JP2005222745A - Heating device of metal tube body - Google Patents

Heating device of metal tube body Download PDF

Info

Publication number
JP2005222745A
JP2005222745A JP2004027401A JP2004027401A JP2005222745A JP 2005222745 A JP2005222745 A JP 2005222745A JP 2004027401 A JP2004027401 A JP 2004027401A JP 2004027401 A JP2004027401 A JP 2004027401A JP 2005222745 A JP2005222745 A JP 2005222745A
Authority
JP
Japan
Prior art keywords
metal cylinder
heating device
core member
short
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027401A
Other languages
Japanese (ja)
Inventor
Yasuo Watanabe
康男 渡辺
Fumiaki Tada
文明 多田
Kazunori Nishibaba
和典 西馬場
Kenji Yatabe
憲志 矢田部
Tadanobu Miyagawa
忠伸 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2004027401A priority Critical patent/JP2005222745A/en
Priority to CNA2004100914451A priority patent/CN1652641A/en
Priority to TW094101195A priority patent/TW200528562A/en
Publication of JP2005222745A publication Critical patent/JP2005222745A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form each receiving roller with an inexpensive metal material easy to purchase and to compose a heating device with a structure capable of preventing spark between workpiece receiving rollers for providing long-term durability, in a heating device of a metal tube body for induction-heating the total length of a workpiece while rotatably supporting it with two receiving rollers. <P>SOLUTION: This metal tube body heating device 40 is equipped with: the receiving rollers 50 and 60 for mounting the metal tube body 10 in a manner capable of horizontally and rotatably transmitting it; roller driving devices 25-26 for rotatably driving them by pivoting them; and induction heating devices 21-22 for induction-heating the total length of the metal tube body 10. The rollers 50 and 60 are composed of: metallic core members 51 and 61; a plurality of metallic short sleeves 52 and 62 each having an axially split form; and spacers 53 and 63 serving as mutual insulation thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、金属筒体を軸回転させながら加熱して高温にする金属筒体の加熱装置に関
し、詳しくは、加熱を誘導加熱にて行う金属筒体の加熱装置に関する。
このような金属筒体の加熱装置は、金属筒体を加熱しながら金属筒体内の収容物に遠心力を作用させることができ、例えば金属筒体の内周面に自溶合金被覆を施すのに好適である。
The present invention relates to a heating device for a metal cylinder that is heated to a high temperature while rotating the shaft of a metal cylinder, and more particularly to a heating device for a metal cylinder that performs heating by induction heating.
Such a heating device for a metal cylinder can apply centrifugal force to the contents in the metal cylinder while heating the metal cylinder. For example, a self-fluxing alloy coating is applied to the inner peripheral surface of the metal cylinder. It is suitable for.

金属筒体内面に自溶合金の融着被覆を施すに際し、金属筒体内に自溶合金粉末を装入して、金属筒体を軸回転させながら、即ち軸線を中心に金属筒体を回転させながら、金属筒体内の粉末を一度に加熱溶融させる、いわゆる一発方式の施工方法および金属筒体の加熱装置が知られている(例えば特許文献1参照)。この装置は、金属筒体を高速で軸回転させる筒体支持回転装置と、回転中の金属筒体を一発加熱する誘導加熱装置とを備えたものであり、一発加熱用の誘導子には、金属筒体の円周方向の小区間を金属筒体の全長に亘って誘導加熱する面焼形コイルが採用されている。   When applying the fusion coating of the self-fluxing alloy to the inner surface of the metal cylinder, the self-fluxing alloy powder is charged into the metal cylinder, and the metal cylinder is rotated around the axis while rotating the metal cylinder. However, there is known a so-called one-shot construction method and a metal cylinder heating apparatus in which powder in a metal cylinder is heated and melted at a time (see, for example, Patent Document 1). This device includes a cylinder support rotating device that rotates a metal cylinder at a high speed, and an induction heating device that heats the rotating metal cylinder in one shot. Employs a face-fired coil that induction-heats a small section in the circumferential direction of the metal cylinder over the entire length of the metal cylinder.

金属筒体の全長を誘導加熱する誘導子には鞍形の誘導コイルも多用されており、そのような誘導子22を装備した金属筒体加熱装置20の要部を図9(a)に示した。この誘導子22には、金属筒体10のほぼ全長に亘り金属筒体10に沿って軸方向に並走する部分が、二本分、含まれている。また、金属筒体加熱装置20における筒体支持回転装置は、図示した二本の受けローラ23,24を要部とするものであり、これらのローラ23,24を図示しないローラ駆動装置で軸支して回転駆動するようになっている。   A saddle-shaped induction coil is also frequently used as an inductor for induction heating the entire length of the metal cylinder, and the main part of the metal cylinder heating apparatus 20 equipped with such an inductor 22 is shown in FIG. It was. The inductor 22 includes two portions that run in the axial direction along the metal cylinder 10 over almost the entire length of the metal cylinder 10. Further, the cylinder support rotating device in the metal cylinder heating device 20 has the two receiving rollers 23 and 24 shown in the figure as a main part, and these rollers 23 and 24 are supported by a roller driving device (not shown). Then, it is designed to rotate.

受けローラ23,24は、加熱対象の金属筒体10を乗載できるよう、何れも水平な状態で且つ適宜な距離を保って平行に設置され、軸方向を揃えて金属筒体10が乗載されると、その金属筒体10を水平に且つ回転伝動可能に支持する。そして、受けローラ23,24の何れか一方または双方が回転駆動されると、外周面同士の接触転動にて金属筒体10を所望速度で軸回転させるようになっている。   The receiving rollers 23 and 24 are both installed in parallel in a horizontal state and at an appropriate distance so that the metal cylinder 10 to be heated can be mounted, and the metal cylinder 10 is mounted with the axial direction aligned. Then, the metal cylinder 10 is supported horizontally and rotatably. When one or both of the receiving rollers 23 and 24 are rotationally driven, the metal cylinder 10 is axially rotated at a desired speed by contact rolling of the outer peripheral surfaces.

このような金属筒体加熱装置20に金属筒体10を乗載して軸回転させながら誘導子22に高周波通電を行うと、金属筒体10の外周面に(図9(b)参照)ほぼ鞍形の一次誘導電流11が誘起され、その電路部分が加熱されるが、金属筒体10が高速で軸回転しているので、金属筒体10は全周がほぼ一様に加熱される。自溶合金の被覆施工の場合、自溶合金の粉末層の均一化のため遠心力(加速度)が30m/s(≒3G、なおGは重力加速度)以上になるような速度で金属筒体10が回転させられ、自溶合金が融着する高温まで金属筒体10が加熱される。 When high-frequency energization is performed on the inductor 22 while the metal cylinder 10 is mounted on the metal cylinder heating device 20 and the shaft is rotated, the outer circumferential surface of the metal cylinder 10 (see FIG. 9B) is almost the same. A saddle-shaped primary induced current 11 is induced and the electric circuit portion is heated. However, since the metal cylinder 10 is rotating at a high speed, the metal cylinder 10 is heated almost uniformly around the entire circumference. In the case of self-fluxing alloy coating, the metal cylinder body has a speed at which the centrifugal force (acceleration) is 30 m / s 2 (≒ 3G, where G is gravitational acceleration) or more in order to make the powder layer of the self-fluxing alloy uniform. 10 is rotated, and the metal cylinder 10 is heated to a high temperature at which the self-fluxing alloy is fused.

従来、受けローラ23,24には、非磁性ステンレス(オーステナイト系スチール)製のローラが、採用されている。誘導加熱の場合、可能であれば、例えばアルミナのような電気絶縁体からなるローラを採用したいのであるが、絶縁材や非良導体の範疇では、高速での接触転動に長く耐えられる適切な材料が、見つからないからである。また、アルミナ等は、所望寸法の部材の調達や加工が困難で、高価なうえ、製造に長期間を要する。これに対し、ステンレスは、靱性に富んでいて割れや剥離などが発生し難いため過酷な長期の接触転動に耐えるうえ、所望寸法の部材の調達や加工が容易で価格が安く短期補充も可能である。   Conventionally, rollers made of non-magnetic stainless steel (austenitic steel) are employed as the receiving rollers 23 and 24. In the case of induction heating, if possible, we would like to adopt a roller made of an electrical insulator such as alumina. However, in the category of insulating materials and non-good conductors, an appropriate material that can withstand contact rolling at high speed for a long time. Because it is not found. Alumina and the like are difficult to procure and process a member having a desired dimension, are expensive, and require a long time for production. Stainless steel, on the other hand, has high toughness and is resistant to cracking and peeling, so it can withstand severe long-term contact rolling, and it is easy to procure and process parts with the desired dimensions, and is inexpensive and can be replenished in a short period It is.

特開2003−193262号公報JP 2003-193262 A

しかしながら、受けローラ23,24がステンレス製の場合、ステンレスは電気良導体であるから、高周波通電時には受けローラ23,24にも二次誘導電流12が誘起される(図9(c)参照)。二次誘導電流12は、金属筒体10の両端部を経由して、受けローラ23,24を流れ、受けローラ23,24を加熱して、金属筒体10の加熱に間接的には役立つが、副次的・二義的なものである。軸回転に伴い受けローラ23,24や金属筒体10が振れたりしてローラ23,24と金属筒体10との接触が破られたときなど、二次誘導電流12の還流を継続しようとする誘導起電力が強いと、たとえば金属筒体10の両端における四カ所の転動面端部13,14,15,16に、放電によるスパークが発生する。   However, when the receiving rollers 23 and 24 are made of stainless steel, since the stainless steel is a good electrical conductor, the secondary induction current 12 is also induced in the receiving rollers 23 and 24 when high-frequency current is applied (see FIG. 9C). Although the secondary induced current 12 flows through the receiving rollers 23 and 24 via both ends of the metal cylinder 10 and heats the receiving rollers 23 and 24, it indirectly serves to heat the metal cylinder 10. , Secondary and secondary. When the receiving rollers 23 and 24 and the metal cylinder 10 are shaken with the rotation of the shaft and the contact between the rollers 23 and 24 and the metal cylinder 10 is broken, the secondary induced current 12 is continually recirculated. When the induced electromotive force is strong, for example, sparks due to discharge are generated at the four rolling surface end portions 13, 14, 15, 16 at both ends of the metal cylinder 10.

スパークが発生すると、受けローラ23,24及び金属筒体10の外周面にスパーク痕が形成される。そして、一度スパーク痕が発生すると、そこの接触不良は恒常的なものとなり、更にスパークが大量に発生するようになる。そうすると、金属筒体10の品質は損なわれ、受けローラ23,24の寿命は短くなる。
そのため、従来の受けローラ23,24では、ステンレスの持つ靱性等の長期耐性という利点が十分には活用されず、安価で短期補充容易という利点しか活用されない。
When spark is generated, spark marks are formed on the outer peripheral surfaces of the receiving rollers 23 and 24 and the metal cylinder 10. And once a spark mark is generated, the contact failure is constant, and a lot of sparks are generated. If it does so, the quality of the metal cylinder 10 will be impaired and the lifetime of the receiving rollers 23 and 24 will become short.
Therefore, in the conventional receiving rollers 23 and 24, the advantage of long-term durability such as toughness of stainless steel is not fully utilized, and only the advantage of being inexpensive and easy to replenish for a short period is utilized.

そこで、ステンレスの長期耐性も活用すべく、ステンレス製の受けローラ23,24に電気絶縁性を付与するために、その外周面にアルミナ溶射にて絶縁被覆を形成し、この絶縁被覆付き受けローラ33,34を装備した金属筒体加熱装置30を試作した(図10(a)参照)。この場合、金属筒体10のみを流れる一次誘導電流11は従来同様であるが(図9(b)参照)、受けローラ33,34に誘起される二次誘導電流12は(図10(b)参照)、一次誘導電流金属筒体10と受けローラ33,34とが電気絶縁されているので、受けローラ33,34それぞれの中で環流し各ローラ内にとどまる。そしてスパークは防止される。   Therefore, in order to utilize the long-term resistance of stainless steel, in order to provide electrical insulation to the stainless steel receiving rollers 23 and 24, an insulating coating is formed on the outer peripheral surface by alumina spraying, and the receiving roller 33 with insulating coating is provided. , 34 equipped with a metal cylinder heating device 30 (see FIG. 10A). In this case, the primary induced current 11 flowing only through the metal cylinder 10 is the same as the conventional one (see FIG. 9B), but the secondary induced current 12 induced in the receiving rollers 33 and 34 is (FIG. 10B). Since the primary induced current metal cylinder 10 and the receiving rollers 33 and 34 are electrically insulated, they circulate in the receiving rollers 33 and 34 and remain in the respective rollers. And sparking is prevented.

しかしながら、加熱環境で高速転動するため絶縁被覆には割れや剥離が発生しやすく、そして、それが成長すると、やがて電気絶縁が破れて放電が起こり、スパークが発生すると割れ等が広がり、絶縁被覆の損耗が加速する。そうすると、絶縁被覆の無いときと同様、転動面端部13,14,15,16等にスパークが頻発して(図10(c)参照)、受けローラ33,34の寿命が尽きる。このため、絶縁被覆施工のコストアップを上回るほどの寿命延長は叶わない。   However, since it rolls at a high speed in a heating environment, the insulation coating is likely to crack and peel off, and as it grows, the electrical insulation eventually breaks and discharge occurs, and when a spark occurs, the crack spreads and the like spreads. Accelerates wear and tear. Then, as in the case where there is no insulation coating, sparks frequently occur at the rolling surface end portions 13, 14, 15, 16 and the like (see FIG. 10C), and the life of the receiving rollers 33, 34 is exhausted. For this reason, the life extension beyond the cost increase of insulation coating construction is not realized.

そこで、ステンレス等の金属材料に具わっているローラ向け利点を総て活用するために、すなわち安価で短期補充容易という利点に加えて長期耐性という利点も十分に活用するために、金属材料からなる受けローラに電気絶縁性を付与するに際して、その具体的構造や絶縁手段の付加の仕方などに、更なる工夫を凝らすことが、技術的な課題となる。   Therefore, in order to make full use of the advantages for rollers such as stainless steel, that is, to make full use of the advantages of long-term durability in addition to the advantages of cheap and short-term replenishment, it is made of metal materials. When providing electrical insulation to the receiving roller, it is a technical problem to further devise the concrete structure and the way of adding insulating means.

本発明の金属筒体の加熱装置(当初請求項1)は、このような課題を解決するために創案されたものであり、加熱対象の金属筒体を回転させながら支持する二列構成の受けローラと、この受けローラを回転駆動するローラ駆動装置と、前記金属筒体を全長同時に誘導加熱する誘導加熱装置とを備えた金属筒体の加熱装置において、前記受けローラは、金属製の芯部材に金属製のスリーブが嵌装された構造を有し、そのスリーブは複数体の短尺スリーブに分割されていて、前記芯部材と電気絶縁された状態で且つ短尺スリーブ相互間に隙間を設けた配置形態にて嵌装されている、というものである。   The metal cylinder heating device of the present invention (initial claim 1) has been devised in order to solve such problems, and has a two-row receiving structure that supports the metal cylinder to be heated while rotating it. In a metal cylinder heating device comprising a roller, a roller driving device that rotationally drives the receiving roller, and an induction heating device that induction-heats the metal cylinder at the same time, the receiving roller is a metal core member The sleeve is divided into a plurality of short sleeves, and the sleeve is electrically insulated from the core member, and a gap is provided between the short sleeves. It is said that it is fitted in a form.

また、本発明の金属筒体の加熱装置(当初請求項2)は、上記の当初請求項1記載の金属筒体の加熱装置であって更に、前記複数体の短尺スリーブを前記芯部材と電気絶縁する手段は、前記芯部材の外周面または前記短尺スリーブの内周面に施された電気絶縁性の被覆であって、前記短尺スリーブはこの被覆を介して前記芯部材に緊着嵌装されている、というものである。   A metal cylinder heating apparatus according to the present invention (initial claim 2) is the metal cylinder heating apparatus according to the above-mentioned initial claim 1, and further, the plurality of short sleeves are electrically connected to the core member. The means for insulating is an electrically insulating coating applied to the outer peripheral surface of the core member or the inner peripheral surface of the short sleeve, and the short sleeve is tightly fitted to the core member via the coating. It is that.

さらに、本発明の金属筒体の加熱装置(当初請求項3)は、上記の当初請求項1記載の金属筒体の加熱装置であって更に、前記短尺スリーブの内周面にその短尺スリーブの全長に亘るキー溝が設けられており、また、前記芯部材の外周面にはキー部材が植設されていて、前記短尺スリーブは前記キー溝に前記キー部材を突出させることで前記芯部材に対して周方向固定されており、更に、前記短尺スリーブの前記キー溝にキー係合させて短尺スリーブ相互間に配置した電気絶縁性のスペーサによって、短尺スリーブ相互間の前記隙間が維持されている、というものである。   Further, the metal cylinder heating device according to the present invention (initial claim 3) is the metal cylinder heating device according to the above-mentioned initial claim 1, and further, the short sleeve is provided on the inner peripheral surface of the short sleeve. A key groove extending over the entire length is provided, and a key member is planted on the outer peripheral surface of the core member, and the short sleeve projects the key member into the key groove to form the core member. Further, the gap between the short sleeves is maintained by an electrically insulating spacer that is fixed in the circumferential direction and is key-engaged with the key groove of the short sleeve and disposed between the short sleeves. That's it.

また、本発明の金属筒体の加熱装置(当初請求項4)は、上記の当初請求項3記載の金属筒体の加熱装置であって更に、前記芯部材の端部に前記短尺スリーブの脱落を防止するためのストッパーが配設されている、というものである。
また、本発明の金属筒体の加熱装置(当初請求項5)は、上記の当初請求項1記載の金属筒体の加熱装置であって更に、前記スリーブがステンレス等の非磁性金属からなる、というものである。
A metal cylinder heating device according to the present invention (initial claim 4) is the metal cylinder heating device according to the above-mentioned initial claim 3, and further, the short sleeve is detached at the end of the core member. It is said that a stopper for preventing this is disposed.
Moreover, the metal cylinder heating device (initial claim 5) of the present invention is the metal cylinder heating device according to the initial claim 1, and the sleeve is made of a nonmagnetic metal such as stainless steel. That's it.

また、本発明の金属筒体の加熱装置(当初請求項6)は、上記の当初請求項1〜当初請求項5記載の金属筒体の加熱装置であって更に、前記ローラ駆動装置が対地絶縁されている、というものである。
また、本発明の金属筒体の加熱装置(当初請求項7)は、上記の当初請求項6記載の金属筒体の加熱装置であって更に、前記ローラ駆動装置に、前記芯部材の端部を軸支する両端軸受部と、前記芯部材の中間部を軸支する中間軸受部とが、具わっている、というものである。
Moreover, the metal cylinder heating device of the present invention (initial claim 6) is the metal cylinder heating device according to the above-mentioned initial claims 1 to 5, and further, the roller driving device is insulated from the ground. It has been said.
The metal cylinder heating device according to the present invention (initial claim 7) is the metal cylinder heating device according to the above-mentioned initial claim 6, further comprising an end portion of the core member at the roller driving device. Both end bearing portions that pivotally support and an intermediate bearing portion that pivotally supports the intermediate portion of the core member are provided.

このような本発明の金属筒体の加熱装置(当初請求項1)にあっては、金属筒体が、受けローラとローラ駆動装置とを具えた筒体支持回転装置によって、水平に支持され、更に軸回転させられる。また、誘導加熱装置によって、全長に亘って加熱される。これにより、金属筒体を一発加熱しながら金属筒体に遠心力を作用させることができ、例えば金属筒体の内周面に自溶合金被覆を適切に施すことができる。   In such a metal cylinder heating apparatus of the present invention (initial claim 1), the metal cylinder is horizontally supported by a cylinder support rotating device including a receiving roller and a roller driving device, Further, the shaft is rotated. Moreover, it heats over the full length with an induction heating apparatus. Thereby, centrifugal force can be made to act on a metal cylinder, heating a metal cylinder once, for example, self-fluxing alloy coating can be appropriately given to the inner peripheral surface of a metal cylinder.

しかも、受けローラを半径方向にも軸方向にも分割して分割体同士を相互に絶縁したことにより、すなわち受けローラをローラ駆動装置側の芯部材と金属筒体側のスリーブとに半径方向分割するとともに、そのスリーブを更に軸方向で幾つかの短尺スリーブに分割したうえで、各短尺スリーブの相互絶縁を行ったことにより、受けローラに誘起される二次誘導電流が短尺スリーブ単位で寸断されることとなる。そして、回転に伴って金属筒体と受けローラとの接触が破られたときなどに働く誘導起電力も分割されて個々には弱められることから、放電が発生し難くなるうえ発生しても消滅しやすいので、不所望なスパークの発生頻度は激減する。   Moreover, the receiving roller is divided in both the radial direction and the axial direction to insulate the divided bodies from each other. That is, the receiving roller is divided into a core member on the roller driving device side and a sleeve on the metal cylinder side in the radial direction. At the same time, the sleeve is further divided into several short sleeves in the axial direction, and each short sleeve is mutually insulated, so that the secondary induced current induced in the receiving roller is cut in units of short sleeves. It will be. And since the induced electromotive force that works when the contact between the metal cylinder and the receiving roller is broken with rotation is also divided and weakened individually, it becomes difficult for discharge to occur and even if it occurs, it disappears Therefore, the frequency of unwanted sparks is drastically reduced.

そのため、スリーブを金属材料製にしても放電による不都合が無く、絶縁手段を具現する絶縁部材を接触転動部位に配置する必要も無くなる。そして、安価・短期補充容易・長期耐性の利点を兼ね備えた部材を選出しやすい金属材料で短尺スリーブを作れば、受けローラの寿命が全うされる。
したがって、この発明によれば、安価で長期使用にも適う金属筒体の加熱装置を実現することができる。
Therefore, even if the sleeve is made of a metal material, there is no inconvenience due to electric discharge, and there is no need to dispose an insulating member that embodies the insulating means at the contact rolling site. If the short sleeve is made of a metal material that is easy to select a member having the advantages of low cost, easy short-term replenishment, and long-term durability, the life of the receiving roller is completed.
Therefore, according to the present invention, it is possible to realize a metal cylinder heating apparatus that is inexpensive and suitable for long-term use.

また、本発明の金属筒体の加熱装置(当初請求項2)にあっては、芯部材の外周面または短尺スリーブの内周面に絶縁被覆を形成して短尺スリーブを芯部材から電気絶縁するとともに上記被覆を介して短尺スリーブを芯部材に緊着嵌装したことにより、短尺スリーブの芯部材に対する同軸配置が容易かつ確実に実現されて、嵌装後の短尺スリーブ外周面に、高速回転に必要な、高度の同心度,真円度,同軸度が確保されて、本来のローラ機能が容易に確保される。しかも、この場合、芯部材の絶縁被覆はスリーブを外嵌されて金属筒体と接触転動しないので、絶縁被覆も長期に亘って維持される。上記緊着嵌装は、スリーブを焼嵌めにて芯部材に外嵌することで、容易に而も芯部材の絶縁被覆を傷めることなく、短尺スリーブを嵌装することができる。しかも、スリーブが短尺スリーブに分割されているので、スリーブの焼嵌めが一層容易であり、修理交換時の材工費も低く抑えることができる。   In the metal cylinder heating device of the present invention (initial claim 2), an insulating coating is formed on the outer peripheral surface of the core member or the inner peripheral surface of the short sleeve to electrically insulate the short sleeve from the core member. In addition, the short sleeve is tightly fitted to the core member through the above-described covering, so that the coaxial arrangement of the short sleeve with respect to the core member can be easily and reliably realized, and the short sleeve outer surface after fitting can be rotated at high speed. The required high degree of concentricity, roundness and coaxiality are ensured, and the original roller function is easily secured. In addition, in this case, since the insulating coating of the core member is fitted around the sleeve and does not roll in contact with the metal cylinder, the insulating coating is also maintained for a long period of time. In the above-described tight fitting, the short sleeve can be easily fitted without damaging the insulation coating of the core member by externally fitting the sleeve to the core member by shrink fitting. In addition, since the sleeve is divided into short sleeves, shrink fitting of the sleeve is easier, and material costs for repair and replacement can be kept low.

さらに、本発明の金属筒体の加熱装置(当初請求項3)にあっては、短尺スリーブ端部間に絶縁用スペーサを介挿させるようにもしたことにより、例えば異常昇温等により短尺スリーブが緩んで芯部材の軸方向に移動しうる状態になったときでも、短尺スリーブ相互の電気絶縁が確実に維持される。また、芯部材の外周面に植設したキー部材がスリーブの内周面のキー溝に嵌挿するようにもしたことにより、例えば異常昇温等によりスリーブが緩んで芯部材との周方向摩擦力が弱まったり失われたりしたときでも、芯部材の空回りが確実に防止される。しかも、キー溝がスリーブの両端に及んでいるので、キー部材がスリーブの焼嵌めを阻害することもない。   Further, in the metal cylinder heating device of the present invention (initial claim 3), an insulating spacer is interposed between the ends of the short sleeve, so that the short sleeve is caused by, for example, abnormal temperature rise. Even when the sleeve is loosened and can move in the axial direction of the core member, the electrical insulation between the short sleeves is reliably maintained. Also, since the key member implanted on the outer peripheral surface of the core member is inserted into the key groove on the inner peripheral surface of the sleeve, the sleeve loosens due to, for example, abnormal temperature rise, and the circumferential friction with the core member Even when the force is weakened or lost, the core member is reliably prevented from spinning around. In addition, since the key groove extends to both ends of the sleeve, the key member does not hinder the shrink fitting of the sleeve.

さらに、本発明の金属筒体の加熱装置(当初請求項4)には、芯部材の両端部に短尺スリーブの脱落を防止するためのストッパーが配設されているので、上記異常昇温が万一受けローラの端部に及ぶことがあっても、上記脱落が、その初動である短尺スリーブの芯部材端部からのはみ出しさえも抑止されることで、脱落やそれに伴うトラブル等の極めて好ましくない事態から無縁の装置となっている。   Furthermore, since the metal cylinder heating device of the present invention (initial claim 4) is provided with stoppers for preventing the short sleeve from dropping off at both end portions of the core member, the abnormal temperature rise is extremely low. Even if it reaches the end of the receiving roller, the above-mentioned drop-off is suppressed even by the short sleeve, which is the initial movement, from protruding from the end of the core member. It has become a device unrelated to the situation.

また、本発明の金属筒体の加熱装置(当初請求項5)にあっては、短尺スリーブを非磁性(非強磁性)金属製としたので、誘導加熱時に短尺スリーブに誘起される誘導電流の浸透深さ(誘導電流ひいてはそれに由来する入熱の磁束入力面近傍への集中度の指標/浸透深さが小さいほど集中度大)が強磁性金属における浸透深さの数十〜数百倍となることで、短尺スリーブの厚さ範囲内の入熱量(即ち短尺スリーブにおける入熱密度)を小さくできて、短尺スリーブの昇温が抑えられる。短尺スリーブを炭素鋼のような強磁性金属製としたときにも、磁気変態温度を超える温度では非磁性となるから、上記入熱の抑制は、金属筒体の加熱工程の途中段階までのことであるが、この磁気変態温度までの昇温差が加熱工程内での到達温度の抑制に大きく寄与する。その結果、たとえば、短尺スリーブの肉厚を、強磁性金属製とした場合のように上記到達温度を許容限度内に納めるために厚肉化するといった考慮なしに自由に選定できるなど、製作・保守コストの低減にも有用な対策となる。   In the metal cylinder heating device of the present invention (initial claim 5), since the short sleeve is made of a non-magnetic (non-ferromagnetic) metal, the induced current induced in the short sleeve during induction heating is reduced. Penetration depth (index of concentration of induced current and heat input derived from it in the vicinity of the magnetic flux input surface / concentration increases as the penetration depth decreases) is several tens to several hundreds times the penetration depth in ferromagnetic metals. As a result, the amount of heat input within the thickness range of the short sleeve (that is, the heat input density in the short sleeve) can be reduced, and the temperature rise of the short sleeve can be suppressed. Even when the short sleeve is made of a ferromagnetic metal such as carbon steel, it becomes non-magnetic at a temperature exceeding the magnetic transformation temperature, so the suppression of heat input is limited to the middle stage of the heating process of the metal cylinder. However, the temperature difference up to this magnetic transformation temperature greatly contributes to the suppression of the ultimate temperature in the heating process. As a result, for example, the thickness of the short sleeve can be freely selected without consideration of increasing the wall thickness in order to keep the temperature reached within the allowable limits, as in the case of a ferromagnetic metal. This is a useful measure for reducing costs.

また、本発明の金属筒体の加熱装置(当初請求項6)にあっては、ローラ駆動装置の対地絶縁まで行ったことにより、芯部材に誘起された誘導電流(言わば三次誘導電流)に起因する放電までも抑制される。   Further, in the metal cylinder heating device of the present invention (initial claim 6), due to the ground insulation of the roller driving device, it is caused by the induced current (so-called tertiary induced current) induced in the core member. Even the discharge to be suppressed is suppressed.

また、本発明の金属筒体の加熱装置(当初請求項7)にあっては、芯部材の両端を対地絶縁しながら軸支するだけでなく、芯部材の中間部も対地絶縁しながら軸支するようにしたことにより、受けローラの回転時振れが小さく抑制され、例えば受けローラが長いときや受けローラを高速回転させたときでも、金属筒体とスリーブとの接触転動部位における衝撃が小さくて済むうえ、接触転動部位等での放電も発生や成長し難くなる。   Moreover, in the metal cylinder heating device of the present invention (initial claim 7), not only the both ends of the core member are pivotally supported while being insulated against the ground, but also the intermediate portion of the core member is pivotally supported while being insulated from the ground. By doing so, the vibration during rotation of the receiving roller is suppressed to be small. For example, even when the receiving roller is long or when the receiving roller is rotated at high speed, the impact at the contact rolling portion between the metal cylinder and the sleeve is small. In addition, it is difficult to generate or grow a discharge at a contact rolling site.

また、中間軸受部に水冷カバーを付設することにより、受けローラや金属筒体の発する輻射熱から中間軸受部が守られる。   Moreover, by attaching a water cooling cover to the intermediate bearing portion, the intermediate bearing portion is protected from the radiant heat generated by the receiving roller and the metal cylinder.

本発明の金属筒体の加熱装置(以下、金属筒体加熱装置という)の一実施形態について、その構成を、図面を引用して説明する。図1(a)は、金属筒体加熱装置の全体構造を示す斜視図であり、図2は、受けローラ二本の平面図である。また、図3は、受けローラ各部の外観構造を示し、(a)が芯部材の斜視図、(b)が短尺スリーブの斜視図、(c)が絶縁用スペーサの斜視図、(d)が受けローラの展開図である。さらに、図4は、受けローラ各部の内部構造を示し、(a)が受けローラの正面図、(b)がAA断面矢視図、(c)がBB断面矢視図、(d)がその部分拡大図、(e)がC部拡大正面図、(f)がその断面図、(g)がその部分拡大図である。   A configuration of an embodiment of a metal cylinder heating apparatus (hereinafter referred to as a metal cylinder heating apparatus) according to the present invention will be described with reference to the drawings. Fig.1 (a) is a perspective view which shows the whole structure of a metal cylinder heating apparatus, and FIG. 2 is a top view of two receiving rollers. 3 shows the external structure of each part of the receiving roller, (a) is a perspective view of the core member, (b) is a perspective view of the short sleeve, (c) is a perspective view of the insulating spacer, and (d) is a perspective view of the insulating spacer. It is an expanded view of a receiving roller. Further, FIG. 4 shows the internal structure of each part of the receiving roller, (a) is a front view of the receiving roller, (b) is an AA sectional arrow view, (c) is a BB sectional arrow view, and (d) is its sectional view. (E) is a C-part enlarged front view, (f) is a sectional view thereof, and (g) is a partially enlarged view thereof.

なお、それらの図示に際しては、簡明化等のため、誘導子22の支持機構や,ベース,フレーム,ボルト等の締結具,ヒンジ等の連結具,モータドライバ等の電気回路,コントローラ等の電子回路などは図示を割愛し、発明の説明に必要なものや関連するものを中心に図示した。また、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。   In these drawings, for simplification and the like, a support mechanism for the inductor 22, a fastener such as a base, a frame, and a bolt, a coupling tool such as a hinge, an electric circuit such as a motor driver, and an electronic circuit such as a controller. Etc. are not shown in the figure, and those necessary for explaining the invention and related ones are mainly shown. In addition, since the same reference numerals are given to the same components as those in the prior art in the illustration, the repeated description will be omitted, and the following description will focus on differences from the prior art.

この実施形態の金属筒体加熱装置40が既述した金属筒体加熱装置20,30と相違するのは、受けローラ23,24や受けローラ33,34が受けローラ50,60になった点である。なお、図1(a)には、図9や図10では図示を割愛した一台の高周波電源21と四基の両端軸受部25と単機の電動機26も図示したが、これらは、従来の金属筒体加熱装置20にも装備されていたものである(特許文献1も参照)。   The metal cylinder heating device 40 of this embodiment is different from the metal cylinder heating devices 20 and 30 described above in that the receiving rollers 23 and 24 and the receiving rollers 33 and 34 become receiving rollers 50 and 60. is there. FIG. 1 (a) also shows one high-frequency power source 21, four end bearings 25, and a single motor 26, which are not shown in FIGS. It was also equipped in the cylinder heating device 20 (see also Patent Document 1).

すなわち、金属筒体加熱装置40は、二本が水平かつ平行に設置され加熱対象の金属筒体10が乗載されるとこれを水平に且つ回転伝動可能に支持しうる受けローラ23,24と、この受けローラ23,24を軸支して回転駆動するローラ駆動装置25〜26と、金属筒体10の全長を誘導加熱する誘導加熱装置21〜22とを備えた金属筒体加熱装置20を基礎として、そのうち受けローラ23,24を受けローラ50,60で置換することにより、改良したものである。   In other words, the metal cylinder heating device 40 includes the receiving rollers 23 and 24 that can support the horizontal and rotational transmission of the metal cylinder 10 to be heated when the two metal cylinders 10 to be heated are mounted in parallel. A metal cylinder heating device 20 including roller driving devices 25 to 26 that rotatably support the receiving rollers 23 and 24 and induction heating devices 21 to 22 that induction heat the entire length of the metal cylinder 10 is provided. As a basis, it has been improved by replacing the receiving rollers 23 and 24 with the receiving rollers 50 and 60.

自溶合金の被覆施工に適した速度で金属筒体10を軸回転させる筒体支持回転装置が受けローラ50,60とローラ駆動装置25〜26とで構成されることは既述した通りであるが、四基の両端軸受部25と一台の電動機26とからなるローラ駆動装置25〜26の具体例が図示されている(図1(a)参照)。両端軸受部25はそれぞれ受けローラ50,60の各端部を軸支するよう配設され、そのうち一基の両端軸受部25を介して電動機26が受けローラ50を回転駆動するようになっている。高周波電源21は、鞍形の誘導コイルからなる誘導子22に適切な通電スケジュールで適宜な高周波を通電するようになっている。   As described above, the cylindrical body supporting and rotating device that rotates the metal cylindrical body 10 at a speed suitable for the self-fluxing alloy coating construction includes the receiving rollers 50 and 60 and the roller driving devices 25 to 26. However, a specific example of roller driving devices 25 to 26 including four end bearing portions 25 and one electric motor 26 is shown (see FIG. 1A). The both end bearing portions 25 are arranged so as to pivotally support the respective end portions of the receiving rollers 50 and 60, and the electric motor 26 rotationally drives the receiving roller 50 through one end bearing portion 25 of them. . The high-frequency power source 21 supplies an appropriate high frequency to the inductor 22 formed of a saddle-shaped induction coil according to an appropriate energization schedule.

受けローラ50,60は(図2参照)、同じ構造・形状のものであり、金属筒体10の直径より狭い軸間距離で平行配置されるが、その際に短尺スリーブ52間の隙間が受けローラ相互間で互い違いとなるように軸方向の向きを反転した状態で設置されるので、一方に符号「50」を付し、他方に「60」を付して、区別可能に図示した。また、受けローラ50の各部材には「50台」の符号を付し、受けローラ60の対応部材には「10」だけ多い「60台」の符号を付して示した。以下、受けローラ50の構造を詳述するが、受けローラ60の構造も同じである。この受けローラ50は(図2,図3参照)、両端軸受部25で軸回転可能に支持される一本の芯部材51と、軸方向に列ねて芯部材51に嵌装される十二個の短尺スリーブ52と、短尺スリーブ52を相互に導通を生じない形で相互間位置規制する二十二個のスペーサ54と、八個のストッパー55とからなる。   The receiving rollers 50 and 60 (see FIG. 2) have the same structure and shape, and are arranged in parallel at an axial distance narrower than the diameter of the metal cylinder 10, but at this time, a gap between the short sleeves 52 is received. Since the rollers are installed in a state in which the axial direction is reversed so as to be alternated between the rollers, the reference numeral “50” is attached to one and “60” is attached to the other, so that they can be distinguished. Further, each member of the receiving roller 50 is denoted by a symbol “50 units”, and a corresponding member of the receiving roller 60 is denoted by a symbol “60 units” which is increased by “10”. Hereinafter, although the structure of the receiving roller 50 will be described in detail, the structure of the receiving roller 60 is the same. The receiving roller 50 (see FIGS. 2 and 3) includes a single core member 51 that is rotatably supported by the bearings 25 at both ends, and twelve that are fitted in the core member 51 in the axial direction. Each of the short sleeves 52 includes twenty-two spacers 54 that restrict the positions of the short sleeves 52 so as not to conduct each other, and eight stoppers 55.

芯部材51は(図3(a)参照)、良導体ではあるが靱性等に優れ而も安価なステンレスの棒材を軸回転体に加工したものである。両端は両端軸受部25に適合した細径にされるが、それ以外は同一径の円柱状に仕上げられ、その外周面にはキー部材51aが植設される。二十四個のキー部材51aは、軸線の両側に分けられ、何れも軸線と平行に列設される。また、芯部材51の外周面には短尺スリーブ52との電気絶縁のためアルミナ溶射等にて絶縁被覆が形成される。キー部材51aもステンレス製なので一緒に又は別個に絶縁被覆される。さらに、芯部材51の両端部にはストッパー55を取付けるためのネジ穴が形成され、重量を軽くする必要があれば芯部に中空51bが形成される(図4(b)参照)。   The core member 51 (see FIG. 3 (a)) is a shaft made of a stainless steel rod that is a good conductor but has excellent toughness and is inexpensive. Both ends have a small diameter suitable for the both-end bearing portion 25, but the other ends are finished in a cylindrical shape with the same diameter, and a key member 51a is implanted on the outer peripheral surface thereof. The twenty-four key members 51a are divided on both sides of the axis, and are all arranged in parallel with the axis. In addition, an insulating coating is formed on the outer peripheral surface of the core member 51 by alumina spraying or the like for electrical insulation from the short sleeve 52. Since the key member 51a is also made of stainless steel, it is insulated and coated together or separately. Further, screw holes for attaching the stopper 55 are formed at both ends of the core member 51, and if it is necessary to reduce the weight, a hollow 51b is formed in the core portion (see FIG. 4B).

短尺スリーブ52は(図3(b)参照)、ステンレス製の円筒体を芯部材51より短く切断して、その内周面にキー溝52aを彫り込み形成したものである。キー溝52aは、二本形成され、何れも短尺スリーブ52の両端部を含めた全長に及んでいる。キー溝52aの幅と深さは、一定であり、上述したキー部材51aの突出部を嵌挿しうるようになっている。短尺スリーブ52は、焼嵌めのため即ち加熱膨張させて芯部材51に嵌装するために、ステンレスの無垢材からなり、内径が芯部材51の外径より少しだけ小さくなっている。   The short sleeve 52 (see FIG. 3B) is formed by cutting a stainless steel cylindrical body shorter than the core member 51 and engraving a key groove 52a on the inner peripheral surface thereof. Two key grooves 52 a are formed, both of which extend over the entire length including both ends of the short sleeve 52. The width and depth of the key groove 52a are constant, and the protruding portion of the key member 51a described above can be fitted. The short sleeve 52 is made of a solid stainless steel material for shrink fitting, that is, heated and expanded and fitted to the core member 51, and has an inner diameter slightly smaller than the outer diameter of the core member 51.

絶縁用スペーサ54は(図3(c)参照)、端面が凸形のステンレス小片であり、一方の被保持部54bを何れかの短尺スリーブ52の端面からキー溝52aに差込み、その短尺スリーブ52と隣り合う別の短尺スリーブ52の端面からキー溝52aに他方の被保持部54bを差込むと、短尺スリーブ離隔部54aが両短尺スリーブ52の対向端面の間に突き出て、隣り合う短尺スリーブ52間の端部間隙53を一定以上に維持するようになっている。短尺スリーブ離隔部54aと被保持部54bは、少なくとも短尺スリーブ52と接触する可能性のある表面が、電気絶縁のためアルミナ溶射等で絶縁被覆されてこのスペーサに必要な電気絶縁性が具備されている。ストッパー55も絶縁被覆されている。   The insulating spacer 54 (see FIG. 3C) is a small piece of stainless steel with a convex end surface, and one held portion 54b is inserted into the key groove 52a from the end surface of one of the short sleeves 52, and the short sleeve 52 is inserted. When the other held portion 54 b is inserted into the key groove 52 a from the end surface of another short sleeve 52 adjacent to the short sleeve 52, the short sleeve separating portion 54 a protrudes between the opposed end surfaces of both short sleeves 52, and adjacent short sleeves 52. The end gap 53 between them is maintained above a certain level. The short sleeve separating portion 54a and the held portion 54b have at least a surface that may come into contact with the short sleeve 52, and are coated with alumina spraying or the like for electrical insulation, and have the necessary electrical insulation for the spacer. Yes. The stopper 55 is also covered with insulation.

これらを組み合わせて(図2参照)受けローラ50が作り上げられる(図4参照)。具体的には、芯部材51に短尺スリーブ52が一つずつ焼嵌めにて嵌装され、その際、キー部材51aの突出部がキー溝52aに嵌挿させられる。また、一つの短尺スリーブ52を嵌装後に次の短尺スリーブ52を嵌装するときには、それらの端部間に二個のスペーサ54が介装される。スペーサ54は、被保持部54bが短尺スリーブ52のキー溝52aの中に差し込んで短尺スリーブ52と芯部材51との間に納められ、短尺スリーブ離隔部54aがキー溝52aから外に出た状態で両側の短尺スリーブ52の端部間に介挿される。   These are combined (see FIG. 2) to form the receiving roller 50 (see FIG. 4). Specifically, the short sleeves 52 are fitted into the core member 51 one by one by shrink fitting, and at that time, the protruding portion of the key member 51a is inserted into the key groove 52a. Further, when the next short sleeve 52 is fitted after the one short sleeve 52 is fitted, two spacers 54 are interposed between the end portions thereof. The spacer 54 is a state in which the held portion 54b is inserted into the key groove 52a of the short sleeve 52 and is placed between the short sleeve 52 and the core member 51, and the short sleeve separating portion 54a protrudes from the key groove 52a. Is inserted between the ends of the short sleeves 52 on both sides.

この実施形態の金属筒体加熱装置40について、その使用態様及び動作を、図面を引用して説明する。図1(b)は、金属筒体加熱装置40の使用状態を示す斜視図、 図1(c)は、受けローラ60に誘起される二次誘導電流12の流れ方を示す斜視図である。   About the metal cylinder heating apparatus 40 of this embodiment, the use aspect and operation | movement are demonstrated referring drawings. FIG. 1B is a perspective view showing a usage state of the metal cylinder heating device 40, and FIG. 1C is a perspective view showing how the secondary induced current 12 induced in the receiving roller 60 flows.

金属筒体加熱装置40の使い方は基本的に従来通りである。すなわち(図1(b)参照)、金属筒体10の内周面に自溶合金の融着被覆を施す等のために金属筒体加熱装置40を用いて金属筒体10を加熱する場合、先ず受けローラ50,60上に金属筒体10を乗載し、次に自溶合金粉末の装入などアプリケーション対応の前作業も行い、さらに誘導子22を金属筒体10に近づけ又は誘導子22が金属筒体10に対して誘導加熱可能な位置にあることを確認し、それから電動機26と高周波電源21を作動させる。   The usage of the metal cylinder heating device 40 is basically the same as the conventional one. That is, (refer FIG.1 (b)), when heating the metal cylinder 10 using the metal cylinder heating apparatus 40 in order to perform the fusion coating of a self-fluxing alloy on the inner peripheral surface of the metal cylinder 10, First, the metal cylinder 10 is mounted on the receiving rollers 50 and 60, and then the pre-operation corresponding to the application such as charging of the self-fluxing alloy powder is performed, and the inductor 22 is brought closer to the metal cylinder 10 or the inductor 22 Is in a position where induction heating is possible with respect to the metal cylinder 10, and then the electric motor 26 and the high frequency power source 21 are operated.

そうすると、受けローラ50が軸回転し、これに随伴して金属筒体10及び受けローラ60も軸回転する。その回転速度は、図示しないコントローラ等の制御によって、金属筒体10の内周面に所望の遠心力を生じる速度に保たれる。自溶合金の被覆施工に適した遠心力(加速度)としては、30m/s(≒3G、なおGは重力加速度)以上が望ましく、特許文献1には30〜100m/s(3〜10G)や,50〜100m/s(5〜10G)の範囲が例示されているが、最近では、200〜500m/s(20G〜50G)の範囲も多用されている。 If it does so, the receiving roller 50 will carry out an axial rotation and the metal cylinder 10 and the receiving roller 60 will also carry out an axial rotation in connection with this. The rotation speed is maintained at a speed at which a desired centrifugal force is generated on the inner peripheral surface of the metal cylinder 10 by control of a controller or the like (not shown). The centrifugal force that is suitable for coating application of the self-fluxing alloy (acceleration), 30m / s 2 (≒ 3G, Note G is gravitational acceleration) or more is desirable, in Patent Document 1 30~100m / s 2 (3~10G ) and, although the scope of 50~100m / s 2 (5~10G) are illustrated, more recently, are also frequently used range 200~500m / s 2 (20G~50G).

また、誘導子22に高周波通電が行われて、金属筒体10の外周面に(図9(b)参照)ほぼ鞍形の一次誘導電流11が誘起され、その電路部分が加熱される。金属筒体10が高速で軸回転しているので、金属筒体10は全周がほぼ一様に加熱される。自溶合金の被覆施工の場合、自溶合金が融着する高温まで金属筒体10が加熱される。その温度は、特許文献1に記載のように1000℃程度か又はそれ以上であり、それに要する高周波通電条件としては、周波数は0.3kHz〜5kHz程度の低周波帯でパワーは200kW〜1200kW程度の特大電力とする通電条件が多用されるが、それ以外も使用される。   Further, high frequency energization is performed on the inductor 22, and a substantially bowl-shaped primary induced current 11 is induced on the outer peripheral surface of the metal cylinder 10 (see FIG. 9B), and the electric circuit portion is heated. Since the metal cylinder 10 is rotating at high speed, the entire circumference of the metal cylinder 10 is heated almost uniformly. In the case of coating the self-fluxing alloy, the metal cylinder 10 is heated to a high temperature at which the self-fluxing alloy is fused. The temperature is about 1000 ° C. or higher as described in Patent Document 1, and the high-frequency energization condition required for the temperature is a low frequency band of about 0.3 kHz to 5 kHz and a power of about 200 kW to 1200 kW. The energizing conditions for extra power are often used, but others are also used.

さらに、受けローラ50,60の大部分がステンレス製なので、高周波通電時には、やはり受けローラ50,60にも二次誘導電流12が誘起される。
もっとも、受けローラ50,60の構造が従来の受けローラ23,24と違っているので、受けローラ50,60における二次誘導電流12の流れ方が従来と異なるものとなっている。
Furthermore, since most of the receiving rollers 50 and 60 are made of stainless steel, the secondary induction current 12 is also induced in the receiving rollers 50 and 60 when high-frequency current is applied.
However, since the structures of the receiving rollers 50 and 60 are different from those of the conventional receiving rollers 23 and 24, the flow of the secondary induced current 12 in the receiving rollers 50 and 60 is different from the conventional one.

すなわち(図1(c)参照)、受けローラ60では、二次誘導電流12誘起部位である外周面部分が、十二個の短尺スリーブ62に分割されており、それらが電気的に相互絶縁されていることから、二次誘導電流12も短尺スリーブ62に対応して分割され、各々の二次誘導電流12は該当短尺スリーブ62内の小さな閉ループを流れるので、二次誘導電流12の源の誘導起電力も同じく分割されて分散する。受けローラ50についても同様である。   That is, (see FIG. 1C), in the receiving roller 60, the outer peripheral surface portion, which is the secondary induced current 12 induction site, is divided into twelve short sleeves 62, which are electrically insulated from each other. Therefore, the secondary induced current 12 is also divided corresponding to the short sleeve 62, and each secondary induced current 12 flows through a small closed loop in the corresponding short sleeve 62, so that the source of the secondary induced current 12 is induced. The electromotive force is also divided and distributed. The same applies to the receiving roller 50.

そのため、軸回転に伴い受けローラ50,60や金属筒体10が振れたりして受けローラ50,60と金属筒体10との接触が破られたときなどに、誘導電流の還流を継続しようとする誘導起電力が働いても、各短尺スリーブ62に分散した誘導起電力は、そうでないときより桁違いに弱いので、スパークの発生は激減する。
こうして、この金属筒体加熱装置40にあっては、受けローラ50,60がスパークにほとんど曝されないことから、ステンレスの持つ靱性等の長期耐性という利点を十分に享有するので、長期間に亘って不都合なく使用することができる。
Therefore, when the receiving rollers 50 and 60 and the metal cylinder 10 are shaken as the shaft rotates and the contact between the receiving rollers 50 and 60 and the metal cylinder 10 is broken, an attempt is made to continue the recirculation of the induced current. Even if the induced electromotive force works, the induced electromotive force dispersed in each short sleeve 62 is orders of magnitude weaker than that otherwise, so that the occurrence of sparks is drastically reduced.
Thus, in this metal cylinder heating device 40, since the receiving rollers 50 and 60 are hardly exposed to the spark, the advantages of long-term durability such as toughness of stainless steel are fully enjoyed. Can be used without inconvenience.

また、長期使用の後、短尺スリーブ52,62が傷んだときには、その短尺スリーブだけ新品と交換することにより、他の部材は継続使用することができる。短尺スリーブの交換は、受けローラ50,60の組立時と同様に焼嵌めで行うことで、容易にできる。
さらに、絶縁手段として設けられた端部間隙53,63確保用のスペーサ54や,芯部材51の絶縁被覆,スペーサ54の絶縁被覆,ストッパー55の絶縁被覆は、受けローラ33,34の絶縁被覆とは異なり、過酷な接触転動に曝されることがないので、これも長期使用に耐える。
When the short sleeves 52 and 62 are damaged after long-term use, the other members can be used continuously by replacing only the short sleeves with new ones. The short sleeve can be easily replaced by shrink fitting as in the assembly of the receiving rollers 50 and 60.
Further, the spacer 54 for securing the end gaps 53 and 63 provided as an insulating means, the insulating coating of the core member 51, the insulating coating of the spacer 54, and the insulating coating of the stopper 55 are the same as the insulating coating of the receiving rollers 33 and 34. Unlike this, it is not exposed to harsh contact rolling, so it also withstands long-term use.

また、金属筒体10の加熱に伴い金属筒体10だけでなく受けローラ50も加熱され、その加熱が芯部材51よりも短尺スリーブ52に強く作用するため、短尺スリーブ52が熱膨張して芯部材51に対する締付け力が弱まる傾向を生じる。そして、それが行き過ぎて、不所望に緩んでしまうと、短尺スリーブ52が芯部材51の周方向にも軸方向にも移動しかねない状態となる。しかし、そのような万一の事態にも、受けローラ50にあっては、キー部材51aとキー溝52aとの協動によって、芯部材51の空回りが防止され、スペーサ54の介在によって、隣り合う短尺スリーブ52同士の接触短絡が防止され、ストッパー55によって短尺スリーブ52の抜け落ちが防止される。   In addition, not only the metal cylinder 10 but also the receiving roller 50 is heated with the heating of the metal cylinder 10, and the heating acts more strongly on the short sleeve 52 than the core member 51. The tightening force on the member 51 tends to be weakened. If it goes too far and loosens undesirably, the short sleeve 52 can move both in the circumferential direction and in the axial direction of the core member 51. However, even in such a case, in the receiving roller 50, the core member 51 is prevented from spinning by the cooperation of the key member 51a and the key groove 52a, and the spacers 54 are adjacent to each other. The contact short circuit between the short sleeves 52 is prevented, and the stopper 55 prevents the short sleeves 52 from coming off.

本発明の金属筒体加熱装置の他の実施形態について、その構成を、図面を引用して説明する。図5は、金属筒体の加熱装置の全体構造を示す斜視図であり、図6は、受けローラ二本(又は四本を二列に配した構成)の平面図であり、図7は、中間軸受部の正面図と側面図である。なお、図7の正面図ではカバーを縦に切断して手前の部分を取り去った状態を示している。   The configuration of another embodiment of the metal cylinder heating device of the present invention will be described with reference to the drawings. FIG. 5 is a perspective view showing the overall structure of the metal cylinder heating device, FIG. 6 is a plan view of two receiving rollers (or a configuration in which four are arranged in two rows), and FIG. It is the front view and side view of an intermediate bearing part. Note that the front view of FIG. 7 shows a state in which the cover is cut vertically and the front portion is removed.

この実施形態の金属筒体加熱装置70が上述した金属筒体加熱装置40と相違するのは、ローラ駆動装置25〜26に中間軸受部72追加された点と、そのローラ駆動装置が対地絶縁されている点である。
対地絶縁は(図5参照)、両端軸受部25と電動機26と中間軸受部72の各底面に絶縁板71を敷くことで行われ、これによって、受けローラの芯部材に誘起された誘導電流がローラ駆動装置を介して設置先床面等に流れるのが阻止されるので、それに起因する放電までも抑制される。
The metal cylinder heating device 70 of this embodiment is different from the metal cylinder heating device 40 described above in that the intermediate bearing portion 72 is added to the roller driving devices 25 to 26 and the roller driving device is insulated from the ground. It is a point.
Insulation to the ground (see FIG. 5) is performed by laying insulating plates 71 on the bottom surfaces of the both end bearing portions 25, the motor 26, and the intermediate bearing portion 72, whereby the induced current induced in the core member of the receiving roller is generated. Since it is prevented from flowing to the installation floor or the like via the roller driving device, even the discharge caused by the flow is suppressed.

芯部材の中間部を軸支する中間軸受部72の導入により、受けローラは一本で両側の両端軸受部25間に及ぶ長いものでも良く、両端軸受部25と中間軸受部72と間の短いものを二本連結させても良くなっているが、新たな受けローラ80,90も、受けローラ50,60同様、外周面に絶縁被覆を施したステンレス製の芯部材81,91に、ステンレス製の短尺スリーブ82,92を焼嵌めしたものである。この受けローラ80,90では、短尺スリーブ92を軸方向に列ねるに際して、総てを密に列ねるのでなく、部分的に省いている。中間軸受部72には、輻射熱を遮蔽するために、水冷のカバーが付設されている。   Due to the introduction of the intermediate bearing portion 72 that pivotally supports the intermediate portion of the core member, the receiving roller may be a long one extending between the both end bearing portions 25 on both sides, and the short between the both end bearing portions 25 and the intermediate bearing portion 72. The two receiving rollers 80 and 90 are also made of stainless steel on the stainless steel core members 81 and 91 having an outer peripheral surface coated with an insulating coating, like the receiving rollers 50 and 60. The short sleeves 82 and 92 are shrink-fitted. In the receiving rollers 80 and 90, when the short sleeves 92 are arranged in the axial direction, all of them are not arranged closely but are partially omitted. A water-cooled cover is attached to the intermediate bearing portion 72 in order to shield radiant heat.

この場合、受けローラ80,90の軸支が両端の両端軸受部25だけでなく中間の中間軸受部72によってもなされていることから、受けローラ80,90を高速回転させたときでも、受けローラ80,90の振れが小さく抑えられるので、金属筒体10と短尺スリーブ82,92との接触転動部位における衝撃が小さくて済む。また、短尺スリーブ82,92が軸方向に分割および相互絶縁されているうえ、芯部材81,91を軸支するローラ駆動装置25〜26,72が対地絶縁されているので、接触転動部位等での放電もその悪影響もほとんどないので、受けローラ80,90は、より長期の使用に耐える。   In this case, since the shaft support of the receiving rollers 80 and 90 is made not only by the both end bearing portions 25 at both ends but also by the intermediate intermediate bearing portion 72, even when the receiving rollers 80 and 90 are rotated at high speed, the receiving rollers Since the vibration of 80 and 90 is suppressed to a small level, the impact at the contact rolling portion between the metal cylinder 10 and the short sleeves 82 and 92 can be reduced. Further, since the short sleeves 82 and 92 are divided in the axial direction and insulated from each other, and the roller driving devices 25 to 26 and 72 that pivotally support the core members 81 and 91 are insulated from the ground, the contact rolling part and the like Therefore, the receiving rollers 80 and 90 can withstand long-term use.

さらに、中間軸受部72は、カバーの露呈部74が受けローラ80,90や金属筒体10の発する輻射熱を遮蔽することによって、加熱が緩和されるのに加えて、カバーの通水部73への通水によって積極的に冷却までされるので、過酷な環境下でも軸受部の過剰な温度上昇は回避され、やはり長期使用に耐えることができる。   Further, the intermediate bearing portion 72 shields the radiant heat generated by the receiving rollers 80 and 90 and the metal cylinder 10 by the cover exposing portion 74, and in addition to alleviating the heating, the intermediate bearing portion 72 leads to the water passing portion 73 of the cover. Therefore, even if the environment is harsh, an excessive increase in the temperature of the bearing portion can be avoided and it can withstand long-term use.

こうして、この金属筒体加熱装置70にあっては、受けローラ80,90がスパークにほとんど曝されないうえ、接触転動に伴う衝撃もあまり受けないことから、極めて長期間に亘って不都合なく使用することができる。
また、金属筒体加熱装置70にあっても、短尺スリーブ単位での交換に基づく利点や、絶縁被覆等の接触転動回避による寿命延長、短尺スリーブの異常弛緩に対するキー部材等での空回り防止および絶縁用スペーサ等で短絡防止等は、有効である。
Thus, in this metal cylinder heating device 70, the receiving rollers 80 and 90 are hardly exposed to the sparks, and the impact due to the contact rolling is not so much received. be able to.
Even in the case of the metal cylinder heating device 70, the advantage based on the replacement of the short sleeve unit, the extension of the life by avoiding the contact rolling of the insulation coating, the prevention of idling with the key member etc. against the abnormal relaxation of the short sleeve, and It is effective to prevent a short circuit with an insulating spacer or the like.

上述の金属筒体加熱装置40及び金属筒体加熱装置70を試作して、短尺スリーブの絶縁状態と、受けローラの無負荷時および有負荷時の振れと、スパーク痕の発現までの使用回数とを調べた。金属筒体加熱装置70については中間軸受部72の温度も測定した。   Prototyping the above-described metal cylinder heating device 40 and metal cylinder heating device 70, the insulation state of the short sleeve, the run-out of the receiving roller when there is no load and when it is loaded, and the number of times used until the occurrence of a spark mark I investigated. For the metal cylinder heating device 70, the temperature of the intermediate bearing 72 was also measured.

金属筒体加熱装置40の受けローラ50,60の芯部材51,61は、材質がJIS/SCM440で外径が120mmで長さが1920mmであり、その絶縁被覆は材質がアルミナで厚さが0.3mmであり溶射法で形成したものである。
短尺スリーブ52,62は、材質がJIS/SUS304で外径が150mmで内径が120mmで長さが155mmである。なお、一方の端に配置されるのは長さが半分しかない。
The core members 51 and 61 of the receiving rollers 50 and 60 of the metal cylinder heating device 40 are made of JIS / SCM440, have an outer diameter of 120 mm and a length of 1920 mm. The insulating coating is made of alumina and has a thickness of 0. .3 mm and formed by thermal spraying.
The short sleeves 52 and 62 are made of JIS / SUS304, have an outer diameter of 150 mm, an inner diameter of 120 mm, and a length of 155 mm. Note that only one half is placed at one end.

金属筒体加熱装置70の受けローラ80,90の芯部材81,91は、中間軸受部72のところで分割されており、一方の長さが1254mmで他方の長さが950mmであり、何れも材質がJIS/SCM440で外径が150mmである。その絶縁被覆は材質がアルミナで厚さが0.3mmであり溶射法で形成したものである。
短尺スリーブ82,92は、材質がJIS/SUS304で外径が180mmで内径が120mmで長さが155mmである。
The core members 81 and 91 of the receiving rollers 80 and 90 of the metal cylinder heating device 70 are divided at the intermediate bearing portion 72. One length is 1254 mm and the other length is 950 mm. Is JIS / SCM440 and has an outer diameter of 150 mm. The insulating coating is made of alumina and has a thickness of 0.3 mm and is formed by a thermal spraying method.
The short sleeves 82 and 92 are made of JIS / SUS304, have an outer diameter of 180 mm, an inner diameter of 120 mm, and a length of 155 mm.

金属筒体加熱装置40の短尺スリーブ52,62について隣同士の絶縁抵抗は、市販の一般的なメガーで測定したところ、最低が1MΩで、5MΩ、12MΩ、20MΩ、27MΩ、30MΩもあったが、他は無限大であった。
また、金属筒体加熱装置70の短尺スリーブ82,92について隣同士の絶縁抵抗は、同じメガーで測定したところ、総て無限大であった。
The insulation resistance between the adjacent short sleeves 52 and 62 of the metal cylinder heating device 40 was measured with a commercially available general mega, and the lowest was 1 MΩ, which was 5 MΩ, 12 MΩ, 20 MΩ, 27 MΩ, and 30 MΩ. The others were endless.
Moreover, when the insulation resistance of adjacent short length sleeves 82 and 92 of the metal cylinder heating device 70 was measured with the same megger, all were infinite.

そして、無負荷で運転して振れを測定したところ、金属筒体加熱装置40の受けローラ50,60では0.02mm以下、金属筒体加熱装置70の受けローラ80,90では0.02〜0.05mmであった。
これに対し、テスト用の金属筒体10を乗載して有負荷運転を行ったところ、金属筒体加熱装置40の受けローラ50,60の振れは0.25mm程度に増えたが、金属筒体加熱装置70の受けローラ80,90の振れは0.05〜0.07mmにとどまった。
When the runout was measured by operating with no load, it was 0.02 mm or less for the receiving rollers 50 and 60 of the metal cylinder heating device 40, and 0.02 to 0 for the receiving rollers 80 and 90 of the metal cylinder heating device 70. 0.05 mm.
On the other hand, when the metal cylinder 10 for test was mounted and a load operation was performed, the deflection of the receiving rollers 50 and 60 of the metal cylinder heating device 40 increased to about 0.25 mm. The deflection of the receiving rollers 80 and 90 of the body heating device 70 was only 0.05 to 0.07 mm.

さらに、誘導子22に高周波通電して誘導加熱も行い、金属筒体10の温度と、中間軸受部72のカバー露呈部74の温度と、中間軸受部72の軸受そのものの温度とを測定したところ、次のようになった。すなわち、筒体温度が600℃のときカバー温度が24℃で軸受温度が42℃であり、筒体温度が700℃のときカバー温度が25℃で軸受温度が42℃であり、筒体温度が850℃のときカバー温度が30℃で軸受温度が44℃であり、筒体温度が950℃のときカバー温度が35℃で軸受温度が75℃であり、筒体温度が1050℃のときカバー温度が38℃で軸受温度が68℃であった。   Furthermore, induction heating was performed by energizing the inductor 22 with high frequency, and the temperature of the metal cylinder 10, the temperature of the cover exposing portion 74 of the intermediate bearing portion 72, and the temperature of the bearing of the intermediate bearing portion 72 were measured. It became as follows. That is, when the cylinder temperature is 600 ° C., the cover temperature is 24 ° C. and the bearing temperature is 42 ° C., and when the cylinder temperature is 700 ° C., the cover temperature is 25 ° C. and the bearing temperature is 42 ° C., and the cylinder temperature is Cover temperature is 30 ° C. and bearing temperature is 44 ° C. at 850 ° C. Cover temperature is 35 ° C. and bearing temperature is 75 ° C. when cylinder temperature is 950 ° C. Cover temperature when cylinder temperature is 1050 ° C. Was 38 ° C. and the bearing temperature was 68 ° C.

そして、金属筒体10を15回転/秒で回転させながら1050℃まで加熱昇温させて、その状態を10秒間維持してから、金属筒体10を常温まで下げる、という処理を繰り返した。
従来の金属筒体加熱装置20であれば、大抵、そのような処理を10回ほど繰り返すと受けローラ23,24に視認可能なスパーク痕が現出するのであるが、金属筒体加熱装置40も金属筒体加熱装置70も、上記処理を100回以上繰り返しても受けローラ50,60,80,90にスパーク痕が現出せず、上記処理が継続されている。
And the process of heating and raising to 1050 ° C. while rotating the metal cylinder 10 at 15 revolutions / second, maintaining the state for 10 seconds, and then lowering the metal cylinder 10 to room temperature was repeated.
In the case of the conventional metal cylinder heating device 20, when such a process is repeated about 10 times, a visible spark mark appears on the receiving rollers 23 and 24. In the metal cylinder heating device 70, even if the above process is repeated 100 times or more, no spark mark appears on the receiving rollers 50, 60, 80, 90, and the above process is continued.

[その他]
なお、上記の実施形態では、誘導子22として鞍形の誘導コイルを挙げたが、これは例示であり、誘導子は、金属筒体の全長を一発加熱できるものであれば他の形状のものでも良く、例えば特許文献1記載の面焼形コイルやマルチターンコイルでも良い。
また、本発明の金属筒体加熱装置は、金属筒体内周面への自溶合金被覆施工に限られる訳でなく、例えばローラの熱処理などにも使用できる。
[Others]
In the above embodiment, a saddle-shaped induction coil is used as the inductor 22. However, this is merely an example, and the inductor can have other shapes as long as it can heat the entire length of the metal cylinder. For example, a face-fired coil or a multi-turn coil described in Patent Document 1 may be used.
Further, the metal cylinder heating device of the present invention is not limited to the self-fluxing alloy coating construction on the circumferential surface of the metal cylinder, and can be used for heat treatment of rollers, for example.

さらに、上記の実施形態では、特許文献1に記載されたような押えローラを設けていなかったが、押えローラの付設は、他の部材と干渉しなければ、任意である。
また、上記の実施形態では、電動機での回転駆動を一本の受けローラに対してだけ行うようにしたが、回転同期を適切に採れば、複数本の受けローラを駆動するようにしても良い。
Furthermore, in the above-described embodiment, the press roller described in Patent Document 1 is not provided. However, the press roller may be arbitrarily provided as long as it does not interfere with other members.
Further, in the above embodiment, the rotation drive by the electric motor is performed only for one receiving roller, but a plurality of receiving rollers may be driven if rotation synchronization is appropriately taken. .

また、図8は、受けローラ51の一端部を中心とした詳細な側面図であり、短尺スリーブの上半分など一部分を断面で示しているが、ここに図示したストッパー55は、アングル部材状に曲がっていて、一端部が受けローラ51の端面にボルト55aで固定され、他端が受けローラ51の外周面上で短尺スリーブの端面に当接するようになっている。   FIG. 8 is a detailed side view centered on one end of the receiving roller 51, and shows a part of the short sleeve, such as the upper half, in cross section. The stopper 55 shown here is shaped like an angle member. One end is fixed to the end surface of the receiving roller 51 with a bolt 55a, and the other end is in contact with the end surface of the short sleeve on the outer peripheral surface of the receiving roller 51.

本発明の一実施形態について、(a)が金属筒体加熱装置の全体構造を示す斜視図、(b)が使用状態を示す斜視図、(c)が受けローラに誘起される二次誘導電流を示す斜視図である。1A is a perspective view showing an overall structure of a metal cylinder heating device, FIG. 1B is a perspective view showing a use state, and FIG. 2C is a secondary induced current induced in a receiving roller. FIG. 受けローラ二本の平面図である。It is a top view of two receiving rollers. 受けローラ各部の外観構造を示し、(a)が芯部材の斜視図、(b)が短尺スリーブの斜視図、(c)が絶縁用スペーサの斜視図、(d)が受けローラの展開図である。The external structure of each part of the receiving roller is shown, (a) is a perspective view of a core member, (b) is a perspective view of a short sleeve, (c) is a perspective view of an insulating spacer, and (d) is a developed view of the receiving roller. is there. 受けローラ各部の内部構造を示し、(a)が受けローラの正面図、(b)がAA断面矢視図、(c)がBB断面矢視図、(d)がその部分拡大図、(e)がC部拡大正面図、(f)がその断面図、(g)がその部分拡大図である。The internal structure of each part of the receiving roller is shown, (a) is a front view of the receiving roller, (b) is an AA cross-sectional arrow view, (c) is a BB cross-sectional arrow view, (d) is a partially enlarged view thereof, (e ) Is an enlarged front view of part C, (f) is a sectional view thereof, and (g) is a partially enlarged view thereof. 本発明の他の実施形態について、金属筒体加熱装置の全体構造を示す斜視図である。It is a perspective view which shows the whole structure of a metal cylinder heating apparatus about other embodiment of this invention. 受けローラ二本の平面図である。It is a top view of two receiving rollers. 中間軸受部の正面図と側面図である。It is the front view and side view of an intermediate bearing part. 受けローラ端部の一部断面側面図である。It is a partial cross section side view of a receiving roller edge part. 従来の金属筒体加熱装置について、(a)が構造および使用状態を示す斜視図、(b)が金属筒体に誘起される一次誘導電流を示す斜視図、(c)が受けローラに誘起される二次誘導電流を示す斜視図である。Regarding a conventional metal cylinder heating device, (a) is a perspective view showing the structure and use state, (b) is a perspective view showing a primary induced current induced in the metal cylinder, and (c) is induced in the receiving roller. It is a perspective view which shows the secondary induced current. 受けローラに絶縁被覆を施してみた金属筒体加熱装置について、(a)が構造および使用状態を示す斜視図、(b)及び(c)が何れも受けローラに誘起される二次誘導電流を示す斜視図である。(A) is a perspective view showing a structure and a usage state of a metal cylinder heating device in which an insulating coating is applied to a receiving roller, and (b) and (c) are secondary induced currents induced in the receiving roller. It is a perspective view shown.

符号の説明Explanation of symbols

10 金属筒体(ワーク)
11 一次誘導電流(金属筒体に誘起)
12 二次誘導電流(受けローラに誘起)
13,14,15,16 転動面端部(放電頻発部位)
20 金属筒体加熱装置(金属筒体の加熱装置)
21 高周波電源(誘導加熱装置)
22 誘導子(コイル、誘導加熱装置)
23,24 受けローラ(筒体支持回転装置の要部)
25 両端軸受部(軸支部、ローラ駆動装置)
26 電動機(回転駆動源、ローラ駆動装置)
30 金属筒体加熱装置(金属筒体の加熱装置)
33,34 受けローラ(筒体支持回転装置の要部)
40 金属筒体加熱装置(金属筒体の加熱装置)
50,60 受けローラ(筒体支持回転装置の要部)
51,61 芯部材(金属製軸体、外周面に絶縁被覆)
51a キー部材
51b 中空
52,62 短尺スリーブ(焼嵌め可能なステンレス筒状体)
52a キー溝
53,63 端部間隙(電気絶縁手段)
54 スペーサ(電気絶縁手段)
54a 短尺スリーブ離隔部
54b 被保持部
55 ストッパー(電気絶縁手段、脱落防止手段)
70 金属筒体加熱装置(金属筒体の加熱装置)
71 絶縁板(対地絶縁手段)
72 中間軸受部(軸支部、ローラ駆動装置)
73 通水部(輻射熱遮蔽用の水冷カバー)
74 露呈部(輻射熱遮蔽用の水冷カバー)
80,90 受けローラ(筒体支持回転装置の要部)
81,91 芯部材(金属製軸体、外周面に絶縁被覆)
82,92 短尺スリーブ(焼嵌め可能なステンレス筒状体)
10 Metal cylinder (work)
11 Primary induced current (induced to metal cylinder)
12 Secondary induced current (induced to the receiving roller)
13, 14, 15, 16 End of rolling surface (discharge frequent occurrence part)
20 Metal cylinder heating device (Metal cylinder heating device)
21 High frequency power supply (induction heating device)
22 Inductor (coil, induction heating device)
23, 24 Receiving roller (main part of cylindrical body supporting rotating device)
25 Both end bearing (shaft support, roller drive)
26 Electric motor (rotation drive source, roller drive device)
30 Metal cylinder heating device (Metal cylinder heating device)
33, 34 Receiving roller (main part of cylindrical support rotating device)
40 Metal cylinder heating device (Metal cylinder heating device)
50, 60 Receiving roller (main part of cylindrical support rotating device)
51, 61 Core member (metal shaft, insulation coating on outer peripheral surface)
51a Key member 51b Hollow 52, 62 Short sleeve (Stainless tubular body capable of shrink fitting)
52a Key groove 53, 63 End gap (electrical insulation means)
54 Spacer (electrical insulation means)
54a Short sleeve separation part 54b Held part 55 Stopper (electrical insulation means, drop-off prevention means)
70 Metal cylinder heating device (Metal cylinder heating device)
71 Insulation plate (ground insulation means)
72 Intermediate bearing (shaft support, roller drive)
73 Water passage (water cooling cover for radiant heat shielding)
74 Exposed part (Water-cooled cover for radiant heat shielding)
80, 90 Receiving roller (main part of cylinder support rotating device)
81,91 core member (metal shaft, insulation coating on outer peripheral surface)
82,92 Short sleeve (Stainless tube that can be shrink fitted)

Claims (7)

加熱対象の金属筒体を回転させながら支持する二列構成の受けローラと、この受けローラを回転駆動するローラ駆動装置と、前記金属筒体を全長同時に誘導加熱する誘導加熱装置とを備えた金属筒体の加熱装置において、前記受けローラは、金属製の芯部材に金属製のスリーブが嵌装された構造を有し、そのスリーブは複数体の短尺スリーブに分割されていて、前記芯部材と電気絶縁された状態で且つ短尺スリーブ相互間に隙間を設けた配置形態にて嵌装されている、ことを特徴とする金属筒体の加熱装置。   A metal provided with a receiving roller having a two-row structure that supports a metal cylinder to be heated while rotating, a roller driving device that rotationally drives the receiving roller, and an induction heating device that induction-heats the metal cylinder at the same time. In the cylindrical heating device, the receiving roller has a structure in which a metal sleeve is fitted to a metal core member, and the sleeve is divided into a plurality of short sleeves, and the core member and A metal cylinder heating device, wherein the metal cylinder heating device is fitted in an electrically insulated state and an arrangement in which a gap is provided between the short sleeves. 前記複数体の短尺スリーブを前記芯部材と電気絶縁する手段は、前記芯部材の外周面または前記短尺スリーブの内周面に施された電気絶縁性の被覆であって、前記短尺スリーブはこの被覆を介して前記芯部材に緊着嵌装されている、ことを特徴とする請求項1記載の金属筒体の加熱装置。   The means for electrically insulating the plurality of short sleeves from the core member is an electrically insulating coating applied to an outer peripheral surface of the core member or an inner peripheral surface of the short sleeve, The metal cylinder heating device according to claim 1, wherein the metal member is tightly fitted to the core member via a pin. 前記短尺スリーブの内周面にその短尺スリーブの全長に亘るキー溝が設けられており、また、前記芯部材の外周面にはキー部材が植設されていて、前記短尺スリーブは前記キー溝に前記キー部材を突出させることで前記芯部材に対して周方向固定されており、更に、前記短尺スリーブの前記キー溝にキー係合させて短尺スリーブ相互間に配置した電気絶縁性のスペーサによって、短尺スリーブ相互間の前記隙間が維持されている、ことを特徴とする請求項1記載の金属筒体の加熱装置。   A key groove extending over the entire length of the short sleeve is provided on the inner peripheral surface of the short sleeve, and a key member is implanted on the outer peripheral surface of the core member, and the short sleeve is formed in the key groove. The key member is protruded to be fixed in the circumferential direction with respect to the core member, and further, by an electrically insulating spacer disposed between the short sleeves by key engagement with the key grooves of the short sleeves, The heating apparatus for a metal cylinder according to claim 1, wherein the gap between the short sleeves is maintained. 前記芯部材の端部に前記短尺スリーブの脱落を防止するためのストッパーが配設されていることを特徴とする請求項3記載の金属筒体の加熱装置。   The metal cylinder heating device according to claim 3, wherein a stopper for preventing the short sleeve from falling off is disposed at an end of the core member. 前記スリーブが非磁性金属製であることを特徴とする請求項1記載の金属筒体の加熱装置。   2. The metal cylinder heating device according to claim 1, wherein the sleeve is made of a nonmagnetic metal. 前記ローラ駆動装置が対地絶縁されていることを特徴とする請求項1乃至請求項5の何れか一項に記載された金属筒体の加熱装置。   6. The heating device for a metal cylinder according to claim 1, wherein the roller driving device is ground-insulated. 前記ローラ駆動装置に、前記芯部材の端部を軸支する両端軸受部と、前記芯部材の中間部を軸支する中間軸受部とが、具わっている、ことを特徴とする請求項6記載の金属筒体の加熱装置。   7. The roller driving device is provided with both end bearing portions that pivotally support an end portion of the core member and an intermediate bearing portion that pivotally supports an intermediate portion of the core member. The heating apparatus of the metal cylinder of description.
JP2004027401A 2004-02-03 2004-02-03 Heating device of metal tube body Pending JP2005222745A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004027401A JP2005222745A (en) 2004-02-03 2004-02-03 Heating device of metal tube body
CNA2004100914451A CN1652641A (en) 2004-02-03 2004-11-22 Heater of metal cylinder
TW094101195A TW200528562A (en) 2004-02-03 2005-01-14 Heater of metal cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027401A JP2005222745A (en) 2004-02-03 2004-02-03 Heating device of metal tube body

Publications (1)

Publication Number Publication Date
JP2005222745A true JP2005222745A (en) 2005-08-18

Family

ID=34879156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027401A Pending JP2005222745A (en) 2004-02-03 2004-02-03 Heating device of metal tube body

Country Status (3)

Country Link
JP (1) JP2005222745A (en)
CN (1) CN1652641A (en)
TW (1) TW200528562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058318A (en) * 2014-09-11 2016-04-21 バーンズ グループ インコーポレーテッド Induction heating of spring
WO2019163314A1 (en) * 2018-02-23 2019-08-29 Tmtマシナリー株式会社 Induction heating roller and spun yarn take-up machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045905B (en) * 2009-10-20 2014-10-29 富士电子工业株式会社 Supporting device of inducted heating object
JP5790276B2 (en) * 2011-08-08 2015-10-07 東芝三菱電機産業システム株式会社 Directional electrical steel sheet production line and induction heating device
CN105567918B (en) * 2014-10-15 2019-03-12 铂尼狮集团股份有限公司 The induction heating of spring
CN110270689A (en) * 2018-03-13 2019-09-24 东莞杰宇机械有限公司 A kind of bimetal tube sleeve forming technique
KR102486703B1 (en) * 2022-08-01 2023-01-10 주식회사 엠아이 Method for manufacturing depowder device for piping, and method for installing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058318A (en) * 2014-09-11 2016-04-21 バーンズ グループ インコーポレーテッド Induction heating of spring
WO2019163314A1 (en) * 2018-02-23 2019-08-29 Tmtマシナリー株式会社 Induction heating roller and spun yarn take-up machine
CN111742614A (en) * 2018-02-23 2020-10-02 日本Tmt机械株式会社 Induction heating roller and spinning traction machine
JPWO2019163314A1 (en) * 2018-02-23 2021-02-12 Tmtマシナリー株式会社 Induction heating roller and spinning taker
JP2022010157A (en) * 2018-02-23 2022-01-14 Tmtマシナリー株式会社 Induction heating roller and spinning taker
CN111742614B (en) * 2018-02-23 2022-06-28 日本Tmt机械株式会社 Induction heating roller and spinning traction machine
JP7261854B2 (en) 2018-02-23 2023-04-20 Tmtマシナリー株式会社 Induction heating roller and spinning take-up machine

Also Published As

Publication number Publication date
CN1652641A (en) 2005-08-10
TWI366605B (en) 2012-06-21
TW200528562A (en) 2005-09-01

Similar Documents

Publication Publication Date Title
EP2772555B1 (en) Ring-shaped member heat treatment method and ring-shaped member manufacturing method
TW200528562A (en) Heater of metal cylinder
US20140079350A1 (en) Bearing with an energy production unit, in particular self-aligning roller bearing for the mounting of a roller
AU2014390263B2 (en) Method and apparatus for dismounting and mounting an annular sleeve
EP2619337B1 (en) Apparatus for induction hardening
JP7105959B2 (en) Thrust bearings and clamps in roll journal assemblies
US20110247732A1 (en) Induction hardening system and method
US8780952B2 (en) Roof system for electric arc furnace and method for manufacturing the same
WO2007011366A2 (en) An integrated magnetic/foil bearing and methods for supporting a shaft journal using the same
JP2011117016A (en) Method for manufacturing bearing ring, bearing ring and rolling bearing
KR20090100351A (en) A rotary charging device for a shaft furnace
JP2009270173A (en) Heat treatment method for bearing ring for radial bearing
US20130098512A1 (en) Mechanical component and method of surface hardening
JP2016062681A (en) Induction heating roller device
WO2011024508A1 (en) Induction heating roller device
JP2014025096A (en) Method for manufacturing bearing ring, bearing ring and rolling bearing
US8531080B2 (en) Rotor having a superconducting rotor winding and an integral sleeve surrounding the rotor winding
JP2008214698A (en) Induction hardening apparatus and method
KR100755741B1 (en) Induction hardening heat treatment apparatus for a double row tapered roller bearing
JP2019091680A (en) Induction heating roller device
CN209861210U (en) Induction heating roller device
JP2008169432A (en) Heat-treatment method and heat-treatment apparatus for steel ball
JP2024029100A (en) Shaft thickening method and shaft thickening device
FI127126B (en) SUPPORT ARRANGEMENTS TO SUPPORT A CYLINDRIC OVEN PART OF A OVEN ROTATELY IN RELATION TO A SUPPORT OF THE OVEN
JPH046788A (en) Induction heating method by low-frequency ac magnetic field and device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080620