JP5735386B2 - Cement composition and method for producing injection material using the same - Google Patents

Cement composition and method for producing injection material using the same Download PDF

Info

Publication number
JP5735386B2
JP5735386B2 JP2011206733A JP2011206733A JP5735386B2 JP 5735386 B2 JP5735386 B2 JP 5735386B2 JP 2011206733 A JP2011206733 A JP 2011206733A JP 2011206733 A JP2011206733 A JP 2011206733A JP 5735386 B2 JP5735386 B2 JP 5735386B2
Authority
JP
Japan
Prior art keywords
liquid
cement
water
parts
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011206733A
Other languages
Japanese (ja)
Other versions
JP2013067529A (en
Inventor
田中 秀弘
秀弘 田中
巧 串橋
巧 串橋
一行 水島
一行 水島
秀朗 石田
秀朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2011206733A priority Critical patent/JP5735386B2/en
Publication of JP2013067529A publication Critical patent/JP2013067529A/en
Application granted granted Critical
Publication of JP5735386B2 publication Critical patent/JP5735386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、地山の空洞や空隙部分の裏込め材、シールドセグメントの充填材、また、二重管単相又は複相の注入工法での瞬結性注入材、さらに、二重管ダブルパッカー工法でのシール材や一次注入材等で、セメントミルク、セメントモルタル、又はコンクリートの粘度を急激に上昇させる必要がある用途に使用するセメント組成物およびそれを用いた注入材に関する。   The present invention relates to a backfill material for a cavity or void in a natural ground, a filler for a shield segment, a quick setting injection material in a double pipe single phase or double phase injection method, and a double pipe double packer. The present invention relates to a cement composition used for a use in which the viscosity of cement milk, cement mortar, or concrete needs to be rapidly increased by a sealing material or a primary injection material in a construction method, and an injection material using the same.

近年、施工件数が増加しているトンネル補修工事の中に、覆工コンクリート背面の空洞に注入材を充填する裏込め注入工法がある。
裏込め注入工法は、この空洞部へ注入材を充填し、トンネルの安定化を図るもので、ここで使用される注入材を裏込め材という。
In recent years, tunnel repair work, where the number of construction works has been increasing, includes a backfill injection method that fills the cavity behind the lining concrete with an injection material.
The backfill injection method is to fill the cavity with an injection material to stabilize the tunnel, and the injection material used here is called a backfill material.

従来、この注入材として、通常、セメント−ベントナイトが用いられてきたが、流動性が大きすぎ、注入材が遠方まで不必要に逸流したり、湧水があると注入材が流出したり、希釈されて物性が低下したりするなどの課題があった。   Conventionally, cement-bentonite has been usually used as the injecting material, but the fluidity is too high, the injecting material unnecessarily flows far away, and if there is spring water, the injecting material flows out or dilutes. As a result, there were problems such as deterioration of physical properties.

注入材の持つ課題を解決する方法として、セメント、ベントナイト、硬化促進剤、石炭灰の主材に、アルカリ増粘型ポリマーを併用したセメント組成物を使用して、急激な粘度上昇を示す、水中不分離性を改善したものが提案されている( 特許文献1〜特許文献3)。
しかしながら、これらのセメント組成物を使用して、高い強度を得ようとすると、流動性がなくなり、施工が困難であった。
As a method to solve the problems of the injection material, a cement composition containing an alkali thickening polymer in combination with the main material of cement, bentonite, hardening accelerator, and coal ash is used. The thing which improved the non-separation property is proposed (patent documents 1-patent documents 3).
However, when these cement compositions are used to obtain high strength, the fluidity is lost and the construction is difficult.

一方、リグニンスルホン酸塩とアルキルアリルスルホン酸塩を併用することにより、流動性が向上することは公知である(特許文献4)。
しかしながら、特許文献4には、一般に分散剤として公知のリグニンスルホン酸塩、アルキルアリルスルホン酸塩、メラミンスルホンサン塩、及びポリカルボン酸塩の中で、単独使用のものより、また、リグニンスルホン酸塩とアルキルアリルスルホン酸塩以外の組み合わせよりも、リグニンスルホン酸塩とアルキルアリルスルホン酸塩併用系が、セメントと水を混合した混合物の流動性が得られると共に、アルカリ増粘型ポリマーエマルジョンと水を混合した混合物と混合した後の増粘効果が大きいことについては記載されていない。
On the other hand, it is known that fluidity is improved by using lignin sulfonate and alkyl allyl sulfonate together (Patent Document 4).
However, in Patent Document 4, lignin sulfonic acid salt, alkylallyl sulfonic acid salt, melamine sulfone sun salt, and polycarboxylic acid salt, which are generally known as dispersants, are not only used alone but also lignin sulfonic acid. The lignin sulfonate and alkyl allyl sulfonate combination system provides fluidity of a mixture of cement and water, as well as a combination of alkali thickening polymer emulsion and water, rather than combinations other than salts and alkyl allyl sulfonates. It is not described that the thickening effect after mixing with the mixture obtained by mixing is large.

特開2002−029803号公報JP 2002-029803 A 特開2002−179447号公報JP 2002-179447 A 特開2004−143037号公報JP 2004-143037 A 特開2008−247677号公報JP 2008-247777 A

本発明は、セメントと水とを混合した混合物であるA液の流動性が良好で、アルカリ増粘型ポリマーエマルジョンと水とを混合した混合物であるB液と混合後、粘性が増加し、従来よりも高い強度を得るものである。
本発明者は、前記課題を解決すべく、種々努力を重ねた結果、特定の材料を組み合わせることにより、急激に粘度上昇し、水が存在する所でも材料分離することなく施工ができ、硬化後の強度発現性に優れ、優れた地山補強効果のある注入材が得られることを知見し、本発明を完成するに至った。
In the present invention, the fluidity of liquid A, which is a mixture of cement and water, is good, and after mixing with liquid B, which is a mixture of an alkali-thickened polymer emulsion and water, the viscosity increases. Higher strength is obtained.
As a result of various efforts to solve the above problems, the present inventor, by combining specific materials, rapidly increases in viscosity, and can be applied without separation of materials even in the presence of water. As a result, it was found that an injection material having an excellent strength development property and an excellent ground reinforcement effect was obtained, and the present invention was completed.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及びアルカリ増粘型ポリマーエマルジョンを含有することを特徴とするセメント組成物である。
(2)前記分散剤のリグニンスルホン酸塩/アルキルアリルスルホン酸塩の配合割合が、30〜60質量部/40〜70質量部であることを特徴とする前記(1)のセメント組成物である。
(3)前記分散剤が、セメント100質量部に対して、固形分換算で0.1〜2質量部であることを特徴とする前記(1)又は(2)のセメント組成物である。
(4)前記アルカリ増粘型ポリマーエマルジョンが、セメント100質量部に対して、固形分換算で0.01〜1質量部であることを特徴とする前記(1)〜(3)のうちのいずれかのセメント組成物である。
(5)さらに、硬化促進剤を含有することを特徴とする前記(1)〜(4)のうちのいずれかのセメント組成物である。
(6)前記硬化促進剤が、セメント100質量部に対して、1〜30質量部であることを特徴とする前記(1)〜(5)のうちのいずれかのセメント組成物である。
(7)前記(1)〜(6)のうちのいずれかのセメント組成物と水とを含有することを特徴とする注入材である。
(8)セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及び水を混合した混合物をA液とし、アルカリ増粘型ポリマーエマルジョンと水とを混合した混合物をB液とし、使用直前に前記A液とB液とを混合することを特徴とする注入材の製造方法である。
(9)セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及び水を含有した混合物をA液とし、アルカリ増粘型ポリマーエマルジョンと水とを混合した混合物をB液とし、硬化促進剤と水とを混合した混合物をC液とし、使用直前に前記A液、B液、及びC液を混合することを特徴とする注入材の製造方法である。
The present invention employs the following means in order to solve the above problems.
(1) A cement composition comprising a cement, a dispersant comprising a lignin sulfonate and an alkyl allyl sulfonate, and an alkali thickening polymer emulsion.
(2) The cement composition according to (1), wherein a blending ratio of lignin sulfonate / alkyl allyl sulfonate of the dispersant is 30 to 60 parts by mass / 40 to 70 parts by mass. .
(3) The cement composition according to (1) or (2), wherein the dispersant is 0.1 to 2 parts by mass in terms of solid content with respect to 100 parts by mass of cement.
(4) The alkali thickening polymer emulsion is 0.01 to 1 part by mass in terms of solid content with respect to 100 parts by mass of cement, and is any one of the above (1) to (3) It is a cement composition.
(5) The cement composition according to any one of (1) to (4), further comprising a curing accelerator.
(6) The cement composition according to any one of (1) to (5), wherein the curing accelerator is 1 to 30 parts by mass with respect to 100 parts by mass of cement.
(7) An injection material comprising the cement composition according to any one of (1) to (6) and water.
(8) A mixture of cement, a dispersant composed of lignin sulfonate and alkyl allyl sulfonate, and water is used as liquid A, and a mixture of alkali thickening polymer emulsion and water is used as liquid B. A method for producing an injection material, wherein the liquid A and the liquid B are mixed immediately before.
(9) Mixture containing cement, lignin sulfonate and alkyl allyl sulfonate, and water is used as liquid A, and a mixture of alkali thickening polymer emulsion and water is used as liquid B. A mixture of an accelerator and water is used as liquid C, and the liquid A, liquid B, and liquid C are mixed immediately before use.

本発明によれば、急激に粘度が上昇し、水が存在する所でも材料分離することなく施工ができ、硬化後の強度発現性に優れ、優れた地山補強効果を奏することができる。   According to the present invention, it is possible to perform construction without separating the material even in the presence of water, the viscosity is rapidly increased, excellent strength development after curing, and an excellent ground reinforcement effect.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に断らない限り質量規準で示す。
Hereinafter, the present invention will be described in detail.
In addition, unless otherwise indicated, the part and% in this invention are shown by a mass reference | standard.

本発明で使用するセメントとしては、特に限定されるものではなく、通常のセメントが使用可能である。具体的には、普通、早強、超早強、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、シリカ、又はフライアッシュなどを混合した各種混合セメントの使用が可能である。また、これらのセメントをさらに細かくした微粒子セメントや超微粒子セメントの使用も可能である。   The cement used in the present invention is not particularly limited, and ordinary cement can be used. Specifically, it is possible to use various portland cements such as normal, early strength, ultra-early strength, and moderate heat, and various mixed cements in which blast furnace slag, silica, fly ash, etc. are mixed with these portland cements. . Moreover, it is also possible to use fine particle cements or ultrafine particle cements obtained by further reducing these cements.

本発明では、セメントと水とを混合した混合物であるA液を製造する。
より高強度を得るには、セメントに対する水量を少なくするほど高強度が得られるが、水量が少なくなると流動性が無くなり、練り混ぜ性やポンプ圧送性が悪くなる。
そこで、セメントと水とを混合した後の流動性が肝要である。水量を多くすれば流動性がよくなるが、単に水量を多くすると高強度が得られないばかりか、アルカリ増粘型ポリマーエマルジョンと水とを混合した混合物であるB液と混合した後の流動性が無くならず、水中分離抵抗性がでない。
In the present invention, liquid A, which is a mixture of cement and water, is produced.
In order to obtain higher strength, the lower the amount of water with respect to the cement, the higher the strength can be obtained. However, when the amount of water decreases, the fluidity is lost, and the kneading property and the pumpability are deteriorated.
Therefore, fluidity after mixing cement and water is essential. Increasing the amount of water improves fluidity, but simply increasing the amount of water does not provide high strength, but the fluidity after mixing with B liquid, which is a mixture of an alkali-thickened polymer emulsion and water, It is not lost and is not water resistant.

本発明では、A液の流動性を良くするため、リグニンスルホン酸塩とアルキルアリルスルホン酸塩を併用して分散剤として使用する。
リグニンスルホン酸塩とアルキルアリルスルホン酸塩の混合方法は特に限定されるものではなく同時でも別々でも良い。
In the present invention, in order to improve the fluidity of the liquid A, lignin sulfonate and alkyl allyl sulfonate are used in combination as a dispersant.
The mixing method of lignin sulfonate and alkyl allyl sulfonate is not particularly limited, and may be simultaneous or separate.

一般に、セメント分野で使用される分散剤としては、リグニンスルホン酸塩、アルキルアリルスルホン酸塩、メラミンスルホン酸塩、及びポリカルボン酸等が知られている。
本発明では、これら、分散剤単独使用、又は、リグニンスルホン酸塩とアルキルアリルスルホン酸塩以外の組み合わせでは効果がないが、リグニンスルホン酸塩とアルキルアリルスルホン酸塩を併用して初めて、A液の流動性を得た後、B液と混合した後の流動性を無くすることができるという効果を奏するものである。塩としては、ナトリウムやカリウムが挙げられる。
Generally, as a dispersing agent used in the cement field, lignin sulfonate, alkylallyl sulfonate, melamine sulfonate, polycarboxylic acid and the like are known.
In the present invention, these dispersants are used alone or in combination other than lignin sulfonate and alkyl allyl sulfonate, but there is no effect, but only when lignin sulfonate and alkyl allyl sulfonate are used in combination, liquid A After obtaining the above fluidity, the fluidity after mixing with the liquid B can be eliminated. Examples of the salt include sodium and potassium.

本発明で使用されるリグニンスルホン酸塩は、一般的なリグニンスルホン酸塩系減水剤が使用でき、特に限定されるものではなく、粉体、液体を問わず使用できる。例えば、日本製紙ケミカル社製商品名「サンフロー」、BASFポゾリス社製商品名「ポゾリス」などがある。   The lignin sulfonate used in the present invention can be a general lignin sulfonate water reducing agent, and is not particularly limited, and can be used regardless of powder or liquid. For example, the product name “Sunflow” manufactured by Nippon Paper Chemical Co., Ltd., and the product name “Pozoris” manufactured by BASF Pozzolith are available.

また、アルキルアリルスルホン酸塩は、一般的なアルキルアリルスルホン酸塩系減水剤が使用でき、キシレンスルホン酸塩、アルキルベンゼンスルホン酸塩、及びナフタレンスルホン酸塩等が挙げられ、特に限定されるものではなく、粉体、液体を問わず使用できる。例えば、花王社製商品名「マイティー」、電気化学工業社製商品名「FT」などがある。   In addition, as the alkyl allyl sulfonate, a general alkyl allyl sulfonate water reducing agent can be used, and examples thereof include xylene sulfonate, alkyl benzene sulfonate, and naphthalene sulfonate. It can be used regardless of powder or liquid. For example, there is a trade name “Mighty” manufactured by Kao Corporation, a trade name “FT” manufactured by Denki Kagaku Kogyo Co., Ltd. and the like.

リグニンスルホン酸塩とアルキルアリルスルホン酸塩との割合は、リグニンスルホン酸塩30〜60部、アルキルアリルスルホン酸塩40〜70部が好ましく、これによってA液の流動性が得られると共にB液と混合した後の流動性を無くすることができる。
なお、リグニンスルホン酸塩がこの範囲より多くなるとA液の流動性が得られにくくなり、この範囲より少なくなるとB液と混合した後の流動性がなくならない。
このような混合物としては電気化学工業社製商品名「FT−80」があるのでそれを用いることができる。
The ratio of lignin sulfonate to alkyl allyl sulfonate is preferably 30 to 60 parts of lignin sulfonate and 40 to 70 parts of alkyl allyl sulfonate. The fluidity after mixing can be eliminated.
When the amount of lignin sulfonate exceeds this range, it becomes difficult to obtain the fluidity of the liquid A. When the amount of lignin sulfonate is less than this range, the fluidity after mixing with the liquid B is not lost.
As such a mixture, there is a trade name “FT-80” manufactured by Denki Kagaku Kogyo Co., Ltd., which can be used.

リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤の使用量は、セメント100部に対して、固形分換算で0.1〜2部が好ましい。この範囲より少ないと添加効果が少なく、この範囲を超えるとB液と混合後の流動性が小さくなりにくい。   The amount of the dispersant composed of lignin sulfonate and alkyl allyl sulfonate is preferably 0.1 to 2 parts in terms of solid content with respect to 100 parts of cement. If it is less than this range, the effect of addition is small, and if it exceeds this range, the fluidity after mixing with the liquid B is unlikely to be small.

セメントに対する水量は、セメント100部に対して、30〜80部が好ましい。水量が少ないとA液の流動性が悪くなり好ましくない傾向がある。水量が多いとコンクリートの強度が弱くなり好ましくない傾向がある。   The amount of water relative to cement is preferably 30 to 80 parts with respect to 100 parts of cement. If the amount of water is small, the fluidity of the liquid A tends to be unfavorable. If the amount of water is large, the strength of the concrete tends to be weak, which tends to be undesirable.

本発明で使用するアルカリ増粘型ポリマーエマルジョン(以下、本エマルジョンという)とは、不飽和カルボン酸とエチレン性不飽和化合物の共重合により得られるポリマーエマルジョンである。   The alkali thickening polymer emulsion (hereinafter referred to as the present emulsion) used in the present invention is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound.

ここで、アルカリ増粘型とは、このポリマーが、例えば、セメントのアルカリ、pH9〜13のアルカリに接触すると中和され、水に可溶性となってエマルジョンの粘性を上昇させる性質のことをいう。   Here, the alkali thickening type refers to the property that the polymer is neutralized when it comes into contact with, for example, an alkali of cement, an alkali having a pH of 9 to 13, and becomes soluble in water to increase the viscosity of the emulsion.

本エマルジョンとしては、例えば、不飽和カルボン酸類、エチレン性不飽和化合物、及び不飽和カルボン酸類とエチレン性不飽和化合物の共重合物等種々挙げられるが、より優れた増粘効果を示す面で、不飽和カルボン酸類とエチレン性不飽和化合物の共重合により得られるポリマーエマルジョンが好ましい。不飽和カルボン酸類とエチレン性不飽和化合物の重合方法としては、乳化重合、懸濁重合、溶液重合、又は塊状重合等の方法により、共重合する方法等が挙げられる。   Examples of the emulsion include various unsaturated carboxylic acids, ethylenically unsaturated compounds, and copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds, etc., but in terms of showing a more excellent thickening effect, Polymer emulsions obtained by copolymerization of unsaturated carboxylic acids and ethylenically unsaturated compounds are preferred. Examples of the polymerization method of the unsaturated carboxylic acid and the ethylenically unsaturated compound include a method of copolymerization by a method such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization.

不飽和カルボン酸類としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、アコニット酸、及びクロトン酸等の不飽和カルボン酸、無水マレイン酸や無水シトラコン酸等の不飽和カルボン酸無水物、並びに、イタコン酸モノメチル、イタコン酸モノブチル、及びマレイン酸モノエチルなどの不飽和カルボン酸エステルが挙げられ、これらの中では、より増粘性に優れる面で不飽和カルボン酸が好ましく、アクリル酸及び/又はメタクリル酸がより好ましい。   Examples of unsaturated carboxylic acids include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, aconitic acid, and crotonic acid, and unsaturated carboxylic acids such as maleic anhydride and citraconic anhydride. Acid anhydrides, and unsaturated carboxylic acid esters such as monomethyl itaconate, monobutyl itaconate, and monoethyl maleate. Among these, unsaturated carboxylic acids are preferred in terms of higher viscosity, and acrylic acid And / or methacrylic acid is more preferred.

エチレン性不飽和化合物としては、特に限定されるものではないが、より増粘性に優れる面でアクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマーが好ましい。
アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ヘキシルアクリレート、シクロヘキシルアクリレート、オクチルアクリレート、ヒドロキシエチルアクリレート、2−エチルヘキシルアクリレート、及びグリシジルアクリレートなどが挙げられ、メタクリル酸エステルとしては、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ヒドロキシエチルメタクリレート、及びグリシジルメタクリレートなどが挙げられる。
The ethylenically unsaturated compound is not particularly limited, but is preferably an acrylate monomer and / or a methacrylic acid ester monomer in terms of more excellent viscosity.
Examples of acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, octyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate, and glycidyl acrylate. Methacrylic acid esters include methyl methacrylate, Examples include ethyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, and glycidyl methacrylate.

本エマルジョンを調製するエマルジョンの固形分濃度は、特に限定されるものではなく、通常、固形分濃度で20〜60%程度が好ましく、30〜50%がより好ましい。濃度が低いと運搬コストがかさみ、濃度が高いと粘性が高くなり、取扱性が悪くなる。   The solid content concentration of the emulsion for preparing the emulsion is not particularly limited, and is usually preferably about 20 to 60%, more preferably 30 to 50% in terms of solid content concentration. If the concentration is low, the transportation cost is increased, and if the concentration is high, the viscosity becomes high and the handling property is deteriorated.

本エマルジョンの使用量は、セメント100部に対して、固形分換算で0.01〜1部が好ましい。この範囲より少ないと増粘効果が少ない場合があり、この範囲より多いと初期強度発現性が悪くなる場合がある。   The amount of the emulsion used is preferably 0.01 to 1 part in terms of solid content with respect to 100 parts of cement. If it is less than this range, the thickening effect may be small, and if it is more than this range, the initial strength development may be deteriorated.

本発明の注入材は、セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及び水を混合した混合物であるA液と、本エマルジョンと水とを混合した混合物であるB液とを混合して得られる。   The injection material of the present invention includes cement A, a dispersant composed of lignin sulfonate and alkyl allyl sulfonate, and a liquid A that is a mixture of water, and a liquid B that is a mixture of the emulsion and water. Obtained by mixing.

また、本発明では、セメント組成物の硬化が遅れると、ブリーディング(浮き水)などの材料分離が起こり、硬化後に空隙が生成して構造的な欠陥となる場合があるため、硬化促進剤を併用することも有効である。   Also, in the present invention, if the curing of the cement composition is delayed, material separation such as bleeding (floating water) occurs, and voids may be generated after curing, resulting in structural defects. It is also effective to do.

硬化促進剤は、セメント組成物の硬化を促進し、材料分離を低減し、空隙の生成を抑制するとともに、強度発現性に寄与するもので、特にアルミン酸塩と硫酸塩を含有するものが好ましい。   The hardening accelerator promotes hardening of the cement composition, reduces material separation, suppresses the formation of voids and contributes to strength development, and particularly preferably contains an aluminate and a sulfate. .

アルミン酸塩としては、アルミン酸カルシウムが好ましく、カルシアを含む原料と、アルミナを含む原料等を混合して、キルンでの焼成や、電気炉での溶融等の熱処理をして得られる、CaOとAl2O3とを主たる成分とし、水和活性を有する物質である。鉱物形態としては、結晶質、非晶質いずれであってもよい。
これらの中では、反応活性の面で、非晶質のアルミン酸カルシウムが好ましく、12CaO・7Al2O3組成に対応する熱処理物を急冷した非晶質のアルミン酸カルシウムがより好ましい。
アルミン酸塩の粒度は、ブレーン比表面積値(以下、ブレーン値という)で3,000cm2/g以上が好ましい。3,000cm2/g未満では初期強度発現性が低下する場合がある。
As the aluminate, calcium aluminate is preferable, and it is obtained by mixing a raw material containing calcia and a raw material containing alumina, and obtained by heat treatment such as firing in a kiln or melting in an electric furnace. Al 2 O 3 is a main component and has a hydration activity. The mineral form may be either crystalline or amorphous.
Among these, amorphous calcium aluminate is preferable in terms of reaction activity, and amorphous calcium aluminate obtained by quenching the heat-treated product corresponding to the 12CaO · 7Al 2 O 3 composition is more preferable.
The particle size of the aluminate is preferably 3,000 cm 2 / g or more in terms of the specific surface area of the brain (hereinafter referred to as the brain value). If it is less than 3,000 cm 2 / g, the initial strength development may decrease.

また、硫酸塩としては、硫酸カルシウム及び/又は硫酸アルミニウムが好ましい。
硫酸カルシウムとしては、無水石膏、半水石膏、又は二水石膏等が挙げられ、これらの中では、強度発現性の面で、無水石膏が好ましい。
硫酸塩の粒度は、ブレーン値で3,000cm2/g以上が好ましい。3,000cm2/g未満では強度発現性が低下する場合がある。
Moreover, as a sulfate, calcium sulfate and / or aluminum sulfate are preferable.
Examples of calcium sulfate include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Among these, anhydrous gypsum is preferable in terms of strength development.
The particle size of the sulfate is preferably 3,000 cm 2 / g or more in terms of the brain value. If it is less than 3,000 cm 2 / g, strength development may be reduced.

アルミン酸塩と硫酸塩の配合割合は、アルミン酸塩100部に対して、20〜500部が好ましい。この範囲より少ないと強度発現性が小さくなる場合があり、この範囲より多いとフロー値が大きくなり、水中不分離性が悪くなり、長期強度発現性が小さくなる場合がある。   The blending ratio of the aluminate and the sulfate is preferably 20 to 500 parts with respect to 100 parts of the aluminate. If it is less than this range, the strength development may be reduced, and if it is more than this range, the flow value will increase, the inseparability in water will deteriorate, and the long-term strength development may be reduced.

硬化促進剤の使用量は、セメント100部に対して、1〜30部が好ましい。この範囲より少ないとフロー値が大きくなり、水中不分離性が悪くなり、強度発現性が小さくなる場合があり、この範囲より多いと長期強度が小さくなる場合がある。   As for the usage-amount of a hardening accelerator, 1-30 parts are preferable with respect to 100 parts of cement. If the amount is less than this range, the flow value increases, the inseparability in water deteriorates, and the strength development property may be reduced.

また、硬化促進剤と水を混合した混合物であるC液を調製する際、硬化促進剤は、水と混合すると硬化するおそれがあるので、硬化遅延剤を併用することが好ましい。   Moreover, when preparing C liquid which is a mixture which mixed the hardening accelerator and water, since a hardening accelerator may be hardened | cured when mixed with water, it is preferable to use a hardening retarder together.

硬化遅延剤としては、クエン酸、酒石酸、グルコン酸、及びリンゴ酸等のオキシカルボン酸又はそれらのナトリウム塩やカリウム塩等であるオキシカルボン酸又はその塩、ホウ酸、トリポリリン酸塩、並びに、ピロリン酸塩等が挙げられ、これらの硬化遅延剤の一種又は二種以上を併用することが可能である。これらの中では、遅延効果が大きい面で、オキシカルボン酸塩が好ましく、クエン酸ナトリウムがより好ましい。   Curing retarders include oxycarboxylic acids such as citric acid, tartaric acid, gluconic acid and malic acid, or sodium salts or potassium salts thereof, or salts thereof, boric acid, tripolyphosphate, and pyrroline. An acid salt etc. are mentioned, It is possible to use together 1 type, or 2 or more types of these hardening retarders. Among these, oxycarboxylate is preferable and sodium citrate is more preferable in terms of a large delay effect.

硬化遅延剤の使用量は、セメント100部に対して、0.01〜1部が好ましい。この範囲より少ないと遅延効果が小さい場合があり、この範囲より多いと強度発現性が小さくなる場合がある。   The amount of the curing retarder used is preferably 0.01 to 1 part with respect to 100 parts of cement. If it is less than this range, the delay effect may be small, and if it is more than this range, the strength development may be small.

セメントの混合方法は特に規定されるものではないが、分散剤、本エマルジョン、及び硬化促進剤は、あらかじめ水と混合して溶液又は懸濁液とすることは、混合性が良好となり、増粘性の面から好ましい。
例えば、セメントと分散剤と水とを混合した混合物をA液とし、本エマルジョンと水とを混合した混合物をB液とし、使用直前に、このA液とB液を混合することにより、また、強度が必要な場合は、必要に応じてセメントと分散剤と水とを混合した混合物をA液とし、本エマルジョンと水とを混合した混合物をB液とし、硬化促進剤と水とを混合した混合物をC液とし、使用直前に、このA液、B液、及びC液を混合することにより粘度を急激に上昇させる方法が好ましい。
The mixing method of the cement is not particularly defined, but the dispersing agent, the present emulsion, and the hardening accelerator are mixed with water in advance to form a solution or suspension, so that the mixing property becomes good and the viscosity increases. From the viewpoint of
For example, a mixture obtained by mixing cement, a dispersant and water is designated as liquid A, a mixture obtained by mixing the emulsion and water is designated as liquid B, and the liquid A and B are mixed immediately before use. When strength is required, a mixture obtained by mixing cement, a dispersant and water is used as liquid A, and a mixture obtained by mixing the emulsion and water is used as liquid B, and a curing accelerator and water are mixed. A method in which the mixture is liquid C and the viscosity is rapidly increased by mixing the liquid A, liquid B, and liquid C immediately before use is preferable.

本発明ではA液とB液、又はA液、B液、及びC液を混合すると、数秒で流動性が低下するため、A液、B液、又はA液、B液、C液を別々に圧送して先端で合流混合しながら施工する。
合流混合の方法としては、Y字管等の混合管を使用して合流させた後、スパイラル状のミキサーをセットして混合する方法がある。
In the present invention, when liquid A and liquid B, or liquid A, liquid B, and liquid C are mixed, fluidity decreases in a few seconds, so liquid A, liquid B, or liquid A, liquid B, and liquid C are separated separately. Work while pumping and mixing at the tip.
As a method of merging and mixing, there is a method of mixing by using a mixing tube such as a Y-shaped tube and then setting and mixing a spiral mixer.

A液と、B液を、また、A液、B液、及びC液を、別々に圧送して、混合した後の流動性は、フロー値で確認することができる。例えば、内径80mm、高さ80mmのフローコーンに、注入材を充填した後、フローコーンを引き抜いた後の広がりを測定する。水が存在する所でも材料分離することなく施工するためには、フロー値を150mm以下にすることが好ましい。より好ましくは120mm以下である。   The fluidity after A liquid, B liquid, A liquid, B liquid, and C liquid are separately pumped and mixed can be confirmed by the flow value. For example, after filling a flow cone having an inner diameter of 80 mm and a height of 80 mm with an injection material, the spread after the flow cone is pulled out is measured. In order to perform construction without separating materials even in the presence of water, the flow value is preferably 150 mm or less. More preferably, it is 120 mm or less.

以下、実験例に基づき、さらに説明する。   Hereinafter, further description will be given based on experimental examples.

実験例1
セメントと、表1に示す各種分散剤と水とをミキサーで混練してA液を調製した。
次に、表1に示すエマルジョンと水を混合してB液を調製した。
セメント100部に対して、本エマルジョンが固形分換算で0.05部になるように、A液とB液とをミキサーに投入し、5秒間混練し、注入材を調製した。
調製した注入材のフロー値、水中不分離性、及び圧縮強度を測定した。結果を表1に併記する。
Experimental example 1
Cement, various dispersants shown in Table 1, and water were kneaded with a mixer to prepare solution A.
Next, the emulsion shown in Table 1 and water were mixed to prepare solution B.
Liquid A and liquid B were put into a mixer and mixed for 5 seconds so that the emulsion was 0.05 parts in terms of solid content with respect to 100 parts of cement to prepare an injection material.
The flow value, water inseparability, and compressive strength of the prepared injection material were measured. The results are also shown in Table 1.

<使用材料>
セメント :普通ポルトランドセメント、市販品
分散剤a :リグニンスルホン酸ナトリウム、市販品
分散剤b :ナフタレンスルホン酸ナトリウム、市販品
分散剤c :メラミンスルホン酸ナトリウム、市販品
分散剤d :ポリカルボン酸ナトリウム、市販品
エマルジョン:固形分濃度30%、エチルアクリレート:メタクリル酸=45:55のエチルアクリレート/メタクリル酸共重合ポリマーエマルジョン
<Materials used>
Cement: ordinary Portland cement, commercially available dispersant a: sodium lignin sulfonate, commercially available dispersant b: sodium naphthalene sulfonate, commercially available dispersant c: sodium melamine sulfonate, commercially available dispersant d: sodium polycarboxylate, Commercially available emulsion: ethyl acrylate / methacrylic acid copolymer emulsion with solid content of 30%, ethyl acrylate: methacrylic acid = 45:55

<測定方法>
フロー値 :内径80mm、高さ80mmのシリンダーに混合物を入れ、シリンダーを引き抜いた後の広がりを2分後に測定。
水中不分離性:調製した注入材を入れた、内径80mm、高さ80mmのシリンダーを、45リットルの水槽に投入し、シリンダーを引き抜いた後の、水の濁り具合を観察した。
圧縮強度 :JIS R 5201に準じて28日強度測定
<Measurement method>
Flow value: The mixture was put into a cylinder with an inner diameter of 80 mm and a height of 80 mm, and the spread after the cylinder was pulled out was measured after 2 minutes.
Inseparability in water: A cylinder having an inner diameter of 80 mm and a height of 80 mm containing the prepared injection material was put into a 45 liter water tank, and the turbidity of water after the cylinder was pulled out was observed.
Compressive strength: 28-day strength measurement according to JIS R 5201

Figure 0005735386
Figure 0005735386

実験例2
セメントと、セメント100部に対して、表2に示す割合の分散剤aと分散剤bの混合物1部、及び水43部をミキサーで混練してA液を調製したこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
Experimental Example 1 except that a mixture A was prepared by kneading 1 part of a mixture of dispersant a and dispersant b and 43 parts of water with a mixer with respect to 100 parts of cement and 100 parts of cement. The same was done. The results are also shown in Table 2.

Figure 0005735386
Figure 0005735386

実験例3
セメントと、セメント100部に対して、表3に示す、分散剤aと分散剤bの等量混合物と、水とをミキサーで混練してA液を調製したこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
Except that the liquid A was prepared by kneading an equivalent mixture of dispersant a and dispersant b shown in Table 3 and water with a mixer with respect to 100 parts of cement and 100 parts of cement. went. The results are also shown in Table 3.

Figure 0005735386
Figure 0005735386

実験例4
セメントと、セメント100部に対して、分散剤aと分散剤bの等量混合物1部と、水43部とをミキサーで混練してA液を調製し、エマルジョン2部と水98部を混合してB液を調製し、本エマルジョンが固形分換算で、セメント100部に対して、表4に示す量となるようA液とB液を混合したこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
Mix 1 part mixture of dispersant a and dispersant b with 43 parts of water and 100 parts of cement with a mixer to prepare liquid A, mix 2 parts of emulsion and 98 parts of water. A liquid B was prepared, and the same procedure as in Experimental Example 1 was performed except that the liquid A and the liquid B were mixed so that the emulsion was in solids equivalent to 100 parts of cement with the amount shown in Table 4. . The results are also shown in Table 4.

Figure 0005735386
Figure 0005735386

実験例5
セメントと、セメント100部に対して、分散剤aと分散剤bの等量混合物1部、及び水43部とをミキサーで混練してA液を、次に、エマルジョン2部と水98部を混合してB液を、そして、硬化促進剤と水を混合してC液を調製した。
セメント100部に対して、本エマルジョンが固形分換算で0.05部で、硬化促進剤が表5に示す量となるように、A液、B液、及びC液をミキサーに続けて投入して、混合したこと以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
Mix 1 part of an equivalent mixture of Dispersant a and Dispersant b and 43 parts of water to 100 parts of cement with a mixer and mix A liquid, then 2 parts of emulsion and 98 parts of water. Liquid B was mixed and liquid accelerator C and water were mixed to prepare liquid C.
With respect to 100 parts of cement, the emulsion is 0.05 parts in terms of solid content, and the liquid A, liquid B, and liquid C are continuously added to the mixer so that the amount of the hardening accelerator is shown in Table 5, The procedure was the same as in Experimental Example 1 except that mixing was performed. The results are also shown in Table 5.

<使用材料>
硬化促進剤:アルミン酸塩(アルミン酸カルシウム、12CaO・7Al2O3組成に対応する熱処理物を急冷したもの、非晶質、ブレーン値6,000cm2/g)100部と、硫酸塩(無水石膏、ブレーン値5,400cm2/g)100部からなる混合物
<Materials used>
Hardening accelerator: aluminate (calcium aluminate, heat-treated product corresponding to 12CaO · 7Al 2 O 3 composition, amorphous, brane value 6,000cm 2 / g) and sulfate (anhydrite) , Blaine value 5,400 cm 2 / g) Mixture consisting of 100 parts

Figure 0005735386
Figure 0005735386

Claims (9)

セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及びアルカリ増粘型ポリマーエマルジョンを含有することを特徴とするセメント組成物。   A cement composition comprising a cement, a dispersant composed of lignin sulfonate and an alkyl allyl sulfonate, and an alkali thickening polymer emulsion. 前記分散剤のリグニンスルホン酸塩/アルキルアリルスルホン酸塩の配合割合が、30〜60質量部/40〜70質量部であることを特徴とする請求項1に記載のセメント組成物。   2. The cement composition according to claim 1, wherein a mixing ratio of lignin sulfonate / alkyl allyl sulfonate of the dispersant is 30 to 60 parts by mass / 40 to 70 parts by mass. 前記分散剤が、セメント100質量部に対して、固形分換算で0.1〜2質量部であることを特徴とする請求項1又は請求項2に記載のセメント組成物。   The cement composition according to claim 1 or 2, wherein the dispersant is 0.1 to 2 parts by mass in terms of solid content with respect to 100 parts by mass of cement. 前記アルカリ増粘型ポリマーエマルジョンが、セメント100質量部に対して、固形分換算で0.01〜1質量部であることを特徴とする請求項1〜請求項3のうちのいずれか1項に記載のセメント組成物。   The said alkali-thickening type polymer emulsion is 0.01-1 mass part in conversion of solid content with respect to 100 mass parts of cement, The any one of Claims 1-3 characterized by the above-mentioned. Cement composition. さらに、硬化促進剤を含有することを特徴とする請求項1〜請求項4のうちのいずれか1項に記載のセメント組成物。   Furthermore, a hardening accelerator is contained, The cement composition of any one of Claims 1-4 characterized by the above-mentioned. 前記硬化促進剤が、セメント100質量部に対して、1〜30質量部であることを特徴とする請求項1〜請求項5のうちのいずれか1項に記載のセメント組成物。   The said hardening accelerator is 1-30 mass parts with respect to 100 mass parts of cement, The cement composition of any one of Claims 1-5 characterized by the above-mentioned. 前記請求項1〜請求項6のうちのいずれか1項に記載のセメント組成物と水を含有することを特徴とする注入材。   An injection material comprising the cement composition according to any one of claims 1 to 6 and water. セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及び水を混合した混合物をA液とし、アルカリ増粘型ポリマーエマルジョンと水と混合した混合物をB液とし、使用直前に前記A液とB液とを混合することを特徴とする注入材の製造方法。   A mixture of a cement, a dispersant composed of lignin sulfonate and an alkyl allyl sulfonate, and water is designated as liquid A, and a mixture obtained by mixing an alkali thickening polymer emulsion and water is designated as liquid B. A method for producing an injection material, wherein the liquid and the liquid B are mixed. セメント、リグニンスルホン酸塩とアルキルアリルスルホン酸塩からなる分散剤、及び水を混合した混合物をA液とし、アルカリ増粘型ポリマーエマルジョンと水とを混合した混合物をB液とし、硬化促進剤と水とを混合した混合物をC液とし、使用直前に前記A液、B液、及びC液を混合することを特徴とする注入材の製造方法。   Cement, a dispersant composed of lignin sulfonate and alkyl allyl sulfonate, and a mixture of water and liquid A, a mixture of an alkali thickening polymer emulsion and water as liquid B, a curing accelerator, A method for producing an injection material, wherein a mixture obtained by mixing water is used as a liquid C, and the liquid A, liquid B, and liquid C are mixed immediately before use.
JP2011206733A 2011-09-22 2011-09-22 Cement composition and method for producing injection material using the same Active JP5735386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206733A JP5735386B2 (en) 2011-09-22 2011-09-22 Cement composition and method for producing injection material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206733A JP5735386B2 (en) 2011-09-22 2011-09-22 Cement composition and method for producing injection material using the same

Publications (2)

Publication Number Publication Date
JP2013067529A JP2013067529A (en) 2013-04-18
JP5735386B2 true JP5735386B2 (en) 2015-06-17

Family

ID=48473686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206733A Active JP5735386B2 (en) 2011-09-22 2011-09-22 Cement composition and method for producing injection material using the same

Country Status (1)

Country Link
JP (1) JP5735386B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104262544A (en) * 2014-09-05 2015-01-07 旷鑫 Environment-friendly high-strength acrylate grouting material and using method thereof
SE538740C2 (en) * 2014-11-03 2016-11-08 Ren Fuel K2B Ab Ether functionalized lignin for fuel production
US10737981B2 (en) * 2016-10-12 2020-08-11 United States Gypsum Company Method for making a lightweight gypsum composition with internally generated foam and products made from same
WO2019176832A1 (en) * 2018-03-12 2019-09-19 花王株式会社 Admixture composition for hydraulic composition
JP7488064B2 (en) 2020-03-06 2024-05-21 首都高メンテナンス神奈川株式会社 Construction and civil engineering repair materials and construction and civil engineering repair methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782156A (en) * 1980-11-08 1982-05-22 Denki Kagaku Kogyo Kk Spraying cement mortar
JPS59203746A (en) * 1983-05-02 1984-11-17 電気化学工業株式会社 Manufacture of quick set cement mortar or concrete
JPH08151251A (en) * 1994-11-25 1996-06-11 Mitsui Toatsu Chem Inc Polymer cement mortar composition
JP3429497B2 (en) * 2000-10-04 2003-07-22 電気化学工業株式会社 Cement admixture, cement composition, and method of using the same
JP2002338316A (en) * 2001-03-08 2002-11-27 Denki Kagaku Kogyo Kk Accelerator of hardening for spraying, quick-hardening cement concrete and spraying method using the same
JP2006069821A (en) * 2004-08-31 2006-03-16 Taiheiyo Material Kk Cement-based gap-filling material

Also Published As

Publication number Publication date
JP2013067529A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
JP4981457B2 (en) Cement composition, injection material using the same, and method of using the same
JP5735386B2 (en) Cement composition and method for producing injection material using the same
JP6234748B2 (en) Continuous kneading method using super-hard hard grout material
JP6891041B2 (en) Fast-strength ultra-high-strength grout composition
JP2008189526A (en) Admixture for grout and cement composition for grout
JP6040016B2 (en) Ground injection material
JP2004143037A (en) Cement composition and its using method
JP2006045054A (en) Sulphate resistant mortar or concrete
JP4786918B2 (en) Cement composition and method of use thereof
JP4841958B2 (en) Cement composition, injection material using the same, and method of using the same
JP5145918B2 (en) Underwater inseparable cement-based filling composition and underwater inseparable cement mortar
KR101503841B1 (en) Environment-friendly geopolymer composition for stabilization of soft ground and strength enhancement and the method using thereof
JP2017031037A (en) Anti-washout underwater concrete composition and cured body thereof
JP5809525B2 (en) Method for producing cement composition
JP2004149685A (en) Grout
JP4498768B2 (en) Cement composition, cavity filler, and method of using the same
JP3429497B2 (en) Cement admixture, cement composition, and method of using the same
JP7007040B2 (en) Construction method of pipe lining backfill material and pipe lining backfill material
JP2007217212A (en) Quick-hardening cement concrete and its construction method
JP4745259B2 (en) Cement composition
JP2006282442A (en) Quick-setting and high-fluidity mortar
JP2005008450A (en) Method of producing cement slurry
JP4722322B2 (en) Hydraulic composition
JP7282459B2 (en) filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5735386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250