促進剤を含有してなる請求項1〜5のうちの1項に記載のセメント組成物。   Furthermore, the cement composition of one of Claims 1-5 formed by containing a hardening accelerator. 請求項1〜6のうちの1項に記載のセメント組成物を含有してなる空洞充填材。   A hollow filler comprising the cement composition according to claim 1. セメント、ガラス粉末、及び水をあらかじめ混合してA液とし、可塑剤と水とを混合してB液とし、使用直前に、A液とB液とを混合することを特徴とする請求項7に記載の空洞充填材の使用方法。   Cement, glass powder, and water are mixed in advance to form liquid A, plasticizer and water are mixed to form liquid B, and liquid A and liquid B are mixed immediately before use. Use of the hollow filler as described in 1.
JP2004036647A 2004-02-13 2004-02-13 Cement composition, cavity filler, and method of using the same Expired - Lifetime JP4498768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036647A JP4498768B2 (en) 2004-02-13 2004-02-13 Cement composition, cavity filler, and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036647A JP4498768B2 (en) 2004-02-13 2004-02-13 Cement composition, cavity filler, and method of using the same

Publications (2)

Publication Number Publication Date
JP2005225722A true JP2005225722A (en) 2005-08-25
JP4498768B2 JP4498768B2 (en) 2010-07-07

Family

ID=35000729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036647A Expired - Lifetime JP4498768B2 (en) 2004-02-13 2004-02-13 Cement composition, cavity filler, and method of using the same

Country Status (1)

Country Link
JP (1) JP4498768B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059766A1 (en) * 2012-10-18 2014-04-24 江苏博特新材料有限公司 Super plasticizer for precast concrete component
JP2018151187A (en) * 2017-03-10 2018-09-27 株式会社島津製作所 Scanning probe microscope
JP2019112259A (en) * 2017-12-22 2019-07-11 デンカ株式会社 Admixture for cavity filler, cavity filler, and method for its use
JP2020033207A (en) * 2018-08-28 2020-03-05 太平洋マテリアル株式会社 Underwater inseparable mortar composition and mortar thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331727A (en) * 1976-09-07 1978-03-25 Taisei Corp Pulverized grouting material
JPH0531709A (en) * 1991-07-29 1993-02-09 Daido Concrete Kogyo Kk Preparation of concrete molded product by centrifugal force
JPH05139807A (en) * 1991-11-12 1993-06-08 Kubota Corp Production of inorganic building material
JPH082951A (en) * 1994-06-20 1996-01-09 Denki Kagaku Kogyo Kk Cement composition
JPH0848555A (en) * 1994-08-10 1996-02-20 Berusaac Kikaku:Kk Coating material and its production
JPH09286654A (en) * 1996-04-20 1997-11-04 Matsushita Sangyo Kk Production of concrete product mixed with powdery glass particle
JPH10279341A (en) * 1997-04-02 1998-10-20 Denki Kagaku Kogyo Kk Cement composition
JPH10330147A (en) * 1997-05-29 1998-12-15 Denki Kagaku Kogyo Kk Spraying material, concrete for spraying and spraying method using the same
JPH11199294A (en) * 1997-12-26 1999-07-27 Taiheiyo Cement Corp Concrete composition mixed with glass waste and its formed body
JPH11240744A (en) * 1998-02-26 1999-09-07 Gantan Beauty Ind Co Ltd Highly strong glass polymer cement hardened material and its production
JPH11263654A (en) * 1998-03-13 1999-09-28 Denki Kagaku Kogyo Kk Cement admixture, cement composition and grout material
JP2002179453A (en) * 2000-10-04 2002-06-26 Denki Kagaku Kogyo Kk Cement composition and its application method
JP2003055024A (en) * 2001-08-09 2003-02-26 Denki Kagaku Kogyo Kk Cement composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331727A (en) * 1976-09-07 1978-03-25 Taisei Corp Pulverized grouting material
JPH0531709A (en) * 1991-07-29 1993-02-09 Daido Concrete Kogyo Kk Preparation of concrete molded product by centrifugal force
JPH05139807A (en) * 1991-11-12 1993-06-08 Kubota Corp Production of inorganic building material
JPH082951A (en) * 1994-06-20 1996-01-09 Denki Kagaku Kogyo Kk Cement composition
JPH0848555A (en) * 1994-08-10 1996-02-20 Berusaac Kikaku:Kk Coating material and its production
JPH09286654A (en) * 1996-04-20 1997-11-04 Matsushita Sangyo Kk Production of concrete product mixed with powdery glass particle
JPH10279341A (en) * 1997-04-02 1998-10-20 Denki Kagaku Kogyo Kk Cement composition
JPH10330147A (en) * 1997-05-29 1998-12-15 Denki Kagaku Kogyo Kk Spraying material, concrete for spraying and spraying method using the same
JPH11199294A (en) * 1997-12-26 1999-07-27 Taiheiyo Cement Corp Concrete composition mixed with glass waste and its formed body
JPH11240744A (en) * 1998-02-26 1999-09-07 Gantan Beauty Ind Co Ltd Highly strong glass polymer cement hardened material and its production
JPH11263654A (en) * 1998-03-13 1999-09-28 Denki Kagaku Kogyo Kk Cement admixture, cement composition and grout material
JP2002179453A (en) * 2000-10-04 2002-06-26 Denki Kagaku Kogyo Kk Cement composition and its application method
JP2003055024A (en) * 2001-08-09 2003-02-26 Denki Kagaku Kogyo Kk Cement composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059766A1 (en) * 2012-10-18 2014-04-24 江苏博特新材料有限公司 Super plasticizer for precast concrete component
JP2018151187A (en) * 2017-03-10 2018-09-27 株式会社島津製作所 Scanning probe microscope
JP2019112259A (en) * 2017-12-22 2019-07-11 デンカ株式会社 Admixture for cavity filler, cavity filler, and method for its use
JP2020033207A (en) * 2018-08-28 2020-03-05 太平洋マテリアル株式会社 Underwater inseparable mortar composition and mortar thereof
JP7103893B2 (en) 2018-08-28 2022-07-20 太平洋マテリアル株式会社 Insoluble mortar composition in water and its mortar

Also Published As

Publication number Publication date
JP4498768B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4981457B2 (en) Cement composition, injection material using the same, and method of using the same
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
JP5591483B2 (en) Injection method
JP2004143037A (en) Cement composition and its using method
JP2009114019A (en) Quick setting agent and spraying material
JP2006231208A (en) Method for solidifying soft soil
JP4786918B2 (en) Cement composition and method of use thereof
JP2011136863A (en) Superhigh strength grout composition
JP4841958B2 (en) Cement composition, injection material using the same, and method of using the same
JP5735386B2 (en) Cement composition and method for producing injection material using the same
JP4498768B2 (en) Cement composition, cavity filler, and method of using the same
JP2016175803A (en) Plastic grout material and water cutoff construction method therewith
JP2003055024A (en) Cement composition
JP5809525B2 (en) Method for producing cement composition
JP7124386B2 (en) Cement slurry and ground improvement method
JP4420799B2 (en) Cement composition, cavity filler, and method of using the same
JP4265789B2 (en) Cement composition, cavity filler, and method of using the same
JP3520987B2 (en) Cement composition and method of using the same
JP4722322B2 (en) Hydraulic composition
JP3429497B2 (en) Cement admixture, cement composition, and method of using the same
JP2007217212A (en) Quick-hardening cement concrete and its construction method
JP2010173875A (en) Cement composition
JP5709046B2 (en) Cement composition
JP4509321B2 (en) Cement admixture, concrete containing the same, and method for producing the same
JP2019112259A (en) Admixture for cavity filler, cavity filler, and method for its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250