JP2005223580A - Element and device for surface acoustic wave, and its manufacturing method - Google Patents

Element and device for surface acoustic wave, and its manufacturing method Download PDF

Info

Publication number
JP2005223580A
JP2005223580A JP2004029082A JP2004029082A JP2005223580A JP 2005223580 A JP2005223580 A JP 2005223580A JP 2004029082 A JP2004029082 A JP 2004029082A JP 2004029082 A JP2004029082 A JP 2004029082A JP 2005223580 A JP2005223580 A JP 2005223580A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave device
back surface
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004029082A
Other languages
Japanese (ja)
Other versions
JP4375037B2 (en
Inventor
Yukio Iwasaki
行緒 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004029082A priority Critical patent/JP4375037B2/en
Publication of JP2005223580A publication Critical patent/JP2005223580A/en
Application granted granted Critical
Publication of JP4375037B2 publication Critical patent/JP4375037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein the heat radiation becomes poor, as the conventional surface acoustic wave device is miniaturized, and the frequency characteristics and the withstand power performance deteriorate in a device where large power passes therethrough. <P>SOLUTION: The surface acoustic wave element, having surface acoustic wave device patterns 12, 13 on the main surface of a piezoelectric board 11, comprises a plurality of recesses 14 on the backside of the piezoelectric board, and a high-thermal conductive material 15 on the backside, including the internal sides of the recesses. This rapidly makes the heat generated in the surface acoustic wave device patterns radiate through the high-heat conductivity material 15 provided in the recesses, thus a surface acoustic wave device superior in withstand power performance is obtained, even if it is miniaturized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に携帯電話等に用いられる、弾性表面波素子、弾性表面波デバイス及びその製造方法に関するものである。   The present invention relates to a surface acoustic wave element, a surface acoustic wave device, and a method for manufacturing the same, particularly for use in mobile phones and the like.

従来携帯電話に用いられている弾性表面波デバイスは、図5に示したような構成を有していた。   Conventionally, the surface acoustic wave device used in a mobile phone has a configuration as shown in FIG.

パッケージ1に、ダイボンド樹脂2を用いて弾性表面波素子3を接着し、ワイヤ4を用いて電気的接続を行い、リッド5で気密封止することにより弾性表面波デバイスを得ていた。   The surface acoustic wave device 3 was obtained by bonding the surface acoustic wave element 3 to the package 1 using the die bond resin 2, performing electrical connection using the wire 4, and hermetically sealing with the lid 5.

特に、アンテナ共用器、送信用フィルタ等の大きな電力が通過するデバイスに用いられる場合は、その電力により発熱し、周波数特性および耐電力性が劣化するため、この対策として、ダイボンド樹脂2には、導電性接着剤を用いることにより放熱しやすくする方法が通常採用されてきた。   In particular, when used in devices through which large power passes, such as antenna duplexers, transmission filters, etc., heat is generated by the power, and the frequency characteristics and power durability deteriorate. A method of facilitating heat dissipation by using a conductive adhesive has been usually employed.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2003−163570号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2003-163570 A

しかしながら、上記構成では、弾性表面波素子が小さくなってくると放熱性が悪くなってくる。あるいはさらにデバイスを小さくするために、従来のワイヤタイプからフェイスダウンタイプにすると、素子の裏面から導電性接着剤を通して放熱させることができないため、耐電力性等の信頼性が悪くなるという課題があった。   However, in the above configuration, when the surface acoustic wave element becomes smaller, the heat dissipation becomes worse. Alternatively, if the conventional wire type is changed from the conventional wire type to the face down type in order to further reduce the size of the device, heat cannot be dissipated through the conductive adhesive from the back side of the element. It was.

本発明は上記従来の課題を解決するもので、小型で高信頼性を有する弾性表面波デバイスを提供することを目的とするものである。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above conventional problems and to provide a surface acoustic wave device having a small size and high reliability.

前記従来の課題を解決するために、本発明は、圧電基板と、この圧電基板の主面に弾性表面波デバイスパターンを設けた弾性表面波素子において、圧電基板の裏面に複数個の凹部と、この凹部の内側を含む裏面に高熱伝導材とを備えた構成を有し、これにより、弾性表面波デバイスパターンで発生した熱を、速やかに凹部に設けた高熱伝導材を通して放熱させることができるという作用効果が得られる。   In order to solve the above-described conventional problems, the present invention provides a piezoelectric substrate and a surface acoustic wave element in which a surface acoustic wave device pattern is provided on the main surface of the piezoelectric substrate. It has a configuration including a high thermal conductive material on the back surface including the inside of the concave portion, whereby heat generated by the surface acoustic wave device pattern can be quickly radiated through the high thermal conductive material provided in the concave portion. The effect is obtained.

本発明の弾性表面波素子、弾性表面波デバイスおよびその製造方法は、耐電力性等の信頼性に優れた弾性表面波デバイスを生産性良く得ることができるという効果を奏する。   The surface acoustic wave element, surface acoustic wave device, and manufacturing method thereof according to the present invention have an effect that a surface acoustic wave device having excellent reliability such as power durability can be obtained with high productivity.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1〜4、6〜8に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the first to fourth aspects of the present invention will be described with reference to the first embodiment.

図1は本発明の実施の形態1における弾性表面波素子の断面図、図2は凹部を形成した後の弾性表面波素子の裏面図である。   FIG. 1 is a cross-sectional view of a surface acoustic wave element according to Embodiment 1 of the present invention, and FIG. 2 is a back view of the surface acoustic wave element after forming a recess.

図1においては、厚さ約250μmのタンタル酸リチウムからなる圧電基板11の主面に、送信用の弾性表面波フィルタパターン12と受信用の弾性表面波フィルタパターン13を設けて、弾性表面波共用器素子とするものである。圧電基板11の送信用の弾性表面波フィルタパターン12の裏面に、図2のように、直径約100μm、深さ約60μmの凹部14を、中心間隔約200μmで多数設け、さらにこの凹部14の内側を含む裏面全体に、チタン、銅、ニッケル等の金属からなる高熱伝導材15の層を設ける。   In FIG. 1, a surface acoustic wave filter pattern 12 for transmission and a surface acoustic wave filter pattern 13 for reception are provided on the main surface of a piezoelectric substrate 11 made of lithium tantalate having a thickness of about 250 μm. This is a container element. On the back surface of the surface acoustic wave filter pattern 12 for transmission on the piezoelectric substrate 11, as shown in FIG. 2, a large number of recesses 14 having a diameter of about 100 μm and a depth of about 60 μm are provided with a center interval of about 200 μm. A layer of the high thermal conductive material 15 made of a metal such as titanium, copper, or nickel is provided on the entire back surface including

通常、圧電基板の表面で発生した熱を裏面から逃がすためには、圧電基板の厚さを薄くすることが最も効果的である。しかしながら、圧電基板の厚さを薄くしすぎると、機械的強度が弱くなり、割れやすくなる。また、弾性表面波デバイスの場合、不要なバルク波が裏面で反射してパターンに到達し、特性の劣化を引き起こす。この現象は、圧電基板の厚さが薄くなるほど発生しやすいため、あまり薄くすることはできない。   Usually, in order to release the heat generated on the surface of the piezoelectric substrate from the back surface, it is most effective to reduce the thickness of the piezoelectric substrate. However, if the thickness of the piezoelectric substrate is made too thin, the mechanical strength is weakened and it is easy to break. In the case of a surface acoustic wave device, unnecessary bulk waves are reflected on the back surface and reach the pattern, causing deterioration of characteristics. Since this phenomenon is more likely to occur as the thickness of the piezoelectric substrate is reduced, it cannot be reduced too much.

これに対して本実施の形態1では、機械的強度をほとんど落とすことなく、圧電基板を薄くしたような放熱性を得ることができる。またバルク波に対しては、従来の厚さの場合に比べても、より散乱させる効果が得られ、さらに性能を向上させることができるという別の効果も得られる。   On the other hand, in the first embodiment, it is possible to obtain heat dissipation as if the piezoelectric substrate was made thin without substantially reducing the mechanical strength. Further, for the bulk wave, an effect of further scattering can be obtained as compared with the case of the conventional thickness, and another effect that the performance can be further improved can be obtained.

従来、バルク波の対策として、圧電基板の裏面にダイサー等で溝を入れるという方法がとられている。本実施の形態1の場合に溝切りで凹部を形成しても、放熱性に対しては同様な効果が得られるが、機械的な強度は劣化する。そのため、凹部は、図2のように、点在させることが望ましい。   Conventionally, as a countermeasure against bulk waves, a method of forming a groove on the back surface of the piezoelectric substrate with a dicer or the like has been used. Even in the case of the first embodiment, even if the recess is formed by grooving, the same effect can be obtained with respect to heat dissipation, but the mechanical strength is deteriorated. Therefore, it is desirable that the recesses are interspersed as shown in FIG.

また、凹部はどのような形状でも、放熱性に対しては同様の効果が得られるが、加工性、強度等の面からは、円に近い形状の方が望ましい。大きさ、配置についても、放熱性に対しては同様の効果が得られるが、加工性、強度等の面からは、同じ大きさで、規則正しく配置することが望ましい。   In addition, although the concave portion has any shape, the same effect can be obtained with respect to heat dissipation, but a shape close to a circle is desirable in terms of workability and strength. As for the size and arrangement, the same effect can be obtained with respect to heat dissipation, but it is desirable to arrange them regularly in the same size from the viewpoint of workability and strength.

さらに、凹部を形成する場所については、全体に配置する方が放熱性の効果は得られやすいが、強度の面を考慮すると、特定の場所で多く熱が発生する場合については、その発生する場所の近くにのみ形成する方が、より強い機械的強度が得られる。本実施の形態1のように弾性表面波共用器素子の場合、大きな電力が通過する送信用の弾性表面波フィルタパターン12の部分で多くの熱が発生するため、この裏側にのみ凹部を形成することにより、強度を保ちながら、放熱性を上げることができる。   Furthermore, with regard to the place where the recess is formed, it is easier to obtain a heat dissipation effect if it is arranged in the whole, but considering the strength aspect, if a lot of heat is generated at a specific place, the place where the heat is generated A stronger mechanical strength can be obtained by forming only in the vicinity of. In the case of the surface acoustic wave duplexer element as in the first embodiment, since a large amount of heat is generated in the portion of the surface acoustic wave filter pattern 12 for transmission through which a large amount of power passes, a recess is formed only on the back side. Thus, heat dissipation can be increased while maintaining strength.

凹部の深さについては、深いほど放熱性は上がるが、機械的強度が弱くなる。深さが圧電基板11の厚さの1/10程度以下になるとあまり放熱性の改善は見られず、また1/2より深くなってくると強度が弱くなってくるため、1/10から1/2程度の深さにすることが望ましい。   About the depth of a recessed part, although heat dissipation improves, deeper, mechanical strength becomes weak. When the depth is about 1/10 or less of the thickness of the piezoelectric substrate 11, the heat dissipation is not improved so much, and when it becomes deeper than 1/2, the strength becomes weak. A depth of about / 2 is desirable.

次に、その製造方法について説明する。圧電基板として、直径100mm、厚さ0.25mm、主面を鏡面研磨、裏面をGC#2000で研磨した、39°YカットX伝播のタンタル酸リチウムウェハを用い、主面に弾性表面波デバイスパターンを形成した後、主面側全体をレジストで保護し、裏面側に厚さ約20μmのフィルム状フォトレジストを貼り合わせ、露光、現像により、所定のレジストパターンを形成する。ここで、主面側のレジストと裏面側のレジストは同じものであっても、違うものであっても構わない。主面側のレジストは、後の工程で弾性表面波デバイスパターンがエッチングされたり、傷がつかないようにできるものであれば良く、また裏面側のレジストは、凹部形成の工程に耐えられるものであれば良く、液状のレジストであっても、フィルム状のレジストであっても構わない。   Next, the manufacturing method will be described. As a piezoelectric substrate, a 39 ° Y-cut X-propagation lithium tantalate wafer having a diameter of 100 mm, a thickness of 0.25 mm, a main surface mirror-polished and a back surface polished by GC # 2000, and a surface acoustic wave device pattern on the main surface are used. After the film is formed, the entire main surface side is protected with a resist, a film-like photoresist having a thickness of about 20 μm is bonded to the back surface side, and a predetermined resist pattern is formed by exposure and development. Here, the resist on the main surface side and the resist on the back surface side may be the same or different. The resist on the main surface side only needs to be able to prevent the surface acoustic wave device pattern from being etched or scratched in the subsequent process, and the resist on the back surface side can withstand the process of forming the recess. It may be a liquid resist or a film resist.

この圧電基板を、サンドブラストにより、深さが約60μmになるまで加工し、凹部を形成する。凹部を形成する方法としては、サンドブラストの他に、ドライエッチング、あるいはウェットエッチング等の方法をとっても構わない。サンドブラストの場合、短時間で加工が行え、形成する凹部の深さが比較的自由に選べるというメリットがあり、また凹部の形状が、丸みを帯び、粗れた形状となるため、バルク波を散乱させやすくなり、特性の向上が図れるという効果も得られるため、サンドブラストで行うのが望ましい。但し、ウェットエッチングでは、設備コストが安く、バッチ処理が可能というメリットがあり、また凹部の大きさを小さくしたい場合には、ドライエッチングの方が好ましいため、サンドブラスト以外の方法をとっても構わない。このようにすることにより、圧電基板裏面の表面積を大きくすることができるため、放熱効果を高めることができる。   The piezoelectric substrate is processed by sand blasting until the depth reaches about 60 μm to form a recess. As a method for forming the recess, a method such as dry etching or wet etching may be used in addition to sandblasting. Sandblasting has the advantage that it can be processed in a short time, and the depth of the recess to be formed can be selected relatively freely, and the shape of the recess is rounded and rough, thus scattering bulk waves. Therefore, it is desirable to use sand blasting because the effect of improving the characteristics can be obtained. However, wet etching is advantageous in that the equipment cost is low and batch processing is possible, and when it is desired to reduce the size of the recess, dry etching is preferable, and methods other than sand blasting may be used. By doing in this way, since the surface area of a piezoelectric substrate back surface can be enlarged, the heat dissipation effect can be improved.

さらに凹部形成後、裏面側のレジストを除去し、裏面全体にチタンを約0.1μm、その上にニッケルを約0.5μmスパッタリングにより蒸着し、さらにその上に、銅を約50μm、さらにニッケルを約10μmメッキにより付着させる。このようにすることにより、凹部の内側を含む裏面全体に高熱伝導材の層を形成することができる。このあと、主面側のレジストを除去し、ダイサーにより切断することにより、弾性表面波素子を得る。   Further, after forming the recesses, the resist on the back surface side is removed, titanium is deposited on the entire back surface by about 0.1 μm, nickel is deposited thereon by sputtering by about 0.5 μm, and copper is further deposited thereon by about 50 μm and nickel is further deposited. Deposit by about 10 μm plating. By doing in this way, the layer of a high heat conductive material can be formed in the whole back surface including the inner side of a recessed part. Thereafter, the resist on the main surface side is removed, and the surface acoustic wave element is obtained by cutting with a dicer.

スパッタリングによる蒸着は、抵抗加熱蒸着、電子ビーム蒸着等の別の蒸着方法であっても構わないが、スパッタリングの方が、回り込みが大きいため、凹部の内側全体に蒸着するためには好ましい。   Vapor deposition by sputtering may be another vapor deposition method such as resistance heating vapor deposition, electron beam vapor deposition, or the like, but sputtering is preferable for vapor deposition over the entire inner side of the recess because of greater wraparound.

蒸着後のメッキは、なくても凹部の内側全体が覆われていれば本発明の効果は発揮されるが、熱伝導性を安定させるためにもメッキ等の方法でさらに厚くすることが望ましい。またメッキ以外の方法として、例えば導電性ペーストの印刷等の方法で形成するものであっても良いが、熱伝導性、密着性等の点からメッキで形成するのが望ましい。メッキで行う場合、裏面の状態として、完全にフラットにはならず、凹部のところに多少のへこみが残るが、元々の凹部の深さ程度まで高熱伝導材で埋めていれば、本発明の効果は十分に発揮する。   The effect of the present invention can be obtained if the entire inside of the recess is covered even if there is no plating after vapor deposition, but it is desirable to make it thicker by a method such as plating in order to stabilize the thermal conductivity. Further, as a method other than plating, for example, a method such as printing of a conductive paste may be used, but it is desirable to form by plating from the viewpoint of thermal conductivity, adhesion, and the like. In the case of plating, the state of the back surface does not become completely flat, and some dents remain in the recesses, but the effect of the present invention can be obtained if it is filled with a high heat conductive material up to the original depth of the recesses. Is fully effective.

この弾性表面波素子を従来のように導電性接着剤でダイボンドすることにより、従来より放熱性を高め、信頼性、特性に優れた弾性表面波デバイスを得ることができる。   By surface-bonding this surface acoustic wave element with a conductive adhesive as in the prior art, it is possible to obtain a surface acoustic wave device with improved heat dissipation and superior reliability and characteristics.

なお、本実施の形態1では、主面に弾性表面波デバイスパターンを形成した後で、裏面に凹部および高熱伝導材層の形成を行っているが、高熱伝導材層の形成の後で主面の弾性表面波デバイスパターン形成を行うことも可能である。但しこの場合、高熱伝導材層の形成の後では、ウェハとしての機械的強度は未加工のものに対しては弱くなっている、またウェハ全体の反りの問題が発生する可能性が有るため、先に主面の弾性表面波デバイスパターン形成を行うことが望ましい。   In the first embodiment, after the surface acoustic wave device pattern is formed on the main surface, the concave portion and the high thermal conductive material layer are formed on the back surface. However, the main surface is formed after the formation of the high thermal conductive material layer. It is also possible to perform surface acoustic wave device pattern formation. However, in this case, after the formation of the high thermal conductive material layer, the mechanical strength as a wafer is weak with respect to the unprocessed one, and the problem of warpage of the entire wafer may occur, It is desirable to perform surface acoustic wave device pattern formation on the main surface first.

(実施の形態2)
以下、実施の形態2を用いて、本発明の請求項5、9に記載の発明について説明する。
(Embodiment 2)
The invention according to claims 5 and 9 of the present invention will be described below using the second embodiment.

本実施の形態2と実施の形態1とで相違する点は、実施の形態1は、弾性表面波素子に関するものであるが、本実施の形態2はこれを用いて、フェイスダウンタイプの弾性表面波デバイスを得るものである。   The difference between the second embodiment and the first embodiment is that the first embodiment relates to a surface acoustic wave element, but the second embodiment uses this to make a face-down type elastic surface. A wave device is obtained.

図3は本発明の実施の形態2における弾性表面波デバイスの断面図、図4は製造方法を説明するための図である。   FIG. 3 is a cross-sectional view of a surface acoustic wave device according to Embodiment 2 of the present invention, and FIG. 4 is a diagram for explaining a manufacturing method.

図3において、実装基板21に、金属バンプ22により、裏面に凹部14と、この凹部14の内側を含む裏面に高熱伝導材15とを形成した弾性表面波素子23をフェイスダウン実装したものを、樹脂フィルム24で覆い、実装基板21の実装面と樹脂フィルム24とを密着させ、その上をチタンとニッケルからなる金属膜25で覆ったものであり、弾性表面波素子23の裏面に接する樹脂フィルム24の一部に接続用穴26が設けられているものである。このようにすることにより、弾性表面波素子23の主面で発生した熱を、高熱伝導材15、接続用穴26、金属膜25を通して逃がすことができ、フェイスダウン実装した小型の弾性表面波デバイスであっても、大きな電力が通過する用途にも使うことができる。   In FIG. 3, a surface acoustic wave element 23 in which a concave portion 14 is formed on the back surface and a high thermal conductive material 15 is formed on the back surface including the inside of the concave portion 14 by face-down mounting on the mounting substrate 21 by metal bumps 22. The resin film 24 is covered with the mounting surface of the mounting substrate 21 and the resin film 24. The resin film 24 is covered with a metal film 25 made of titanium and nickel, and is in contact with the back surface of the surface acoustic wave element 23. A connection hole 26 is provided in a part of 24. By doing so, the heat generated on the main surface of the surface acoustic wave element 23 can be released through the high thermal conductive material 15, the connection hole 26, and the metal film 25, and a small surface acoustic wave device mounted face-down. However, it can also be used for applications where large amounts of power pass through.

次にその製造方法について説明する。まず図4(a)は、アルミナからなる実装基板21の実装面に等間隔で、裏面に凹部14と、この凹部14の内側を含む裏面に高熱伝導材15とを形成した弾性表面波素子23を高温ハンダを用いた金属バンプ22によりフェイスダウン実装し、その上をポリイミドを主成分とした樹脂フィルム24で覆い、その上から、弾性表面波素子23に相当する部分に逃がしを設けた硬質ゴムからなる弾性体で、全体を約90℃に暖めた状態で、押さえることにより、樹脂フィルム24を実装基板21の実装面に密着させたものである。次に、実装基板21の実装面と密着させた樹脂フィルム24に、炭酸ガスレーザの光を集光させたものを照射し、樹脂フィルム24の一部を取り除く。これと同時に弾性表面波素子23の裏面に接する部分の樹脂フィルム24の一部もレーザ光により除去して接続用穴26を形成し、図4(b)の状態になる。次に、実装面全体にスパッタリングにより、金属膜25として、チタン約0.1μm、ニッケル約1μmの厚さで蒸着し、図4(c)の状態になる。これをダイシングすることで、弾性表面波デバイスを得る。このようにすることにより樹脂フィルム24とその周辺を完全に金属膜25で覆うことができ、耐湿等の信頼性を向上させることができるとともに、放熱性を向上させた小型の弾性表面波デバイスを生産性良く得ることができる。   Next, the manufacturing method will be described. First, FIG. 4A shows a surface acoustic wave element 23 in which a mounting surface of a mounting substrate 21 made of alumina is equidistantly formed, a recess 14 is formed on the back surface, and a high thermal conductive material 15 is formed on the back surface including the inside of the recess 14. Is hard-faced with metal bumps 22 using high-temperature solder, covered with a resin film 24 mainly composed of polyimide, and provided with relief in a portion corresponding to the surface acoustic wave element 23 from above. The resin film 24 is brought into close contact with the mounting surface of the mounting substrate 21 by being pressed in a state where the whole is heated to about 90 ° C. Next, the resin film 24 brought into intimate contact with the mounting surface of the mounting substrate 21 is irradiated with a condensed carbon dioxide laser light, and a part of the resin film 24 is removed. At the same time, a part of the resin film 24 in contact with the back surface of the surface acoustic wave element 23 is also removed by the laser beam to form a connection hole 26, resulting in the state shown in FIG. Next, the entire mounting surface is deposited as a metal film 25 by sputtering to a thickness of about 0.1 μm titanium and about 1 μm nickel, resulting in the state shown in FIG. By dicing this, a surface acoustic wave device is obtained. By doing so, the resin film 24 and its periphery can be completely covered with the metal film 25, and the reliability such as moisture resistance can be improved, and a small surface acoustic wave device with improved heat dissipation can be obtained. It can be obtained with good productivity.

なお、さらに信頼性を向上させるためには、金属膜25を形成した後、メッキによって、さらに金属膜25を厚くするのが望ましい。   In order to further improve the reliability, it is desirable to make the metal film 25 thicker by plating after the metal film 25 is formed.

さらに、金属膜25をグランドに接続することにより、放熱性をさらに向上させることができ、またシールドの効果も高めることができる。   Furthermore, by connecting the metal film 25 to the ground, the heat dissipation can be further improved, and the shielding effect can be enhanced.

なお、接続用穴26を設ける位置は、弾性表面波素子23の裏面に接する位置のどこでも構わないが、凹部14の上のへこみが大きい場合は、樹脂フィルムの密着性に支障をきたさないように、凹部14のない部分、あるいは凹部14の存在する領域全体を含むように接続用穴26を設けることが望ましい。   The connection hole 26 may be provided anywhere on the surface of the surface acoustic wave element 23 in contact with the back surface of the surface acoustic wave element 23. However, when the dent on the concave portion 14 is large, the adhesiveness of the resin film is not hindered. In addition, it is desirable to provide the connection hole 26 so as to include a portion without the recess 14 or the entire region where the recess 14 exists.

本発明にかかる弾性表面波素子、弾性表面波デバイスおよびその製造方法は、小型になっても放熱性の良い弾性表面波デバイスを生産性良く得ることができ、耐電力性等の信頼性を向上させることができるため、大きな電力が通過する携帯電話等の通信分野等に適用できる。   The surface acoustic wave element, surface acoustic wave device, and manufacturing method thereof according to the present invention can provide a surface acoustic wave device with good heat dissipation with good productivity even if it is downsized, and improve reliability such as power durability. Therefore, it can be applied to a communication field such as a mobile phone through which a large amount of power passes.

本発明の実施の形態1における弾性表面波素子の断面図Sectional drawing of the surface acoustic wave element in Embodiment 1 of this invention 同裏面図Same side view 本発明の実施の形態2における弾性表面波デバイスの断面図Sectional drawing of the surface acoustic wave device in Embodiment 2 of this invention 同製造方法を説明するための図Diagram for explaining the manufacturing method 従来の弾性表面波デバイスの断面図Sectional view of a conventional surface acoustic wave device

符号の説明Explanation of symbols

11 圧電基板
12 送信用の弾性表面波フィルタパターン
13 受信用の弾性表面波フィルタパターン
14 凹部
15 高熱伝導材
21 実装基板
22 金属バンプ
23 弾性表面波素子
24 樹脂フィルム
25 金属膜
26 接続用穴
DESCRIPTION OF SYMBOLS 11 Piezoelectric substrate 12 Surface acoustic wave filter pattern for transmission 13 Surface acoustic wave filter pattern for reception 14 Recessed portion 15 High thermal conductivity material 21 Mounting substrate 22 Metal bump 23 Surface acoustic wave element 24 Resin film 25 Metal film 26 Connection hole

Claims (9)

圧電基板と、この圧電基板の主面に弾性表面波デバイスパターンを設けた弾性表面波素子において、前記圧電基板の裏面に複数個の凹部と、この凹部の内側を含む裏面に高熱伝導材とを備えた弾性表面波素子。 In a surface acoustic wave element provided with a surface acoustic wave device pattern on the main surface of the piezoelectric substrate, a plurality of recesses on the back surface of the piezoelectric substrate, and a high thermal conductive material on the back surface including the inside of the recess Provided surface acoustic wave device. 高熱伝導材は、金属である請求項1記載の弾性表面波素子。 The surface acoustic wave device according to claim 1, wherein the high thermal conductive material is a metal. 凹部は、大きな電力が通過する弾性表面波デバイスパターンの裏面に設けた請求項1記載の弾性表面波素子。 The surface acoustic wave element according to claim 1, wherein the concave portion is provided on a back surface of the surface acoustic wave device pattern through which large electric power passes. 凹部の深さは、圧電基板の厚さの1/10から1/2にした請求項1記載の弾性表面波素子。 2. The surface acoustic wave device according to claim 1, wherein the depth of the recess is 1/10 to 1/2 of the thickness of the piezoelectric substrate. 実装基板と、その実装面にフェイスダウン実装した弾性表面波素子、およびその周囲を覆う樹脂フィルム、さらに前記樹脂フィルムと前記実装基板の実装面とを覆う金属膜を備えた弾性表面波デバイスにおいて、前記弾性表面波素子は裏面に複数個の凹部と、この凹部の内側を含む裏面に高熱伝導材とを備え、前記弾性表面波素子の裏面に接する前記樹脂フィルムの一部に設けられた接続用穴を通して、前記高熱伝導材と前記金属膜とが、電気的に接続された弾性表面波デバイス。 In a surface acoustic wave device comprising a mounting substrate, a surface acoustic wave element face-down mounted on the mounting surface, a resin film covering the periphery thereof, and a metal film covering the resin film and the mounting surface of the mounting substrate. The surface acoustic wave device includes a plurality of recesses on the back surface, and a high thermal conductive material on the back surface including the inside of the recess, and is provided for connection on a part of the resin film in contact with the back surface of the surface acoustic wave device. A surface acoustic wave device in which the high thermal conductive material and the metal film are electrically connected through a hole. 圧電基板の主面に弾性表面波デバイスパターンを形成した後、前記圧電基板の裏面に複数個の凹部を形成し、さらに前記凹部の内側を含む裏面に高熱伝導材層を形成する弾性表面波素子の製造方法。 A surface acoustic wave element in which a surface acoustic wave device pattern is formed on the main surface of the piezoelectric substrate, a plurality of recesses are formed on the back surface of the piezoelectric substrate, and a high thermal conductive material layer is formed on the back surface including the inside of the recess. Manufacturing method. 圧電基板の裏面に所定のパターンのレジストを形成した後、サンドブラストにより裏面に凹部を形成する請求項6記載の弾性表面波素子の製造方法。 The method for manufacturing a surface acoustic wave device according to claim 6, wherein after forming a resist having a predetermined pattern on the back surface of the piezoelectric substrate, a recess is formed on the back surface by sandblasting. 凹部の内側を含む裏面全体に、金属を蒸着することにより、高熱伝導材層を形成する請求項6記載の弾性表面波素子の製造方法。 The method for manufacturing a surface acoustic wave element according to claim 6, wherein the high thermal conductive material layer is formed by vapor-depositing a metal on the entire back surface including the inside of the recess. 実装基板の実装面に、裏面に複数個の凹部と、この凹部の内側を含む裏面に高熱伝導材とを備えた弾性表面波素子をフェイスダウン実装し、前記弾性表面波素子とその周囲とを所定の厚さの樹脂フィルムで覆い、実装基板の実装面と樹脂フィルムとを密着させ、前記樹脂フィルムと前記実装基板の実装面とを金属膜で覆った弾性表面波デバイスにおいて、前記弾性表面波素子の裏面に接する前記樹脂フィルムの一部を除去した後、前記樹脂フィルムと前記実装基板の実装面とを金属膜で覆う弾性表面波デバイスの製造方法。 A surface acoustic wave device having a plurality of recesses on the back surface and a high thermal conductive material on the back surface including the inside of the recess is face-down mounted on the mounting surface of the mounting substrate, and the surface acoustic wave device and its surroundings are mounted. In the surface acoustic wave device that is covered with a resin film having a predetermined thickness, the mounting surface of the mounting substrate and the resin film are brought into close contact with each other, and the resin film and the mounting surface of the mounting substrate are covered with a metal film. A method for manufacturing a surface acoustic wave device in which a part of the resin film in contact with a back surface of an element is removed, and then the resin film and a mounting surface of the mounting substrate are covered with a metal film.
JP2004029082A 2004-02-05 2004-02-05 Surface acoustic wave device Expired - Fee Related JP4375037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029082A JP4375037B2 (en) 2004-02-05 2004-02-05 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029082A JP4375037B2 (en) 2004-02-05 2004-02-05 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2005223580A true JP2005223580A (en) 2005-08-18
JP4375037B2 JP4375037B2 (en) 2009-12-02

Family

ID=34998886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029082A Expired - Fee Related JP4375037B2 (en) 2004-02-05 2004-02-05 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4375037B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184690A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Antenna duplexer
JP2009141036A (en) * 2007-12-05 2009-06-25 Hitachi Media Electoronics Co Ltd Package structure
JP2010182958A (en) * 2009-02-06 2010-08-19 Seiko Instruments Inc Semiconductor device and method of manufacturing semiconductor device
JP2011151552A (en) * 2010-01-20 2011-08-04 Murata Mfg Co Ltd Elastic wave duplexer
JP2011151553A (en) * 2010-01-20 2011-08-04 Murata Mfg Co Ltd Elastic wave duplexer
WO2017089107A1 (en) * 2015-11-24 2017-06-01 Snaptrack, Inc. Electrical component with heat dissipation
CN107710609A (en) * 2015-07-13 2018-02-16 追踪有限公司 With component derived from improved heat
WO2018110464A1 (en) * 2016-12-15 2018-06-21 株式会社村田製作所 Elastic wave device
JP2019009777A (en) * 2017-06-20 2019-01-17 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Surface acoustic wave device with thermally conductive layer
US10659003B2 (en) 2016-12-05 2020-05-19 Taiyo Yuden Co., Ltd. Electronic component with two substrates enclosing functional element and insulating film therein
US10886891B2 (en) 2018-03-12 2021-01-05 Taiyo Yoden Co., Ltd. Acoustic wave device, module, and multiplexer
US11082027B2 (en) 2017-02-02 2021-08-03 Taiyo Yuden Co., Ltd. Acoustic wave device
JP2023527784A (en) * 2020-05-25 2023-06-30 シャーメン サンアン インテグレーテッド サーキット カンパニー リミテッド surface acoustic wave device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184690A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Antenna duplexer
JP2009141036A (en) * 2007-12-05 2009-06-25 Hitachi Media Electoronics Co Ltd Package structure
JP2010182958A (en) * 2009-02-06 2010-08-19 Seiko Instruments Inc Semiconductor device and method of manufacturing semiconductor device
JP2011151552A (en) * 2010-01-20 2011-08-04 Murata Mfg Co Ltd Elastic wave duplexer
JP2011151553A (en) * 2010-01-20 2011-08-04 Murata Mfg Co Ltd Elastic wave duplexer
US8525615B2 (en) 2010-01-20 2013-09-03 Murata Manufacturing Co., Ltd. Elastic wave duplexer having a sealing member that includes a recess
JP2018522483A (en) * 2015-07-13 2018-08-09 スナップトラック・インコーポレーテッド Components with improved heat dissipation
CN107710609A (en) * 2015-07-13 2018-02-16 追踪有限公司 With component derived from improved heat
US11303263B2 (en) 2015-07-13 2022-04-12 Qualcomm Incorporated Component with improved heat dissipation
CN107710609B (en) * 2015-07-13 2021-03-16 追踪有限公司 Component with improved heat dissipation
JP7000308B2 (en) 2015-07-13 2022-01-19 スナップトラック・インコーポレーテッド Components with improved heat dissipation
CN108604892A (en) * 2015-11-24 2018-09-28 追踪有限公司 Electric components with heat dissipation
WO2017089107A1 (en) * 2015-11-24 2017-06-01 Snaptrack, Inc. Electrical component with heat dissipation
US11101784B2 (en) 2015-11-24 2021-08-24 Snaptrack, Inc. Electrical component with heat dissipation
US10659003B2 (en) 2016-12-05 2020-05-19 Taiyo Yuden Co., Ltd. Electronic component with two substrates enclosing functional element and insulating film therein
WO2018110464A1 (en) * 2016-12-15 2018-06-21 株式会社村田製作所 Elastic wave device
US11621693B2 (en) 2016-12-15 2023-04-04 Murata Manufacturing Co., Ltd. Acoustic wave device
US11082027B2 (en) 2017-02-02 2021-08-03 Taiyo Yuden Co., Ltd. Acoustic wave device
JP2019009777A (en) * 2017-06-20 2019-01-17 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Surface acoustic wave device with thermally conductive layer
JP7015215B2 (en) 2017-06-20 2022-02-02 スカイワークス ソリューションズ,インコーポレイテッド Surface acoustic wave devices, radio frequency modules and radio communication devices
JP2022058706A (en) * 2017-06-20 2022-04-12 スカイワークス ソリューションズ,インコーポレイテッド Surface acoustic wave filter assembly, radio frequency module and method for dissipating heat of surface acoustic wave filter
US10886891B2 (en) 2018-03-12 2021-01-05 Taiyo Yoden Co., Ltd. Acoustic wave device, module, and multiplexer
JP2023527784A (en) * 2020-05-25 2023-06-30 シャーメン サンアン インテグレーテッド サーキット カンパニー リミテッド surface acoustic wave device
JP7356689B2 (en) 2020-05-25 2023-10-05 シャーメン サンアン インテグレーテッド サーキット カンパニー リミテッド surface acoustic wave device

Also Published As

Publication number Publication date
JP4375037B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US10250222B2 (en) Electronic device
JP5113394B2 (en) Elastic wave device
US10250223B2 (en) Acoustic wave device
JP4460612B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2018207144A (en) Elastic wave device
JP4375037B2 (en) Surface acoustic wave device
JP6810599B2 (en) Electronic components and their manufacturing methods
US20160301386A1 (en) Elastic wave filter device
JP2014011570A (en) Acoustic wave device built-in module and communication device
JP2015156626A (en) Acoustic wave element, demultiplexer, and communication device
KR102292154B1 (en) Acoustic wave devices, high-frequency front-end circuits and communication devices
JP2013131711A (en) Electronic component
JP6653646B2 (en) Electronic component and method of manufacturing the same
JP5583612B2 (en) Duplexer
JP2010135959A (en) Surface acoustic wave device
JP6547914B2 (en) Elastic wave device, high frequency front end circuit and communication device
JP2008135971A (en) Elastic wave device
JP2006245990A (en) Surface acoustic wave element and manufacturing method thereof
JP5873311B2 (en) Elastic wave device and multilayer substrate
JP2007184690A (en) Antenna duplexer
JP5856592B2 (en) Elastic wave device built-in module and communication apparatus
JP2007243989A (en) Surface acoustic wave filter package
JP2012209662A (en) Wafer level package material for surface acoustic wave device, surface acoustic wave device junction wafer using package material, and surface acoustic wave device cut from junction wafer
JP2007184691A (en) Composite rf component
JP5521016B2 (en) Elastic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

RD01 Notification of change of attorney

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Effective date: 20090709

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees