JP2005223181A - Method for calculating substrate temperature data and vapor phase growth apparatus - Google Patents

Method for calculating substrate temperature data and vapor phase growth apparatus Download PDF

Info

Publication number
JP2005223181A
JP2005223181A JP2004030335A JP2004030335A JP2005223181A JP 2005223181 A JP2005223181 A JP 2005223181A JP 2004030335 A JP2004030335 A JP 2004030335A JP 2004030335 A JP2004030335 A JP 2004030335A JP 2005223181 A JP2005223181 A JP 2005223181A
Authority
JP
Japan
Prior art keywords
substrate
temperature
vapor phase
phase growth
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004030335A
Other languages
Japanese (ja)
Inventor
Shuhei Yada
修平 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004030335A priority Critical patent/JP2005223181A/en
Publication of JP2005223181A publication Critical patent/JP2005223181A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase growth apparatus which can accurately keep track of a temperature state on the surface of each substrate to control a growth temperature for film thickness distribution or lattice crystal, and to grow a high quality of uniform crystal. <P>SOLUTION: In the vapor phase growth apparatus for placing a plurality of substrates on a rotary susceptor within a reactor and growing a thin film on each substrate by vapor phase growth, calculation is carried out over continuously measured temperature data with use of a substrate phase calculated from the rotational speed of the rotary susceptor and a placed substrate position to extract only the temperature of each substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体装置製造における、反応炉内の回転式サセプタ上に複数の基板を設置し、各基板上に薄膜を気相成長させる製造装置において、一つのパイロメータによって回転する各基板の成長中温度を連続して測定したデータに対しての演算方法と演算結果を用いて温度制御を行う気相成長装置に関するものである。   The present invention relates to a semiconductor device manufacturing apparatus in which a plurality of substrates are installed on a rotary susceptor in a reaction furnace, and a thin film is vapor-phase grown on each substrate. The present invention relates to a vapor phase growth apparatus that performs temperature control using a calculation method and a calculation result for data obtained by continuously measuring the above.

半導体装置製造において、基板上に薄膜を形成させるエピタキシャル成長には、MOCVD装置(Metal Organic Chemical Vapor Deposition:有機金属気相成長装置)が用いられる。MOCVD装置の機構としては、反応炉内に回転機構を有する回転式サセプタを設け、このサセプタ上に複数の基板を設置して、回転させながら薄膜結晶を成長させる方法が一般的である。気相成長において、膜厚分布や格子結晶等が均一な高品質の結晶を成長させるために、基板上の成長温度は重要なパラメータの一つであり、成長温度をいかに制御するかが重要となる。成長温度の制御のためには、各基板表面の温度状態をできるだけ正確に測定しなければならない。従来、回転式サセプタを用いた気相成長装置において基板の表面温度を測定する方法としては、パイロメータ(熱放射温度計)による方法があった。このパイロメータによって反応炉内の回転サセプタ上に設置した複数の基板の温度を測定する方法としては、パイロメータの位置を固定し、次の二通りの測定モードで測定することが一般的であった。一つは、サセプタの回転により刻々と位置が変わる基板表面温度を固定位置で連続的に測定する連続モードによる温度測定であり、他方は、測定した基板表面温度から最高温度を抽出して、その最高温度のみを表示する最高温度表示モードによる温度測定である。また、回転式サセプタ上の各基板の位置検出信号と、基板の配置パターンおよび回転数に関する情報とに基づいて温度を測定するタイミングを適宜決定し、サセプタ上の基板が測定位置に到来した時にのみに測定を行う方法などがあった(例えば特許文献1参照)。
特開平11−79887号公報
In semiconductor device manufacturing, an MOCVD apparatus (Metal Organic Chemical Vapor Deposition) is used for epitaxial growth for forming a thin film on a substrate. As a mechanism of the MOCVD apparatus, there is a general method in which a rotating susceptor having a rotating mechanism is provided in a reaction furnace, a plurality of substrates are placed on the susceptor, and a thin film crystal is grown while rotating. In vapor phase growth, the growth temperature on the substrate is one of the important parameters for growing high-quality crystals with uniform film thickness distribution and lattice crystals, and how to control the growth temperature is important. Become. In order to control the growth temperature, the temperature state of each substrate surface must be measured as accurately as possible. Conventionally, as a method for measuring the surface temperature of a substrate in a vapor phase growth apparatus using a rotary susceptor, there has been a method using a pyrometer (thermal radiation thermometer). As a method of measuring the temperature of a plurality of substrates installed on a rotating susceptor in a reaction furnace with this pyrometer, it is common to fix the position of the pyrometer and measure in the following two measurement modes. One is temperature measurement in a continuous mode that continuously measures the substrate surface temperature, which changes position every time due to the rotation of the susceptor, at a fixed position, and the other is to extract the maximum temperature from the measured substrate surface temperature. This is a temperature measurement in the maximum temperature display mode that displays only the maximum temperature. Also, the timing for measuring the temperature is appropriately determined based on the position detection signal of each substrate on the rotary susceptor and the information on the arrangement pattern and the number of rotations of the substrate, and only when the substrate on the susceptor arrives at the measurement position. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-79887

しかしながら、上記の連続モードによる温度測定法では、基板の表面温度の状態を正確に把握することができないという難点があった。パイロメータの位置は固定のため、サセプタ上のパイロメータが測定する箇所の軌跡は回転軸を中心にした同心円となる。基板の温度を測定するためには、測定する軌跡が同様に同心円に配置された基板の中心をたどるようにパイロメータの測定箇所を決定する必要がある。しかしながら、サセプタ上に配置された基板は密接していないため、測定する軌跡には、基板以外にサセプタを通る箇所が存在する。よって、連続モードで温度測定を行う場合、測定データには基板温度以外にサセプタ温度も含まれ、基板温度のみを把握することが困難となる。また、最高温度表示モードによる温度測定法では、サセプタが一回転する中での最高の温度を知ることはできるが、各基板の温度を測定することはできず、また得られるデータも不連続なものとなる。また、サセプタ上の基板が測定位置に到来した時にのみに測定を行う方法においても、得られる温度データは不連続のものとなる。本発明は上記問題点に鑑み、回転式サセプタを用いた気相成長装置において、連続して測定された温度データから基板温度のみを抽出することのできる基板温度データの演算方法およびこの演算方法を用いて基板温度制御を行う気相成長装置を提供するものである。   However, the temperature measurement method using the continuous mode has a drawback in that the surface temperature state of the substrate cannot be accurately grasped. Since the position of the pyrometer is fixed, the locus of the location measured by the pyrometer on the susceptor is a concentric circle with the rotation axis as the center. In order to measure the temperature of the substrate, it is necessary to determine the measurement location of the pyrometer so that the locus to be measured similarly follows the center of the substrate arranged concentrically. However, since the board | substrate arrange | positioned on a susceptor is not closely_contact | adhering, the locus | trajectory to measure exists in the location which passes a susceptor other than a board | substrate. Therefore, when the temperature measurement is performed in the continuous mode, the measurement data includes the susceptor temperature in addition to the substrate temperature, and it is difficult to grasp only the substrate temperature. In the temperature measurement method using the maximum temperature display mode, the maximum temperature during one rotation of the susceptor can be known, but the temperature of each substrate cannot be measured, and the obtained data is also discontinuous. It will be a thing. Also in the method of performing measurement only when the substrate on the susceptor arrives at the measurement position, the obtained temperature data is discontinuous. In view of the above problems, the present invention provides a substrate temperature data calculation method capable of extracting only a substrate temperature from continuously measured temperature data in a vapor phase growth apparatus using a rotary susceptor, and this calculation method. The present invention provides a vapor phase growth apparatus that uses it to perform substrate temperature control.

上記問題点を解決するために本発明の基板温度データの演算方法は、反応炉内の回転式サセプタ上に複数の基板を設置して、各基板上に薄膜を気相成長させる場合において、パイロメータにより連続で測定された基板温度データと、基板の配置パターンおよび回転数から得られる基板の位相データを重ね合わせて、基板のみの温度データに演算するという構成を備えたものである。また、本発明の気相成長装置は、本発明にかかる演算方法を用いて基板温度を正確に計測するデータ処理装置およびデータ処理装置により得られた温度情報を装置にフィードバックして温度制御を行う構成を備えたものである。   In order to solve the above problems, the substrate temperature data calculation method according to the present invention includes a pyrometer in the case where a plurality of substrates are installed on a rotary susceptor in a reaction furnace and a thin film is vapor-phase grown on each substrate. The substrate temperature data continuously measured by the above and the substrate phase data obtained from the substrate arrangement pattern and the number of rotations are overlapped to calculate the temperature data of only the substrate. Further, the vapor phase growth apparatus of the present invention performs temperature control by feeding back to the apparatus the temperature information obtained by the data processing apparatus and the data processing apparatus that accurately measure the substrate temperature using the calculation method according to the present invention. It has a configuration.

以上のように本発明は、パイロメータにより連続で測定された基板温度データと、基板の配置パターンおよび回転数から得られる基板の位相データを重ね合わせて、基板のみの温度データに演算することで、回転式サセプタを有する気相成長装置の各基板温度の情報を正確に把握することができ、膜厚分布、格子結晶等が均一なより高品質の薄膜を気相成長させることに貢献することができる。   As described above, the present invention superimposes the substrate temperature data continuously measured by the pyrometer and the phase data of the substrate obtained from the substrate arrangement pattern and the rotation speed, and calculates the temperature data of only the substrate, It is possible to accurately grasp each substrate temperature information of a vapor phase growth apparatus having a rotary susceptor and contribute to vapor phase growth of a higher quality thin film having a uniform film thickness distribution, lattice crystal, etc. it can.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はMOCVD装置の概略説明図である。本実施の形態ではフェースダウン方式(気相成長に際し、基板表面が下方に位置する)のMOCVD装置を用いる。MOCVD装置はサセプタ2上にGaAsなどの化合物半導体基板4を設置し、ヒーター1を用いて所定温度に加熱し、基板4表面に原料の有機金属や水素化物のガスを供給し、化学反応させて所望のAlGaAsなどの化合物半導体単結晶薄膜を成長させる。本実施形態におけるサセプタ2上の基板4は、図2(a)に示すようにサセプタ2回転軸を中心に持つ同心円に60°毎の所定間隔に6枚設置されるように設定されている。また、気相成長を行う際にサセプタ2はモータ5により5rpmのスピードで回転させ、成長薄膜の厚さの均一化を図っている。パイロメータ3はサセプタ2に対向した側に固定して設置され、対向面に設けられた覗き窓を通して、成長中の基板4温度を常時測定する。測定に際し、パイロメータ3のサンプリング周期は1ms程度に設定しておく。回転するサセプタ2に対し、パイロメータ3は固定位置を測定するため、サセプタ2から見たパイロメータ3の測定箇所は図2(a)の点線で示した軌跡6のように、サセプタ2の中心を軸に持つ同心円となる。本実施形態において測定された温度データは図3の波形11に示す通りとなる。パイロメータ3は1msのサンプリング周期で連続して測定を行うため、基板4以外にサセプタ2部の温度を含むデータとなる。図3における範囲16の部分が基板4を測定した温度であり、範囲17の部分がサセプタ2を測定した温度である。本データでは、基板4のみの温度データを正確に知ることは困難である。そのため、以下に記す演算方法にて基板4温度のみを抽出する。まず、MOCVD装置よりサセプタ2の回転数を出力する。サセプタ2の回転数は回転を行うモータ5の出力から容易に得ることができる。サセプタ2は回転運動のため、サセプタ2上に設置された各基板4の中心位置の軌跡も回転軸を中心とした同心円となる。基板4の位相は、サセプタ2の回転数をω、サセプタ2中心から基板4中心までの距離Aとすると、
位相:Asin(ωt+α) α:定数
で求められる。
FIG. 1 is a schematic explanatory view of a MOCVD apparatus. In this embodiment mode, a face-down type MOCVD apparatus (the substrate surface is positioned below during vapor phase growth) is used. In the MOCVD apparatus, a compound semiconductor substrate 4 such as GaAs is installed on a susceptor 2 and heated to a predetermined temperature using a heater 1. A raw material organic metal or hydride gas is supplied to the surface of the substrate 4 to cause a chemical reaction. A desired compound semiconductor single crystal thin film such as AlGaAs is grown. As shown in FIG. 2A, six substrates 4 on the susceptor 2 in the present embodiment are set so as to be installed in a concentric circle having the susceptor 2 rotation axis as a center at predetermined intervals of 60 °. Further, when performing vapor phase growth, the susceptor 2 is rotated at a speed of 5 rpm by a motor 5 to make the thickness of the grown thin film uniform. The pyrometer 3 is fixedly installed on the side facing the susceptor 2 and constantly measures the temperature of the growing substrate 4 through a viewing window provided on the facing surface. At the time of measurement, the sampling period of the pyrometer 3 is set to about 1 ms. Since the pyrometer 3 measures a fixed position with respect to the rotating susceptor 2, the measurement point of the pyrometer 3 viewed from the susceptor 2 is centered on the center of the susceptor 2 as shown by the locus 6 shown by the dotted line in FIG. It will be a concentric circle. The temperature data measured in this embodiment is as shown by the waveform 11 in FIG. Since the pyrometer 3 continuously measures at a sampling period of 1 ms, the pyrometer 3 becomes data including the temperature of the susceptor 2 part in addition to the substrate 4. In FIG. 3, the range 16 is the temperature at which the substrate 4 is measured, and the range 17 is the temperature at which the susceptor 2 is measured. With this data, it is difficult to accurately know the temperature data of only the substrate 4. Therefore, only the substrate 4 temperature is extracted by the calculation method described below. First, the rotational speed of the susceptor 2 is output from the MOCVD apparatus. The rotational speed of the susceptor 2 can be easily obtained from the output of the motor 5 that rotates. Since the susceptor 2 rotates, the locus of the center position of each substrate 4 installed on the susceptor 2 is also a concentric circle with the rotation axis as the center. The phase of the substrate 4 is expressed as follows: suppose the rotational speed of the susceptor 2 is ω, and the distance A from the center of the susceptor 2 to the center of the substrate 4
Phase: Asin (ωt + α) α: Obtained by a constant.

また、6枚の基板4(a1〜a6とする)は60°の所定間隔で設置されているため、各基板4の位相はそれぞれ
a1 : P1=Asin(ωt+2π(60×1/360)+α) ・・・(1)
a2 : P2=Asin(ωt+2π(60×2/360)+α) ・・・(2)

a6 : P6=Asin(ωt+2π(60×6/360)+α) ・・・(6)
で表される。基板4の位相を図式化すると図3の波形12のようになる。また、位相の基準を図2(b)に示す通りに定義すると、パイロメータ3による温度測定が行われる位相の範囲Rはサセプタ2中心から基板4中心までの距離により決定される定数LからA>R>Lとなる。基板a1の位相式(1)に対し、
Asin(ωt+2π(60×1/360)+α)>Lの場合 P1=1
Asin(ωt+2π(60×1/360)+α)<Lの場合 P1=0
の変換を行うとa1の位相は図3の波形13に示すパルス波形となる。この変換により得られたパルス波形とパイロメータ3の温度データを重ね合わせると図3の波形14に示すようになり、a1の基板温度のみのデータへと変換することができる。同様にa2〜a6の基板温度データに対しても本演算を行うことにより、サセプタ2部の測定温度をも含む連続データから基板温度のみを抽出することができ、各基板温度を正確に知ることができる。また、気相成長装置から出力される基板温度データに対し、本演算方法にて基板温度データを抽出するデータ処置装置7を備え、データ処理装置から気相成長装置に温度情報を制御装置8によりフィードバックする構成となっている。データ処理装置から気相成長装置にフィードバックされた基板温度データをもとにヒーター1の出力制御を行い、基板温度の安定化を行う。本構成の気相成長装置を使用することにより、膜厚分布や格子結晶の均一性に優れ、より高品質な気相成長を行うことが可能となる。
Since the six substrates 4 (referred to as a1 to a6) are installed at a predetermined interval of 60 °, the phase of each substrate 4 is respectively
a1: P1 = Asin (ωt + 2π (60 × 1/360) + α) (1)
a2: P2 = Asin (ωt + 2π (60 × 2/360) + α) (2)
...
a6: P6 = Asin (ωt + 2π (60 × 6/360) + α) (6)
It is represented by When the phase of the substrate 4 is schematically illustrated, a waveform 12 in FIG. 3 is obtained. If the phase reference is defined as shown in FIG. 2B, the phase range R in which the temperature is measured by the pyrometer 3 is determined from the constants L to A> determined by the distance from the center of the susceptor 2 to the center of the substrate 4. R> L. For phase equation (1) of substrate a1
When Asin (ωt + 2π (60 × 1/360) + α)> L P1 = 1
When Asin (ωt + 2π (60 × 1/360) + α) <L P1 = 0
When the above conversion is performed, the phase of a1 becomes a pulse waveform shown by the waveform 13 in FIG. When the pulse waveform obtained by this conversion and the temperature data of the pyrometer 3 are superposed, the waveform 14 shown in FIG. 3 is obtained, which can be converted into data only for the substrate temperature a1. Similarly, by performing this calculation for the substrate temperature data a2 to a6, it is possible to extract only the substrate temperature from the continuous data including the measured temperature of the susceptor 2 part, and to know each substrate temperature accurately. Can do. In addition, a data processing device 7 is provided for extracting substrate temperature data by this calculation method for substrate temperature data output from the vapor phase growth apparatus, and temperature information is transferred from the data processing apparatus to the vapor phase growth apparatus by the control device 8. It is configured to provide feedback. The output of the heater 1 is controlled based on the substrate temperature data fed back from the data processing apparatus to the vapor phase growth apparatus, and the substrate temperature is stabilized. By using the vapor phase growth apparatus of this configuration, the film thickness distribution and the uniformity of the lattice crystal are excellent, and higher quality vapor phase growth can be performed.

なお、本実施形態では、化合物半導体基板上に化合物半導体単結晶薄膜を成長させる例について説明したが、本発明はこれらに限定されるものではなく、Si基板、ガラス基板、セラミック基板などに化合物半導体以外の半導体や、半導体以外の酸化物や金属などの薄膜を成長させる場合にも適用可能である。また、気相成長方法としてMOCVD法を例にとったが、これに限定されるものではなく、クロライドCVD、ハライドCVD、蒸着、分子線エピタキシー(MBE)などの気相成長方法にも適用可能である。   In this embodiment, the example in which the compound semiconductor single crystal thin film is grown on the compound semiconductor substrate has been described. However, the present invention is not limited to this, and the compound semiconductor is formed on a Si substrate, a glass substrate, a ceramic substrate, or the like. The present invention can also be applied to the case of growing a semiconductor other than the above or a thin film such as an oxide or metal other than the semiconductor. Although the MOCVD method is used as an example of the vapor phase growth method, the present invention is not limited to this, and can be applied to vapor phase growth methods such as chloride CVD, halide CVD, vapor deposition, and molecular beam epitaxy (MBE). is there.

また、サセプタに設置される基板の枚数や配置パターンも上記実施形態のように6枚を60度毎に配置するものに限られるものではなく、任意の枚数を所定のパターンで配置して結晶の気相成長を行う場合にも本発明を適用することができる。   Further, the number and arrangement pattern of the substrates installed on the susceptor are not limited to those in which six substrates are arranged every 60 degrees as in the above embodiment, and an arbitrary number of substrates can be arranged in a predetermined pattern. The present invention can also be applied to vapor phase growth.

本発明の基板温度データの演算方法および気相成長装置は、半導体製造におけるMOCVD装置などの回転式サセプタを有する気相成長装置において、膜厚分布、格子結晶等が均一なより高品質の薄膜を気相成長させるために各基板温度をパイロメータにて連続して測定したデータの演算方法および気相成長装置として有用である。   The substrate temperature data calculation method and vapor phase growth apparatus according to the present invention is a vapor phase growth apparatus having a rotary susceptor such as a MOCVD apparatus in semiconductor manufacturing. It is useful as a calculation method and a vapor phase growth apparatus for data obtained by continuously measuring each substrate temperature with a pyrometer for vapor phase growth.

本発明の実施形態における気相成長装置を表す構成図The block diagram showing the vapor phase growth apparatus in embodiment of this invention 本発明の実施形態におけるサセプタ上の基板設置位置を表す図The figure showing the board | substrate installation position on a susceptor in embodiment of this invention. 本発明の実施形態における基板温度データの演算波形を示す図The figure which shows the calculation waveform of the substrate temperature data in embodiment of this invention

符号の説明Explanation of symbols

1 ヒーター
2 サセプタ
3 パイロメータ
4 基板
5 モータ
6 軌跡
7 データ処理装置
8 制御装置
11 波形
12 波形
13 波形
14 波形
16 範囲
17 範囲
DESCRIPTION OF SYMBOLS 1 Heater 2 Susceptor 3 Pyrometer 4 Board | substrate 5 Motor 6 Trajectory 7 Data processing apparatus 8 Control apparatus 11 Waveform 12 Waveform 13 Waveform 14 Waveform 16 Range 17 Range

Claims (3)

反応炉内の回転式サセプタ上に複数の基板を設置して、各基板上に薄膜を気相成長させる気相成長装置において、
連続して測定された温度データに対し、前記回転式サセプタの回転数および基板設置位置から算出される基板位相を用いて演算を行い、各基板の温度のみ抽出することを特徴とする基板温度データの演算方法。
In a vapor phase growth apparatus in which a plurality of substrates are installed on a rotary susceptor in a reaction furnace, and a thin film is vapor-phase grown on each substrate,
Substrate temperature data that is obtained by performing an operation on the continuously measured temperature data using the substrate phase calculated from the rotational speed of the rotary susceptor and the substrate installation position, and extracting only the temperature of each substrate. Calculation method.
請求項1記載の演算方法を実行するデータ処理手段と、データ処理手段から得られた温度データを基に装置の温度を制御する温度制御手段とを備えたことを特徴とする気相成長装置。 A vapor phase growth apparatus comprising: data processing means for executing the calculation method according to claim 1; and temperature control means for controlling the temperature of the apparatus based on temperature data obtained from the data processing means. 気相成長装置から出力された温度データに対し、請求項1記載の演算方法を用いてデータ処理を行う工程と、得られた温度データを気相成長装置にフィードバックして温度制御を行う工程を備えたことを特徴とする気相成長方法。 A process of performing data processing on the temperature data output from the vapor phase growth apparatus using the calculation method according to claim 1 and a step of performing temperature control by feeding back the obtained temperature data to the vapor phase growth apparatus. A vapor phase growth method comprising:
JP2004030335A 2004-02-06 2004-02-06 Method for calculating substrate temperature data and vapor phase growth apparatus Pending JP2005223181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030335A JP2005223181A (en) 2004-02-06 2004-02-06 Method for calculating substrate temperature data and vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030335A JP2005223181A (en) 2004-02-06 2004-02-06 Method for calculating substrate temperature data and vapor phase growth apparatus

Publications (1)

Publication Number Publication Date
JP2005223181A true JP2005223181A (en) 2005-08-18

Family

ID=34998561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030335A Pending JP2005223181A (en) 2004-02-06 2004-02-06 Method for calculating substrate temperature data and vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JP2005223181A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184634A (en) * 2007-01-29 2008-08-14 Shin Etsu Handotai Co Ltd Vapor deposition method for forming thin film on wafer, and vapor deposition apparatus for forming thin film on wafer
JP2016072585A (en) * 2014-10-02 2016-05-09 グローバルウェーハズ・ジャパン株式会社 Cleaning method for susceptor
CN111033692A (en) * 2017-08-30 2020-04-17 纽富来科技股份有限公司 Vapor phase growth method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184634A (en) * 2007-01-29 2008-08-14 Shin Etsu Handotai Co Ltd Vapor deposition method for forming thin film on wafer, and vapor deposition apparatus for forming thin film on wafer
JP2016072585A (en) * 2014-10-02 2016-05-09 グローバルウェーハズ・ジャパン株式会社 Cleaning method for susceptor
CN111033692A (en) * 2017-08-30 2020-04-17 纽富来科技股份有限公司 Vapor phase growth method
CN111033692B (en) * 2017-08-30 2023-11-10 纽富来科技股份有限公司 Vapor phase growth method

Similar Documents

Publication Publication Date Title
KR101240220B1 (en) Semiconductor manufacturing method
JP6134767B2 (en) Wafer and thin film temperature control method
US7921802B2 (en) System and method for suppression of wafer temperature drift in cold-wall CVD systems
JP5445508B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
KR20130014488A (en) Semiconductor thin-film manufacturing method, semiconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
JPH05211126A (en) Epitaxial growth furnace
JP4870604B2 (en) Vapor growth equipment
JP2005223181A (en) Method for calculating substrate temperature data and vapor phase growth apparatus
JP3355475B2 (en) Substrate temperature distribution measurement method
JPH1179887A (en) Temperature measurement of substrate
JP2008066652A (en) Vapor deposition system, and vapor deposition method
JP2000040663A (en) Correction method of thin film growth temperature
JPWO2006046308A1 (en) Support for semiconductor substrate
JPH05259082A (en) Epitaxial growth device and method
KR101034584B1 (en) Measuring method of thin film and measuring apparatus of thin film
JP3872838B2 (en) Crystal growth method
JP2013016562A (en) Vapor-phase growth method
WO2003003432A1 (en) Vapor growth method and vapor growth device
JP3731550B2 (en) Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer
EP4279642A1 (en) Method for measuring etching amount, and measurement system therefor
CN114318524A (en) Device and method for regulating and controlling epitaxial growth uniformity of wafer
JPH02262331A (en) Vapor growth apparatus
JPH08250430A (en) Manufacture of single-crystal thin film
JPS607378B2 (en) CVD equipment
CN109837523B (en) Device and method for accurately calibrating ultra-fast growth rate of graphene