JP2005221205A - Refrigerant apparatus - Google Patents

Refrigerant apparatus Download PDF

Info

Publication number
JP2005221205A
JP2005221205A JP2004032509A JP2004032509A JP2005221205A JP 2005221205 A JP2005221205 A JP 2005221205A JP 2004032509 A JP2004032509 A JP 2004032509A JP 2004032509 A JP2004032509 A JP 2004032509A JP 2005221205 A JP2005221205 A JP 2005221205A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
gas cooler
heat insulating
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004032509A
Other languages
Japanese (ja)
Other versions
JP4318562B2 (en
Inventor
Masaji Yamanaka
正司 山中
Shigeya Ishigaki
茂弥 石垣
Kenzo Matsumoto
兼三 松本
Haruhisa Yamazaki
晴久 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004032509A priority Critical patent/JP4318562B2/en
Priority to TW094101506A priority patent/TWI325949B/en
Priority to KR1020050009782A priority patent/KR101043826B1/en
Priority to EP05002353A priority patent/EP1562012B1/en
Priority to CNA2005100079762A priority patent/CN1654909A/en
Priority to AT05002353T priority patent/ATE442561T1/en
Priority to DE602005016476T priority patent/DE602005016476D1/en
Priority to US11/053,200 priority patent/US7251949B2/en
Priority to MXPA05001527 priority patent/MXPA05001527A/en
Publication of JP2005221205A publication Critical patent/JP2005221205A/en
Application granted granted Critical
Publication of JP4318562B2 publication Critical patent/JP4318562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant apparatus, restraining overload of a compressor and increase in operating power, improving the durability of the compressor, improving heat exchange effectiveness of an internal heat exchanger, and preventing the occurrence of dew condensation on the surface of an outer side pipe of the internal heat exchanger. <P>SOLUTION: This refrigerant apparatus 1 is provided with a refrigerating unit 11 in which a heat insulating box 3 has a storing space in the interior thereof, and below the heat insulating box 3, a compressor 5, a gas cooler 6, the internal heat exchanger 10, a throttle means 16 and an evaporator 9 stored in a heat insulating case 8 are disposed on a unit base 4. The apparatus is disposed so that the air heat-exchanged by the gas cooler 6 is directed toward the heat insulating case 8, and an air passage 15 is provided between the unit base 4 and the heat insulating case 8 so that the air heat-exchanged by the gas cooler 6 is discharged to the outside through the air passage 15. The internal heat exchanger 10 is embedded in a heat insulating material layer 8A provided in the outer periphery of the heat insulating case 8 for applying heat insulation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動販売機、ショウケースなどに適用可能な冷媒装置に関するものであり、さらに詳しくは、収納空間を設けた断熱性函体と、この断熱性函体の下方に、ユニットベースの上に圧縮機、ガスクーラ、内部熱交換器、絞り手段および蒸発器を配置した冷凍ユニットを装着した冷媒装置に関するものである。   The present invention relates to a refrigerant device applicable to vending machines, showcases, and the like. More specifically, the present invention relates to a heat insulating box provided with a storage space, and a unit base below the heat insulating box. Further, the present invention relates to a refrigerant device equipped with a refrigeration unit in which a compressor, a gas cooler, an internal heat exchanger, a throttle means, and an evaporator are arranged.

図6は従来の冷媒装置の断面説明図である。従来の冷媒装置1A(ショウケースの例)は内部に収納空間2を設けた断熱性函体3と、断熱性函体3の下方に、ユニットベース4の上に圧縮機5、ガスクーラ6、図示しない絞り手段を配置するとともに、さらにユニットベース4の上に複数の支柱7を固定して設け、支柱7の上に断熱ケース8を設置し、断熱ケース8中に蒸発器9を収納して配置してあり、また断熱ケース8の下方のユニットベース4の上に内部熱交換器10が配置されており、圧縮機5、ガスクーラ6、内部熱交換器10、図示しない絞り手段および蒸発器9を順次接続して冷凍回路を形成した冷凍ユニット11を装着して構成されている(例えば、特許文献1、特許文献2、特許文献3参照)。
図中、12はガスクーラ6用のファン、13は蒸発器9用のファン、14は排気口、15は物品を収納するための収納棚を示す。
冷媒装置1Aを作動すると、圧縮機5で圧縮され、吐出された冷媒ガスはガスクーラ6に流入し、そこでファン12により外部の空気が矢印で示したように(あるいは矢印の逆方向に)導入され空冷方式により放熱する。放熱した冷媒は2重管で構成される内部熱交換器10の内部側管内を通過し、冷媒ガスはそこで内部熱交換器10の外部側管内を通過する蒸発器9から流出する低圧側の冷媒と熱交換して熱を奪われて更に冷却され、冷却された高圧側の冷媒ガスは図示しない膨張弁(絞り手段)に至り、圧力調整されて圧力低下して、ガス/液体の二相混合体とされ、その状態で蒸発器9内に流入し、そこで冷媒は蒸発し、空気から吸熱することにより冷却作用を発揮し、冷却された空気はファン13により矢印で示したように(あるいは矢印の逆方向に)断熱性函体3の収納空間2に導入され循環される。
その後、冷媒は蒸発器9から流出して、内部熱交換器10の外部側管内を通過して、内部熱交換器10の内部側管内を通過する前記高圧側の冷媒から熱を奪い、加熱作用を受け、冷媒は完全に気体の状態となり、気体の状態となった冷媒は圧縮機5に吸い込まれるサイクルを繰り返すようになっている。
FIG. 6 is a cross-sectional explanatory view of a conventional refrigerant device. A conventional refrigerant device 1A (an example of a showcase) includes a heat insulating box 3 provided with a storage space 2 therein, a compressor 5, a gas cooler 6 on the unit base 4 below the heat insulating box 3, In addition, a plurality of struts 7 are fixedly provided on the unit base 4, a heat insulating case 8 is installed on the support 7, and an evaporator 9 is accommodated in the heat insulating case 8. In addition, an internal heat exchanger 10 is disposed on the unit base 4 below the heat insulating case 8, and the compressor 5, the gas cooler 6, the internal heat exchanger 10, an unillustrated throttle means and an evaporator 9 are provided. A refrigeration unit 11 that is sequentially connected to form a refrigeration circuit is mounted (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
In the figure, 12 is a fan for the gas cooler 6, 13 is a fan for the evaporator 9, 14 is an exhaust port, and 15 is a storage shelf for storing articles.
When the refrigerant device 1A is operated, the refrigerant gas compressed and discharged by the compressor 5 flows into the gas cooler 6, where external air is introduced by the fan 12 as indicated by an arrow (or in the opposite direction of the arrow). Dissipates heat by air cooling. The radiated refrigerant passes through the inside pipe of the internal heat exchanger 10 constituted by double pipes, and the refrigerant gas flows out of the evaporator 9 passing through the outside pipe of the internal heat exchanger 10 there. The heat is taken away by heat exchange and further cooled, and the cooled refrigerant gas on the high pressure side reaches an expansion valve (throttle means) not shown, the pressure is adjusted and the pressure is lowered, and the gas / liquid two-phase mixing In this state, the refrigerant flows into the evaporator 9 where the refrigerant evaporates and absorbs heat from the air to exert a cooling action. The cooled air is indicated by the fan 13 as indicated by the arrow (or the arrow In the opposite direction) and introduced into the storage space 2 of the heat insulating box 3 and circulated.
Thereafter, the refrigerant flows out of the evaporator 9, passes through the outer side pipe of the internal heat exchanger 10, takes heat from the high-pressure side refrigerant passing through the inner side pipe of the internal heat exchanger 10, and performs a heating operation. In response, the refrigerant is completely in a gaseous state, and the refrigerant in the gaseous state repeats a cycle of being sucked into the compressor 5.

従来、冷凍サイクルには、冷媒としてフロン(R11、R12、R134aなど)が一般的に用いられていた。しかしながら、フロンは大気中に放出されると大きな温暖化効果やオゾン層破壊などの問題を有している。このため、近年、環境に与える影響の少ない他の自然冷媒、例えば、酸素(O2 )、二酸化炭素(CO2 )、ハイドロカーボン(HC)、アンモニア(NH3 )、水(H2 O)を冷媒として用いる研究が行われている。これら自然冷媒の内、酸素と水は、圧力が低くて冷凍サイクルの冷媒としては用いることが困難であり、アンモニアやハイドロカーボンは可燃性であるため、取り扱いが難しい問題がある。このため、二酸化炭素(CO2 )を冷媒として用い、高圧側を超臨界圧力として運転する遷臨界冷媒サイクルを用いた装置が開発されてきている(特許文献4、特許文献5参照)。
特開平10−96532号公報 特開2003−56969 特開2003−65651 特開平10−19401号公報 特公平7−18602号公報
Conventionally, chlorofluorocarbon (R11, R12, R134a, etc.) is generally used as a refrigerant in the refrigeration cycle. However, when CFCs are released into the atmosphere, they have problems such as a large warming effect and ozone layer destruction. For this reason, in recent years, other natural refrigerants having little influence on the environment, such as oxygen (O 2 ), carbon dioxide (CO 2 ), hydrocarbon (HC), ammonia (NH 3 ), and water (H 2 O), are used. Research on use as a refrigerant has been conducted. Among these natural refrigerants, oxygen and water are low in pressure and difficult to use as refrigerants in the refrigeration cycle, and ammonia and hydrocarbons are flammable, and therefore have a problem that they are difficult to handle. For this reason, an apparatus using a transcritical refrigerant cycle in which carbon dioxide (CO 2 ) is used as a refrigerant and the high pressure side is operated as a supercritical pressure has been developed (see Patent Document 4 and Patent Document 5).
Japanese Patent Laid-Open No. 10-96532 JP 2003-56969 A JP 2003-65651 A Japanese Patent Laid-Open No. 10-19401 Japanese Patent Publication No. 7-18602

しかし、従来の冷媒装置1Aは、ガスクーラ6で熱交換した排気は断熱ケース8および内部熱交換器10の方向に向かい、断熱ケース8および内部熱交換器10に当たった後、断熱ケース8および内部熱交換器10の周りを回って断熱ケース8および内部熱交換器10の後方に流れて冷凍ユニット9の後部に設けた排気口14から外部に排出されるようになっている。その結果、ガスクーラ6で熱交換した排気の気流が断熱ケース8および内部熱交換器10により妨げられ、ガスクーラ6の周囲に気流が滞り熱が逃げなくなるので、ガスクーラ6における冷媒ガスの空冷が不十分になり運転圧力が上昇する結果、圧縮機5が過負荷状態になり、運転電力が増加したり、保護装置が作動して停止したり、また圧縮機5の耐久性に悪影響がでて寿命が短くなるなどの問題がある。
またガスクーラ6で熱交換した排気が内部熱交換器10の周りを流れるので内部熱交換器10の熱交換効率が低下するとともに、内部熱交換器10の外部側管(蒸発器9から流出する低圧側の冷媒が流れる)の表面に結露が発生する問題があった。
However, in the conventional refrigerant device 1A, the exhaust gas heat-exchanged by the gas cooler 6 is directed toward the heat insulation case 8 and the internal heat exchanger 10, and after hitting the heat insulation case 8 and the internal heat exchanger 10, the heat insulation case 8 and the internal heat exchanger 10 Around the heat exchanger 10, it flows behind the heat insulating case 8 and the internal heat exchanger 10 and is discharged to the outside through an exhaust port 14 provided at the rear part of the refrigeration unit 9. As a result, the airflow of the exhaust gas heat exchanged by the gas cooler 6 is blocked by the heat insulating case 8 and the internal heat exchanger 10, and the airflow is stagnated around the gas cooler 6 so that the heat does not escape, so that the air cooling of the refrigerant gas in the gas cooler 6 is insufficient. As a result, the operating pressure increases and the compressor 5 is overloaded, the operating power increases, the protective device is activated and stopped, the durability of the compressor 5 is adversely affected, and the service life is shortened. There are problems such as shortening.
Further, since the exhaust gas heat-exchanged by the gas cooler 6 flows around the internal heat exchanger 10, the heat exchange efficiency of the internal heat exchanger 10 is lowered, and the external side pipe of the internal heat exchanger 10 (low pressure flowing out from the evaporator 9). There was a problem that condensation occurred on the surface of the refrigerant on the side.

また、二酸化炭素を冷媒として用いた場合、冷媒圧力は高圧側で約150kg/cm2 Gにも達し、低圧側では約30〜40kg/cm2 Gとなるように、二酸化炭素を冷媒として用いる冷凍サイクルでは、フロンに比較して冷媒圧力が高く冷媒温度も高くなり、特に1段圧縮式圧縮機を用いると各摺動部材に高圧側部分と低圧側部分が隣接する箇所が生じ、その差圧が大きいため、摺動ロスやリークロスが発生し易くなるとともに、冷媒温度が高くなるのでガスクーラにおける冷媒ガスの空冷がより一層不十分になるという問題があった。 In the case of using carbon dioxide as the refrigerant, the refrigerant pressure reaches even about 150 kg / cm 2 G on the high pressure side, to be about 30-40 kg / cm 2 G in the low pressure side, carbon dioxide is used as refrigerant refrigerator In the cycle, the refrigerant pressure is higher and the refrigerant temperature is higher than that of Freon. In particular, when a one-stage compression compressor is used, each sliding member has a portion where the high pressure side portion and the low pressure side portion are adjacent to each other, and the differential pressure is generated. Therefore, there is a problem that sliding loss and leak cross are likely to occur, and the refrigerant temperature becomes high, so that the air cooling of the refrigerant gas in the gas cooler becomes further insufficient.

本発明の目的は、従来の諸問題を解決して、ガスクーラで熱交換した排気を滞らせずよく流れるようにして、ガスクーラにおいて冷媒ガスを十分に冷却し、圧縮機が過負荷状態になったり運転電力が増加したりせず、圧縮機の耐久性を向上でき、また内部熱交換器の熱交換効率を向上するとともに、内部熱交換器の外部側管の表面に結露が発生するのを防止でき、また二酸化炭素を冷媒として用いても摺動ロスやリークロスの発生やガスクーラにおける冷媒ガスの空冷不足を極力抑えることができる冷媒装置を提供することである。   An object of the present invention is to solve various problems of the prior art and to allow the exhaust gas heat-exchanged by the gas cooler to flow well without stagnation, sufficiently cooling the refrigerant gas in the gas cooler and causing the compressor to become overloaded. Increases the durability of the compressor without increasing the operating power, improves the heat exchange efficiency of the internal heat exchanger, and prevents condensation from forming on the external pipe surface of the internal heat exchanger It is also possible to provide a refrigerant device that can suppress the occurrence of sliding loss and leaking and insufficient air cooling of refrigerant gas in a gas cooler as much as possible even when carbon dioxide is used as a refrigerant.

前記課題を解決するための本発明の請求項1記載の冷媒装置は、内部に収納空間を設けた断熱性函体と、前記断熱性函体の下方に、ユニットベースの上に圧縮機、ガスクーラ、内部熱交換器、絞り手段および断熱ケース中に収納した蒸発器を配置し、前記圧縮機、ガスクーラ、内部熱交換器、絞り手段および蒸発器を順次接続して冷凍回路を形成した冷凍ユニットを装着した冷媒装置であって、
前記ガスクーラで熱交換した空気が前記断熱ケースの方向に向かうように前記ガスクーラと断熱ケースを配置するとともに、前記ユニットベースと前記断熱ケースとの間に空気通路を設け、前記ガスクーラで熱交換した空気を前記空気通路を通って外部に排出し、そして、断熱性付与のために前記断熱ケースの外周に設けた断熱材層中に前記内部熱交換器あるいはさらに前記絞り手段を埋め込んで配設したことを特徴とする。
The refrigerant device according to claim 1 of the present invention for solving the above problems includes a heat insulating box having a storage space therein, a compressor and a gas cooler on the unit base below the heat insulating box. A refrigeration unit in which an internal heat exchanger, a throttle means and an evaporator housed in a heat insulation case are arranged, and the compressor, gas cooler, internal heat exchanger, throttle means and evaporator are sequentially connected to form a refrigeration circuit. An installed refrigerant device,
The gas cooler and the heat insulation case are arranged so that the air heat-exchanged by the gas cooler is directed toward the heat insulation case, and an air passage is provided between the unit base and the heat insulation case, and the air is heat-exchanged by the gas cooler. Is discharged to the outside through the air passage, and the internal heat exchanger or further the throttle means is embedded in a heat insulating material layer provided on the outer periphery of the heat insulating case for providing heat insulation. It is characterized by.

本発明の請求項2記載の冷媒装置は、請求項1記載の冷媒装置において、前記ガスクーラで熱交換した空気の大部分が通る前記空気通路の部分に対応する前記ユニットベースの箇所に少なくとも1つの排気通路を設け、前記ガスクーラで熱交換した空気が前記排気通路を通って外部に排出されることを特徴とする。   The refrigerant device according to claim 2 of the present invention is the refrigerant device according to claim 1, wherein at least one of the unit bases corresponding to a portion of the air passage through which most of the air heat-exchanged by the gas cooler passes is provided. An exhaust passage is provided, and the heat exchanged by the gas cooler is discharged to the outside through the exhaust passage.

本発明の請求項3記載の冷媒装置は、請求項1あるいは請求項2記載の冷媒装置において、前記冷凍ユニットが脱着・装着可能に構成されていることを特徴とする。   The refrigerant device according to claim 3 of the present invention is characterized in that in the refrigerant device according to claim 1 or 2, the refrigeration unit is configured to be detachable and attachable.

本発明の請求項4記載の冷媒装置は、請求項1から請求項3のいずれかに記載の冷媒装置において、高圧側が超臨界圧力となる二酸化炭素を冷媒とし、前記圧縮機として2段圧縮式ロータリ圧縮機を用いたことを特徴とする。   A refrigerant device according to a fourth aspect of the present invention is the refrigerant device according to any one of the first to third aspects, wherein carbon dioxide having a high pressure side at a supercritical pressure is used as a refrigerant, and the compressor is a two-stage compression type. A rotary compressor is used.

本発明の請求項1記載の冷媒装置は、内部に収納空間を設けた断熱性函体と、前記断熱性函体の下方に、ユニットベースの上に圧縮機、ガスクーラ、内部熱交換器、絞り手段および断熱ケース中に収納した蒸発器を配置し、前記圧縮機、ガスクーラ、内部熱交換器、絞り手段および蒸発器を順次接続して冷凍回路を形成した冷凍ユニットを装着した冷媒装置であって、
前記ガスクーラで熱交換した空気が前記断熱ケースの方向に向かうように前記ガスクーラと断熱ケースを配置するとともに、前記ユニットベースと前記断熱ケースとの間に空気通路を設け、前記ガスクーラで熱交換した空気を前記空気通路を通って外部に排出し、そして断熱性付与のために前記断熱ケースの外周に設けた断熱材層中に前記内部熱交換器あるいはさらに前記絞り手段を埋め込んで配設したので、ガスクーラで熱交換した排気を滞らせずよく流して排出でき、ガスクーラにおいて冷媒ガスを十分に冷却することができ、圧縮機が過負荷状態になったり運転電力が増加したりせず、圧縮機の耐久性を向上できる上、内部熱交換器の熱交換効率を向上でき、さらに内部熱交換器の外部側管の表面に結露が発生するのを防止でき、そして装置の小型化を図れる、という顕著な効果を奏する。
The refrigerant device according to claim 1 of the present invention includes a heat insulating box provided with a storage space therein, a compressor, a gas cooler, an internal heat exchanger, a throttle on a unit base below the heat insulating box. And a refrigerant device equipped with a refrigeration unit in which a compressor and a gas cooler, an internal heat exchanger, a throttling means and an evaporator are sequentially connected to form a refrigeration circuit. ,
The gas cooler and the heat insulation case are arranged so that the air heat-exchanged by the gas cooler is directed toward the heat insulation case, and an air passage is provided between the unit base and the heat insulation case, and the air is heat-exchanged by the gas cooler. Is discharged to the outside through the air passage, and the internal heat exchanger or further the throttle means is embedded in a heat insulating material layer provided on the outer periphery of the heat insulating case for providing heat insulating properties. The exhaust gas heat exchanged by the gas cooler can be flowed and discharged well without stagnation, the refrigerant gas can be sufficiently cooled in the gas cooler, the compressor will not be overloaded or the operating power will not increase, and the compressor In addition to improving durability, the heat exchange efficiency of the internal heat exchanger can be improved, and condensation can be prevented from occurring on the surface of the external side tube of the internal heat exchanger. Downsizing of the apparatus exhibits a remarkable effect that.

本発明の請求項2記載の冷媒装置は、請求項1記載の冷媒装置において、前記ガスクーラで熱交換した空気の大部分が通る前記空気通路の部分に対応する前記ユニットベースの箇所に少なくとも1つの排気通路を設け、前記ガスクーラで熱交換した空気が前記排気通路を通って外部に排出されることを特徴とするものであり、ガスクーラで熱交換した排気を滞らせず一層よく流して排出できる、というさらなる顕著な効果を奏する。   The refrigerant device according to claim 2 of the present invention is the refrigerant device according to claim 1, wherein at least one unit base portion corresponding to a portion of the air passage through which most of the air heat-exchanged by the gas cooler passes is provided. An exhaust passage is provided, and the air heat-exchanged by the gas cooler is exhausted to the outside through the exhaust passage, and the exhaust gas heat-exchanged by the gas cooler can be discharged and flowed better without stagnation. There is a further remarkable effect.

本発明の請求項3記載の冷媒装置は、請求項1あるいは請求項2記載の冷媒装置において、前記冷凍ユニットが脱着・装着可能に構成されていることを特徴とするものであり、断熱性函体に冷凍ユニットを容易に装着したり、脱着したりできるので、例えば、他社で作成した断熱性函体に自社で作成した冷凍ユニットを装着して組み立てて本発明の冷媒装置を製造したり、本発明の冷媒装置から冷凍ユニットを脱着し、修理などした後に再び冷凍ユニットを装着して組み立てることもできるなどの、さらなる顕著な効果を奏する。。   The refrigerant device according to claim 3 of the present invention is the refrigerant device according to claim 1 or 2, wherein the refrigeration unit is configured to be detachable and attachable. Since the refrigeration unit can be easily attached to or detached from the body, for example, the refrigerant device of the present invention can be manufactured by attaching and assembling the refrigeration unit created in-house to the heat insulating box made by another company, There is a further remarkable effect that the refrigeration unit can be detached from the refrigerant device of the present invention, repaired, etc., and then the refrigeration unit can be mounted and assembled again. .

本発明の請求項4記載の冷媒装置は、請求項1から請求項3のいずれかに記載の冷媒装置において、高圧側が超臨界圧力となる二酸化炭素を冷媒とし、前記圧縮機として2段圧縮式ロータリ圧縮機を用いたことを特徴とするものであり、二酸化炭素を冷媒として用いた場合、冷媒圧力は高圧側で約130〜150kg/cm2 Gにも達し、低圧側では約30〜40kg/cm2 Gとなるが、各摺動部材における差圧が約1/2と小さくなって面圧が低下し油膜が確保されるので、摺動ロスやリークロスの発生を極力抑えることができる、というさらなる顕著な効果を奏する。 A refrigerant device according to a fourth aspect of the present invention is the refrigerant device according to any one of the first to third aspects, wherein carbon dioxide having a high pressure side at a supercritical pressure is used as a refrigerant, and the compressor is a two-stage compression type. When carbon dioxide is used as a refrigerant, the refrigerant pressure reaches about 130 to 150 kg / cm 2 G on the high pressure side and about 30 to 40 kg / cm on the low pressure side. Although it becomes cm 2 G, since the differential pressure in each sliding member is reduced to about 1/2 and the surface pressure is reduced and an oil film is secured, the occurrence of sliding loss and leaking can be suppressed as much as possible. There is a further remarkable effect.

以下、図面により本発明の実施の形態を詳細に説明する。
(第1実施形態)
図1は、本発明の冷媒装置の一実施の形態を説明する断面説明図である。
図2は、本発明の冷媒装置の冷凍回路図である。
図3は、図2の冷媒回路のp−h線図である。
なお、本発明の冷媒装置は、自販機、冷蔵庫、ショーケースなどに使用されるものである。
本発明の冷媒装置1(ショウケース)は内部に収納空間2を設けた断熱性函体3と、断熱性函体3の下方に、ユニットベース4の上に圧縮機5、ガスクーラ6、内部熱交換器10、絞り手段16を配置し、さらにユニットベース4の上に間隔を置いて複数の支柱7を固定して設け、支柱7の上に断熱ケース8を設置し、ユニットベース4と断熱ケース8との間に空気通路15が形成され、そして断熱ケース8中に蒸発器9を収納して配置し、そしてガスクーラ6で熱交換した排気は断熱ケース8の方向に向かうように配置して、圧縮機5、ガスクーラ6、内部熱交換器10、絞り手段16および蒸発器9を順次接続して冷凍回路を形成した冷凍ユニット11を装着して構成されている。
内部熱交換器10は外部側管10Aと内部側管10Bとからなる2重管で構成されており、断熱ケース8に断熱性付与のためにその外周に設けた断熱材層8A中に埋め込んで配設されている。内部熱交換器10の内部側管10B内にはガスクーラ6で空冷方式により放熱した冷媒が通過し、外部側管10A内には蒸発器9から流出する低圧側の冷媒が通過して熱交換が行われる。
図中、12はガスクーラ6用のファン、13は蒸発器9用のファン、14は排気口、15は物品を収納するための収納棚を示す。
ユニットベース4の上に間隔を置いて複数の支柱7を固定して設け、支柱7の上に断熱ケース8を設置したので、ユニットベース4と断熱ケース8の底部との間に空気通路15が形成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional explanatory view illustrating an embodiment of the refrigerant device of the present invention.
FIG. 2 is a refrigeration circuit diagram of the refrigerant device of the present invention.
FIG. 3 is a ph diagram of the refrigerant circuit of FIG.
The refrigerant device of the present invention is used for vending machines, refrigerators, showcases, and the like.
The refrigerant device 1 (showcase) of the present invention includes a heat insulating box 3 provided with a storage space 2 therein, a compressor 5, a gas cooler 6, an internal heat on the unit base 4 below the heat insulating box 3. The exchanger 10 and the throttle means 16 are arranged, and a plurality of support columns 7 are fixedly provided on the unit base 4 at intervals, and a heat insulating case 8 is installed on the support columns 7, and the unit base 4 and the heat insulating case 8 is formed, and the evaporator 9 is housed and disposed in the heat insulating case 8, and the exhaust gas heat-exchanged by the gas cooler 6 is disposed to face the heat insulating case 8. The compressor 5, the gas cooler 6, the internal heat exchanger 10, the expansion means 16, and the evaporator 9 are sequentially connected to form a refrigeration unit 11 that forms a refrigeration circuit.
The internal heat exchanger 10 is composed of a double pipe composed of an outer side pipe 10A and an inner side pipe 10B, and is embedded in a heat insulating material layer 8A provided on the outer periphery of the heat insulating case 8 for imparting heat insulating properties. It is arranged. The refrigerant radiated by the air cooler in the gas cooler 6 passes through the internal pipe 10B of the internal heat exchanger 10, and the low-pressure refrigerant flowing out of the evaporator 9 passes through the external pipe 10A to exchange heat. Done.
In the figure, 12 is a fan for the gas cooler 6, 13 is a fan for the evaporator 9, 14 is an exhaust port, and 15 is a storage shelf for storing articles.
Since a plurality of support columns 7 are fixedly provided on the unit base 4 at intervals, and the heat insulation case 8 is installed on the support columns 7, an air passage 15 is provided between the unit base 4 and the bottom of the heat insulation case 8. It is formed.

図2において、5は内部中間圧型多段(2段)圧縮式ロータリコンプレッサを示しており、密閉容器17内の電動要素18とこの電動要素18の回転軸19で駆動される下段の回転圧縮要素20および上段の回転圧縮要素21を備えて構成されている。コンプレッサ5は冷媒導入管22から吸い込まれた冷媒ガスを下段の回転圧縮要素20で圧縮して密閉容器17内に吐出し、この密閉容器17内の中間圧の冷媒ガスを冷媒導入管23から一旦中間冷却回路24に吐出する。
中間冷却回路24は冷媒ガスが中間冷却用熱交換器25を通過するように設けられており、そこで、冷媒ガスは空冷され、冷媒導入管23から上段の回転圧縮要素21に吸い込まれて圧縮される。2段目の圧縮にて高圧となった冷媒ガスは、冷媒吐出管26から吐出され、ガスクーラ6で空冷される。このガスクーラ6から出た冷媒は内部熱交換器10にて蒸発器9を出た冷媒と熱交換した後、絞り手段(キャピラリーチューブ)16を経て蒸発器9に入り、蒸発した後、再度内部熱交換器10を経て冷媒導入管22から下段の回転圧縮要素20に吸い込まれる。
In FIG. 2, reference numeral 5 denotes an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, and the lower stage rotary compression element 20 driven by the electric element 18 in the hermetic container 17 and the rotating shaft 19 of the electric element 18. The upper rotary compression element 21 is provided. The compressor 5 compresses the refrigerant gas sucked from the refrigerant introduction pipe 22 by the lower rotary compression element 20 and discharges the refrigerant gas into the sealed container 17. The intermediate pressure refrigerant gas in the sealed container 17 is temporarily supplied from the refrigerant introduction pipe 23. Discharge to the intermediate cooling circuit 24.
The intermediate cooling circuit 24 is provided so that the refrigerant gas passes through the intermediate cooling heat exchanger 25, where the refrigerant gas is cooled by air and sucked into the upper rotary compression element 21 from the refrigerant introduction pipe 23 and compressed. The The refrigerant gas that has become high pressure due to the second-stage compression is discharged from the refrigerant discharge pipe 26 and is air-cooled by the gas cooler 6. The refrigerant discharged from the gas cooler 6 exchanges heat with the refrigerant discharged from the evaporator 9 in the internal heat exchanger 10, then enters the evaporator 9 through the throttling means (capillary tube) 16, evaporates, and then returns to the internal heat again. The refrigerant is sucked from the refrigerant introduction pipe 22 into the lower rotary compression element 20 through the exchanger 10.

この場合の動作を図3のp−h線図を参照して説明する。下段の回転圧縮要素20で圧縮されて(エンタルピーをΔh3得て)中間圧となり、密閉容器17内に吐出された冷媒は(図3の2の状態)、冷媒導入管23から出て中間冷却回路24に流入する。そして、この中間冷却回路24が通過する中間冷却用熱交換器25に流入し、そこで空冷方式により放熱される(図3の3の状態)。ここで中間圧の冷媒は中間冷却用熱交換器25にて図3に示すようにエンタルピーをΔh1失う。
その後、上段の回転圧縮要素21に吸い込まれて2段目の圧縮が行われて高圧高温の冷媒ガスとなり、冷媒吐出管26より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている(図3の4の状態)。
The operation in this case will be described with reference to the ph diagram of FIG. The refrigerant is compressed by the lower rotary compression element 20 (obtains enthalpy Δh3) and becomes an intermediate pressure, and the refrigerant discharged into the sealed container 17 (state 2 in FIG. 3) exits from the refrigerant introduction pipe 23 and is an intermediate cooling circuit. 24. And it flows in into the heat exchanger 25 for intermediate cooling which this intermediate cooling circuit 24 passes, and is thermally radiated there by an air cooling system (3 state of FIG. 3). Here, the intermediate-pressure refrigerant loses enthalpy Δh1 in the intermediate cooling heat exchanger 25 as shown in FIG.
After that, it is sucked into the upper rotary compression element 21 and compressed in the second stage to become high-pressure and high-temperature refrigerant gas, which is discharged to the outside through the refrigerant discharge pipe 26. At this time, the refrigerant is compressed to an appropriate supercritical pressure (state 4 in FIG. 3).

冷媒吐出管26から吐出された冷媒ガスはガスクーラ6に流入し、そこで、空冷方式により放熱された後(図3の5’の状態)、内部熱交換器10の内部側管10B内を通過する。冷媒はそこで内部熱交換器10の外部側管10A内を通過する低圧側の冷媒に熱を奪われて更に冷却される(図3の5の状態)(エンタルピーをΔh2失う)。その後冷媒は絞り手段16にて減圧され、その過程でガス/液混合状態となり(図3の6の状態。)、次に、蒸発器9に流入して蒸発する(図3の1’の状態)。蒸発器9から出た冷媒は内部熱交換器10の外部側管10A内を通過し、そこで前記高圧側の冷媒から熱を奪って加熱される(図3の1の状態)(エンタルピーをΔh2得る)。
そして、内部熱交換器10で加熱され、冷媒は完全に気体の状態となり、気体の状態となった冷媒は冷媒導入管22からロータリコンプレッサ5の下段の回転圧縮要素20内に吸い込まれるサイクルを繰り返す。
The refrigerant gas discharged from the refrigerant discharge pipe 26 flows into the gas cooler 6, where it is radiated by the air cooling system (state 5 ′ in FIG. 3) and then passes through the inner side pipe 10 </ b> B of the internal heat exchanger 10. . Then, the refrigerant is further cooled by being deprived of heat by the low-pressure side refrigerant passing through the external pipe 10A of the internal heat exchanger 10 (state 5 in FIG. 3) (losing enthalpy by Δh2). Thereafter, the refrigerant is depressurized by the throttle means 16, and in the process it enters a gas / liquid mixed state (state 6 in FIG. 3), and then flows into the evaporator 9 and evaporates (state 1 ′ in FIG. 3). ). The refrigerant exiting from the evaporator 9 passes through the outer side pipe 10A of the internal heat exchanger 10, where it is deprived of heat from the high-pressure side refrigerant and heated (state 1 in FIG. 3) (enthalpy is obtained by Δh2. ).
Then, the refrigerant is heated in the internal heat exchanger 10 and the refrigerant is completely in a gaseous state, and the refrigerant in the gaseous state repeats a cycle in which the refrigerant is sucked into the rotary compression element 20 at the lower stage of the rotary compressor 5 from the refrigerant introduction pipe 22. .

二酸化炭素を冷媒として用いているが、前記のように内部中間圧型多段(2段)圧縮式ロータリ圧縮機5を用いたので各摺動部材における差圧が約1/2と小さくなって面圧が低下し潤滑油の油膜が十分確保され、摺動ロスやリークロスの発生を極力抑えることができ、また潤滑油も100℃以上の高温にならず、高いCOPを得ることができる。   Although carbon dioxide is used as a refrigerant, since the internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 5 is used as described above, the differential pressure in each sliding member is reduced to about 1/2 and the surface pressure is reduced. As a result, the oil film of the lubricating oil is sufficiently secured, the occurrence of sliding loss and leakage loss can be suppressed as much as possible, and the lubricating oil does not reach a high temperature of 100 ° C. or higher, and a high COP can be obtained.

蒸発器9で蒸発した冷媒は、空気から吸熱することにより冷却作用を発揮し、冷却された空気はファン13により矢印で示したように断熱性函体3の収納空間2に導入され循環される。
ガスクーラ6で熱交換した排気は矢印で示したように空気通路15を通って排気口14から外部に排出される。その結果、ガスクーラ6で熱交換した排気を停滞させずよく流して排出でき、ガスクーラ6において冷媒ガスを十分に冷却することができるので、圧縮機5が過負荷状態になったり運転電力が増加したりせず、圧縮機5の耐久性を向上できる。
内部熱交換器10は断熱ケース8に断熱性付与のためにその外周に設けた独立気泡型発泡ポリウレタンなどで形成された断熱材層8A中に埋め込んで配設されているので、内部熱交換器10の熱交換効率を向上できるとともに、内部熱交換器10の外部側管10Aの表面に結露が発生するのを防止できる。
The refrigerant evaporated in the evaporator 9 exhibits a cooling action by absorbing heat from the air, and the cooled air is introduced into the storage space 2 of the heat insulating box 3 and circulated by the fan 13 as indicated by an arrow. .
The exhaust gas heat-exchanged by the gas cooler 6 passes through the air passage 15 and is discharged to the outside from the exhaust port 14 as indicated by an arrow. As a result, the exhaust gas heat-exchanged by the gas cooler 6 can be flowed and discharged without stagnation, and the refrigerant gas can be sufficiently cooled in the gas cooler 6, so that the compressor 5 becomes overloaded and the operating power increases. The durability of the compressor 5 can be improved.
Since the internal heat exchanger 10 is disposed by being embedded in a heat insulating material layer 8A formed of closed cell foamed polyurethane or the like provided on the outer periphery of the heat insulating case 8 to provide heat insulation, the internal heat exchanger 10 10 can improve the heat exchange efficiency and prevent condensation on the surface of the outer side tube 10A of the internal heat exchanger 10.

(第2実施形態)
図4は、本発明の他の冷媒装置の冷凍ユニットを説明する説明図である。
図4に示した本発明の冷媒装置の冷凍ユニット11は、ガスクーラ6で熱交換した排気の大部分が通る空気通路15の部分に対応するユニットベース4の箇所に縦長の4本の排気通路27が貫通して設けてあり、ガスクーラ6で熱交換した排気が排気通路27を通って外部に排出されるようにした、以外は図1に示した本発明の冷媒装置1と同様になっている。
本発明の冷媒装置の冷凍ユニット11は、本発明の冷媒装置1の場合と同様の作用効果があるとともに、ガスクーラ6で熱交換した排気は停滞することなく、よりよく流れて排気通路27および排出口14を通って外部に排出できるので、ガスクーラ6において冷媒ガスを十分に冷却することができ、圧縮機5が過負荷状態になったり運転電力が増加したりせず、圧縮機5の耐久性を向上できる。
(Second Embodiment)
FIG. 4 is an explanatory view for explaining a refrigeration unit of another refrigerant device of the present invention.
The refrigeration unit 11 of the refrigerant apparatus of the present invention shown in FIG. 4 has four vertically long exhaust passages 27 at the position of the unit base 4 corresponding to the portion of the air passage 15 through which most of the exhaust gas heat-exchanged by the gas cooler 6 passes. 1 is provided in the same manner as the refrigerant device 1 of the present invention shown in FIG. 1 except that the exhaust gas heat-exchanged by the gas cooler 6 is discharged to the outside through the exhaust passage 27. .
The refrigeration unit 11 of the refrigerant device of the present invention has the same effect as that of the refrigerant device 1 of the present invention, and the exhaust gas heat-exchanged by the gas cooler 6 flows better without stagnation and flows into the exhaust passage 27 and the exhaust gas. Since the gas can be discharged to the outside through the outlet 14, the refrigerant gas can be sufficiently cooled in the gas cooler 6, and the compressor 5 is not overloaded and the operating power is not increased. Can be improved.

(第3実施形態)
図5は、本発明の他の冷媒装置を説明する説明図である。
図5に示した本発明の冷媒装置(ショウケース)1Bは、内部に収納空間2を設けた断熱性函体3と、断熱性函体3の下方に、箱体11Aの内部に出し入れ可能に収納されたユニットベース4の上に圧縮機5、ガスクーラ6、内部熱交換器10および図示しない絞り手段を配置し、さらにユニットベース4の上に間隔を置いて複数の支柱7を固定して設け、支柱7の上に断熱ケース8を固定して設置し、断熱ケース8中に蒸発器9を収納して配置し、そしてガスクーラ6で熱交換した排気が断熱ケース8の方向に向かうように配置してあり、圧縮機5、ガスクーラ6、内部熱交換器10および図示しない絞り手段および蒸発器9を順次接続して冷凍回路を形成して全体を内部に収納した前記箱体11Aを含む冷凍ユニット11を断熱性函体3の下方の所定箇所に固定して装着して構成されている、以外は図1、図4に示した本発明の冷媒装置と同様になっている。
(Third embodiment)
FIG. 5 is an explanatory view illustrating another refrigerant device of the present invention.
The refrigerant device (showcase) 1B of the present invention shown in FIG. 5 is capable of being put in and out of the box 11A under the heat insulating box 3 provided with a storage space 2 therein and below the heat insulating box 3. A compressor 5, a gas cooler 6, an internal heat exchanger 10 and a throttle means (not shown) are arranged on the unit base 4 accommodated, and a plurality of support columns 7 are fixedly provided on the unit base 4 at intervals. The heat insulating case 8 is fixedly installed on the support 7, the evaporator 9 is accommodated in the heat insulating case 8, and the exhaust gas heat-exchanged by the gas cooler 6 is directed toward the heat insulating case 8. The refrigeration unit includes the box 11A in which the compressor 5, the gas cooler 6, the internal heat exchanger 10, the throttling means (not shown) and the evaporator 9 are sequentially connected to form a refrigeration circuit and the whole is housed inside. 11 is a heat insulating box 3 It is constructed by mounting fixed to a predetermined portion of the lower, Figure 1 except, has the same refrigerant system of the present invention shown in FIG.

ガスクーラ6で熱交換した排気は空気通路15を通って排気口14から外部に排出されるとともに、ユニットベース4に貫通して設けた排気通路27および排気通路27に対応する箱体11Aの位置に貫通して設けた排気口14Bから外部に排出される。その結果、ガスクーラ6で熱交換した排気を停滞させずよく流して外部に排出でき、ガスクーラ6において冷媒ガスを十分に冷却することができるので、圧縮機5が過負荷状態になったり運転電力が増加したりせず、圧縮機5の耐久性を向上できる。
内部熱交換器10は断熱ケース8に断熱性付与のためにその外周に設けた独立気泡型発泡ポリウレタンなどで形成された断熱材層8A中に埋め込んで配設されているので、内部熱交換器10の熱交換効率を向上できるとともに、内部熱交換器10の外部側管10Aの表面に結露が発生するのを防止できる。
28は箱体11Aの内側壁の所定箇所に設けたガイドレールであり、ユニットベース4の上に配置した圧縮機5、ガスクーラ6、断熱ケース8などの側に設けたガイドレール29がこのガイドレール28の中にスライドして出し入れ可能な状態に納められている。30はガイドレール29の前部端部に固定して設置したハンドルである。
本発明の冷媒装置1Bは、ハンドル30を手前に引くと、ユニットベース4の上に圧縮機5、ガスクーラ6、断熱ケース8などを配置したまま容易に引き出すことができる。部品の交換、修理などした後に再び元に戻して装着することができる。
図示しないが箱体11Aも断熱性函体3に容易に装着したり、脱着したりできるようにすることができる。他社で作成した断熱性函体3に自社で作成した冷凍ユニット11を装着して組み立てて本発明の冷媒装置1Bを製造したり、本発明の冷媒装置1Bから冷凍ユニット11を脱着し、修理などした後に再び冷凍ユニット11を装着して組み立てることもできる。
The exhaust gas heat-exchanged by the gas cooler 6 passes through the air passage 15 and is discharged to the outside from the exhaust port 14, and at the position of the box 11 </ b> A corresponding to the exhaust passage 27 provided through the unit base 4 and the exhaust passage 27. The gas is discharged to the outside through an exhaust port 14B provided therethrough. As a result, the exhaust gas heat exchanged by the gas cooler 6 can flow well without stagnation and be discharged to the outside, and the refrigerant gas can be sufficiently cooled in the gas cooler 6, so that the compressor 5 becomes overloaded and operating power is reduced. The durability of the compressor 5 can be improved without increasing.
Since the internal heat exchanger 10 is disposed by being embedded in a heat insulating material layer 8A formed of closed cell foamed polyurethane or the like provided on the outer periphery of the heat insulating case 8 to provide heat insulation, the internal heat exchanger 10 10 can improve the heat exchange efficiency and prevent condensation on the surface of the outer side tube 10A of the internal heat exchanger 10.
Reference numeral 28 denotes a guide rail provided at a predetermined position on the inner wall of the box body 11A. A guide rail 29 provided on the side of the compressor 5, the gas cooler 6, the heat insulating case 8, etc. disposed on the unit base 4 is provided as a guide rail. 28 is placed in a state where it can slide in and out. A handle 30 is fixedly installed at the front end of the guide rail 29.
When the handle 30 is pulled forward, the refrigerant device 1B of the present invention can be easily pulled out with the compressor 5, the gas cooler 6, the heat insulating case 8, and the like arranged on the unit base 4. After replacing or repairing parts, it can be put back on and installed again.
Although not shown, the box body 11A can also be easily attached to and detached from the heat insulating box 3. The refrigerant unit 1B of the present invention is manufactured by attaching and assembling the refrigeration unit 11 created in-house to the heat insulating box 3 created by another company, or the refrigeration unit 11 is detached from the refrigerant unit 1B of the present invention and repaired. After that, the refrigeration unit 11 can be mounted and assembled again.

上記実施の形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、あるいは範囲を減縮するものではない。また、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で例えば下記のような種々の変形が可能である。   The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope thereof. Moreover, each part structure of this invention is not restricted to the said embodiment, For example, the following various deformation | transformation are possible within the technical scope as described in a claim.

上記説明においては2段圧縮式ロータリ圧縮機について説明したが、本発明は圧縮機の形式は特に限定されず、具体的には、レシプロ式圧縮機、振動式圧縮機、マルチベーン式ロータリ圧縮機、スクロール式圧縮機などであってもよく、また圧縮段数は少なくとも1段以上であればよい。   In the above description, the two-stage compression rotary compressor has been described. However, the present invention is not particularly limited in the form of the compressor, and specifically, a reciprocating compressor, a vibration compressor, and a multi-vane rotary compressor. A scroll compressor or the like may be used, and the number of compression stages may be at least one.

本発明の冷媒装置は、内部に収納空間を設けた断熱性函体と、前記断熱性函体の下方に、ユニットベースの上に圧縮機、ガスクーラ、内部熱交換器、絞り手段および断熱ケース中に収納した蒸発器を配置し、前記圧縮機、ガスクーラ、内部熱交換器、絞り手段および蒸発器を順次接続して冷凍回路を形成した冷凍ユニットを装着した冷媒装置であって、
前記ガスクーラで熱交換した空気が前記断熱ケースの方向に向かうように前記ガスクーラと断熱ケースを配置するとともに、前記ユニットベースと前記断熱ケースとの間に空気通路を設け、前記ガスクーラで熱交換した空気を前記空気通路を通って外部に排出し、そして、断熱性付与のために前記断熱ケースの外周に設けた断熱材層中に前記内部熱交換器あるいはさらに前記絞り手段を埋め込んで配設したので、ガスクーラで熱交換した排気を滞らせずよく流して排出でき、ガスクーラにおいて冷媒ガスを十分に冷却することができ、圧縮機が過負荷状態になったり運転電力が増加したりせず、圧縮機の耐久性を向上できる上、内部熱交換器の熱交換効率を向上でき、さらに内部熱交換器の外部側管の表面に結露が発生するのを防止でき、そして装置の小型化を図れる、という顕著な効果を奏するので、産業上の利用価値が高い。
The refrigerant device of the present invention includes a heat insulating box provided with a storage space therein, a compressor, a gas cooler, an internal heat exchanger, a throttle means, and a heat insulating case on the unit base below the heat insulating box. A refrigerant device equipped with a refrigeration unit in which a refrigeration circuit is formed by sequentially connecting the compressor, gas cooler, internal heat exchanger, throttling means and evaporator.
The gas cooler and the heat insulation case are arranged so that the air heat-exchanged by the gas cooler is directed toward the heat insulation case, and an air passage is provided between the unit base and the heat insulation case, and the air is heat-exchanged by the gas cooler. Is discharged to the outside through the air passage, and the internal heat exchanger or further the throttle means is embedded in a heat insulating material layer provided on the outer periphery of the heat insulating case for providing heat insulation. The exhaust gas that has been heat exchanged by the gas cooler can flow and be discharged without stagnation, the refrigerant gas can be sufficiently cooled in the gas cooler, and the compressor does not become overloaded and the operating power does not increase. In addition to improving the durability of the internal heat exchanger, the heat exchange efficiency of the internal heat exchanger can be improved, and condensation can be prevented from occurring on the surface of the external pipe of the internal heat exchanger. Downsizing of the apparatus Te, since a marked effect that a higher industrial value.

本発明の冷媒装置の一実施の形態を説明する断面説明図である。It is a section explanatory view explaining one embodiment of a refrigerant device of the present invention. 本発明の冷媒装置の冷凍回路図である。It is a freezing circuit diagram of the refrigerant device of the present invention. 図2の冷媒回路のp−h線図である。FIG. 3 is a ph diagram of the refrigerant circuit of FIG. 2. 本発明の他の冷媒装置の冷凍ユニットを説明する説明図である。It is explanatory drawing explaining the refrigeration unit of the other refrigerant device of this invention. 本発明の他の冷媒装置を説明する断面説明図である。It is a section explanatory view explaining other refrigerant devices of the present invention. 従来の冷媒装置を説明する断面説明図である。It is sectional explanatory drawing explaining the conventional refrigerant device.

符号の説明Explanation of symbols

1、1A、1B 冷媒装置
2 収納空間
3 断熱性函体
4 ユニットベース
5 圧縮機
6 ガスクーラ
8 断熱ケース
8A 断熱材層
9 蒸発器
10 内部熱交換器
11 冷凍ユニット
15 空気通路
16 絞り手段
27 排気通路
DESCRIPTION OF SYMBOLS 1, 1A, 1B Refrigerating device 2 Storage space 3 Heat insulation box 4 Unit base 5 Compressor 6 Gas cooler 8 Heat insulation case 8A Heat insulation material layer 9 Evaporator 10 Internal heat exchanger 11 Refrigeration unit 15 Air passage 16 Throttle means 27 Exhaust passage

Claims (4)

内部に収納空間を設けた断熱性函体と、前記断熱性函体の下方に、ユニットベースの上に圧縮機、ガスクーラ、内部熱交換器、絞り手段および断熱ケース中に収納した蒸発器を配置し、前記圧縮機、ガスクーラ、内部熱交換器、絞り手段および蒸発器を順次接続して冷凍回路を形成した冷凍ユニットを装着した冷媒装置であって、
前記ガスクーラで熱交換した空気が前記断熱ケースの方向に向かうように前記ガスクーラと断熱ケースを配置するとともに、前記ユニットベースと前記断熱ケースとの間に空気通路を設け、前記ガスクーラで熱交換した空気を前記空気通路を通って外部に排出し、そして、
断熱性付与のために前記断熱ケースの外周に設けた断熱材層中に前記内部熱交換器あるいはさらに前記絞り手段を埋め込んで配設したことを特徴とする冷媒装置。
A heat insulating box with a storage space inside, and a compressor, gas cooler, internal heat exchanger, throttling means and evaporator stored in a heat insulating case are placed on the unit base below the heat insulating box. A refrigerant device equipped with a refrigeration unit in which a compressor, a gas cooler, an internal heat exchanger, a throttle means, and an evaporator are connected in order to form a refrigeration circuit,
The gas cooler and the heat insulation case are arranged so that the air heat-exchanged by the gas cooler is directed toward the heat insulation case, and an air passage is provided between the unit base and the heat insulation case, and the air is heat-exchanged by the gas cooler. Through the air passage to the outside, and
A refrigerant device, wherein the internal heat exchanger or further the expansion means is embedded in a heat insulating material layer provided on an outer periphery of the heat insulating case for imparting heat insulation.
前記ガスクーラで熱交換した空気の大部分が通る前記空気通路の部分に対応する前記ユニットベースの箇所に少なくとも1つの排気通路を設け、前記ガスクーラで熱交換した空気が前記排気通路を通って外部に排出されることを特徴とする請求項1記載の冷媒装置。 At least one exhaust passage is provided at a location of the unit base corresponding to a portion of the air passage through which most of the air heat-exchanged by the gas cooler passes, and the air heat-exchanged by the gas cooler passes outside through the exhaust passage. The refrigerant device according to claim 1, wherein the refrigerant device is discharged. 前記冷凍ユニットが脱着・装着可能に構成されていることを特徴とする請求項1あるいは請求項2記載の冷媒装置。 The refrigerant apparatus according to claim 1 or 2, wherein the refrigeration unit is configured to be detachable and attachable. 高圧側が超臨界圧力となる二酸化炭素を冷媒とし、前記圧縮機として2段圧縮式ロータリ圧縮機を用いたことを特徴とする請求項1から請求項3のいずれかに記載の冷媒装置。 The refrigerant apparatus according to any one of claims 1 to 3, wherein carbon dioxide having a supercritical pressure on the high pressure side is used as a refrigerant, and a two-stage compression rotary compressor is used as the compressor.
JP2004032509A 2004-02-09 2004-02-09 Refrigerant equipment Expired - Fee Related JP4318562B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2004032509A JP4318562B2 (en) 2004-02-09 2004-02-09 Refrigerant equipment
TW094101506A TWI325949B (en) 2004-02-09 2005-01-19 Refrigerant system
KR1020050009782A KR101043826B1 (en) 2004-02-09 2005-02-03 Refrigerant device
CNA2005100079762A CN1654909A (en) 2004-02-09 2005-02-04 Refrigerant system
EP05002353A EP1562012B1 (en) 2004-02-09 2005-02-04 Refrigerant system
AT05002353T ATE442561T1 (en) 2004-02-09 2005-02-04 COOLING SYSTEM
DE602005016476T DE602005016476D1 (en) 2004-02-09 2005-02-04 cooling system
US11/053,200 US7251949B2 (en) 2004-02-09 2005-02-08 Refrigerant system
MXPA05001527 MXPA05001527A (en) 2004-02-09 2005-02-08 Refrigerant apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032509A JP4318562B2 (en) 2004-02-09 2004-02-09 Refrigerant equipment

Publications (2)

Publication Number Publication Date
JP2005221205A true JP2005221205A (en) 2005-08-18
JP4318562B2 JP4318562B2 (en) 2009-08-26

Family

ID=34996978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032509A Expired - Fee Related JP4318562B2 (en) 2004-02-09 2004-02-09 Refrigerant equipment

Country Status (2)

Country Link
JP (1) JP4318562B2 (en)
MX (1) MXPA05001527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069732A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069732A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezing apparatus
AU2008330551B2 (en) * 2007-11-30 2011-09-01 Daikin Industries, Ltd. Refrigeration apparatus
US8387411B2 (en) 2007-11-30 2013-03-05 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
JP4318562B2 (en) 2009-08-26
MXPA05001527A (en) 2005-08-19

Similar Documents

Publication Publication Date Title
US7251949B2 (en) Refrigerant system
JP4101252B2 (en) refrigerator
US7331196B2 (en) Refrigerating apparatus and refrigerator
JP2006275495A (en) Refrigerating device and refrigerator
JP2007218459A (en) Refrigerating cycle device and cool box
KR20060041722A (en) Refrigerant cycle apparatus
JP2007278666A (en) Binary refrigerating device
JP2009133593A (en) Cooling apparatus
JP2008256350A (en) Refrigerant cycle device
JP2006207980A (en) Refrigerating apparatus and refrigerator
JP2007093105A (en) Freezing device and gas-liquid separator
JP2006207974A (en) Refrigerating apparatus and refrigerator
JP4318562B2 (en) Refrigerant equipment
JP2005257149A (en) Refrigerator
JP4385999B2 (en) Internal heat exchanger
AU2007201236B2 (en) Manufacturing method of transition critical refrigerating cycle device
JP2005221206A (en) Refrigerant apparatus
JP2004085104A (en) Refrigerator
KR100504880B1 (en) Multi-air conditioner capable of heating and cooling simultaneously with supercooling- accumulator
JP4245534B2 (en) refrigerator
JP2006207982A (en) Refrigerating apparatus and refrigerator
JP4425104B2 (en) refrigerator
JP2005226913A (en) Transient critical refrigerant cycle device
KR100839078B1 (en) Refrigerant cycle device
JP2006064255A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090526

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120605

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120605

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees