WO2011024508A1 - Induction heating roller device - Google Patents

Induction heating roller device Download PDF

Info

Publication number
WO2011024508A1
WO2011024508A1 PCT/JP2010/056602 JP2010056602W WO2011024508A1 WO 2011024508 A1 WO2011024508 A1 WO 2011024508A1 JP 2010056602 W JP2010056602 W JP 2010056602W WO 2011024508 A1 WO2011024508 A1 WO 2011024508A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller body
rotating shaft
end side
magnetic bearing
magnetic
Prior art date
Application number
PCT/JP2010/056602
Other languages
French (fr)
Japanese (ja)
Inventor
良夫 北野
幸三 岡本
孝次 北野
Original Assignee
トクデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクデン株式会社 filed Critical トクデン株式会社
Priority to CN201080029739.5A priority Critical patent/CN102474922B/en
Priority to JP2011528675A priority patent/JP5779098B2/en
Priority to DE112010002615T priority patent/DE112010002615T5/en
Publication of WO2011024508A1 publication Critical patent/WO2011024508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings

Definitions

  • the present invention relates to an induction heating roller device, and more particularly to a cantilever induction heating roller device.
  • a direct stretching process is performed in which molecular orientation is adjusted by heating and spinning in the length direction after spinning to improve properties such as tensile strength.
  • a plurality of induction heating roll devices are generally used to heat the synthetic fibers and to draw the synthetic fibers by the difference in rotational speed between the induction heating roll devices.
  • the induction heating roller device includes a roller body having a shaft fitting portion at the center of the bottom, and a magnetic flux generation mechanism including a cylindrical iron core and an induction coil arranged inside the roller body.
  • the roller body is supported in a cantilever manner by fitting and connecting the tip of the rotating shaft of the motor to the shaft fitting portion of the roller body, and the motor is directly rotated by the motor.
  • the roller main body generates heat by rotating the roller main body by the motor and exciting the induction coil of the magnetic flux generating mechanism by the AC power supply.
  • the induction heating roller device includes a cylindrical portion that extends into the hollow of the roller body and is integrally connected to the motor.
  • the cylindrical portion is extended inside the roller body so as to be along the axial direction of the roller body.
  • the magnetic flux generation mechanism is being fixed to the outer surface of this cylindrical part.
  • a rolling bearing is installed between the inner surface on the tip side of the cylindrical portion and the rotating shaft, and the rotating shaft is rotatably supported with respect to the cylindrical portion by this rolling bearing.
  • Patent Document 2 there is one in which the roller body is supported by a magnetic bearing, and this magnetic bearing is provided on the outer circumferential surface of the cylindrical portion, and the magnetic pole portion thereof faces the inner circumferential surface of the roller body. It is provided to do.
  • the magnetic bearings so-called radially outward, the opposing area between the magnetic pole part and the roller body (supported body) is made as large as possible to improve support stability.
  • the magnetic bearing is arranged on both sides in the axial direction of the magnetic flux generation mechanism, and the magnetic path of the magnetic flux generated by the magnetic flux generation mechanism is restricted by the magnetic bearing. is there. As a result, there is a problem that it is extremely difficult to control the temperature of the roller body uniformly without the magnetic flux passing through the entire roller body.
  • the magnetic path is extended in the axial direction by the guide member, and the magnetic flux is In some cases, the temperature of the roller body is made uniform by guiding it to the outside.
  • the configuration in which the guide member is provided inside the roller body is not a good idea because it limits the size of the roller body and the arrangement of other components such as magnetic bearings.
  • the magnetic bearing on the tip side is provided inward so that the magnetic pole portion faces the outer peripheral surface of the rotating shaft, but in order to ensure support stability, it is necessary to increase in the longitudinal direction, In this case, there is a problem in that it is difficult to ensure temperature uniformity of the roller body because the region through which the magnetic flux passes is further limited.
  • JP 2009-163968 A Japanese Patent No. 4106277 Japanese Patent No. 4212227
  • the present invention has been made to solve the above-mentioned problems all at once, and it is a main intended problem to improve the support stability by the magnetic bearing while ensuring the uniformity of the temperature of the roller body. It is what.
  • the induction heating roller device includes a bottomed cylindrical roller body having a jacket chamber in which a gas-liquid two-phase heat medium is enclosed and extended in the axial direction, and a rotation center axis of the roller body.
  • a rotating shaft provided at the center of the bottom of the roller body, and the rotating shaft is inserted into the interior of the roller body, and is disposed in a hollow between the roller body and the rotating shaft.
  • a support body provided with a magnetic flux generation mechanism comprising an induction coil wound around a cylindrical iron core, and a magnetic pole portion provided on the inner peripheral surface of the support body and facing the outer peripheral surface of the rotating shaft, And a radial magnetic bearing that supports the rotating shaft in a radial direction in a non-contact manner on the front end side and the rear end side.
  • the rotating shaft is supported by the magnetic bearing, there is no wear when using a rolling bearing, and the life of the bearing can be greatly extended.
  • the jacket body in which the gas-liquid two-phase heat medium is sealed is provided in the roller body, the temperature in the axial direction of the roller body can be made uniform. Further, since the jacket chamber is provided, the temperature can be made uniform even if the magnetic bearing is lengthened in the axial direction, so that the magnetic bearing can be enlarged in the axial direction, and the support stability of the rotating shaft is improved. Can be improved.
  • the magnetic bearing can be arranged without considering the arrangement relationship between the roller body and the magnetic bearing. Support stability can be further improved, such as disposing the end side magnetic bearing outside the roller body.
  • the radial magnetic bearing on the front end side is disposed inside the roller body, and the radial magnetic bearing on the rear end side is disposed outside the roller body. It is desirable that
  • the one that supports the rotating shaft with a magnetic bearing can rotate at a higher speed than the one that supports the rotating shaft with a rolling bearing. Therefore, when the roller body and the rotating shaft are taper fitted and connected by a fastening element, the roller body There is a problem that the backlash between the rotating shaft and the rotating shaft increases and the rigidity decreases. In order to solve this problem, it is desirable that the roller body and the rotating shaft are integrated.
  • the radial magnetic bearing on the front end side and the magnetic flux generation mechanism are provided so as not to overlap in the axial direction.
  • a cooling fluid passage through which a cooling fluid flows is formed in a portion of the support where the radial magnetic bearing is provided.
  • FIG. 3 is a cross-sectional view taken along line AA showing the magnetic bearing on the distal end side of the same embodiment. It is sectional drawing of the induction heating roller apparatus which concerns on deformation
  • the induction heat roller device 100 supports a roller body 2, a rotating shaft 3 provided at the center of the bottom of the roller body 2, and the rotating shaft 3 rotatably.
  • a support body 4 provided with a magnetic flux generation mechanism 5, and radial magnetic bearings 6 and 7 provided on the inner peripheral surface of the support body 4 to support the rotary shaft 3 in a non-contact manner in the radial direction on the front end side and the rear end side; It comprises.
  • a thrust magnetic bearing that supports the rotary shaft 3 in a thrust direction in a non-contact manner is disposed.
  • the roller body 2 has a bottomed cylindrical shape in which the rotation shaft 3 is integrally provided at the center of the bottom.
  • a plurality of jacket chambers 21A for enclosing a gas-liquid two-phase heat medium extending in the longitudinal direction (axial direction) are formed on the side peripheral wall 21 of the roller body 2 at equal intervals in the circumferential direction.
  • the inner end portion communicates with an annular hole provided in the circumferential direction of the side peripheral wall 21, and the jacket chambers 21A are continuous with each other.
  • the outer surface temperature of the roller body 2 is made uniform by the latent heat transfer of the gas-liquid two-phase heat medium sealed in the jacket chamber 21A.
  • the jacket chamber 21 ⁇ / b> A is provided over substantially the entire length in the axial direction on the side peripheral wall 21 of the roller body 2 beyond the position facing the magnetic flux generation mechanism 5. Further, a temperature sensor 10 for detecting the temperature of the outer surface is embedded in the distal end side of the side peripheral wall 21 of the roller body 2.
  • the rotation shaft 3 of the present embodiment is integrally formed with the roller body 2 and is provided at the center of the bottom of the roller body 2 so as to be along the rotation center axis C.
  • the rotor 81 of the drive motor 8 is detachably fixed to the rear end portion 301 of the rotary shaft 3 so as to be equally spaced in the circumferential direction.
  • the rear end portion 301 of the rotary shaft 3 has a tapered shape that decreases in diameter toward the rear end, and the inner peripheral surface of the rotor 81 has a tapered shape that is opposed to the taper of the rear end portion 301.
  • the rear end portion 301 and the rotor 81 are fastened and fixed by the fastening elements 9 such as bolts and nuts.
  • the fastening elements 9 such as bolts and nuts.
  • the support 4 has a rotary shaft 3 inserted therein, and a tip portion is disposed in a hollow between the roller body 2 and the rotary shaft 3, and the rotary shaft 3 is arranged at the front end side and the rear end side with a magnetic bearing 6. , 7 are rotatably supported.
  • a stator 82 of the drive motor 8 is provided on the inner peripheral surface of the support 4 that faces the rotor 81 of the rotating shaft 3.
  • the support 4 includes a support body 41 to which the magnetic bearing 6 on the front end side and the magnetic bearing 7 on the rear end side are attached, and a stator to which the stator 82 is fixed. And a fixing portion 42.
  • the support body 41 has a cylindrical portion 411 having an outer diameter smaller than the inner diameter of the roller body 2 and an outer diameter larger than the outer diameter of the cylindrical portion 411, and the roller body 2 at the proximal end portion of the cylindrical portion 411. And a flange portion 412 covering the opening.
  • a plurality of cooling fluid passages 4 ⁇ / b> A are formed in the side peripheral wall of the support body 41 so as to open at the outer peripheral surface of the flange portion 412 and extend to the tip portion of the cylindrical portion 411. And is opened at the outer peripheral surface of the flange portion 412.
  • a cooling fluid such as water or oil is supplied into the cooling fluid passage 4A, and the support 4 is cooled by circulation of the cooling fluid, and the magnetic flux generating mechanism 5 and the magnetic bearing 6 on the front end side are cooled by this cooling. To do.
  • the bearing temperature in the thermal steady state can be lowered, so that the bearing clearance and preload during assembly and steady state can be reduced.
  • a difference can be made small and it can suppress that unstable vibration generate
  • the magnetic flux generating mechanism 5 is provided on the support body 4 (specifically, the cylindrical portion 411) along the inner peripheral surface of the roller body 2, and the magnetic steel plates that are curved are arranged and laminated radially along the circumferential direction.
  • the cylindrical iron core 51 formed in this manner and the induction coil 52 wound around the outer peripheral surface of the cylindrical iron core 51 are cylindrical.
  • an alternating magnetic flux is generated when an AC voltage is applied to the induction coil 52, and the alternating magnetic flux passes through the cylindrical iron core 51 and the side peripheral wall 21 of the roller body 2. This passage generates a current in the roller body 2, and the roller body 2 generates Joule heat by the current.
  • the heat insulating material 11 is provided on the outer peripheral surface of the support body 4 facing the inner peripheral surface of the roller body 2, specifically, on the outer peripheral surface of the cylindrical portion 411 of the support body 4 and the magnetic flux generation mechanism 5.
  • the magnetic bearing 6 on the distal end side is provided on the inner peripheral surface of the support 4 and has magnetic pole portions 6a and 6b facing the outer peripheral surface of the rotating shaft 3, and supports the rotating shaft 3 in the radial direction on the distal end side in a non-contact manner. To do.
  • the magnetic bearing 6 on the front end side is provided on the front end side with respect to the magnetic flux generation mechanism 5 and is provided in the roller body 2.
  • Each magnetic bearing 6 includes a yoke 61 having a substantially U-shaped cross section in which magnetic pole portions 6 a and 6 b are formed at both ends, and a coil 62 wound around the magnetic pole portions 6 a and 6 b of the yoke 61.
  • An arcuate recess having substantially the same curvature as the outer peripheral surface of the rotating shaft 3 is formed at the tips of the magnetic pole portions 6 a and 6 b, and the leading end surface is disposed to face the outer peripheral surface of the rotating shaft 3.
  • the inner peripheral surface of the tip of the cylindrical portion 411 provided with the tip-side magnetic bearing 6 has an inner diameter so that the tips of the magnetic pole portions 6a and 6b of the tip-side magnetic bearing 6 are substantially flush with other inner peripheral surfaces. Largely formed.
  • the rear end side magnetic bearing 7 includes magnetic pole portions 7 a and 7 b provided on the inner peripheral surface of the support 4 and facing the outer peripheral surface of the rotary shaft 3, and the rotary shaft 3 is arranged in the radial direction on the rear end side.
  • Non-contact support The magnetic bearing 7 on the rear end side is provided on the rear end side with respect to the magnetic flux generation mechanism 5 and is provided outside the roller body 2.
  • the magnetic bearing 7 on the rear end side is provided on the inner peripheral surface of the support 4 and the magnetic pole portions 7 a and 7 b are opposed to the outer peripheral surface of the rotating shaft 3. This is because it is not provided so as to face the inner peripheral surface of the roller body 2.
  • the magnetic bearing 7 on the rear end side includes four magnetic bearings arranged at equal intervals in the circumferential direction on the inner peripheral surface of the support 4 (flange portion).
  • Each magnetic bearing like the magnetic bearing 6 on the front end side, is wound around a yoke 71 having a substantially U-shaped cross section in which magnetic pole portions 7a and 7b are formed at both ends, and the magnetic pole portions 7a and 7b of the yoke 71.
  • Coil 72
  • a touchdown bearing 12 such as a slide bearing is provided.
  • the rotating shaft 3 is supported by the magnetic bearings 6 and 7, so there is no wear when using a rolling bearing and the like.
  • the service life can be greatly extended.
  • the jacket body 21A in which the gas-liquid two-phase heat medium is sealed is provided in the roller body 2, the temperature in the axial direction of the roller body 2 can be made uniform.
  • the jacket chamber 21A is provided, the temperature can be made uniform even if the magnetic bearings 6 and 7 are lengthened in the axial direction, so that the magnetic bearings 6 and 7 can be enlarged in the axial direction, Support stability of the rotating shaft 3 and the roller body 2 can be improved.
  • the magnetic bearings 6, 7 are considered without considering the positional relationship between the roller body 2 and the magnetic bearings 6, 7.
  • the distance between the magnetic bearing 7 on the front end side and the magnetic bearing 7 on the rear end side can be increased such that the magnetic bearing 7 on the rear end side is arranged outside the roller body 2, and further support stability can be achieved. Can be improved.
  • the support 4 has one magnetic flux generation mechanism 5 in the axial direction, and the magnetic flux generation mechanism 5 is sandwiched between the magnetic bearing 6 on the front end side and the magnetic bearing 7 on the rear end side.
  • the support 4 may have two magnetic flux generation mechanisms 5 in the axial direction, and the magnetic bearing 6 on the front end side may be disposed between the magnetic flux generation mechanisms 5. .
  • the number of magnetic flux generation mechanisms 5 is not limited to two, and three or more may be provided in the axial direction.
  • the two-point magnetic bearing is arranged in the axial direction by the magnetic bearing 6 on the front end side and the magnetic bearing 7 on the rear end side. good.
  • the magnetic bearing 7 on the rear end side of the embodiment is disposed outside the roller body 2 at the front end side with respect to the drive motor 8, that is, disposed between the roller body 2 and the drive motor 8.
  • the rear end side of the drive motor 8, specifically, the drive motor 8 and the temperature detection device (rotary transformer) RTS may be arranged. .
  • roller body 2 and the rotation shaft 3 are integrated so that the roller body 2 and the rotation shaft 3 do not rattle due to rotation. May be connected by a fastening element using taper fitting or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Rolling Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • General Induction Heating (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

Disclosed is an induction heating roller device whereby support stability via magnetic bearings is improved, while still ensuring temperature uniformity of a roller body. The disclosed induction heating roller device is provided with: a roller body (2); a rotating shaft (3) provided in the middle of a base section of the roller body (2); a support (4), disposed in a cavity between the roller body (2) and the rotating shaft (3), inside which the rotating shaft (3) is inserted and on which a magnetic-flux generation mechanism (5) is provided; and radial magnetic bearings (6, 7) that radially support the rotating shaft (3) from the front end and back end thereof without making contact and that have magnetic pole sections, which are provided on the inner surface of the support (4) and face the outer surface of the rotating shaft (3).

Description

誘導発熱ローラ装置Induction heating roller device
 本発明は、誘導発熱ローラ装置に関し、特に片持ち式の誘導発熱ローラ装置に関するものである。 The present invention relates to an induction heating roller device, and more particularly to a cantilever induction heating roller device.
 ナイロン、ポリエステル等の合成繊維等の製造工程において、紡糸後に加熱し長さ方向に引き伸ばすことによって分子配向を整えて、引張強度等の特性を向上させる直延伸工程が行われている。 In the manufacturing process of synthetic fibers such as nylon and polyester, a direct stretching process is performed in which molecular orientation is adjusted by heating and spinning in the length direction after spinning to improve properties such as tensile strength.
 そして、この直延伸工程においては、複数の誘導発熱ロール装置が用いられ、合成繊維の加熱を行うとともに、各誘導発熱ロール装置の回転速度差によって合成繊維を延伸することが一般的である。 In this direct drawing process, a plurality of induction heating roll devices are generally used to heat the synthetic fibers and to draw the synthetic fibers by the difference in rotational speed between the induction heating roll devices.
 この誘導発熱ローラ装置は、特許文献1に示すように、底部中央部に軸嵌合部を有するローラ本体と、ローラ本体内部に配置された円筒状鉄心及び誘導コイルからなる磁束発生機構と、を備え、モータの回転軸の先端をローラ本体の軸嵌合部に嵌合連結することによりローラ本体を片持ち式に支持してモータにより直接回転させるようにしたものである。このような構成において、モータによりローラ本体を回転させ、また磁束発生機構の誘導コイルを交流電源により励磁させることにより、ローラ本体が発熱する。 As shown in Patent Document 1, the induction heating roller device includes a roller body having a shaft fitting portion at the center of the bottom, and a magnetic flux generation mechanism including a cylindrical iron core and an induction coil arranged inside the roller body. In addition, the roller body is supported in a cantilever manner by fitting and connecting the tip of the rotating shaft of the motor to the shaft fitting portion of the roller body, and the motor is directly rotated by the motor. In such a configuration, the roller main body generates heat by rotating the roller main body by the motor and exciting the induction coil of the magnetic flux generating mechanism by the AC power supply.
 この誘導発熱ローラ装置のより具体的な構成として、ローラ本体の中空内に延びる円筒部を有し、モータに一体的に連結されるフランジ部を備えている。この円筒部は、ローラ本体の軸心方向に沿うようにローラ本体内部に延長させてある。そして、この円筒部の外面に磁束発生機構が固定されている。また、円筒部の先端側の内面と回転軸との間に転がり軸受を設置し、この転がり軸受により回転軸を円筒部に対して回転自在に支持するようにしている。 As a more specific configuration of the induction heating roller device, the induction heating roller device includes a cylindrical portion that extends into the hollow of the roller body and is integrally connected to the motor. The cylindrical portion is extended inside the roller body so as to be along the axial direction of the roller body. And the magnetic flux generation mechanism is being fixed to the outer surface of this cylindrical part. Further, a rolling bearing is installed between the inner surface on the tip side of the cylindrical portion and the rotating shaft, and the rotating shaft is rotatably supported with respect to the cylindrical portion by this rolling bearing.
 しかしながら、回転軸を転がり軸受によって支持する構成では、転がり軸受の摩耗による寿命によって、定期的に転がり軸受の交換を行う必要があるという問題がある。特に、誘導発熱ローラ装置における転がり軸受の交換作業は極めて負担が大きい。 However, in the configuration in which the rotating shaft is supported by the rolling bearing, there is a problem that it is necessary to periodically replace the rolling bearing due to the life of the rolling bearing due to wear. In particular, the replacement work of the rolling bearing in the induction heating roller device is extremely burdensome.
 一方で、特許文献2に示すように、ローラ本体を磁気軸受によって支持するものがあり、この磁気軸受は、円筒部の外周面に設けられて、その磁極部がローラ本体の内周面に対向するように設けられている。このように磁気軸受をいわゆる径方向外向きに配置することにより、磁極部とローラ本体(被支持体)との対向面積を可及的に大きくして支持安定性を向上させるようにしている。 On the other hand, as shown in Patent Document 2, there is one in which the roller body is supported by a magnetic bearing, and this magnetic bearing is provided on the outer circumferential surface of the cylindrical portion, and the magnetic pole portion thereof faces the inner circumferential surface of the roller body. It is provided to do. Thus, by arranging the magnetic bearings so-called radially outward, the opposing area between the magnetic pole part and the roller body (supported body) is made as large as possible to improve support stability.
 しかしながら、磁気軸受によりローラ本体を支持する場合には磁束発生機構の軸方向両側に磁気軸受が配置される構成となり、磁束発生機構により生じる磁束の磁路が磁気軸受により制約されてしまうという問題がある。これにより、磁束がローラ本体全体を通過することができずに、ローラ本体を均一に温度制御することが極めて難しいという問題がある。 However, when the roller body is supported by the magnetic bearing, the magnetic bearing is arranged on both sides in the axial direction of the magnetic flux generation mechanism, and the magnetic path of the magnetic flux generated by the magnetic flux generation mechanism is restricted by the magnetic bearing. is there. As a result, there is a problem that it is extremely difficult to control the temperature of the roller body uniformly without the magnetic flux passing through the entire roller body.
 また、磁気軸受及び磁束発生機構の配置関係によるローラ本体の温度不均一の問題を解決するために、特許文献3に示すように、ガイド部材によって磁路を軸方向に伸ばし、磁束を磁気磁束よりも外側に導くように構成して、これによってローラ本体の温度の均一化を図っているものがある。 Further, in order to solve the temperature non-uniformity problem of the roller body due to the arrangement relationship between the magnetic bearing and the magnetic flux generating mechanism, as shown in Patent Document 3, the magnetic path is extended in the axial direction by the guide member, and the magnetic flux is In some cases, the temperature of the roller body is made uniform by guiding it to the outside.
 しかしながら、ガイド部材によって磁路を伸ばす構成であっても、ローラ本体を通過する磁束密度が軸方向の各位置で異なることからローラ本体の温度を均一にすることは難しい。また、ガイド部材をローラ本体の内部に設ける構成は、ローラ本体の大型化及び磁気軸受等のその他の構成部品の配置に制約を与えることになってしまい得策ではない。 However, even if the magnetic path is extended by the guide member, it is difficult to make the temperature of the roller body uniform because the magnetic flux density passing through the roller body is different at each position in the axial direction. In addition, the configuration in which the guide member is provided inside the roller body is not a good idea because it limits the size of the roller body and the arrangement of other components such as magnetic bearings.
 また、先端側の磁気軸受は磁極部が回転軸の外周面に対向するようにいわゆる内向きに設けられているが、支持安定性を確保するためには、長手方向に大きくする必要があり、この場合、磁束が通過する領域がさらに制限されてしまいローラ本体の温度均一性を確保することが難しくなるという問題がある。 In addition, the magnetic bearing on the tip side is provided inward so that the magnetic pole portion faces the outer peripheral surface of the rotating shaft, but in order to ensure support stability, it is necessary to increase in the longitudinal direction, In this case, there is a problem in that it is difficult to ensure temperature uniformity of the roller body because the region through which the magnetic flux passes is further limited.
特開2009-163968号公報JP 2009-163968 A 特許第4106277号公報Japanese Patent No. 4106277 特許第4221227号公報Japanese Patent No. 4212227
 そこで本発明は、上記問題点を一挙に解決するためになされたものであり、ローラ本体の温度の均一性を確保しながらも、磁気軸受による支持安定性を向上することをその主たる所期課題とするものである。 Accordingly, the present invention has been made to solve the above-mentioned problems all at once, and it is a main intended problem to improve the support stability by the magnetic bearing while ensuring the uniformity of the temperature of the roller body. It is what.
 すなわち本発明に係る誘導発熱ローラ装置は、気液二相の熱媒体が封入され軸方向に延設されたジャケット室を有する有底円筒状のローラ本体と、前記ローラ本体の回転中心軸上に沿うように前記ローラ本体の底部中央部に設けられた回転軸と、前記回転軸が内部に挿入されるとともに、前記ローラ本体及び回転軸の間の中空内に配設され、円筒状鉄心及びこの円筒状鉄心に巻装された誘導コイルからなる磁束発生機構が設けられた支持体と、前記支持体の内周面に設けられて前記回転軸の外周面に対向する磁極部を有し、前記回転軸を先端側及び後端側においてラジアル方向に非接触支持するラジアル磁気軸受と、を具備することを特徴とする。 That is, the induction heating roller device according to the present invention includes a bottomed cylindrical roller body having a jacket chamber in which a gas-liquid two-phase heat medium is enclosed and extended in the axial direction, and a rotation center axis of the roller body. A rotating shaft provided at the center of the bottom of the roller body, and the rotating shaft is inserted into the interior of the roller body, and is disposed in a hollow between the roller body and the rotating shaft. A support body provided with a magnetic flux generation mechanism comprising an induction coil wound around a cylindrical iron core, and a magnetic pole portion provided on the inner peripheral surface of the support body and facing the outer peripheral surface of the rotating shaft, And a radial magnetic bearing that supports the rotating shaft in a radial direction in a non-contact manner on the front end side and the rear end side.
 このようなものであれば、磁気軸受により回転軸を支持していることから、転がり軸受を用いた場合等の摩耗が無く、軸受の寿命を格段に延ばすことができる。また、ローラ本体に気液二相の熱媒体が封入されたジャケット室を設けているので、ローラ本体の軸方向の温度を均一にすることができる。さらに、ジャケット室を設けていることから、磁気軸受を軸方向に長くしても温度を均一にすることができるので、磁気軸受を軸方向に大きくすることができ、回転軸の支持安定性を向上させることができる。その上、磁気軸受をいわゆる径方向内向きにして回転軸を回転自在に支持していることから、ローラ本体と磁気軸受との配置関係を考慮することなく磁気軸受を配置することができ、後端側の磁気軸受をローラ本体の外部に配置する等のように一層支持安定性を向上させることができる。 If this is the case, since the rotating shaft is supported by the magnetic bearing, there is no wear when using a rolling bearing, and the life of the bearing can be greatly extended. In addition, since the jacket body in which the gas-liquid two-phase heat medium is sealed is provided in the roller body, the temperature in the axial direction of the roller body can be made uniform. Further, since the jacket chamber is provided, the temperature can be made uniform even if the magnetic bearing is lengthened in the axial direction, so that the magnetic bearing can be enlarged in the axial direction, and the support stability of the rotating shaft is improved. Can be improved. In addition, since the rotary shaft is rotatably supported with the magnetic bearing inwardly in the radial direction, the magnetic bearing can be arranged without considering the arrangement relationship between the roller body and the magnetic bearing. Support stability can be further improved, such as disposing the end side magnetic bearing outside the roller body.
 ローラ本体及び回転軸の支持安定性を向上させるためには、前記先端側のラジアル磁気軸受は前記ローラ本体の内部に配置され、前記後端側のラジアル磁気軸受は前記ローラ本体の外部に配置されていることが望ましい。 In order to improve the support stability of the roller body and the rotating shaft, the radial magnetic bearing on the front end side is disposed inside the roller body, and the radial magnetic bearing on the rear end side is disposed outside the roller body. It is desirable that
 磁気軸受により回転軸を支持するものは、転がり軸受により回転軸を支持するものよりも高速回転が可能となることから、ローラ本体と回転軸とをテーパ嵌合させて締結要素により連結するとローラ本体と回転軸とのがたつきが大きくなってしまい、剛性が小さくなってしまうという問題がある。この問題を解決するためには、前記ローラ本体と前記回転軸とが一体であることが望ましい。 The one that supports the rotating shaft with a magnetic bearing can rotate at a higher speed than the one that supports the rotating shaft with a rolling bearing. Therefore, when the roller body and the rotating shaft are taper fitted and connected by a fastening element, the roller body There is a problem that the backlash between the rotating shaft and the rotating shaft increases and the rigidity decreases. In order to solve this problem, it is desirable that the roller body and the rotating shaft are integrated.
 支持体及びローラ本体を径方向に大型化させないためには、前記先端側のラジアル磁気軸受と前記磁束発生機構とが軸方向において重ならないように設けられていることが望ましい。 In order not to increase the size of the support and the roller body in the radial direction, it is desirable that the radial magnetic bearing on the front end side and the magnetic flux generation mechanism are provided so as not to overlap in the axial direction.
 磁気軸受の温度変化に起因する不安定振動の発生を抑制するためには、前記支持体のラジアル磁気軸受が設けられる部分に、冷却流体が流通する冷却流体通路が形成されていることが望ましい。 In order to suppress the occurrence of unstable vibration due to temperature change of the magnetic bearing, it is desirable that a cooling fluid passage through which a cooling fluid flows is formed in a portion of the support where the radial magnetic bearing is provided.
 同様に、前記支持体における前記ローラ本体の内周面と対向する外周面に断熱材を設けていることによっても、定常状態における磁気軸受の温度の上昇を抑えることができ、不安定振動の発生を抑制できる。 Similarly, by providing a heat insulating material on the outer peripheral surface of the support opposite to the inner peripheral surface of the roller body, it is possible to suppress an increase in the temperature of the magnetic bearing in a steady state and to generate unstable vibrations. Can be suppressed.
 このように構成した本発明によれば、ローラ本体の温度の均一性を確保しながらも、磁気軸受による支持安定性を向上することができる。 According to the present invention configured as described above, it is possible to improve the support stability by the magnetic bearing while ensuring the uniformity of the temperature of the roller body.
本発明の一実施形態に係る誘導発熱ローラ装置の断面図である。It is sectional drawing of the induction heating roller apparatus which concerns on one Embodiment of this invention. 同実施形態の先端側の磁気軸受を示すA-A線断面図である。FIG. 3 is a cross-sectional view taken along line AA showing the magnetic bearing on the distal end side of the same embodiment. 変形実施形態に係る誘導発熱ローラ装置の断面図である。It is sectional drawing of the induction heating roller apparatus which concerns on deformation | transformation embodiment. 変形実施形態に係る誘導発熱ローラ装置の断面図である。It is sectional drawing of the induction heating roller apparatus which concerns on deformation | transformation embodiment.
100・・・誘導発熱ローラ装置
2・・・ローラ本体
21A・・・ジャケット室
3・・・回転軸
5・・・磁束発生機構
51・・・円筒状鉄心
52・・・誘導コイル
4・・・支持体
6・・・先端側のラジアル磁気軸受
6a、6b・・・磁極部
7・・後端側のラジアル磁気軸受
7a、7b・・・磁極部
4A・・・冷却流体通路
DESCRIPTION OF SYMBOLS 100 ... Induction heating roller apparatus 2 ... Roller main body 21A ... Jacket chamber 3 ... Rotating shaft 5 ... Magnetic flux generation mechanism 51 ... Cylindrical iron core 52 ... Induction coil 4 ... Support body 6... Radial magnetic bearings 6 a and 6 b on the front end side, magnetic pole part 7...
 以下に本発明に係る誘導発熱ローラ装置の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of an induction heat roller device according to the present invention will be described with reference to the drawings.
 本実施形態に係る誘導発熱ローラ装置100は、図1に示すように、ローラ本体2と、ローラ本体2の底部中央部に設けられた回転軸3と、回転軸3を回転可能に支持するとともに、磁束発生機構5が設けられた支持体4と、支持体4の内周面に設けられて回転軸3を先端側及び後端側においてラジアル方向に非接触支持するラジアル磁気軸受6、7とを具備する。なお、図示しないが回転軸3をスラスト方向に非接触支持するスラスト磁気軸受を配置している。 As shown in FIG. 1, the induction heat roller device 100 according to the present embodiment supports a roller body 2, a rotating shaft 3 provided at the center of the bottom of the roller body 2, and the rotating shaft 3 rotatably. A support body 4 provided with a magnetic flux generation mechanism 5, and radial magnetic bearings 6 and 7 provided on the inner peripheral surface of the support body 4 to support the rotary shaft 3 in a non-contact manner in the radial direction on the front end side and the rear end side; It comprises. Although not shown, a thrust magnetic bearing that supports the rotary shaft 3 in a thrust direction in a non-contact manner is disposed.
 ローラ本体2は、底部中央部において回転軸3が一体的に設けられた有底円筒状をなすものである。また、ローラ本体2の側周壁21には、長手方向(軸方向)に延びる気液二相の熱媒体を封入するジャケット室21Aが、周方向に複数例えば等間隔に形成され、各ジャケット室21A内の端部は側周壁21の周方向に設けられた環状の孔と連通して各ジャケット室21A同士は連続している。このジャケット室21A内に封入した気液二相の熱媒体の潜熱移動によりローラ本体2の外表面温度を均一化する。また、ジャケット室21Aは、磁束発生機構5と向かい合う位置を超えて、ローラ本体2の側周壁21において軸方向略全長に亘って設けられている。さらに、ローラ本体2の側周壁21の先端側には、外表面の温度を検出するための温度センサ10が埋設されている。 The roller body 2 has a bottomed cylindrical shape in which the rotation shaft 3 is integrally provided at the center of the bottom. In addition, a plurality of jacket chambers 21A for enclosing a gas-liquid two-phase heat medium extending in the longitudinal direction (axial direction) are formed on the side peripheral wall 21 of the roller body 2 at equal intervals in the circumferential direction. The inner end portion communicates with an annular hole provided in the circumferential direction of the side peripheral wall 21, and the jacket chambers 21A are continuous with each other. The outer surface temperature of the roller body 2 is made uniform by the latent heat transfer of the gas-liquid two-phase heat medium sealed in the jacket chamber 21A. Further, the jacket chamber 21 </ b> A is provided over substantially the entire length in the axial direction on the side peripheral wall 21 of the roller body 2 beyond the position facing the magnetic flux generation mechanism 5. Further, a temperature sensor 10 for detecting the temperature of the outer surface is embedded in the distal end side of the side peripheral wall 21 of the roller body 2.
 本実施形態の回転軸3は、ローラ本体2と一体成型されるものであり、ローラ本体2の底部中央部に回転中心軸C上に沿うように設けられている。また、回転軸3の後端部301には、駆動モータ8のロータ81が周方向に等間隔となるように着脱可能に固定されている。その一例としては、回転軸3の後端部301が後端に行くに従って縮径するテーパ状をなし、ロータ81の内周面が前記後端部301のテーパに相対するテーパ状をなし、前記回転軸3の後端部301にロータ81が嵌合した状態で、ボルト、ナット等の締結要素9によって後端部301とロータ81を締結固定している。このような構成により、後端側の磁気軸受7を交換する場合には、締結要素9を取り外してロータ81を取り外せば、後端側の磁気軸受7を容易に後端側に抜くことができる。 The rotation shaft 3 of the present embodiment is integrally formed with the roller body 2 and is provided at the center of the bottom of the roller body 2 so as to be along the rotation center axis C. Moreover, the rotor 81 of the drive motor 8 is detachably fixed to the rear end portion 301 of the rotary shaft 3 so as to be equally spaced in the circumferential direction. As an example, the rear end portion 301 of the rotary shaft 3 has a tapered shape that decreases in diameter toward the rear end, and the inner peripheral surface of the rotor 81 has a tapered shape that is opposed to the taper of the rear end portion 301. In a state where the rotor 81 is fitted to the rear end portion 301 of the rotating shaft 3, the rear end portion 301 and the rotor 81 are fastened and fixed by the fastening elements 9 such as bolts and nuts. With such a configuration, when replacing the magnetic bearing 7 on the rear end side, the magnetic bearing 7 on the rear end side can be easily pulled out to the rear end side by removing the fastening element 9 and removing the rotor 81. .
 支持体4は、回転軸3が内部に挿入されるとともに、先端部がローラ本体2及び回転軸3の間の中空内に配設され、回転軸3を先端側及び後端側において磁気軸受6、7により回転自在に支持する。また、支持体4における回転軸3のロータ81に対向する内周面に駆動モータ8のステータ82が設けられている。具体的に支持体4は、先端側の磁気軸受6及び後端側の磁気軸受7が取り付けられる支持体本体41と、当該支持体本体41の後端に設けられ、ステータ82が固定されるステータ固定部42とを備えている。 The support 4 has a rotary shaft 3 inserted therein, and a tip portion is disposed in a hollow between the roller body 2 and the rotary shaft 3, and the rotary shaft 3 is arranged at the front end side and the rear end side with a magnetic bearing 6. , 7 are rotatably supported. A stator 82 of the drive motor 8 is provided on the inner peripheral surface of the support 4 that faces the rotor 81 of the rotating shaft 3. Specifically, the support 4 includes a support body 41 to which the magnetic bearing 6 on the front end side and the magnetic bearing 7 on the rear end side are attached, and a stator to which the stator 82 is fixed. And a fixing portion 42.
 支持体本体41は、ローラ本体2の内径よりも小さい外径を有する円筒部411と、当該円筒部411の外径よりも大きい外径を有し、円筒部411の基端部においてローラ本体2の開口部を覆うフランジ部412と、を有する。また、支持体本体41の側周壁には、フランジ部412の外周面で開口し、円筒部411の先端部に延びる複数の冷却流体通路4Aが形成され、各冷却流体通路4Aは、支持体4の先端部で折り返してフランジ部412の外周面で開口する。この冷却流体通路4A内には、例えば水又は油等の冷却流体が供給され、この冷却流体の流通によって支持体4を冷却し、この冷却によって磁束発生機構5及び先端側の磁気軸受6を冷却する。 The support body 41 has a cylindrical portion 411 having an outer diameter smaller than the inner diameter of the roller body 2 and an outer diameter larger than the outer diameter of the cylindrical portion 411, and the roller body 2 at the proximal end portion of the cylindrical portion 411. And a flange portion 412 covering the opening. A plurality of cooling fluid passages 4 </ b> A are formed in the side peripheral wall of the support body 41 so as to open at the outer peripheral surface of the flange portion 412 and extend to the tip portion of the cylindrical portion 411. And is opened at the outer peripheral surface of the flange portion 412. A cooling fluid such as water or oil is supplied into the cooling fluid passage 4A, and the support 4 is cooled by circulation of the cooling fluid, and the magnetic flux generating mechanism 5 and the magnetic bearing 6 on the front end side are cooled by this cooling. To do.
 このように、冷却流体通路4Aを設けて先端側軸受6を冷却することより、熱的な定常状態における軸受温度を低くすることができるので、組み立て時と定常状態時との軸受隙間や予圧の差を小さくすることができ、定常状態に至るまでの間も不安定振動が発生することを抑制することができる。 Thus, by providing the cooling fluid passage 4A and cooling the front end side bearing 6, the bearing temperature in the thermal steady state can be lowered, so that the bearing clearance and preload during assembly and steady state can be reduced. A difference can be made small and it can suppress that unstable vibration generate | occur | produces until it reaches a steady state.
 磁束発生機構5は、ローラ本体2の内周面に沿うように支持体4(具体的には円筒部411)に設けられており、湾曲する磁性鋼板を放射状に円周方向に沿って配列積層して形成される円筒状鉄心51と、円筒状鉄心51の外周面に巻装された誘導コイル52とから円筒状のものである。 The magnetic flux generating mechanism 5 is provided on the support body 4 (specifically, the cylindrical portion 411) along the inner peripheral surface of the roller body 2, and the magnetic steel plates that are curved are arranged and laminated radially along the circumferential direction. The cylindrical iron core 51 formed in this manner and the induction coil 52 wound around the outer peripheral surface of the cylindrical iron core 51 are cylindrical.
 このような磁束発生機構5により、誘導コイル52に交流電圧が印加されると交番磁束が発生し、その交番磁束は円筒状鉄心51及びローラ本体2の側周壁21を通過する。この通過によりローラ本体2に電流が発生し、その電流でローラ本体2はジュール発熱する。 By such a magnetic flux generation mechanism 5, an alternating magnetic flux is generated when an AC voltage is applied to the induction coil 52, and the alternating magnetic flux passes through the cylindrical iron core 51 and the side peripheral wall 21 of the roller body 2. This passage generates a current in the roller body 2, and the roller body 2 generates Joule heat by the current.
 また、支持体4におけるローラ本体2の内周面と対向する外周面、具体的には支持体4の円筒部411及び磁束発生機構5の外周面には断熱材11が設けられている。これにより、定常状態における磁気軸受の温度の上昇を抑えることができ、不安定振動の発生を抑制できる。 Further, the heat insulating material 11 is provided on the outer peripheral surface of the support body 4 facing the inner peripheral surface of the roller body 2, specifically, on the outer peripheral surface of the cylindrical portion 411 of the support body 4 and the magnetic flux generation mechanism 5. Thereby, the temperature rise of the magnetic bearing in a steady state can be suppressed, and the occurrence of unstable vibration can be suppressed.
 先端側の磁気軸受6は、支持体4の内周面に設けられて回転軸3の外周面に対向する磁極部6a、6bを有し、回転軸3を先端側においてラジアル方向に非接触支持するものである。この先端側の磁気軸受6は、磁束発生機構5よりも先端側に設けられるとともに、ローラ本体2の内部に設けられている。 The magnetic bearing 6 on the distal end side is provided on the inner peripheral surface of the support 4 and has magnetic pole portions 6a and 6b facing the outer peripheral surface of the rotating shaft 3, and supports the rotating shaft 3 in the radial direction on the distal end side in a non-contact manner. To do. The magnetic bearing 6 on the front end side is provided on the front end side with respect to the magnetic flux generation mechanism 5 and is provided in the roller body 2.
 具体的に先端側の磁気軸受6は、図1の部分拡大図、図2のA-A線断面図に示すように、支持体4の先端部内周面(具体的に円筒部411先端の内周面)に周方向に等間隔に配置された4つの磁気軸受を有する。各磁気軸受6は、両端に磁極部6a、6bが形成される断面概略コの字形状のヨーク61と、当該ヨーク61の磁極部6a、6bに巻回されたコイル62とからなる。磁極部6a、6bの先端には、回転軸3の外周面と略同じ曲率をなす円弧状凹部が形成され、その先端面が回転軸3の外周面に対向して配置される。なお、先端側の磁気軸受6が設けられる円筒部411先端の内周面は、先端側の磁気軸受6の磁極部6a、6b先端がその他の内周面と略面一となるように内径が大きく形成されている。 Specifically, as shown in the partially enlarged view of FIG. 1 and the cross-sectional view taken along the line AA of FIG. 4 magnetic bearings arranged at equal intervals in the circumferential direction on the circumferential surface. Each magnetic bearing 6 includes a yoke 61 having a substantially U-shaped cross section in which magnetic pole portions 6 a and 6 b are formed at both ends, and a coil 62 wound around the magnetic pole portions 6 a and 6 b of the yoke 61. An arcuate recess having substantially the same curvature as the outer peripheral surface of the rotating shaft 3 is formed at the tips of the magnetic pole portions 6 a and 6 b, and the leading end surface is disposed to face the outer peripheral surface of the rotating shaft 3. The inner peripheral surface of the tip of the cylindrical portion 411 provided with the tip-side magnetic bearing 6 has an inner diameter so that the tips of the magnetic pole portions 6a and 6b of the tip-side magnetic bearing 6 are substantially flush with other inner peripheral surfaces. Largely formed.
 また、後端側の磁気軸受7は、支持体4の内周面に設けられて回転軸3の外周面に対向する磁極部7a、7bを有し、回転軸3を後端側においてラジアル方向に非接触支持するものである。この後端側の磁気軸受7は、磁束発生機構5よりも後端側に設けられるとともに、ローラ本体2の外部に設けられている。このように、ローラ本体2の外部に設けられるのは、後端側の磁気軸受7が支持体4の内周面に設けられ、磁極部7a、7bが回転軸3の外周面に対向して設けられ、ローラ本体2の内周面に対向して設ける構成としていないためである。 The rear end side magnetic bearing 7 includes magnetic pole portions 7 a and 7 b provided on the inner peripheral surface of the support 4 and facing the outer peripheral surface of the rotary shaft 3, and the rotary shaft 3 is arranged in the radial direction on the rear end side. Non-contact support. The magnetic bearing 7 on the rear end side is provided on the rear end side with respect to the magnetic flux generation mechanism 5 and is provided outside the roller body 2. As described above, the magnetic bearing 7 on the rear end side is provided on the inner peripheral surface of the support 4 and the magnetic pole portions 7 a and 7 b are opposed to the outer peripheral surface of the rotating shaft 3. This is because it is not provided so as to face the inner peripheral surface of the roller body 2.
 具体的に後端側の磁気軸受7は、図1に示すように、支持体4(フランジ部)の内周面に周方向に等間隔に配置された4つの磁気軸受を有する。各磁気軸受は、先端側の磁気軸受6と同様に、両端に磁極部7a、7bが形成される断面概略コの字形状のヨーク71と、当該ヨーク71の磁極部7a、7bに巻回されたコイル72とからなる。 Specifically, as shown in FIG. 1, the magnetic bearing 7 on the rear end side includes four magnetic bearings arranged at equal intervals in the circumferential direction on the inner peripheral surface of the support 4 (flange portion). Each magnetic bearing, like the magnetic bearing 6 on the front end side, is wound around a yoke 71 having a substantially U-shaped cross section in which magnetic pole portions 7a and 7b are formed at both ends, and the magnetic pole portions 7a and 7b of the yoke 71. Coil 72.
 なお、先端側の磁気軸受6及び後端側の磁気軸受7の間には、磁気軸受6、7が停電などにより停止した場合に回転軸3を緊急的に支持するための、例えば転がり軸受又はすべり軸受等のタッチダウン軸受12が設けられている。 In addition, between the front end side magnetic bearing 6 and the rear end side magnetic bearing 7, for example, a rolling bearing or the like for urgently supporting the rotating shaft 3 when the magnetic bearings 6 and 7 are stopped due to a power failure or the like. A touchdown bearing 12 such as a slide bearing is provided.
 <本実施形態の効果>
 このように構成した本実施形態に係る誘導発熱ローラ装置100によれば、磁気軸受6、7により回転軸3を支持していることから、転がり軸受を用いた場合等の消耗が無く、軸受の寿命を格段に延ばすことができる。また、ローラ本体2に気液二相の熱媒体が封入されたジャケット室21Aを設けているので、ローラ本体2の軸方向の温度を均一にすることができる。さらに、ジャケット室21Aを設けていることから、磁気軸受6、7を軸方向に長くしても温度を均一にすることができるので、磁気軸受6、7を軸方向に大きくすることができ、回転軸3及びローラ本体2の支持安定性を向上させることができる。その上、磁気軸受6、7をいわゆる径方向内向きにして回転軸3を支持していることから、ローラ本体2と磁気軸受6、7との配置関係を考慮することなく磁気軸受6、7を配置することができる。特に後端側の磁気軸受7をローラ本体2の外部に配置する等のように先端側の磁気軸受6と後端側の磁気軸受7との距離を大きくとることができ、一層支持安定性を向上させることができる。
<Effect of this embodiment>
According to the induction heating roller device 100 according to the present embodiment configured as described above, the rotating shaft 3 is supported by the magnetic bearings 6 and 7, so there is no wear when using a rolling bearing and the like. The service life can be greatly extended. Further, since the jacket body 21A in which the gas-liquid two-phase heat medium is sealed is provided in the roller body 2, the temperature in the axial direction of the roller body 2 can be made uniform. Furthermore, since the jacket chamber 21A is provided, the temperature can be made uniform even if the magnetic bearings 6 and 7 are lengthened in the axial direction, so that the magnetic bearings 6 and 7 can be enlarged in the axial direction, Support stability of the rotating shaft 3 and the roller body 2 can be improved. In addition, since the rotary shaft 3 is supported with the magnetic bearings 6, 7 facing in the radial direction, the magnetic bearings 6, 7 are considered without considering the positional relationship between the roller body 2 and the magnetic bearings 6, 7. Can be arranged. In particular, the distance between the magnetic bearing 7 on the front end side and the magnetic bearing 7 on the rear end side can be increased such that the magnetic bearing 7 on the rear end side is arranged outside the roller body 2, and further support stability can be achieved. Can be improved.
 <その他の変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
 例えば、前記実施形態では、支持体4が軸方向に1つの磁束発生機構5を有し、その磁束発生機構5を先端側の磁気軸受6及び後端側の磁気軸受7により挟むような配置により構成しているが、図3に示すように、支持体4が軸方向に2つの磁束発生機構5を有し、先端側の磁気軸受6をその磁束発生機構5の間に配置しても良い。 For example, in the embodiment, the support 4 has one magnetic flux generation mechanism 5 in the axial direction, and the magnetic flux generation mechanism 5 is sandwiched between the magnetic bearing 6 on the front end side and the magnetic bearing 7 on the rear end side. However, as shown in FIG. 3, the support 4 may have two magnetic flux generation mechanisms 5 in the axial direction, and the magnetic bearing 6 on the front end side may be disposed between the magnetic flux generation mechanisms 5. .
 また、磁束発生機構5は2つに限られず、軸方向に3つ以上設けても良い。 Further, the number of magnetic flux generation mechanisms 5 is not limited to two, and three or more may be provided in the axial direction.
 さらに、前記実施形態の磁気軸受は、先端側の磁気軸受6及び後端側の磁気軸受7により軸方向に2点磁気軸受を配置しているが、軸方向に3点以上配置する構成としても良い。 Furthermore, in the magnetic bearing of the above-described embodiment, the two-point magnetic bearing is arranged in the axial direction by the magnetic bearing 6 on the front end side and the magnetic bearing 7 on the rear end side. good.
その上、前記実施形態の後端側の磁気軸受7は、ローラ本体2の外部において駆動モータ8よりも先端側に配置されたもの、つまりローラ本体2と駆動モータ8の間に配置されたものであったが、図4に示すように、駆動モータ8よりも後端側、具体的には駆動モータ8と温度検出装置(回転トランス)RTSとの間に配置するように構成しても良い。 In addition, the magnetic bearing 7 on the rear end side of the embodiment is disposed outside the roller body 2 at the front end side with respect to the drive motor 8, that is, disposed between the roller body 2 and the drive motor 8. However, as shown in FIG. 4, the rear end side of the drive motor 8, specifically, the drive motor 8 and the temperature detection device (rotary transformer) RTS may be arranged. .
 その上、前記実施形態ではローラ本体2及び回転軸3を一体として、回転によるローラ本体2及び回転軸3同士のがたつきが生じないように構成しているが、ローラ本体2及び回転軸3をテーパ嵌合等を用いて締結要素により連結するように構成しても良い。 In addition, in the above-described embodiment, the roller body 2 and the rotation shaft 3 are integrated so that the roller body 2 and the rotation shaft 3 do not rattle due to rotation. May be connected by a fastening element using taper fitting or the like.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 本発明により、ローラ本体の温度の均一性を確保しながらも、磁気軸受による支持安定性を向上することができる。 According to the present invention, it is possible to improve the support stability by the magnetic bearing while ensuring the uniformity of the temperature of the roller body.

Claims (5)

  1.  気液二相の熱媒体が封入され軸方向に延設されたジャケット室を有する、有底円筒状のローラ本体と、
     前記ローラ本体の回転中心軸上に沿うように、前記ローラ本体の底部中央部に設けられた回転軸と、
     前記回転軸が内部に挿入されるとともに、前記ローラ本体及び回転軸の間の中空内に配設され、円筒状鉄心及びこの円筒状鉄心に巻装された誘導コイルからなる磁束発生機構が設けられた支持体と、
     前記支持体の内周面に設けられて前記回転軸の外周面に対向する磁極部を有し、前記回転軸を先端側及び後端側においてラジアル方向に非接触支持するラジアル磁気軸受と、
     を具備する誘導発熱ローラ装置。
    A bottomed cylindrical roller body having a jacket chamber filled with a gas-liquid two-phase heat medium and extending in the axial direction;
    A rotation shaft provided at the center of the bottom of the roller body so as to be along the rotation center axis of the roller body;
    The rotating shaft is inserted inside, and a magnetic flux generating mechanism is provided which is disposed in a hollow between the roller body and the rotating shaft and includes a cylindrical iron core and an induction coil wound around the cylindrical iron core. A support,
    A radial magnetic bearing provided on the inner peripheral surface of the support body and having a magnetic pole portion facing the outer peripheral surface of the rotating shaft, and supporting the rotating shaft in a non-contact manner in the radial direction on the front end side and the rear end side;
    An induction heating roller device comprising:
  2.  前記先端側のラジアル磁気軸受は前記ローラ本体の内部に配置され、前記後端側のラジアル磁気軸受は前記ローラ本体の外部に配置されている請求項1記載の誘導発熱ローラ装置。 The induction heating roller device according to claim 1, wherein the radial magnetic bearing on the front end side is disposed inside the roller body, and the radial magnetic bearing on the rear end side is disposed outside the roller body.
  3.  前記ローラ本体と前記回転軸とが一体である請求項1記載の誘導発熱ローラ装置。 The induction heat roller device according to claim 1, wherein the roller body and the rotating shaft are integrated.
  4.  前記先端側のラジアル磁気軸受と前記磁束発生機構とが軸方向において重ならないように設けられている請求項1記載の誘導発熱ローラ装置。 The induction heating roller device according to claim 1, wherein the radial magnetic bearing on the tip side and the magnetic flux generation mechanism are provided so as not to overlap in the axial direction.
  5.  前記支持体のラジアル磁気軸受が設けられる部分に、冷却流体が流通する冷却流体通路が形成されている請求項1記載の誘導発熱ローラ装置。 The induction heat roller apparatus according to claim 1, wherein a cooling fluid passage through which a cooling fluid flows is formed in a portion of the support where a radial magnetic bearing is provided.
PCT/JP2010/056602 2009-08-27 2010-04-13 Induction heating roller device WO2011024508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080029739.5A CN102474922B (en) 2009-08-27 2010-04-13 Induction heating roller device
JP2011528675A JP5779098B2 (en) 2009-08-27 2010-04-13 Induction heating roller device
DE112010002615T DE112010002615T5 (en) 2009-08-27 2010-04-13 Induktionsheizwalzenvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197212 2009-08-27
JP2009197212 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024508A1 true WO2011024508A1 (en) 2011-03-03

Family

ID=43627622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056602 WO2011024508A1 (en) 2009-08-27 2010-04-13 Induction heating roller device

Country Status (4)

Country Link
JP (1) JP5779098B2 (en)
CN (1) CN102474922B (en)
DE (1) DE112010002615T5 (en)
WO (1) WO2011024508A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108424A (en) * 2011-11-09 2013-05-15 特电株式会社 Induction heating roller device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909659B2 (en) * 2016-08-25 2021-07-28 Tmtマシナリー株式会社 Induction heating roller
CN106369066A (en) * 2016-11-21 2017-02-01 南京磁谷科技有限公司 Magnetic bearing cooling structure
JP7159709B2 (en) * 2018-09-05 2022-10-25 日立金属株式会社 Magnet roll manufacturing equipment and molds used in the manufacturing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527022A (en) * 1998-09-25 2002-08-20 デー イ− エ− エヌ エ− エス アパラーテバウゲゼルシャフト ミット ベシュレンクテル ハフツング Integrated godet unit
JP2002317340A (en) * 2001-02-01 2002-10-31 Neumag Gmbh & Co Kg Godet for guiding, heating, and conveying yarn
JP2007321792A (en) * 2006-05-30 2007-12-13 Tokuden Co Ltd Induction heating roller device
JP2009163968A (en) * 2008-01-07 2009-07-23 Tokuden Co Ltd Cantilever-type induction heating roller apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1013181B (en) * 1985-07-03 1991-07-17 川上产业株式会社 Apparatus for production of films with bubbles using hot plastic materials
DE4009385A1 (en) 1990-03-23 1991-09-26 Porsche Ag MOTOR VEHICLE, ESPECIALLY A PASSENGER CAR, WITH AN AIR GUIDE ARRANGED IN THE REAR AREA
JP2501655B2 (en) 1990-08-23 1996-05-29 株式会社巴コーポレーション Building entrance
CN100359066C (en) * 2001-05-21 2008-01-02 苏拉有限及两合公司 Galette

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527022A (en) * 1998-09-25 2002-08-20 デー イ− エ− エヌ エ− エス アパラーテバウゲゼルシャフト ミット ベシュレンクテル ハフツング Integrated godet unit
JP2002317340A (en) * 2001-02-01 2002-10-31 Neumag Gmbh & Co Kg Godet for guiding, heating, and conveying yarn
JP2007321792A (en) * 2006-05-30 2007-12-13 Tokuden Co Ltd Induction heating roller device
JP2009163968A (en) * 2008-01-07 2009-07-23 Tokuden Co Ltd Cantilever-type induction heating roller apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108424A (en) * 2011-11-09 2013-05-15 特电株式会社 Induction heating roller device

Also Published As

Publication number Publication date
CN102474922A (en) 2012-05-23
CN102474922B (en) 2014-07-30
JP5779098B2 (en) 2015-09-16
DE112010002615T5 (en) 2012-08-23
JPWO2011024508A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
US20190103778A1 (en) Rotor segment of an electric machine
JP5779098B2 (en) Induction heating roller device
JP2007282341A (en) Motor equipped with cooling mechanism
JP4786702B2 (en) Cooling structure of rotating electric machine
EP1849894B1 (en) Yarn heating device
JP2010121713A (en) Magnetic bearing
JP4106277B2 (en) Godet
CN216795318U (en) Induction heating roller device
JP6916791B2 (en) Slip ring device for electromechanical
JP5083891B2 (en) Cantilever induction heating roller device
JP2019205254A (en) Rotary electric machine
JP2010277981A (en) Induction heating roller device
US7028385B2 (en) Method for improved distribution of cooling air in an electric machine
JP4070022B2 (en) Heating roller device
JP4732053B2 (en) Superconducting rotating electrical machine rotor
EP3934381B1 (en) Induction heated roll apparatus
JP7296111B2 (en) Heat Roller Device, Method for Manufacturing Heat Roller Device, and Method for Adjusting Cooling Capacity of Heat Roller Device
US11812537B2 (en) Induction heated roll apparatus
JP6298267B2 (en) Induction heating roller device
US20230107412A1 (en) Bearing housing
JP4036996B2 (en) Induction heating roller device
JP2005108475A (en) Induction heating roller device
JP2022046262A (en) Induction heating roller device
JP2022110444A (en) Roller device for heat treatment
JP2004322223A (en) Built-in motor main spindle device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029739.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011528675

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010002615

Country of ref document: DE

Ref document number: 1120100026157

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811561

Country of ref document: EP

Kind code of ref document: A1