JP2024029100A - Shaft enlargement processing method and shaft enlargement processing device - Google Patents

Shaft enlargement processing method and shaft enlargement processing device Download PDF

Info

Publication number
JP2024029100A
JP2024029100A JP2023218097A JP2023218097A JP2024029100A JP 2024029100 A JP2024029100 A JP 2024029100A JP 2023218097 A JP2023218097 A JP 2023218097A JP 2023218097 A JP2023218097 A JP 2023218097A JP 2024029100 A JP2024029100 A JP 2024029100A
Authority
JP
Japan
Prior art keywords
shaft
intermediate portion
temperature
holders
enlargement processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023218097A
Other languages
Japanese (ja)
Inventor
義孝 桑原
充宏 岡本
多賀司 池田
一樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018138035A external-priority patent/JP2019048333A/en
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Publication of JP2024029100A publication Critical patent/JP2024029100A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/06Swaging presses; Upsetting presses
    • B21J9/08Swaging presses; Upsetting presses equipped with devices for heating the work-piece

Abstract

Figure 2024029100000001

【課題】肥大率を増大でき、肥大に伴う亀裂の発生を抑制でき、ランニングコストを低減可能な軸肥大加工方法及び軸肥大加工装置を提供する。
【解決手段】軸材Wを軸方向に間隔をあけて一対のホルダ2,3によって保持し、一対のホルダ2,3の間に配置される軸材Wの中間部分Waに軸方向の圧縮力を作用させ、且つ軸方向と交差する方向の交番負荷を作用させ、中間部分Waを肥大させる軸肥大加工方法であって、中間部分Waの温度を軸材Wの青熱脆性温度域を超える温度とし、ホルダ2,3の温度をホルダ2,3の焼戻し温度域未満の温度として、中間部分Waを肥大させる。
【選択図】図3

Figure 2024029100000001

An object of the present invention is to provide a shaft enlargement processing method and a shaft enlargement processing apparatus that can increase the enlargement rate, suppress the occurrence of cracks due to enlargement, and reduce running costs.
[Solution] A shaft member W is held by a pair of holders 2 and 3 with an interval in the axial direction, and an axial compressive force is applied to an intermediate portion Wa of the shaft member W disposed between the pair of holders 2 and 3. A shaft enlargement processing method in which the intermediate portion Wa is enlarged by applying an alternating load in a direction intersecting the axial direction, and the temperature of the intermediate portion Wa is increased to a temperature exceeding the blue brittle temperature range of the shaft material W. Then, the temperature of the holders 2 and 3 is set to a temperature lower than the tempering temperature range of the holders 2 and 3, and the intermediate portion Wa is enlarged.
[Selection diagram] Figure 3

Description

本発明は、軸肥大加工方法及び軸肥大加工装置に関する。 The present invention relates to a shaft enlargement processing method and a shaft enlargement processing apparatus.

従来、軸材の中間部分に大径部を設ける場合には、太い軸材に対する切削加工によるか、鍛造等の塑性加工による成形と切削加工による仕上げ等によるか、あるいは、軸材に別部品を溶接して接合する方法が採られていた。しかしながら、素材に切削加工を施す場合には、切削加工に手間がかかるだけでなく、材料的にも無駄が多くなるので不経済であり、さらに、長尺物の中間部分に大径部を削り出すことは難しいものであった。また、溶接にて素材に別部品を接合する方法では、溶接熱の影響を受けるといった問題点があった。 Conventionally, when providing a large diameter part in the middle of a shaft material, it is necessary to cut the thick shaft material, form it by plastic processing such as forging and finish it by cutting, or add a separate part to the shaft material. The method used was to join by welding. However, when cutting the material, it is not only time-consuming but also wasteful of material, which is uneconomical. It was difficult to get it out. Furthermore, the method of joining separate parts to a material by welding has the problem of being affected by welding heat.

この問題点を解決するために、軸材に回転と圧縮力及び曲げを作用させることによって軸材の中間部分を肥大させる軸肥大加工方法がある。この技術によれば、軸材の中間部分に容易に大径部を形成することができるので、従来のような切削加工あるいは溶接をする必要がなくなる。 In order to solve this problem, there is a shaft enlarging method in which the intermediate portion of the shaft material is enlarged by applying rotation, compressive force, and bending to the shaft material. According to this technique, a large diameter portion can be easily formed in the middle portion of the shaft material, so there is no need for cutting or welding as in the conventional method.

この従来の技術を詳しく説明すると、所定間隔に離間した一対のホルダで直線状の軸材を保持させる。そして、この軸材の軸心回りに回転を加え、その状態で、ホルダの少なくとも一方を他方に接近する方向に移動させると共に、一対のホルダのいずれかを軸線と交差する方向へ徐々に偏倚させる。これにより、曲げの外側においても常に圧縮応力が作用する条件下で回転中の軸材に圧縮力と曲げ力を作用させて、両ホルダ間の軸材に直径方向の塑性変形を生じさせる。然る後、曲げの外側においても圧縮応力が作用する条件を保ったまま、ホルダの偏倚を徐々に復元させることにより、軸材の中間部分を肥大させるものである。 To explain this conventional technique in detail, a linear shaft member is held by a pair of holders spaced apart at a predetermined interval. Then, rotation is applied around the axis of this shaft member, and in this state, at least one of the holders is moved in a direction approaching the other, and one of the pair of holders is gradually biased in a direction that intersects the axis. . As a result, compressive force and bending force are applied to the rotating shaft member under the condition that compressive stress is always applied even on the outside of bending, and plastic deformation in the diametrical direction is caused in the shaft member between both holders. Thereafter, the deflection of the holder is gradually restored while maintaining the condition that compressive stress acts on the outside of the bending, thereby enlarging the intermediate portion of the shaft member.

しかしながら、上記技術では軸材に曲げ及び回転を作用させる際には、圧縮力を加えると共に回転させ、曲げを行い所望の形状を得た後、曲げ戻しを行い圧縮と回転を停止するものであるため、軸材の素材が高強度鋼材や大型軸鋼材になると、高い圧縮力が必要となり、該軸肥大加工法を軸材に施す装置の大型化が不可欠となる。また、逆に低い圧縮力では所望の形状を得るまでの軸肥大加工回転回数が多くなるため時間がかかるといった問題点がある。さらには、2倍程度の肥大率(軸材の肥大された中間部分の外径/軸材の素材径)を得ることが限界であり、適用できる部品も限られたものとなっていた。 However, in the above technology, when applying bending and rotation to the shaft material, compression force is applied and rotation is performed, bending is performed to obtain the desired shape, and then the shaft material is bent back and compression and rotation are stopped. Therefore, when the shaft material is made of high-strength steel or large-sized shaft steel, a high compressive force is required, and it is essential to increase the size of the equipment that applies the shaft enlargement process to the shaft material. On the other hand, if the compressive force is low, the number of rotations required for the shaft enlargement process will increase until the desired shape is obtained, so there is a problem in that it takes time. Furthermore, the limit is to obtain an enlargement rate of about twice (the outer diameter of the enlarged middle portion of the shaft material/the diameter of the material of the shaft material), and the parts to which it can be applied are also limited.

そこで、特許文献1に記載された軸肥大加工方法では、軸肥大加工を施す前又は加工を行っている最中に、軸材が加熱されることによって軸材の変形抵抗が低下されている。これによると、僅かな圧縮力にて軸材の中間部分を肥大させることが可能となると共に、装置の大型化を回避することができる。また、軸材の塑性変形能を向上させることが可能となることから、従来以上に肥大率を増大できるようになる。 Therefore, in the shaft enlargement processing method described in Patent Document 1, the deformation resistance of the shaft member is reduced by heating the shaft member before or during the shaft enlargement processing. According to this, it becomes possible to enlarge the intermediate portion of the shaft member with a small compressive force, and it is possible to avoid increasing the size of the device. Furthermore, since it becomes possible to improve the plastic deformability of the shaft material, it becomes possible to increase the enlargement rate more than before.

また、特許文献2に記載された軸肥大加工方法では、軸材の青熱脆性域に加熱した場合には、青熱脆性等の影響が生じて、軸材が硬化されて変形抵抗が大きくなり、所望の肥大部を得られず、軸材に亀裂が発生する等の不具合が生じる場合があることに鑑み、軸材が青熱脆性域を超える温度に加熱されている。この特許文献2には、一例として、軸材が構造用炭素鋼JIS-S45Cからなる場合に、軸材の温度が約400℃以下では、青熱脆性の影響により、肥大率に対して軸材を加熱することの効果がなく、軸材を580℃以上に加熱することによって2倍以上の肥大率が得られ、且つき裂損傷の発生も抑制されることが記載されている。 In addition, in the shaft enlargement processing method described in Patent Document 2, when the shaft material is heated to the blue brittle region, effects such as blue brittleness occur, and the shaft material is hardened and the deformation resistance increases. In view of the fact that the desired enlarged portion may not be obtained and problems such as cracks occurring in the shaft material may occur, the shaft material is heated to a temperature exceeding the blue brittle region. As an example, Patent Document 2 states that when the shaft material is made of structural carbon steel JIS-S45C, when the temperature of the shaft material is about 400°C or less, the expansion rate of the shaft material is affected by blue brittleness. It is stated that heating the shaft material has no effect, and that by heating the shaft material to a temperature of 580° C. or higher, an enlargement rate of more than double can be obtained, and the occurrence of cracking damage can also be suppressed.

特開2005-88066号公報Japanese Patent Application Publication No. 2005-88066 特開2007-167882号公報Japanese Patent Application Publication No. 2007-167882

軸肥大加工と同様にワークを塑性変形させる鍛造において、いわゆる温間鍛造では、ワークは、典型的には700℃~850℃に加熱され、熱間鍛造(亜熱間鍛造を含む)では、ワークは、典型的には950℃以上に加熱されている。そこで、軸材を580℃以上に加熱して軸肥大加工を行うに際し、鍛造に倣って、軸材を温間域(700℃~850℃)又は熱間域(950℃以上)に加熱することが考えられる。しかし、軸肥大加工において軸材に回転と圧縮力及び曲げを作用させるにあたり、軸材を保持するホルダにも荷重が作用する。そして、ホルダは、一般にダイス鋼、ハイス鋼等の工具鋼によって形成され、これらの工具鋼の焼戻し温度域は、概ね500℃~580℃である。さらに、軸材とホルダとが接触している時間は、鍛造加工においてワークと金型とが接触している時間よりも比較的長い。このため、軸材が温間域又は熱間域に加熱された場合に、ホルダに焼戻しが生じてホルダの硬度が低下する虞がある。ホルダの硬度が低下すると、繰り返しの使用に対するホルダの耐久性が低下してホルダの寿命が短縮されてしまう。 In forging that plastically deforms a workpiece in the same way as axial enlargement processing, in so-called warm forging, the workpiece is typically heated to 700°C to 850°C, and in hot forging (including subhot forging), the workpiece is heated to 700°C to 850°C. is typically heated to 950°C or higher. Therefore, when performing shaft enlargement processing by heating the shaft material to 580°C or higher, it is necessary to heat the shaft material to a warm range (700°C to 850°C) or a hot range (950°C or higher), similar to forging. is possible. However, when applying rotation, compressive force, and bending to the shaft material during shaft enlargement processing, a load also acts on the holder that holds the shaft material. The holder is generally made of tool steel such as die steel and high speed steel, and the tempering temperature range of these tool steels is approximately 500°C to 580°C. Furthermore, the time during which the shaft material and the holder are in contact is relatively longer than the time during which the workpiece and the die are in contact during forging. Therefore, when the shaft material is heated to a warm or hot temperature range, there is a possibility that the holder will be tempered and the hardness of the holder will decrease. When the hardness of the holder decreases, the durability of the holder against repeated use decreases, resulting in a shortened lifespan of the holder.

本発明は、上述した事情に鑑みなされたものであり、肥大率を増大でき、肥大に伴う亀裂の発生を抑制でき、ランニングコストを低減可能な軸肥大加工方法及び軸肥大加工装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a shaft enlargement processing method and a shaft enlargement processing apparatus that can increase the enlargement rate, suppress the occurrence of cracks due to enlargement, and reduce running costs. With the goal.

本発明の一態様の軸肥大加工方法は、軸材を前記軸材の軸方向に間隔をあけて一対のホルダによって保持し、前記一対のホルダの間に配置される前記軸材の中間部分に前記軸方向の圧縮力を作用させ、且つ前記軸方向と交差する方向の交番負荷を作用させ、前記中間部分を肥大させる軸肥大加工方法であって、前記中間部分の温度を前記軸材の青熱脆性温度域を超える温度とし、前記ホルダの温度を前記ホルダの焼戻し温度域未満の温度として、前記中間部分を肥大させる。 In the shaft enlargement processing method according to one aspect of the present invention, a shaft member is held by a pair of holders at intervals in the axial direction of the shaft member, and an intermediate portion of the shaft member disposed between the pair of holders is A shaft enlarging method for enlarging the intermediate portion by applying a compressive force in the axial direction and applying an alternating load in a direction crossing the axial direction, the method comprising: The intermediate portion is enlarged by setting the temperature to a temperature exceeding the thermal brittle temperature range and setting the temperature of the holder to a temperature below the tempering temperature range of the holder.

本発明の一態様の軸肥大加工装置は、軸材の軸方向に間隔をあけて配置され、前記軸材を保持する一対のホルダと、前記一対のホルダの間に配置される前記軸材の中間部分に前記軸方向の圧縮力を作用させる加圧部と、前記軸材の前記中間部分に前記軸方向と交差する方向の交番負荷を作用させる交番負荷発生部と、前記軸材の前記中間部分に前記圧縮力及び前記交番負荷が加えられている期間において前記軸材の前記中間部分の温度が前記軸材の青熱脆性温度域を超え、且つ前記軸材を保持している前記一対のホルダの温度が前記ホルダの焼戻し温度未満となるように、前記軸材の少なくとも一部を加熱する加熱部と、を備える。 A shaft enlargement processing device according to one aspect of the present invention includes a pair of holders that are arranged at intervals in the axial direction of a shaft material and hold the shaft material, and a shaft material that is arranged between the pair of holders. a pressure unit that applies a compressive force in the axial direction to the intermediate portion; an alternating load generating unit that applies an alternating load in a direction intersecting the axial direction to the intermediate portion of the shaft member; and the intermediate portion of the shaft member. The temperature of the intermediate portion of the shaft member exceeds the blue brittle temperature range of the shaft member during the period in which the compressive force and the alternating load are applied to the part, and the pair of members holding the shaft member A heating unit is provided that heats at least a portion of the shaft material so that the temperature of the holder is lower than the tempering temperature of the holder.

本発明によれば、肥大率を増大でき、肥大に伴う亀裂の発生を抑制でき、ランニングコストを低減できる。 According to the present invention, the enlargement rate can be increased, the occurrence of cracks due to enlargement can be suppressed, and running costs can be reduced.

本発明の実施形態を説明するための、軸肥大加工装置の一例の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an example of a shaft enlargement processing apparatus for explaining an embodiment of the present invention. 炭素含有量が異なる各種鋼材の温度と引張強さとの関係を示すグラフである。It is a graph showing the relationship between temperature and tensile strength of various steel materials with different carbon contents. (A)~(E)は、図1の軸肥大加工装置を用いた軸肥大加工方法の一例を説明する模式図である。(A) to (E) are schematic diagrams illustrating an example of a shaft enlargement processing method using the shaft enlargement processing apparatus of FIG. 1. FIG. 本発明の実施形態を説明するための、軸肥大加工方法の他の例を説明する模式図である。It is a schematic diagram explaining another example of the shaft enlargement processing method for explaining the embodiment of the present invention. 本発明の実施形態を説明するための、軸肥大加工方法の他の例を説明する模式図である。It is a schematic diagram explaining other examples of the shaft enlargement processing method for explaining the embodiment of the present invention. 本発明の実施形態を説明するための、軸肥大加工方法の他の例を説明する模式図である。It is a schematic diagram explaining another example of the shaft enlargement processing method for explaining the embodiment of the present invention. 本発明の実施形態を説明するための、軸肥大加工方法の他の例を説明する模式図である。It is a schematic diagram explaining another example of the shaft enlargement processing method for explaining the embodiment of the present invention. 実験例の所定の肥大率を得るまでに要した回転回数の計測結果及び亀裂の有無の確認結果を示すグラフである。It is a graph showing the results of measuring the number of rotations required to obtain a predetermined enlargement rate in an experimental example and the results of checking the presence or absence of cracks. 実験例の楕円量の評価結果を示すグラフである。It is a graph which shows the evaluation result of the ellipse amount of an experimental example. 本発明の実施形態を説明するための、軸肥大加工装置の加熱部の一例の模式図である。It is a schematic diagram of an example of the heating part of the shaft enlargement processing apparatus for explaining the embodiment of the present invention. 本発明の実施形態を説明するための、軸肥大加工装置の加熱部の他の例の模式図である。It is a schematic diagram of another example of the heating part of the shaft enlargement processing apparatus for explaining the embodiment of the present invention. 本発明の実施形態を説明するための、軸肥大加工装置の加熱部の他の例の模式図である。It is a schematic diagram of another example of the heating part of the shaft enlargement processing apparatus for explaining the embodiment of the present invention. 本発明の実施形態を説明するための、軸肥大加工装置の加熱部の他の例の模式図である。It is a schematic diagram of another example of the heating part of the shaft enlargement processing apparatus for explaining the embodiment of the present invention.

図1は、本発明の実施形態を説明するための、軸肥大加工装置の一例を示す。 FIG. 1 shows an example of a shaft enlargement processing apparatus for explaining an embodiment of the present invention.

図1に示す軸肥大加工装置1は、軸材Wの軸方向に間隔をあけて軸材Wをそれぞれ保持した一対のホルダ2,3を軸材Wの軸方向に互いに接近させることによって一対のホルダ2,3の間に配置される軸材Wの中間部分に軸方向の圧縮力を作用させ、且つ一対のホルダ2,3の間に配置される軸材Wの中間部分に軸方向と交差する方向の交番負荷を作用させ、軸材Wの中間部分を軸方向に圧縮しながら肥大させるものである。 The shaft enlarging processing device 1 shown in FIG. A compressive force in the axial direction is applied to the intermediate portion of the shaft material W disposed between the holders 2 and 3, and a compressive force in the axial direction is applied to the intermediate portion of the shaft material W disposed between the pair of holders 2 and 3. By applying an alternating load in the direction of the shaft member W, the intermediate portion of the shaft member W is enlarged while being compressed in the axial direction.

ホルダ2は、軸材Wが配置される基準線Aに沿って移動可能に支持台4に支持されており、並進駆動部(加圧部)5によって移動される。ホルダ2が基準線Aに沿ってホルダ3に向けて移動されることにより、ホルダ2,3に保持された軸材Wの中間部分に軸方向の圧縮力が負荷され、軸材Wの中間部分が圧縮される。 The holder 2 is supported by a support base 4 so as to be movable along a reference line A along which the shaft member W is arranged, and is moved by a translation drive unit (pressure unit) 5. By moving the holder 2 toward the holder 3 along the reference line A, an axial compressive force is applied to the intermediate portion of the shaft material W held by the holders 2 and 3, and the intermediate portion of the shaft material W is is compressed.

そして、軸肥大加工装置1は、軸材Wの中間部分に曲げ角度を付加して軸材Wを回転させることにより、軸材Wの中間部分に軸方向と交差する方向の交番負荷を作用させる。ホルダ3が傾動駆動部(交番負荷発生部)6によって基準線Aに対して傾けられ、軸材Wの中間部分に曲げ角度が付加される。そして、軸材Wの中間部分に曲げ角度が付加された状態で、ホルダ3が回転駆動部(交番負荷発生部)7によって回転される。ホルダ3が回転されるのに伴い、ホルダ3に保持された軸材Wが回転され、軸材Wを保持するホルダ2もまたホルダ3及び軸材Wに従動して回転される。 Then, the shaft enlarging processing device 1 applies an alternating load in a direction intersecting the axial direction to the intermediate portion of the shaft material W by adding a bending angle to the intermediate portion of the shaft material W and rotating the shaft material W. . The holder 3 is tilted with respect to the reference line A by the tilting drive unit (alternating load generating unit) 6, and a bending angle is added to the intermediate portion of the shaft member W. Then, the holder 3 is rotated by the rotation drive section (alternating load generation section) 7 with the bending angle being applied to the middle portion of the shaft member W. As the holder 3 is rotated, the shaft member W held by the holder 3 is rotated, and the holder 2 holding the shaft member W is also rotated following the holder 3 and the shaft member W.

制御部8は、設定された加工条件に基づき、並進駆動部5及び傾動駆動部6並びに回転駆動部7を制御する。 The control section 8 controls the translation drive section 5, the tilt drive section 6, and the rotation drive section 7 based on the set machining conditions.

本発明の軸肥大加工方法では、上記の軸肥大加工の前及び/又は軸肥大加工の際中に、軸材Wの中間部分が加熱される。なお、中間部分だけが加熱されてもよいし、中間部分を含む軸材Wの全体が加熱されてもよい。 In the shaft enlargement method of the present invention, the intermediate portion of the shaft material W is heated before and/or during the shaft enlargement process. Note that only the intermediate portion may be heated, or the entire shaft member W including the intermediate portion may be heated.

軸材Wの加熱は、例えば燃焼炉、電気炉等の炉を用いて行うことができる。また、別の加熱方法として、抵抗加熱及び誘導加熱を用いることもできる。抵抗加熱は、導電性の被加熱材に電極を接触させて被加熱材に直接通電し、そのジュール熱によって被加熱材を発熱させるものである。誘導加熱は、交流電源に接続された加熱コイルを被加熱材に近接配置し、加熱コイルが発生させる交番磁束を被加熱材と錯交させることによって被加熱材の表面に渦電流を生じさせ、そのジュール熱によって被加熱材の表面を発熱させるものである。 The shaft material W can be heated using a furnace such as a combustion furnace or an electric furnace. Moreover, resistance heating and induction heating can also be used as another heating method. Resistance heating involves bringing an electrode into contact with a conductive material to be heated, applying electricity directly to the material to be heated, and causing the material to generate heat using the Joule heat. In induction heating, a heating coil connected to an AC power source is placed close to the material to be heated, and the alternating magnetic flux generated by the heating coil intersects with the material to be heated, thereby creating eddy currents on the surface of the material to be heated. The Joule heat causes the surface of the heated material to generate heat.

抵抗加熱は、一対のホルダ2,3に保持された軸材Wの中間部分に電極を接触させて中間部分を局所的に加熱でき、誘導加熱は、一対のホルダ2,3に保持された軸材Wの中間部分に加熱コイルを近接配置して中間部分を局所的に加熱でき、いずれも軸肥大加工の際中の加熱に好適に用いることができる。なかでも、軸材Wと非接触で加熱することができる誘導加熱が好適である。 Resistance heating can locally heat the middle part of the shaft material W held by a pair of holders 2 and 3 by bringing an electrode into contact with the middle part, while induction heating can heat the middle part of the shaft material W held by a pair of holders 2 and 3. A heating coil can be placed close to the middle part of the material W to locally heat the middle part, and both can be suitably used for heating during shaft enlargement processing. Among these, induction heating, which can heat the shaft material W without contacting it, is suitable.

そして、本発明の軸肥大加工方法では、軸材Wの中間部分の温度が軸材Wの青熱脆性域を超え且つホルダ2,3の焼戻し温度域未満の温度とされて、軸材Wの中間部分が肥大される。 In the shaft enlargement processing method of the present invention, the temperature of the intermediate portion of the shaft material W is set to a temperature exceeding the blue brittle region of the shaft material W and below the tempering temperature range of the holders 2 and 3, The middle part becomes enlarged.

図2は、炭素含有量が異なる各種鋼材の温度と引張強さ(応力)との関係を示す。 FIG. 2 shows the relationship between temperature and tensile strength (stress) of various steel materials with different carbon contents.

図2に示すグラフは、『日本金属学会、日本鉄鋼協会編、「鉄鋼材料便覧」、第1版、丸善株式会社、1967年6月、p.552』から引用したものであり、基本的には、鋼材の温度の上昇に対して鋼材の引張強さは減少する。これは、上記軸肥大加工において、軸材Wの温度を高くすることにより、軸材Wの中間部分を肥大させる際の変形抵抗を小さくできることを意味する。ただし、青熱脆性域(図示の例では概ね200℃~400℃の温度域)では、温度の上昇に対して引張強さは増大し、青熱脆性域を超える温度域で、温度の上昇に対して引張強さは再び減少する。 The graph shown in FIG. 2 is from "Steel Materials Handbook," edited by the Japan Institute of Metals, Japan Iron and Steel Institute, 1st edition, Maruzen Co., Ltd., June 1967, p. 552'', and basically the tensile strength of steel decreases as the temperature of the steel increases. This means that in the shaft enlarging process, by increasing the temperature of the shaft material W, the deformation resistance when enlarging the intermediate portion of the shaft material W can be reduced. However, in the blue brittle region (approximately 200°C to 400°C in the example shown), the tensile strength increases with increasing temperature; On the other hand, the tensile strength decreases again.

そこで、本発明の軸肥大加工方法では、軸材Wの中間部分の温度が軸材Wの青熱脆性域を超える温度とされる。これにより、軸材Wの中間部分が肥大される際の変形抵抗を小さくでき、肥大率を増大させ、また、肥大に伴う亀裂の発生を抑制することができる。 Therefore, in the shaft enlargement processing method of the present invention, the temperature of the intermediate portion of the shaft material W is set to a temperature exceeding the blue brittle region of the shaft material W. Thereby, it is possible to reduce the deformation resistance when the intermediate portion of the shaft material W is enlarged, increase the enlargement rate, and suppress the occurrence of cracks due to enlargement.

軸材Wとしては、機械構造用炭素鋼(例えばJIS-S45C)や機械構造用合金鋼(例えばJIS-SCr420H)等の鋼材からなる断面円形の中実丸棒又は中空丸棒が用いられ、JIS-S45Cの青熱脆性域の上端温度は400℃弱であり、JIS-SCr420Hの青熱脆性域の上端温度もまた400℃弱である。したがって、軸材Wの中間部分の温度は、好ましくは400℃以上である。 As the shaft material W, a solid round bar or a hollow round bar with a circular cross section is used, which is made of a steel material such as carbon steel for machine structures (for example, JIS-S45C) or alloy steel for machine structures (for example, JIS-SCr420H). The upper end temperature of the blue brittle region of -S45C is a little less than 400°C, and the upper end temperature of the blue brittle region of JIS-SCr420H is also a little less than 400°C. Therefore, the temperature of the intermediate portion of the shaft member W is preferably 400° C. or higher.

青熱脆性域を超える温度では、軸材Wの中間部分の温度の上昇に対して引張強さは単調に減少する。したがって、肥大率を増大させ、また、肥大に伴う亀裂の発生を抑制する観点では、軸材Wの中間部分の温度に上限はない。しかし、軸材Wからホルダ2,3への熱伝導によってホルダ2,3の温度が上昇し、ホルダ2,3の温度が焼戻し温度域に達すると、焼戻しによってホルダ2,3の硬度が低下する虞がある。そこで、本発明の軸肥大加工方法では、ホルダ2,3の温度がホルダ2,3の焼戻し温度域未満の温度とされる。これにより、焼戻しによってホルダ2,3の硬度が低下することを防止でき、ホルダ2,3の寿命を延長することができる。 At temperatures exceeding the blue brittle region, the tensile strength monotonically decreases as the temperature of the intermediate portion of the shaft material W increases. Therefore, from the viewpoint of increasing the enlargement rate and suppressing the occurrence of cracks due to enlargement, there is no upper limit to the temperature of the intermediate portion of the shaft material W. However, the temperature of the holders 2, 3 increases due to heat conduction from the shaft material W to the holders 2, 3, and when the temperature of the holders 2, 3 reaches the tempering temperature range, the hardness of the holders 2, 3 decreases due to tempering. There is a possibility. Therefore, in the shaft enlargement processing method of the present invention, the temperature of the holders 2 and 3 is set to be lower than the tempering temperature range of the holders 2 and 3. Thereby, the hardness of the holders 2 and 3 can be prevented from decreasing due to tempering, and the life of the holders 2 and 3 can be extended.

ホルダ2,3は、一般に、ダイス鋼(例えばJIS-SKD61)やハイス鋼(例えばJIS-SKH51)等の工具鋼によって形成され、JIS-SKD61の焼戻し温度域は500℃~560℃であり、JIS-SKH51の焼戻し温度域は560℃~580℃である。したがって、ホルダ2,3の温度は、好ましくは580℃未満であり、さらに好ましくは500℃未満である。 The holders 2 and 3 are generally made of tool steel such as die steel (for example, JIS-SKD61) or high-speed steel (for example, JIS-SKH51), and the tempering temperature range of JIS-SKD61 is 500°C to 560°C. -The tempering temperature range of SKH51 is 560°C to 580°C. Therefore, the temperature of the holders 2 and 3 is preferably less than 580°C, more preferably less than 500°C.

ホルダ2,3の温度は軸材Wからの熱伝導によって上昇し、熱伝導の損失を考慮すれば、本発明の軸肥大加工方法における軸材Wの中間部分の温度の上限は、ホルダ2,3の焼戻し温度域より若干高い温度まで許容され得る。例えば、ホルダ2,3の一般的な焼戻し温度域(500℃~580℃)に対して、軸材Wの中間部分の温度の上限は700℃とすることができる。好ましくは、軸材Wの中間部分の温度の上限は、ホルダ2,3の焼戻し温度域未満であり、これにより、ホルダ2,3の温度が焼戻し温度域に達することを確実に防止できる。 The temperature of the holders 2 and 3 rises due to heat conduction from the shaft material W. Considering the loss of heat conduction, the upper limit of the temperature of the intermediate portion of the shaft material W in the shaft enlargement processing method of the present invention is determined by the temperature of the holders 2 and 3. Temperatures slightly higher than the tempering temperature range of No. 3 can be tolerated. For example, with respect to the general tempering temperature range (500°C to 580°C) of the holders 2 and 3, the upper limit of the temperature of the intermediate portion of the shaft material W can be set to 700°C. Preferably, the upper limit of the temperature of the intermediate portion of the shaft material W is below the tempering temperature range of the holders 2 and 3, thereby reliably preventing the temperature of the holders 2 and 3 from reaching the tempering temperature range.

図3を参照して、軸肥大加工装置1を用いた軸肥大加工方法の一例を説明する。 With reference to FIG. 3, an example of a shaft enlargement processing method using the shaft enlargement processing apparatus 1 will be described.

本例では、図3(A)に示すように、軸材Wの中間部分Waが、軸肥大加工の前に、加熱部9によって加熱される。なお、軸材Wの全体が加熱されてもよい。ここで、中間部分Waの温度が、少なくとも軸肥大加工が開始される時点で軸材Wの青熱脆性域を超えており、好ましくは軸肥大加工の全てのプロセスが終了するまでの期間で軸材Wの青熱脆性域を超える温度に維持されるように、加熱後の放熱等を考慮し、さらには、軸材Wを保持するホルダ2,3が焼戻し温度域未満に維持されるように、軸材Wからホルダ2,3への熱伝導を考慮して、中間部分Wa又は軸材Wの全体が加熱される。 In this example, as shown in FIG. 3(A), the intermediate portion Wa of the shaft material W is heated by the heating unit 9 before the shaft enlargement process. Note that the entire shaft material W may be heated. Here, the temperature of the intermediate portion Wa exceeds the blue brittle region of the shaft material W at least at the time when the shaft enlarging process is started, and preferably within the period until all processes of the shaft enlarging process are completed. Heat radiation after heating is taken into consideration so that the temperature of the material W is maintained at a temperature exceeding the blue brittle region, and furthermore, the holders 2 and 3 holding the shaft material W are maintained at a temperature below the tempering temperature range. In consideration of heat conduction from the shaft material W to the holders 2 and 3, the intermediate portion Wa or the entire shaft material W is heated.

次に、図3(B)に示すように、軸材Wがホルダ2,3によって保持される。加工前の軸材Wの中間部分Waの軸方向長さLは、中間部分Waの外径をDとして、Dとの関係において、肥大された中間部分Waの軸方向長さL及び外径Dに応じて適宜決定される。 Next, as shown in FIG. 3(B), the shaft member W is held by the holders 2 and 3. The axial length L 0 of the intermediate portion Wa of the shaft material W before processing is defined as the axial length L of the enlarged intermediate portion Wa in relation to D 0 , with the outer diameter of the intermediate portion Wa being D 0 It is determined appropriately according to the outer diameter D.

次に、図3(C)に示すように、軸材Wがホルダ2,3によって保持された状態で、ホルダ2が並進駆動部5(図1参照)によって基準線Aに沿って並進移動され、軸材Wの中間部分Waに軸方向の圧縮力が負荷される。また、ホルダ3が傾動駆動部6(図1参照)によって基準線Aに対して傾斜され、併せて回転駆動部7(図1参照)によって回転される。 Next, as shown in FIG. 3(C), while the shaft member W is held by the holders 2 and 3, the holder 2 is translated along the reference line A by the translation drive unit 5 (see FIG. 1). , an axial compressive force is applied to the intermediate portion Wa of the shaft member W. Further, the holder 3 is tilted with respect to the reference line A by the tilt drive unit 6 (see FIG. 1), and rotated by the rotation drive unit 7 (see FIG. 1).

ホルダ2,3に保持された軸材Wは、中間部分Waの基準線A上の曲げ中心Oを中心に曲げられ、且つ中心軸まわりに回転される。軸材Wの曲げ及び回転に伴い、曲げられた中間部分Waには、軸材Wの軸方向と交差する方向に交番負荷が加えられる。中間部分Waに付加される曲げ角度θ、即ちホルダ3の基準線Aに対する傾斜角度は、軸材Wの曲げが弾性限度の変形内に収まる角度とされ、軸材Wの材料の弾性限度によって異なるが、典型的には2°~4°程度である。 The shaft member W held by the holders 2 and 3 is bent around a bending center O on the reference line A of the intermediate portion Wa, and rotated around the central axis. As the shaft member W bends and rotates, an alternating load is applied to the bent intermediate portion Wa in a direction intersecting the axial direction of the shaft member W. The bending angle θ added to the intermediate portion Wa, that is, the inclination angle of the holder 3 with respect to the reference line A, is an angle in which the bending of the shaft member W falls within the deformation of the elastic limit, and varies depending on the elastic limit of the material of the shaft member W. However, it is typically about 2° to 4°.

次に、図3(D)に示すように、軸材Wの中間部分Waは、曲げ内側が塑性流動によって膨出する。そして、軸材Wの圧縮及び回転に伴い、塑性流動による膨出が全周に亘って成長し、中間部分Waが次第に肥大する。そして、ホルダ2,3の間隔が所定の間隔となったところで、ホルダ2の並進移動による軸材Wの圧縮が停止される。以上で軸材Wの中間部分Waを肥大させるプロセスが終了する。 Next, as shown in FIG. 3(D), the bending inner side of the intermediate portion Wa of the shaft member W bulges due to plastic flow. Then, as the shaft member W is compressed and rotated, a bulge due to plastic flow grows over the entire circumference, and the intermediate portion Wa gradually enlarges. Then, when the distance between the holders 2 and 3 reaches a predetermined distance, the compression of the shaft material W due to the translational movement of the holder 2 is stopped. With this, the process of enlarging the intermediate portion Wa of the shaft material W is completed.

次に、図3(E)に示すように、圧縮が停止された軸材Wには、引き続き並進駆動部5によってホルダ2,3を介して圧縮力が負荷される。そして、基準線Aに対して傾斜されたホルダ3が再び基準線Aに沿って配置され、軸材Wが曲げ戻しされる。軸材Wの曲げ戻しにより、肥大された中間部分(以下、肥大部という)Waの厚みが全周に亘って均される。以上のプロセスを経て軸材Wに対する軸肥大加工は完了し、軸材Wの回転が停止される。この後、肥大部Waに必要に応じて切削加工等が施され、肥大部Waが所望の形状(例えば円柱状)に成形される。 Next, as shown in FIG. 3(E), a compressive force is continuously applied to the shaft member W whose compression has been stopped by the translation drive unit 5 via the holders 2 and 3. Then, the holder 3 tilted with respect to the reference line A is placed again along the reference line A, and the shaft member W is bent back. By bending back the shaft member W, the thickness of the enlarged intermediate portion (hereinafter referred to as enlarged portion) Wa is made even over the entire circumference. Through the above process, the shaft enlarging process on the shaft material W is completed, and the rotation of the shaft material W is stopped. Thereafter, the enlarged portion Wa is subjected to a cutting process or the like as necessary, and the enlarged portion Wa is formed into a desired shape (for example, a cylindrical shape).

軸材Wの中間部分Waが軸材Wの青熱脆性域を超える温度とされ、軸材Wの変形抵抗が小さくなっているので、肥大率を増大させることができ、例えば2倍以上の肥大率を得ることができ、また、肥大に伴う亀裂の発生を抑制することもできる。また、ホルダ2,3が焼戻し温度域未満に維持されるので、焼戻しによってホルダ2,3の硬度が低下することを防止してホルダ2,3の寿命を延長でき、ランニングコストを低減することができる。そして、ホルダ2,3を焼戻し温度域未満に維持するにあたり、軸材Wの中間部分Waの温度の上限がホルダ2,3の焼戻し温度域より若干高い温度とされ、温間域よりも低い温度に抑制されるので、中間部分Waの脱炭を抑制でき、脱炭に伴って中間部分Waの表面に生成されるスケールの除去や、脱炭に起因して強度が低下した脱炭層の除去に要する削り代を縮小して材料を節約することができる。さらには、軸材Wの加熱に要するエネルギを節約してランニングコストを低減することができる。 Since the temperature of the intermediate portion Wa of the shaft material W exceeds the blue brittle region of the shaft material W, and the deformation resistance of the shaft material W is reduced, the enlargement rate can be increased, for example, the enlargement is doubled or more. In addition, it is possible to suppress the occurrence of cracks due to enlargement. Furthermore, since the holders 2 and 3 are maintained below the tempering temperature range, it is possible to prevent the hardness of the holders 2 and 3 from decreasing due to tempering, extend the life of the holders 2 and 3, and reduce running costs. can. In order to maintain the holders 2 and 3 below the tempering temperature range, the upper limit of the temperature of the intermediate portion Wa of the shaft material W is set to a temperature slightly higher than the tempering temperature range of the holders 2 and 3, and a temperature lower than the warm range. Since decarburization of the intermediate portion Wa can be suppressed, it is possible to remove scale generated on the surface of the intermediate portion Wa due to decarburization, and to remove a decarburized layer whose strength has decreased due to decarburization. It is possible to reduce the amount of cutting required and save material. Furthermore, the energy required to heat the shaft material W can be saved and running costs can be reduced.

なお、図3(A)~図3(E)に示した例では、軸材Wの中間部分Waが軸肥大加工の前に加熱されるが、中間部分Waが軸肥大加工の際中に加熱され、又は軸肥大加工の前及び軸肥大加工の際中に加熱されてもよい。中間部分Waが軸肥大加工の際中に加熱されることにより、放熱による温度の低下を抑制して、中間部分Waの温度を青熱脆性域を超える温度に確実に維持することができる。これにより、肥大率を一層増大させることができ、肥大に伴う亀裂の発生を一層抑制することができる。 In the examples shown in FIGS. 3(A) to 3(E), the intermediate portion Wa of the shaft material W is heated before the shaft enlargement process, but the intermediate portion Wa is heated during the shaft enlargement process. or may be heated before and during the shaft enlargement process. By heating the intermediate portion Wa during the shaft enlarging process, a decrease in temperature due to heat radiation can be suppressed, and the temperature of the intermediate portion Wa can be reliably maintained at a temperature exceeding the blue brittle region. Thereby, the enlargement rate can be further increased, and the occurrence of cracks due to enlargement can be further suppressed.

また、ホルダ3を基準線Aに対して傾けて軸材Wを曲げ、そして軸材Wを中心軸まわりに回転させて、軸材Wの中間部分Waに交番負荷を加えるものとして説明したが、中間部分Waに交番負荷を加える方法はこれに限定されるものではない。 Furthermore, the explanation has been made assuming that the holder 3 is tilted with respect to the reference line A to bend the shaft member W, and then the shaft member W is rotated around the central axis to apply an alternating load to the intermediate portion Wa of the shaft member W. The method of applying an alternating load to the intermediate portion Wa is not limited to this.

図4に示す例は、軸材Wの曲げ及び回転によって中間部分Waに交番負荷を加える点で図3(A)~図3(E)に示した軸肥大加工方法と共通するが、ホルダ3を傾けることに替えて、基準線Aと交差する方向にホルダ3をスライドさせることによって軸材Wを曲げるようにしたものである。 The example shown in FIG. 4 is similar to the shaft enlargement processing method shown in FIGS. 3(A) to 3(E) in that alternating loads are applied to the intermediate portion Wa by bending and rotating the shaft material W, but Instead of tilting the shaft member W, the shaft member W is bent by sliding the holder 3 in a direction intersecting the reference line A.

図5に示す例は、ホルダ2によって軸材Wを回転不能な拘束状態に保持し、ホルダ3によって軸材Wを回転可能に非拘束状態に保持し、ホルダ3を基準線Aまわりに旋回させることにより、軸材Wの中間部分Waを曲げ、且つ曲げられた軸材Wの中間部分Waに交番負荷を加えるようにしたものである。 In the example shown in FIG. 5, the shaft member W is held in a non-rotatably restrained state by the holder 2, the shaft member W is held in a rotatably unrestricted state by the holder 3, and the holder 3 is rotated around the reference line A. By doing so, the intermediate portion Wa of the shaft material W is bent, and an alternating load is applied to the bent intermediate portion Wa of the shaft material W.

図6に示す例は、ホルダ2,3によって軸材Wの端部を回転不能な拘束状態に保持し、ホルダ3を基準線Aまわりに往復回転させることにより、軸材Wの中間部分Waに交番負荷を加えるようにしたものである。 In the example shown in FIG. 6, the ends of the shaft material W are held in a non-rotatable state by the holders 2 and 3, and by reciprocating the holder 3 around the reference line A, the intermediate portion Wa of the shaft material W is fixed. It is designed to apply an alternating load.

図7に示す例は、振動発生器OSCから軸材Wに曲げ又は捻り振動を与えることにより、軸材Wの中間部分Waに交番負荷を加えるようにしたものである。 In the example shown in FIG. 7, an alternating load is applied to the intermediate portion Wa of the shaft member W by applying bending or torsional vibration to the shaft member W from the vibration generator OSC.

以下、実験例について説明する。 An experimental example will be explained below.

実験例1では、JIS-SCr420Hからなる軸材に対し、軸材の全体を軸肥大加工の前に電気炉で加熱し、上述した軸肥大加工装置1を用いて、圧縮力2000kN、曲げ角度4.0°の条件で軸肥大加工を行った。JIS-SCr420Hの青熱脆性域の上端温度は400℃弱である。軸材の温度(軸肥大加工開始時の温度)を種々に変えて、肥大率が3.0となるまでに要する回転回数を計測し、得られた肥大部における亀裂の有無を確認した。亀裂の有無は、染色浸透探傷剤を用いたカラーチェックによって確認した。結果を図8に示す。なお、図8において、亀裂が確認された試料は「×」で、亀裂が確認されなかった試料は「〇」で示している。 In Experimental Example 1, a shaft material made of JIS-SCr420H was heated in an electric furnace before being subjected to shaft enlargement processing, and was heated at a compression force of 2000 kN and a bending angle of 4 using the above-mentioned shaft enlargement processing apparatus 1. Axial enlargement processing was performed under the condition of .0°. The upper temperature of the blue brittle region of JIS-SCr420H is a little less than 400°C. The temperature of the shaft material (temperature at the start of shaft enlargement processing) was varied, and the number of rotations required until the enlargement rate reached 3.0 was measured, and the presence or absence of cracks in the obtained enlarged portion was confirmed. The presence or absence of cracks was confirmed by color checking using a dye penetrant tester. The results are shown in FIG. In addition, in FIG. 8, samples in which cracks were confirmed are indicated by "x", and samples in which cracks were not confirmed are indicated by "○".

図8に示すとおり、軸材の温度が高いほど肥大率が3.0となるまでに要する回転回数が小さくなる傾向にあり、変形抵抗が小さいことがわかる。そして、軸材の温度が400℃未満の試料では、いずれも肥大部に亀裂が確認されたのに対し、軸材の温度が400℃以上の試料では、いずれも肥大部に亀裂が確認されなかった。以上から、軸材の中間部分を青熱脆性域を超える温度として軸肥大加工を行うことにより、肥大率を増大させることができ、且つ肥大に伴う亀裂の発生を抑制することができることがわかる。 As shown in FIG. 8, it can be seen that the higher the temperature of the shaft material, the smaller the number of rotations required for the enlargement ratio to reach 3.0, which indicates that the deformation resistance is smaller. In all of the samples whose shaft material temperature was below 400°C, cracks were confirmed in the enlarged part, whereas in the samples whose shaft material temperature was 400°C or higher, no cracks were observed in the enlarged part. Ta. From the above, it can be seen that by performing shaft enlargement processing at a temperature of the intermediate portion of the shaft material exceeding the blue brittle region, the enlargement rate can be increased and the occurrence of cracks due to enlargement can be suppressed.

次に、実験例2では、JIS-SCr420Hからなり且つ圧延棒鋼の断面に観察される凝固パターンが楕円状である軸材と、JIS-SCr420Hからなり且つ圧延棒鋼の断面に観察される凝固パターンが長方形状である軸材とに対し、実験例1と同じ加工条件で、軸材の温度(軸肥大加工開始時の温度)を種々に変えて肥大率が3.0となるまで軸肥大加工を行い、得られた肥大部の長径と短径との差である楕円量を評価した。なお、軸材の凝固パターンとは、連続鋳造圧延にて製造される軸材の鋳造時の断面形状であり、一般に、凝固パターンは軸材の塑性変形の等方性及び異方性に関連する。結果を図9に示す。 Next, in Experimental Example 2, a shaft material is made of JIS-SCr420H and the solidification pattern observed in the cross section of the rolled steel bar is elliptical, and a shaft material is made of JIS-SCr420H and the solidification pattern observed in the cross section of the rolled steel bar is elliptical. A rectangular shaft material was subjected to shaft enlargement processing under the same processing conditions as in Experimental Example 1, varying the temperature of the shaft material (temperature at the start of shaft enlargement processing) until the enlargement rate reached 3.0. The amount of ellipse, which is the difference between the major axis and the minor axis of the obtained enlarged part, was evaluated. The solidification pattern of the shaft material is the cross-sectional shape of the shaft material manufactured by continuous casting and rolling at the time of casting, and the solidification pattern is generally related to the isotropy and anisotropy of the plastic deformation of the shaft material. . The results are shown in FIG.

図9に示すとおり、凝固パターンが楕円状である場合、及び長方形状である場合のいずれの場合にも、軸材の温度が高いほど楕円量が小さくなる傾向にある。すなわち、肥大化が等方的に進んでおり、このことからも軸材の温度が高いほど変形抵抗が小さく、加えて凝固パターンの影響を受け難く円周方向の変形が均一に進行することがわかる。軸肥大加工の後の切削加工によって、例えば肥大部が円柱状に加工される場合に、楕円量が小さいほど、削り代を小さくして材料の無駄を少なくできるので、経済的である。 As shown in FIG. 9, whether the solidification pattern is elliptical or rectangular, the higher the temperature of the shaft material, the smaller the amount of ellipse. In other words, the enlargement progresses isotropically, which also shows that the higher the temperature of the shaft material, the lower the deformation resistance, and in addition, it is less affected by the solidification pattern, and deformation in the circumferential direction progresses uniformly. Recognize. For example, when the enlarged part is machined into a cylindrical shape by cutting after the shaft enlargement process, the smaller the ellipse amount, the smaller the cutting allowance and the less waste of material, which is more economical.

次に、加熱部9について説明する。 Next, the heating section 9 will be explained.

図10に示す例では、加熱部9は、軸材Wの中間部分又は中間部分を含む軸材Wの全体を、上記の軸肥大加工の前に加熱する。軸材Wの加熱方法は、炉加熱、抵抗加熱、又は誘導加熱である。加熱部9は一対のホルダ2,3に隣設されており、加熱部9にて加熱された軸材Wは、ロボット10によって、加熱部9から一対のホルダ2,3に移送される。そして、軸材Wが一対のホルダ2,3によって保持され、一対のホルダ2,3によって保持された軸材Wに対して上記の軸肥大加工が施される。 In the example shown in FIG. 10, the heating unit 9 heats the intermediate portion of the shaft material W or the entire shaft material W including the intermediate portion before the above-mentioned shaft enlargement process. The heating method for the shaft material W is furnace heating, resistance heating, or induction heating. The heating unit 9 is adjacent to the pair of holders 2 and 3, and the shaft material W heated in the heating unit 9 is transferred from the heating unit 9 to the pair of holders 2 and 3 by the robot 10. Then, the shaft material W is held by the pair of holders 2 and 3, and the shaft material W held by the pair of holders 2 and 3 is subjected to the above-mentioned shaft enlargement process.

図11に示す例では、加熱部9は、一対のホルダ2,3のうち一方のホルダによって保持された軸材Wの中間部分を、上記の軸肥大加工の前に、誘導加熱によって加熱する。加熱部9は螺旋状の加熱コイル11を有する。加熱コイル11が基準線Aに沿って移動され、ホルダ2に保持された軸材Wが加熱コイル11に挿通される。高周波の交流電流が加熱コイル11に供給され、加熱コイル11の内部に収容されている軸材Wの中間部分が誘導加熱される。なお、軸材Wの中間部分が加熱コイル11の全長よりも長い場合には、加熱コイル11が基準線Aに沿って適宜移動される。軸材Wの中間部分の加熱が済んだ後、加熱コイル11が基準線Aに沿って移動され、軸材Wが加熱コイル11から抜かれる。次に、加熱コイル11が基準線A上から退避される。そして、軸材Wが一対のホルダ2,3によって保持され、一対のホルダ2,3によって保持された軸材Wに対して上記の軸肥大加工が施される。 In the example shown in FIG. 11, the heating unit 9 heats the intermediate portion of the shaft material W held by one of the pair of holders 2 and 3 by induction heating before the shaft enlargement process described above. The heating section 9 has a spiral heating coil 11 . The heating coil 11 is moved along the reference line A, and the shaft member W held by the holder 2 is inserted through the heating coil 11. A high-frequency alternating current is supplied to the heating coil 11, and the intermediate portion of the shaft member W housed inside the heating coil 11 is heated by induction. Note that when the middle portion of the shaft material W is longer than the entire length of the heating coil 11, the heating coil 11 is moved along the reference line A as appropriate. After heating the intermediate portion of the shaft member W, the heating coil 11 is moved along the reference line A, and the shaft member W is removed from the heating coil 11. Next, the heating coil 11 is retracted from above the reference line A. Then, the shaft material W is held by the pair of holders 2 and 3, and the shaft material W held by the pair of holders 2 and 3 is subjected to the above-mentioned shaft enlargement process.

図12に示す例では、加熱部9は、一対のホルダ2,3によって保持された軸材Wの中間部分を、上記の軸肥大加工の前に及び/又は軸肥大加工の際中に、誘導加熱によって加熱する。加熱部9は円弧状の加熱コイル12を有する。加熱コイル12が、一対のホルダ2,3によって保持された軸材Wの中間部分に接近され、加熱コイル12の内周面と軸材Wの中間部分の外周面とが対向した状態に加熱コイル12が配置される。高周波の交流電流が加熱コイル12に供給され、加熱コイル12の内周面に対向している軸材Wの中間部分が誘導加熱される。そして、軸材Wが回転駆動部7(図1参照)によって回転されることにより、軸材Wの中間部分が全周にわたって誘導加熱される。なお、軸材Wの中間部分が加熱コイル12の全長よりも長い場合には、加熱コイル12が基準線Aに沿って適宜移動される。また、軸材Wの中間部分が軸肥大加工の際中に誘導加熱される場合には、軸材Wの中間部分の肥大化に応じて加熱コイル12が外径側に適宜移動される。こうして加熱される軸材Wに対して上記の軸肥大加工が施される。 In the example shown in FIG. 12, the heating unit 9 guides the intermediate portion of the shaft material W held by the pair of holders 2 and 3 before and/or during the shaft enlargement process. Heat by heating. The heating section 9 has an arc-shaped heating coil 12. The heating coil 12 is brought close to the middle part of the shaft material W held by the pair of holders 2 and 3, and the heating coil 12 is brought into contact with the inner peripheral surface of the heating coil 12 and the outer peripheral surface of the middle part of the shaft material W facing each other. 12 are placed. A high-frequency alternating current is supplied to the heating coil 12, and the middle portion of the shaft member W facing the inner peripheral surface of the heating coil 12 is heated by induction. When the shaft material W is rotated by the rotational drive unit 7 (see FIG. 1), the intermediate portion of the shaft material W is induction heated over the entire circumference. Note that when the middle portion of the shaft member W is longer than the entire length of the heating coil 12, the heating coil 12 is moved along the reference line A as appropriate. Further, when the intermediate portion of the shaft material W is induction heated during the shaft enlargement process, the heating coil 12 is appropriately moved toward the outer diameter side in accordance with the enlargement of the intermediate portion of the shaft material W. The shaft material W thus heated is subjected to the shaft enlargement process described above.

図13に示す例では、加熱部9は、一対のホルダ2,3によって保持された軸材Wの中間部分を、上記の軸肥大加工の前に及び/又は軸肥大加工の際中に、抵抗加熱によって加熱する。加熱部9はホルダ2,3に接続される一対の電極13,14を有する。直流電流又は交流電流が、一対のホルダ2,3及び一対のホルダ2,3に保持された軸材Wの中間部分を介して一対の電極13,14間に流され、軸材Wの中間部分が抵抗加熱される。こうして加熱される軸材Wに対して上記の軸肥大加工が施される。 In the example shown in FIG. 13, the heating unit 9 heats the intermediate portion of the shaft material W held by the pair of holders 2 and 3 with resistance before and/or during the shaft enlargement process. Heat by heating. The heating unit 9 has a pair of electrodes 13 and 14 connected to the holders 2 and 3. A direct current or an alternating current is passed between the pair of electrodes 13 and 14 via the pair of holders 2 and 3 and the intermediate portion of the shaft member W held by the pair of holders 2 and 3, and the intermediate portion of the shaft member W is is resistively heated. The shaft material W thus heated is subjected to the shaft enlargement process described above.

1 軸肥大加工装置
2 ホルダ
3 ホルダ
4 支持台
5 並進駆動部(加圧部)
6 傾動駆動部(交番負荷発生部)
7 回転駆動部(交番負荷発生部)
8 制御部
9 加熱部
10 ロボット
11 加熱コイル
12 加熱コイル
13 電極
14 電極
A 基準線
W 軸材
Wa 中間部分(肥大部)
1 Axial enlargement processing device 2 Holder 3 Holder 4 Support stand 5 Translation drive section (pressure section)
6 Tilting drive section (alternating load generation section)
7 Rotation drive section (alternating load generation section)
8 Control part 9 Heating part 10 Robot 11 Heating coil 12 Heating coil 13 Electrode 14 Electrode A Reference line W Shaft material Wa Intermediate part (enlarged part)

Claims (7)

断面に観察される凝固パターンが楕円状である軸材を前記軸材の軸方向に間隔をあけて一対のホルダによって保持し、前記一対のホルダの間に配置される前記軸材の中間部分に前記軸方向の圧縮力を作用させ、且つ前記軸方向と交差する方向の交番負荷を作用させ、前記中間部分を肥大させる軸肥大加工方法であって、
前記中間部分の温度を前記軸材の青熱脆性温度域を超える温度とし、前記ホルダの温度を前記ホルダの焼戻し温度域未満の温度として、前記中間部分を肥大させる軸肥大加工方法。
A shaft member having an elliptical solidification pattern observed in a cross section is held by a pair of holders at intervals in the axial direction of the shaft member, and a middle portion of the shaft member disposed between the pair of holders is A axial enlargement processing method for enlarging the intermediate portion by applying a compressive force in the axial direction and applying an alternating load in a direction intersecting the axial direction,
A shaft enlargement processing method in which the temperature of the intermediate portion is set to a temperature exceeding the blue brittle temperature range of the shaft material, and the temperature of the holder is set to a temperature lower than the tempering temperature range of the holder to enlarge the middle part.
請求項1記載の軸肥大加工方法であって、
前記中間部分の温度を400℃以上とし、前記ホルダの温度を580℃未満として、前記中間部分を肥大させる軸肥大加工方法。
The shaft enlargement processing method according to claim 1,
A method for enlarging the shaft by increasing the temperature of the intermediate portion to 400° C. or higher and setting the temperature of the holder to less than 580° C.
請求項1又は2記載の軸肥大加工方法であって、
前記中間部分の温度を400℃以上且つ700℃以下として、前記中間部分を肥大させる軸肥大加工方法。
The shaft enlargement processing method according to claim 1 or 2,
A method for enlarging the shaft by enlarging the intermediate portion by setting the temperature of the intermediate portion to 400° C. or higher and 700° C. or lower.
請求項1又は2記載の軸肥大加工方法であって、
前記中間部分の温度を前記軸材の青熱脆性温度域を超え且つ前記ホルダの焼戻し温度域未満の温度として、前記中間部分を肥大させる軸肥大加工方法。
The shaft enlargement processing method according to claim 1 or 2,
A method for enlarging a shaft by setting the temperature of the intermediate portion to a temperature exceeding a blue brittle temperature range of the shaft material and below a tempering temperature range of the holder.
請求項1から4のいずれか一項記載の軸肥大加工方法であって、
前記中間部分を肥大させる前に前記中間部分を含む前記軸材の少なくとも一部を加熱する軸肥大加工方法。
The shaft enlargement processing method according to any one of claims 1 to 4,
A shaft enlargement processing method that heats at least a portion of the shaft material including the intermediate portion before enlarging the intermediate portion.
請求項1から5のいずれか一項記載の軸肥大加工方法であって、
前記中間部分を肥大させている際中に前記中間部分を加熱する軸肥大加工方法。
The shaft enlargement processing method according to any one of claims 1 to 5,
A method for enlarging a shaft by heating the intermediate portion while enlarging the intermediate portion.
断面に観察される凝固パターンが楕円状である軸材の軸方向に間隔をあけて配置され、前記軸材を保持する一対のホルダと、
前記一対のホルダの間に配置される前記軸材の中間部分に前記軸方向の圧縮力を作用させる加圧部と、
前記軸材の前記中間部分に前記軸方向と交差する方向の交番負荷を作用させる交番負荷発生部と、
前記軸材の前記中間部分に前記圧縮力及び前記交番負荷が加えられている期間において前記軸材の前記中間部分の温度が前記軸材の青熱脆性温度域を超え、且つ前記軸材を保持している前記一対のホルダの温度が前記ホルダの焼戻し温度未満となるように、前記軸材の少なくとも一部を加熱する加熱部と、
を備える軸肥大加工装置。
a pair of holders arranged at intervals in the axial direction of a shaft member whose solidification pattern observed in a cross section is elliptical, and holding the shaft member;
a pressure unit that applies a compressive force in the axial direction to an intermediate portion of the shaft member disposed between the pair of holders;
an alternating load generator that applies an alternating load in a direction intersecting the axial direction to the intermediate portion of the shaft member;
During a period in which the compressive force and the alternating load are applied to the intermediate portion of the shaft material, the temperature of the intermediate portion of the shaft material exceeds the blue brittle temperature range of the shaft material, and the shaft material is maintained. a heating unit that heats at least a portion of the shaft material so that the temperature of the pair of holders is lower than the tempering temperature of the holders;
A shaft enlargement processing device equipped with.
JP2023218097A 2017-09-08 2023-12-25 Shaft enlargement processing method and shaft enlargement processing device Pending JP2024029100A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017173281 2017-09-08
JP2017173281 2017-09-08
JP2018138035A JP2019048333A (en) 2017-09-08 2018-07-23 Shaft thickening method and shaft thickening device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018138035A Division JP2019048333A (en) 2017-09-08 2018-07-23 Shaft thickening method and shaft thickening device

Publications (1)

Publication Number Publication Date
JP2024029100A true JP2024029100A (en) 2024-03-05

Family

ID=63667973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023218097A Pending JP2024029100A (en) 2017-09-08 2023-12-25 Shaft enlargement processing method and shaft enlargement processing device

Country Status (3)

Country Link
JP (1) JP2024029100A (en)
MX (1) MX2020002609A (en)
WO (1) WO2019050018A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088066A (en) 2003-09-19 2005-04-07 Iura Tadashi Kenkyusho:Kk Enlarge-working method for shaft
JP2007167882A (en) 2005-12-21 2007-07-05 Iura Co Ltd Enlarge-working method for shaft

Also Published As

Publication number Publication date
WO2019050018A1 (en) 2019-03-14
MX2020002609A (en) 2020-07-13

Similar Documents

Publication Publication Date Title
RU2630726C2 (en) Method for manufacturing forming roll, forming roll and device for manufacturing forming roll
JP5243083B2 (en) Friction welding method
US8336755B2 (en) Friction welding enclosure
JP6460235B2 (en) Mechanical joining apparatus and mechanical joining method
CN110430962B (en) Friction compression joint method
JP6332561B2 (en) Friction stir welding method and apparatus for structural steel
BR112016003146B1 (en) METHOD FOR HOT FORGING HOLLOW BODIES WITHOUT SEAM
JP6332562B2 (en) Friction stir welding method and apparatus for structural steel
EP3180137A1 (en) Warm bond method for butt joining metal parts
JP2024029100A (en) Shaft enlargement processing method and shaft enlargement processing device
EP3678800B1 (en) Method and apparatus for shaft diameter enlargement
Isravel et al. Exploration of magnetically impelled arc butt welded SA210GrA tubes for boiler applications
JP6477880B2 (en) Mechanical joining apparatus and mechanical joining method
JP2011017038A (en) Method and apparatus for induction-hardening crank shaft
JP4340216B2 (en) Crankshaft fatigue strength improving method and processing device
JP5349563B2 (en) Shaft enlargement processing method
JP2007167882A (en) Enlarge-working method for shaft
JP2005060735A (en) Method for improving fatigue strength of metal
JP2005088066A (en) Enlarge-working method for shaft
JP7019389B2 (en) Bolt manufacturing method
JP2011043124A (en) Correction method for deformation in combustor liner
KR20230088870A (en) Shaft manufacturing method
JP2004190108A (en) Method for imparting residual compressive stress to work
Chaturvedi et al. Welding of Low Carbon Steel Tubes Using Magnetically Impelled Arc Butt Welding: Experimental Investigation and Characterization. Metals 2022, 12, 1965
WO2018193242A1 (en) Method of applying dry sliding friction on a metallic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231225