JP2005224657A - PALLADIUM-CONTAINING CARRYING CATALYST, ITS PRODUCTION METHOD AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID - Google Patents

PALLADIUM-CONTAINING CARRYING CATALYST, ITS PRODUCTION METHOD AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID Download PDF

Info

Publication number
JP2005224657A
JP2005224657A JP2004033276A JP2004033276A JP2005224657A JP 2005224657 A JP2005224657 A JP 2005224657A JP 2004033276 A JP2004033276 A JP 2004033276A JP 2004033276 A JP2004033276 A JP 2004033276A JP 2005224657 A JP2005224657 A JP 2005224657A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
carboxylic acid
unsaturated carboxylic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033276A
Other languages
Japanese (ja)
Other versions
JP4204491B2 (en
Inventor
Mai Kojima
真衣 小嶋
Yuji Fujimori
祐治 藤森
Akio Takeda
明男 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004033276A priority Critical patent/JP4204491B2/en
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to US10/588,973 priority patent/US20070173662A1/en
Priority to KR1020067018400A priority patent/KR101154764B1/en
Priority to CN200580004222XA priority patent/CN1917956B/en
Priority to PCT/JP2005/001804 priority patent/WO2005075072A1/en
Priority to KR1020117026712A priority patent/KR101264031B1/en
Priority to CN2008101084051A priority patent/CN101306362B/en
Publication of JP2005224657A publication Critical patent/JP2005224657A/en
Application granted granted Critical
Publication of JP4204491B2 publication Critical patent/JP4204491B2/en
Priority to US12/388,917 priority patent/US7884239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a palladium-containing carrying catalyst for producing α,β-unsaturated carboxylic acid from olefin or α,β-unsaturated aldehyde at high yield, its production method and a method for producing α,β-unsaturated carboxylic acid at high yield. <P>SOLUTION: The catalyst for producing α,β-unsaturated carboxylic acid by oxidizing olefin or α,β-unsaturated aldehyde by molecular oxygen in a liquid phase is made to the palladium-containing carrying catalyst in which a carrier is carried with palladium having an average particle diameter in a range of 1-8 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オレフィンまたはα、β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒及びその製造方法、並びに、その触媒を用いたα,β−不飽和カルボン酸の製造方法に関する。   The present invention relates to a palladium-containing supported catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, a method for producing the same, and an α, β-unsaturated carboxylic acid using the catalyst. The present invention relates to a method for producing an acid.

オレフィンまたはα、β−不飽和アルデヒドを分子状酸素によって液相酸化してα,β−不飽和カルボン酸を得るための触媒としては、パラジウム含有触媒が広く用いられている。例えば特許文献1〜3には、パラジウムを活性炭などの担体に担持させたパラジウム含有担持触媒が記載されているが、その中に含まれるパラジウムの粒子径に関する記載は一切ない。
特開昭56−59722号公報 特開昭60−155148号公報 特開昭60−139341号公報
Palladium-containing catalysts are widely used as catalysts for obtaining α, β-unsaturated carboxylic acids by liquid phase oxidation of olefins or α, β-unsaturated aldehydes with molecular oxygen. For example, Patent Documents 1 to 3 describe a palladium-containing supported catalyst in which palladium is supported on a support such as activated carbon, but there is no description regarding the particle size of palladium contained therein.
JP 56-59722 A JP 60-155148 A JP 60-139341 A

本発明者が特許文献1〜3の実施例に記載された方法に準じて製造したパラジウム含有担持触媒を用いてプロピレンからアクリル酸を製造したところ、特許文献1〜3で記載されている副生成物(アセトアルデヒド、アセトン、アクロレイン、酢酸、二酸化炭素)以外に多様なポリマーやオリゴマーが多く副生することを見出した。特許文献1〜3ではこれらのポリマーやオリゴマーを捕捉しておらず、これらの副生成物を含めた実際のアクリル酸の選択率は特許文献1〜3の実施例に記載されたものより低くなることが判明した。そのため、特許文献1〜3記載の触媒を用いたα,β−不飽和カルボン酸の製造方法におけるα,β−不飽和カルボン酸の収率は未だ十分ではなく、より高収率でα,β−不飽和カルボン酸を製造できる触媒が望まれている。   When the present inventor produced acrylic acid from propylene using a palladium-containing supported catalyst produced according to the method described in Examples of Patent Documents 1 to 3, a by-product described in Patent Documents 1 to 3 was obtained. In addition to the products (acetaldehyde, acetone, acrolein, acetic acid, carbon dioxide), it was found that a large number of various polymers and oligomers were by-produced. In Patent Documents 1 to 3, these polymers and oligomers are not captured, and the selectivity of the actual acrylic acid including these by-products is lower than those described in the Examples of Patent Documents 1 to 3. It has been found. Therefore, the yield of α, β-unsaturated carboxylic acid in the method for producing α, β-unsaturated carboxylic acid using the catalyst described in Patent Documents 1 to 3 is not yet sufficient, and α, β can be obtained at a higher yield. -Catalysts capable of producing unsaturated carboxylic acids are desired.

したがって本発明の目的は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高収率で製造するためのパラジウム含有担持触媒及びその製造方法、並びに、α,β−不飽和カルボン酸を高収率で製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a palladium-containing supported catalyst for producing α, β-unsaturated carboxylic acid in high yield from an olefin or an α, β-unsaturated aldehyde, a method for producing the same, and an α, β-unsaturated catalyst. The object is to provide a method for producing a saturated carboxylic acid in a high yield.

本発明は、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造するための触媒であって、平均粒子径が1〜8nmの範囲にあるパラジウムが担体に担持されているパラジウム含有担持触媒である。   The present invention is a catalyst for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde with molecular oxygen in a liquid phase, and has an average particle size of 1 to 8 nm. This is a palladium-containing supported catalyst in which palladium in the above range is supported on a carrier.

また本発明は、前記のパラジウム含有担持触媒の製造方法であって、担体の存在下でパラジウム化合物を還元剤によって還元するパラジウム含有担持触媒の製造方法である。   The present invention also relates to a method for producing the palladium-containing supported catalyst, wherein the palladium compound is reduced with a reducing agent in the presence of a carrier.

さらに本発明は、前記のパラジウム含有担持触媒の存在下で、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸の製造方法である。   Furthermore, the present invention is a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is oxidized in the liquid phase with molecular oxygen in the presence of the palladium-containing supported catalyst.

本発明によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造した場合に、副生成物であるポリマーおよびオリゴマーの生成量が少なく、α,β−不飽和カルボン酸を高収率で製造できるパラジウム含有担持触媒及びその製造方法を提供でき、その触媒を用いることでα,β−不飽和カルボン酸を高収率で製造できる。   According to the present invention, when α, β-unsaturated carboxylic acid is produced from olefin or α, β-unsaturated aldehyde, the amount of by-product polymer and oligomer is small, and α, β-unsaturated A palladium-containing supported catalyst capable of producing carboxylic acid in high yield and a method for producing the same can be provided, and α, β-unsaturated carboxylic acid can be produced in high yield by using the catalyst.

本発明の触媒は、α,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造するための触媒であって、平均粒子径が1〜8nmの範囲にあるパラジウムが担体に担持されているパラジウム含有担持触媒である。パラジウムの平均粒子径を上記範囲にすることにより、α,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高収率で製造可能なパラジウム含有担持触媒となる。   The catalyst of the present invention is a catalyst for producing an α, β-unsaturated carboxylic acid by oxidizing α, β-unsaturated aldehyde with molecular oxygen in a liquid phase, and has an average particle diameter of 1 to 8 nm. This is a palladium-containing supported catalyst in which palladium in the above range is supported on a carrier. By setting the average particle diameter of palladium within the above range, a palladium-containing supported catalyst capable of producing an α, β-unsaturated carboxylic acid from an α, β-unsaturated aldehyde in a high yield is obtained.

本発明におけるパラジウムの平均粒子径とは、パラジウム含有担持触媒中のパラジウムについて透過型電子顕微鏡によって測定したものであり、具体的には以下のようにして算出を行なった値である。透過型電子顕微鏡の観察画像を等倍でプリントアウトし、視野内のパラジウムの領域50点を無作為にピックアップしてそれぞれの粒子径を計測した。パラジウムの領域の形状はほぼ円形であったので、全て円形であると近似して計測した。この操作を3視野について実施し、計測値の平均をとり平均粒子径とした。なお、透過型電子顕微鏡の観察はパラジウムの粒子径の計測が可能な観察倍率で行なうものとする。   The average particle diameter of palladium in the present invention is measured with a transmission electron microscope for palladium in the palladium-containing supported catalyst, and is specifically a value calculated as follows. An observation image of a transmission electron microscope was printed at an equal magnification, and 50 particles of palladium in the field of view were randomly picked up and each particle size was measured. Since the shape of the palladium region was almost circular, it was measured by approximating that it was all circular. This operation was carried out for three visual fields, and the average of the measured values was taken as the average particle diameter. The observation with a transmission electron microscope is performed at an observation magnification capable of measuring the particle diameter of palladium.

上記のようにして算出したパラジウムの平均粒子径の下限値は1nm以上であり、1.2nm以上が好ましく、1.4nm以上がより好ましい、また、パラジウムの平均粒子径の上限値は8nm以下であり、7nm以下が好ましく、6nm以下がより好ましいことがわかった。パラジウムの平均粒子径が所定の範囲外にある場合、それを含むパラジウム含有担持触媒の活性が低下する傾向にあり、α,β−不飽和カルボン酸の収率が低下する傾向にある。   The lower limit value of the average particle diameter of palladium calculated as described above is 1 nm or more, preferably 1.2 nm or more, more preferably 1.4 nm or more, and the upper limit value of the average particle diameter of palladium is 8 nm or less. It was found that 7 nm or less is preferable and 6 nm or less is more preferable. When the average particle diameter of palladium is outside the predetermined range, the activity of the palladium-containing supported catalyst containing the palladium tends to decrease, and the yield of the α, β-unsaturated carboxylic acid tends to decrease.

本発明のパラジウム含有担持触媒の製造方法は特に限定されないが、担体の存在下でパラジウム化合物を還元剤によって還元する方法をとることができる。具体的には、例えば、担体を分散させたパラジウム化合物の溶液に還元剤を加えて還元する液相還元法、パラジウム化合物の溶液を担体に含浸させたものを乾燥し、還元雰囲気で還元する気相還元法等により製造することができる。なかでも、液相還元法が好ましい。以下、液相還元法によるパラジウム含有担持触媒の製造方法について説明する。   Although the manufacturing method of the palladium containing supported catalyst of this invention is not specifically limited, The method of reduce | restoring a palladium compound with a reducing agent in presence of a support | carrier can be taken. Specifically, for example, a liquid phase reduction method in which a reducing agent is added to a palladium compound solution in which a carrier is dispersed to reduce, or a carrier in which a palladium compound solution is impregnated is dried and reduced in a reducing atmosphere. It can be produced by a phase reduction method or the like. Of these, the liquid phase reduction method is preferred. Hereinafter, the manufacturing method of the palladium containing supported catalyst by a liquid phase reduction method is demonstrated.

なお、パラジウム含有担持触媒中のパラジウムの平均粒子径は、用いる活性炭の種類及び比表面積、パラジウム含有担持触媒の調製に用いる溶媒の種類及び混合溶媒の場合の混合比、パラジウム含有担持触媒の原料であるパラジウム化合物の種類及び濃度、パラジウム化合物を還元する温度及び時間等の様々な条件により変化する。本発明においては、それらの条件を適宜選択して設定し、得られるパラジウム含有担持触媒中のパラジウムの平均粒子径を上記の範囲とする必要がある。   The average particle diameter of palladium in the palladium-containing supported catalyst is the type and specific surface area of activated carbon used, the type of solvent used for the preparation of the palladium-containing supported catalyst and the mixing ratio in the case of a mixed solvent, and the raw material of the palladium-containing supported catalyst. It varies depending on various conditions such as the kind and concentration of a certain palladium compound, the temperature and time for reducing the palladium compound, and the like. In the present invention, it is necessary to appropriately select and set those conditions, and to set the average particle diameter of palladium in the obtained palladium-containing supported catalyst within the above range.

液相還元法によるパラジウム含有担持触媒の製造に使用するパラジウム化合物は特に限定されないが、例えば、パラジウムの塩化物、酸化物、酢酸塩、硝酸塩、硫酸塩、テトラアンミン錯体、又はアセチルアセトナト錯体等が好ましく、パラジウムの塩化物、酸化物、酢酸塩、硝酸塩、又は硫酸塩がより好ましく、パラジウムの塩化物、酢酸塩、又は硝酸塩が特に好ましい。これらは単独で使用することもでき、複数を組み合わせて使用することもできる。   The palladium compound used for the production of the palladium-containing supported catalyst by the liquid phase reduction method is not particularly limited, but examples thereof include palladium chloride, oxide, acetate, nitrate, sulfate, tetraammine complex, and acetylacetonate complex. Palladium chloride, oxide, acetate, nitrate, or sulfate is more preferable, and palladium chloride, acetate, or nitrate is particularly preferable. These can be used alone or in combination.

パラジウム化合物を溶解する溶媒としては、水、アルコール、ケトン、有機酸、炭化水素、またはこれらの群から選ばれる2種以上の混合溶媒を用いることができる。溶媒は、パラジウム化合物及び還元剤の溶解性並びに担体の分散性等によって適宜選択されるが、中でも有機酸から選ばれる1種または2種以上の溶媒と水との混合溶媒が好ましい。有機酸としては、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つが好ましい。中でもn−吉草酸が特に好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して通常5質量%以上、好ましくは8質量%以上である。また、通常60質量%以下、好ましくは、40質量%以下である。混合溶媒の場合、均一な状態であることが望ましいが、不均一な状態であっても差し支えない。   As a solvent for dissolving the palladium compound, water, alcohol, ketone, organic acid, hydrocarbon, or a mixed solvent of two or more selected from these groups can be used. The solvent is appropriately selected depending on the solubility of the palladium compound and the reducing agent, the dispersibility of the carrier, and the like, and among them, a mixed solvent of one or two or more solvents selected from organic acids and water is preferable. The organic acid is preferably at least one selected from the group consisting of acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid. Of these, n-valeric acid is particularly preferred. The amount of water at that time is not particularly limited, but is usually 5% by mass or more, preferably 8% by mass or more with respect to the mass of the mixed solvent. Moreover, it is 60 mass% or less normally, Preferably, it is 40 mass% or less. In the case of a mixed solvent, a uniform state is desirable, but a non-uniform state may be used.

また、目的とするパラジウム含有担持触媒にパラジウム以外の金属を含有させる場合は、パラジウム化合物溶液にその金属の金属化合物を溶解させておく方法が利用できる。触媒活性の観点から、パラジウム含有担持触媒におけるパラジウム以外の金属が50原子%以下となる量であることが好ましい。   When the target palladium-containing supported catalyst contains a metal other than palladium, a method in which the metal compound of the metal is dissolved in a palladium compound solution can be used. From the viewpoint of catalytic activity, the amount of the metal other than palladium in the palladium-containing supported catalyst is preferably 50 atomic% or less.

本発明で用いられる担体としては、例えば、活性炭、シリカ、アルミナ、チタニア、およびジルコニア等を挙げることができる。中でも活性炭が好ましい。活性炭の原料は特に限定されず、例えば、木材、ヤシ殻、石炭、合成樹脂等が挙げられる。活性炭の形状は特に限定されず、例えば、粉末状、破砕状、粒状、タブレット状、繊維状等が挙げられる。活性炭の賦活方法は特に限定されず、例えば、水蒸気賦活、二酸化炭素賦活、塩化亜鉛賦活、リン酸塩賦活、アルカリ賦活等が挙げられる。活性炭の比表面積は、300m2/g以上が好ましく、600m2/g以上が特に好ましい。また、4000m2/g以下が好ましく、2500m2/g以下が特に好ましい。 Examples of the carrier used in the present invention include activated carbon, silica, alumina, titania, and zirconia. Of these, activated carbon is preferred. The raw material of the activated carbon is not particularly limited, and examples thereof include wood, coconut shell, coal, and synthetic resin. The shape of the activated carbon is not particularly limited, and examples thereof include powder, crushed, granular, tablet, and fiber. The activation method of activated carbon is not particularly limited, and examples thereof include water vapor activation, carbon dioxide activation, zinc chloride activation, phosphate activation, and alkali activation. The specific surface area of the activated carbon is preferably at least 300 meters 2 / g, and particularly preferably equal to or greater than 600m 2 / g. Moreover, 4000 m < 2 > / g or less is preferable and 2500 m < 2 > / g or less is especially preferable.

担体とパラジウム化合物は、所望の順序または同時に溶媒に加えて、担体が分散したパラジウム化合物溶液を調製する。パラジウム化合物の濃度は、通常0.1質量%以上、好ましくは0.2質量%以上、特に好ましくは0.5質量%以上である。また、通常20質量%以下、好ましくは10質量%以下、特に好ましくは7質量%以下である。次いで、この担体が分散したパラジウム化合物溶液に還元剤を加えてパラジウムを還元し、還元したパラジウムが担体に担持されたパラジウム含有担持触媒が得られる。   The carrier and the palladium compound are added to the solvent in the desired order or simultaneously to prepare a palladium compound solution in which the carrier is dispersed. The density | concentration of a palladium compound is 0.1 mass% or more normally, Preferably it is 0.2 mass% or more, Most preferably, it is 0.5 mass% or more. Moreover, it is 20 mass% or less normally, Preferably it is 10 mass% or less, Most preferably, it is 7 mass% or less. Next, a reducing agent is added to the palladium compound solution in which the carrier is dispersed to reduce palladium, and a palladium-containing supported catalyst in which the reduced palladium is supported on the carrier is obtained.

用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルマリン、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、イソブチレン等が挙げられる。中でも、プロピレン、イソブチレンが好ましい。   The reducing agent to be used is not particularly limited, and examples thereof include hydrazine, formalin, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, and isobutylene. Of these, propylene and isobutylene are preferable.

還元剤が気体の場合、パラジウムの還元はオートクレーブ等の加圧装置中で行うことが好ましい。その際、加圧装置の内部は還元剤で加圧する。その圧力は通常0.1〜1.0MPa(ゲージ圧;以下、圧力の表記は全てゲージ圧表記とする)である。   When the reducing agent is a gas, the reduction of palladium is preferably performed in a pressure device such as an autoclave. At that time, the inside of the pressurizer is pressurized with a reducing agent. The pressure is usually 0.1 to 1.0 MPa (gauge pressure; hereinafter, all pressures are expressed as gauge pressures).

また、還元剤が液体又は固体の場合は、パラジウム化合物溶液中に還元剤を添加することで還元処理を行うことができる。このときの還元剤の使用量は、通常、パラジウム化合物1モルに対して1〜50モル程度である。   Moreover, when a reducing agent is a liquid or solid, a reduction process can be performed by adding a reducing agent in a palladium compound solution. The amount of reducing agent used is usually about 1 to 50 moles per mole of palladium compound.

還元時の系の温度および還元時間は、還元方法、用いるパラジウム化合物、溶媒および還元剤等により異なるので一概に言えないが、液相還元法の場合、通常、還元温度は0〜100℃、還元時間は0.5〜24時間である。   The temperature of the system and the reduction time during the reduction vary depending on the reduction method, the palladium compound used, the solvent, the reducing agent, etc., but cannot generally be said, but in the case of the liquid phase reduction method, the reduction temperature is usually 0 to 100 ° C. The time is 0.5 to 24 hours.

還元後、分散液からパラジウムが担持された担体(以下、「パラジウム含有担持触媒」又は単に「触媒」と言う。)を分離する。この方法は特に限定されないが、例えば、ろ過、遠心分離等の方法を用いることができる。分離された触媒は適宜乾燥される。乾燥方法は特に限定されず、種々の方法を用いることができる。   After the reduction, a carrier on which palladium is supported (hereinafter referred to as “palladium-containing supported catalyst” or simply “catalyst”) is separated from the dispersion. Although this method is not specifically limited, For example, methods, such as filtration and centrifugation, can be used. The separated catalyst is appropriately dried. The drying method is not particularly limited, and various methods can be used.

なお、還元後に触媒と分離された溶液に含まれるパラジウムの濃度は10mg/l以下にすることが好ましい。この量は還元前のパラジウム化合物濃度や還元条件等により調節できる。溶液中のパラジウムの有無はヒドラジン等の還元剤を添加することにより簡便に確認でき、また、溶液中のパラジウムの量はICP等の元素分析で定量することができる。   The concentration of palladium contained in the solution separated from the catalyst after the reduction is preferably 10 mg / l or less. This amount can be adjusted by the palladium compound concentration before reduction, the reduction conditions, and the like. Presence or absence of palladium in the solution can be easily confirmed by adding a reducing agent such as hydrazine, and the amount of palladium in the solution can be quantified by elemental analysis such as ICP.

触媒のパラジウムの担持率は、担体に対して通常0.1〜40質量%である。担持率の下限は、1質量%以上が好ましく、4質量%以上がより好ましい。また担持率の上限は、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下が特に好ましい。担持率は、触媒調製に用いた担体質量、パラジウム化合物中のパラジウム質量、還元後に触媒と分離された溶液に含まれるパラジウム質量から求めることができる。   The palladium loading ratio of the catalyst is usually 0.1 to 40% by mass with respect to the support. The lower limit of the loading rate is preferably 1% by mass or more, and more preferably 4% by mass or more. The upper limit of the loading rate is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 15% by mass or less. The loading rate can be determined from the mass of the carrier used for catalyst preparation, the mass of palladium in the palladium compound, and the mass of palladium contained in the solution separated from the catalyst after reduction.

以上のようにして、本発明のパラジウム含有担持触媒を製造することができる。   As described above, the palladium-containing supported catalyst of the present invention can be produced.

触媒は、液相酸化に供する前に、活性化してもよい。活性化の方法は特に限定されず、種々の方法を用いることができる。活性化の方法としては水素気流中の還元雰囲気下で加熱する方法が一般的である。   The catalyst may be activated before being subjected to liquid phase oxidation. The activation method is not particularly limited, and various methods can be used. As a method of activation, a method of heating in a reducing atmosphere in a hydrogen stream is common.

次に、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造する方法について説明する。   Next, a method for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde with molecular oxygen in a liquid phase will be described.

液相酸化の原料のオレフィンとしては、例えば、プロピレン、イソブチレン、1−ブテン、2−ブテン等が挙げられる。また、原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。   Examples of the olefin as a raw material for liquid phase oxidation include propylene, isobutylene, 1-butene, and 2-butene. Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein).

液相酸化で製造されるα,β−不飽和カルボン酸は、原料がオレフィンの場合、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。また、原料がα,β−不飽和アルデヒドの場合、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。   The α, β-unsaturated carboxylic acid produced by liquid phase oxidation is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin when the raw material is an olefin. When the raw material is an α, β-unsaturated aldehyde, it is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group.

本発明の触媒は、プロピレンまたはアクロレインからアクリル酸、イソブチレンまたはメタクロレインからメタクリル酸を製造する液相酸化に好適である。   The catalyst of the present invention is suitable for liquid phase oxidation for producing acrylic acid from propylene or acrolein, and methacrylic acid from isobutylene or methacrolein.

原料のオレフィンまたはα,β−不飽和アルデヒドには、不純物として飽和炭化水素および低級飽和アルデヒド等が少々含まれていてもよい。   The raw material olefin or α, β-unsaturated aldehyde may contain a small amount of saturated hydrocarbon, lower saturated aldehyde and the like as impurities.

反応に用いる分子状酸素源には、空気が経済的であるが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。   Air is economical as the molecular oxygen source used in the reaction, but pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is converted into nitrogen, carbon dioxide, water vapor. It is also possible to use a mixed gas diluted with the same.

液相酸化に用いる溶媒は特に限定されないが、例えば、水;ターシャリーブタノール、シクロヘキサノール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸等の有機酸;酢酸エチル、プロピオン酸メチル等の有機酸エステル;ヘキサン、シクロヘキサン、トルエン等の炭化水素、またはこれらの群から選ばれる2種以上の混合溶媒を用いることができる。なかでも、アルコール、ケトン、有機酸および有機酸エステルからなる群から選ばれる1種または2種以上の溶媒と水との混合溶媒が好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して通常2質量%以上、好ましくは5質量%以上である。また、通常70質量%以下、好ましくは50質量%以下である。溶媒は均一であることが望ましいが、不均一な状態で用いても差し支えない。   Although the solvent used for liquid phase oxidation is not specifically limited, For example, Water; Alcohol, such as tertiary butanol and cyclohexanol; Ketone, such as acetone, methyl ethyl ketone, methyl isobutyl ketone; Acetic acid, propionic acid, n-butyric acid, iso-butyric acid, an organic acid such as n-valeric acid and iso-valeric acid; an organic acid ester such as ethyl acetate and methyl propionate; a hydrocarbon such as hexane, cyclohexane and toluene; or a mixed solvent of two or more selected from these groups Can be used. Especially, the mixed solvent of 1 type, or 2 or more types of solvent chosen from the group which consists of alcohol, a ketone, an organic acid, and organic acid ester, and water is preferable. The amount of water at that time is not particularly limited, but is usually 2% by mass or more, preferably 5% by mass or more with respect to the mass of the mixed solvent. Moreover, it is 70 mass% or less normally, Preferably it is 50 mass% or less. Although the solvent is desirably uniform, it may be used in a non-uniform state.

液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。   The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.

原料であるオレフィンまたはα,β−不飽和アルデヒドの使用量は、溶媒100質量部に対して、通常0.1質量部以上であり、好ましくは0.5質量部以上である。また、通常20質量部以下であり、好ましくは10質量部以下である。   The amount of the olefin or α, β-unsaturated aldehyde used as a raw material is usually 0.1 parts by mass or more, preferably 0.5 parts by mass or more with respect to 100 parts by mass of the solvent. Moreover, it is 20 mass parts or less normally, Preferably it is 10 mass parts or less.

分子状酸素の使用量は、原料であるオレフィンまたはα,β−不飽和アルデヒド1モルに対して、通常0.1モル以上であり、好ましくは0.3モル以上、特に好ましくは0.5モル以上である。また、通常20モル以下であり、好ましくは15モル以下、特に好ましくは10モル以下である。   The amount of molecular oxygen used is usually 0.1 mol or more, preferably 0.3 mol or more, particularly preferably 0.5 mol, per 1 mol of the raw material olefin or α, β-unsaturated aldehyde. That's it. Moreover, it is 20 mol or less normally, Preferably it is 15 mol or less, Most preferably, it is 10 mol or less.

通常、触媒は反応液に懸濁させた状態で使用されるが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液100質量部に対して、反応器内に存在する触媒として通常0.1質量部以上、好ましくは0.5質量部以上、特に好ましくは1質量部以上である。また、通常30質量部以下、好ましくは20質量部以下、特に好ましくは15質量部以下である。   Usually, the catalyst is used in a state suspended in the reaction solution, but may be used in a fixed bed. The amount of the catalyst used is usually 0.1 parts by weight or more, preferably 0.5 parts by weight or more, particularly preferably 1 part by weight as the catalyst present in the reactor with respect to 100 parts by weight of the solution present in the reactor. More than a part. Moreover, it is 30 mass parts or less normally, Preferably it is 20 mass parts or less, Most preferably, it is 15 mass parts or less.

反応温度および反応圧力は、用いる溶媒および反応原料によって適宜選択される。反応温度は一般的に30〜200℃であり、好ましくは50℃以上であり、好ましくは150℃以下である。また、反応圧力は一般的に大気圧(0MPa)〜10MPaであり、好ましくは0.5MPa以上であり、好ましくは5MPa以下である。   The reaction temperature and reaction pressure are appropriately selected depending on the solvent used and the reaction raw materials. The reaction temperature is generally 30 to 200 ° C, preferably 50 ° C or higher, and preferably 150 ° C or lower. The reaction pressure is generally atmospheric pressure (0 MPa) to 10 MPa, preferably 0.5 MPa or more, and preferably 5 MPa or less.

以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は「質量部」を意味する。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. In the following Examples and Comparative Examples, “part” means “part by mass”.

(原料および生成物の分析)
原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンまたはα,β−不飽和アルデヒドの反応率、生成するα,β−不飽和アルデヒドの選択率、生成するポリマー・オリゴマーの選択率、生成するα,β−不飽和カルボン酸の選択率および収率は以下のように定義される。
(Analysis of raw materials and products)
Analysis of raw materials and products was performed using gas chromatography. In addition, reaction rate of olefin or α, β-unsaturated aldehyde, selectivity of α, β-unsaturated aldehyde to be produced, selectivity of polymer / oligomer to be produced, selectivity of α, β-unsaturated carboxylic acid to be produced And the yield is defined as follows:

オレフィンまたはα,β−不飽和アルデヒドの反応率(%)
=(B/A)×100
α,β−不飽和アルデヒドの選択率(%)=(C/B)×100
α,β−不飽和カルボン酸の選択率(%)=(D/B)×100
ポリマー・オリゴマーの選択率(%) =(E/B)×100
α,β−不飽和カルボン酸の収率 (%)=(D/A)×100
ここで、Aは供給したオレフィンまたはα,β−不飽和アルデヒドのモル数、Bは反応したオレフィンまたはα,β−不飽和アルデヒドのモル数、Cは生成したα,β−不飽和アルデヒドのモル数、Dは生成したα,β−不飽和カルボン酸のモル数、Eはポリマーおよびオリゴマーの総質量(単位:g)を供給したオレフィンまたはα,β−不飽和アルデヒドの分子量で除して算出したオレフィンまたはα,β−不飽和アルデヒド換算のポリマーおよびオリゴマーのモル数である。ここで、α,β−不飽和アルデヒド酸化反応の場合には、C/B=0である。
Reaction rate of olefin or α, β-unsaturated aldehyde (%)
= (B / A) x 100
Selectivity of α, β-unsaturated aldehyde (%) = (C / B) × 100
Selectivity of α, β-unsaturated carboxylic acid (%) = (D / B) × 100
Selectivity of polymer / oligomer (%) = (E / B) × 100
Yield of α, β-unsaturated carboxylic acid (%) = (D / A) × 100
Here, A is the number of moles of olefin or α, β-unsaturated aldehyde supplied, B is the number of moles of reacted olefin or α, β-unsaturated aldehyde, and C is the mole of α, β-unsaturated aldehyde produced. Number, D is the number of moles of α, β-unsaturated carboxylic acid produced, E is calculated by dividing the total mass (unit: g) of the polymer and oligomer by the molecular weight of the olefin or α, β-unsaturated aldehyde supplied. The number of moles of olefin or polymer and oligomer in terms of α, β-unsaturated aldehyde. Here, in the case of the α, β-unsaturated aldehyde oxidation reaction, C / B = 0.

(パラジウム含有担持触媒中のパラジウムの平均粒子径)
パラジウム含有担持触媒中のパラジウムの平均粒子径は透過型電子顕微鏡によって測定した。具体的には以下のようにして算出を行なった。透過型電子顕微鏡の観察画像を等倍でプリントアウトし、視野内のパラジウム粒子50点をピックアップしてそれぞれの粒子径を計測した。パラジウム粒子の形状はほぼ円形であったので、全て円形であると近似して計測した。この操作を3視野について実施し、計測値の平均をとり平均粒子径とした。
(Average particle diameter of palladium in the palladium-containing supported catalyst)
The average particle diameter of palladium in the palladium-containing supported catalyst was measured with a transmission electron microscope. Specifically, the calculation was performed as follows. The observation image of the transmission electron microscope was printed at the same magnification, and 50 palladium particles in the field of view were picked up and the particle diameters were measured. Since the shape of the palladium particles was almost circular, it was approximated to be circular and measured. This operation was carried out for three visual fields, and the average of the measured values was taken as the average particle diameter.

<実施例1>
(パラジウム含有担持触媒調製)
酢酸パラジウム1.16部を88質量%n−吉草酸水溶液60部に添加し、80℃において1時間加熱および攪拌を行い溶解させた。得られた溶液をオートクレーブに移し、石炭原料から製造された活性炭(比表面積840m2/g)5.4部を加えて回転数を400rpmに合わせて攪拌を開始し、窒素ガスの導入と放出を数回繰り返して装置内部を窒素置換した。プロピレンガスを0.5MPaまで導入した後、50℃(還元温度)まで昇温し1時間(還元時間)保持した。反応終了後、20℃まで冷却し、内部のガスを放出した後、オートクレーブを開放した。懸濁液をろ過して担持率10質量%(担体の質量に対するパラジウム質量)のパラジウム含有担持触媒を得た。
<Example 1>
(Preparation of palladium-containing supported catalyst)
1.16 parts of palladium acetate was added to 60 parts of an 88% by mass n-valeric acid aqueous solution and dissolved by heating and stirring at 80 ° C. for 1 hour. The obtained solution was transferred to an autoclave, and 5.4 parts of activated carbon (specific surface area 840 m 2 / g) produced from a coal raw material was added, stirring was started at a rotation speed of 400 rpm, and introduction and release of nitrogen gas were started. The inside of the apparatus was purged with nitrogen several times. After introducing propylene gas to 0.5 MPa, the temperature was raised to 50 ° C. (reduction temperature) and held for 1 hour (reduction time). After completion of the reaction, the mixture was cooled to 20 ° C., and the internal gas was released. Then, the autoclave was opened. The suspension was filtered to obtain a palladium-containing supported catalyst having a loading rate of 10 mass% (palladium mass relative to the mass of the carrier).

得られたパラジウム含有担持触媒中のパラジウムの平均粒子径は1.5nm(透過型電子顕微鏡の観察倍率:100万倍)であった。   The average particle diameter of palladium in the obtained palladium-containing supported catalyst was 1.5 nm (observation magnification of transmission electron microscope: 1,000,000 times).

(触媒性能評価)
攪拌装置を備えたオートクレーブに、p−メトキシフェノールを200ppm含有する88質量%酢酸水溶液69部、及び上記のパラジウム含有担持触媒3部を仕込んだ。さらにメタクロレイン2.5部を添加した。オートクレーブを密閉した後、攪拌回転数820rpmで攪拌を開始し、ヒーターにより90℃まで昇温した。90℃に達した時点で3.2MPaまで空気を導入し、そのまま20分間(反応時間)保持した。反応終了後、20℃まで冷却した。また、オートクレーブのガス出口には冷水を入れた吸収管とガス捕集袋をこの順に取り付けた。ガス出口を開き、ガスを回収しながら反応器内の圧力を開放した。反応液を遠沈管に移液し、遠心分離により触媒を沈降させた。上澄み液をPTFE製のメンブレンフィルター(孔径:0.5μm)に通して回収した。
(Catalyst performance evaluation)
An autoclave equipped with a stirrer was charged with 69 parts of an 88% by mass acetic acid aqueous solution containing 200 ppm of p-methoxyphenol and 3 parts of the above palladium-containing supported catalyst. Further, 2.5 parts of methacrolein was added. After sealing the autoclave, stirring was started at a stirring speed of 820 rpm, and the temperature was raised to 90 ° C. by a heater. When the temperature reached 90 ° C., air was introduced up to 3.2 MPa and maintained for 20 minutes (reaction time). After completion of the reaction, it was cooled to 20 ° C. Further, an absorption tube filled with cold water and a gas collection bag were attached in this order to the gas outlet of the autoclave. The gas outlet was opened and the pressure in the reactor was released while collecting the gas. The reaction solution was transferred to a centrifuge tube, and the catalyst was precipitated by centrifugation. The supernatant was collected through a PTFE membrane filter (pore size: 0.5 μm).

この結果、メタクロレイン反応率93.6%、メタクリル酸選択率79.9%、ポリマー・オリゴマー選択率8.5%、およびメタクリル酸収率74.8%であった。   As a result, methacrolein conversion was 93.6%, methacrylic acid selectivity was 79.9%, polymer / oligomer selectivity was 8.5%, and methacrylic acid yield was 74.8%.

<実施例2>
比表面積988m2/gのヤシ殻原料から製造された活性炭を担体として用いた以外は、実施例1と同様に触媒を調製した。得られたパラジウム含有担持触媒(担持率10質量%)中のパラジウムの平均粒子径は2.6nm(透過型電子顕微鏡の観察倍率:30万倍)であった。
実施例1と同様に触媒性能評価を行なった結果、メタクロレイン反応率89.7%、メタクリル酸選択率84.7%、ポリマー・オリゴマー選択率4.3%、およびメタクリル酸収率76.0%であった。
<Example 2>
A catalyst was prepared in the same manner as in Example 1 except that activated carbon produced from a coconut shell raw material having a specific surface area of 988 m 2 / g was used as a carrier. The average particle diameter of palladium in the obtained palladium-containing supported catalyst (supporting rate: 10% by mass) was 2.6 nm (observation magnification with a transmission electron microscope: 300,000 times).
The catalyst performance was evaluated in the same manner as in Example 1. As a result, the methacrolein reaction rate was 89.7%, the methacrylic acid selectivity was 84.7%, the polymer / oligomer selectivity was 4.3%, and the methacrylic acid yield was 76.0. %Met.

<比較例1>
触媒調製溶媒として96質量%酢酸水溶液を用いた以外は実施例1と同様に触媒を調製した。得られたパラジウム含有担持触媒(担持率10質量%)中のパラジウムの平均粒子径は8.4nm(透過型電子顕微鏡の観察倍率:30万倍)であった。
<Comparative Example 1>
A catalyst was prepared in the same manner as in Example 1 except that a 96% by mass acetic acid aqueous solution was used as the catalyst preparation solvent. The average particle diameter of palladium in the obtained palladium-containing supported catalyst (supporting rate: 10% by mass) was 8.4 nm (observation magnification with a transmission electron microscope: 300,000 times).

実施例1と同様に触媒性能評価を行なった結果、メタクロレイン反応率46.4%、メタクリル酸選択率71.5%、ポリマー・オリゴマー選択率15.4%、およびメタクリル酸収率33.2%であった。   As a result of evaluating the catalyst performance in the same manner as in Example 1, the methacrolein reaction rate was 46.4%, the methacrylic acid selectivity was 71.5%, the polymer / oligomer selectivity was 15.4%, and the methacrylic acid yield was 33.2. %Met.

<比較例2>
触媒調製溶媒としてn−吉草酸を用いた以外は実施例1と同様に触媒を調製した。得られたパラジウム含有担持触媒(担持率10質量%)中のパラジウムの平均粒子径は10.1nm(透過型電子顕微鏡の観察倍率:30万倍)であった。
<Comparative example 2>
A catalyst was prepared in the same manner as in Example 1 except that n-valeric acid was used as the catalyst preparation solvent. The average particle diameter of palladium in the obtained palladium-containing supported catalyst (supporting rate: 10% by mass) was 10.1 nm (observation magnification with a transmission electron microscope: 300,000 times).

実施例1と同様に触媒性能評価を行なった結果、メタクロレイン反応率45.4%、メタクリル酸選択率65.2%、ポリマー・オリゴマー選択率21.3%、およびメタクリル酸収率30.0%であった。   The catalyst performance was evaluated in the same manner as in Example 1. As a result, the methacrolein reaction rate was 45.4%, the methacrylic acid selectivity was 65.2%, the polymer / oligomer selectivity was 21.3%, and the methacrylic acid yield was 30.0. %Met.

<比較例3>
酢酸パラジウム量を0.11部、還元温度を25℃、還元時間を18時間とした以外は実施例1と同様に触媒を調製した。得られたパラジウム含有担持触媒(担持率10質量%)中のパラジウムの平均粒子径は0.8nm(透過型電子顕微鏡の観察倍率:100万倍)であった。
<Comparative Example 3>
A catalyst was prepared in the same manner as in Example 1 except that the amount of palladium acetate was 0.11 part, the reduction temperature was 25 ° C., and the reduction time was 18 hours. The average particle diameter of palladium in the obtained palladium-containing supported catalyst (supporting rate: 10% by mass) was 0.8 nm (observation magnification with a transmission electron microscope: 1,000,000 times).

メタクロレイン反応時間を3時間とした以外は実施例1と同様に触媒性能評価を行なった結果、メタクロレイン反応率42.5%、メタクリル酸選択率59.8%、ポリマー・オリゴマー選択率29.6%、およびメタクリル酸収率25.4%であった。   The catalyst performance was evaluated in the same manner as in Example 1 except that the methacrolein reaction time was 3 hours. As a result, the methacrolein reaction rate was 42.5%, the methacrylic acid selectivity was 59.8%, and the polymer / oligomer selectivity was 29. The yield was 6% and the yield of methacrylic acid was 25.4%.

以上の結果を表1にまとめて示す。このように、本発明のパラジウム含有担持触媒を用いることで、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高収率で製造できることが分かった。   The above results are summarized in Table 1. Thus, it was found that α, β-unsaturated carboxylic acid can be produced from olefin or α, β-unsaturated aldehyde in high yield by using the palladium-containing supported catalyst of the present invention.

Figure 2005224657
Figure 2005224657

Claims (3)

オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造するための触媒であって、平均粒子径が1〜8nmの範囲にあるパラジウムが担体に担持されているパラジウム含有担持触媒。   A catalyst for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde in the liquid phase with molecular oxygen, and having an average particle size in the range of 1 to 8 nm. A palladium-containing supported catalyst in which palladium is supported on a carrier. 請求項1記載のパラジウム含有担持触媒の製造方法であって、担体の存在下でパラジウム化合物を還元剤によって還元するパラジウム含有担持触媒の製造方法。   The method for producing a palladium-containing supported catalyst according to claim 1, wherein the palladium compound is reduced with a reducing agent in the presence of a carrier. 請求項1記載のパラジウム含有担持触媒の存在下で、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸の製造方法。   A process for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is oxidized in the liquid phase with molecular oxygen in the presence of the palladium-containing supported catalyst according to claim 1.
JP2004033276A 2004-02-10 2004-02-10 Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid Expired - Lifetime JP4204491B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004033276A JP4204491B2 (en) 2004-02-10 2004-02-10 Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
KR1020067018400A KR101154764B1 (en) 2004-02-10 2005-02-08 Catalyst for producing ?,?-unsaturated carboxylic acid and method for preparation thereof, and method for producing ?,?-unsaturated carboxylic acid
CN200580004222XA CN1917956B (en) 2004-02-10 2005-02-08 Catalyst for producing alpha, beta-unsaturated carboxylic acid and method for preparation thereof and method for producing alpha, beta-unsaturated carboxylic acid
PCT/JP2005/001804 WO2005075072A1 (en) 2004-02-10 2005-02-08 CATALYST FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID
US10/588,973 US20070173662A1 (en) 2004-02-10 2005-02-08 Catalyst for producing alpha, beta-unsaturated carboxylic acid and method for preparation thereof, and method for producing alpha, beta-unsaturated carboxylic acid
KR1020117026712A KR101264031B1 (en) 2004-02-10 2005-02-08 CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
CN2008101084051A CN101306362B (en) 2004-02-10 2005-02-08 Catalyst for producing alpha, beta-unsaturated carboxylic acid and method for preparation thereof, and method for producing alpha, beta-unsaturated carboxylic acid
US12/388,917 US7884239B2 (en) 2004-02-10 2009-02-19 Catalyst for producing α,β-unsaturated carboxylic acid and method for preparation thereof, and method for producing α,β-unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033276A JP4204491B2 (en) 2004-02-10 2004-02-10 Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2005224657A true JP2005224657A (en) 2005-08-25
JP4204491B2 JP4204491B2 (en) 2009-01-07

Family

ID=34999791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033276A Expired - Lifetime JP4204491B2 (en) 2004-02-10 2004-02-10 Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4204491B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152234A (en) * 2005-12-05 2007-06-21 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING SUPPORTED CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED CARBOXYLIC ACID
JP2007290976A (en) * 2006-04-21 2007-11-08 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID AND ACID ANHYDRIDE CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID BACKBONE
KR101227713B1 (en) * 2005-12-27 2013-01-29 미츠비시 레이온 가부시키가이샤 Method for producing palladium-containing catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152234A (en) * 2005-12-05 2007-06-21 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING SUPPORTED CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED CARBOXYLIC ACID
KR101227713B1 (en) * 2005-12-27 2013-01-29 미츠비시 레이온 가부시키가이샤 Method for producing palladium-containing catalyst
JP2007290976A (en) * 2006-04-21 2007-11-08 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID AND ACID ANHYDRIDE CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID BACKBONE

Also Published As

Publication number Publication date
JP4204491B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
US20060068989A1 (en) Carbon-intersticed metallic palladium, palladium catalyst and method for preparation thereof, and method for producing alpha,beta-unsaturated carboxylic acid
KR101264031B1 (en) CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP3884695B2 (en) Catalyst for production of α, β-unsaturated carboxylic acid
JP5001543B2 (en) Method for producing palladium-containing supported catalyst
JP4204491B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2007090164A (en) NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP2007245068A (en) NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT
JP4699038B2 (en) Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4377670B2 (en) Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP4507247B2 (en) Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP4773694B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid using the same
JP5340705B2 (en) Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP2005125306A (en) CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP5084004B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5069412B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5416886B2 (en) Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP2005218953A (en) PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP5006175B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2006249070A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2008212818A (en) Method of manufacturing palladium-containing supported catalyst
JP2009297634A (en) NOBLE METAL-CONTAINING CATALYST, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2006000727A (en) Palladium-containing catalyst and its manufacturing method, and method for producing alpha, beta-unsaturated aldehyde and alpha, beta-unsaturated carboxylic acid
JP2009254956A (en) PALLADIUM-SUPPORTING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2012030140A (en) METHOD FOR PRODUCING CATALYST WHICH CONTAINS AND CARRIES PALLADIUM, CATALYST WHICH CONTAINS AND CARRIES PALLADIUM, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4204491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term