JP2006207974A - Refrigerating apparatus and refrigerator - Google Patents

Refrigerating apparatus and refrigerator Download PDF

Info

Publication number
JP2006207974A
JP2006207974A JP2005024057A JP2005024057A JP2006207974A JP 2006207974 A JP2006207974 A JP 2006207974A JP 2005024057 A JP2005024057 A JP 2005024057A JP 2005024057 A JP2005024057 A JP 2005024057A JP 2006207974 A JP2006207974 A JP 2006207974A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
compressor
heat exchanger
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005024057A
Other languages
Japanese (ja)
Inventor
Satoru Imai
悟 今井
Hiroyuki Sai
博之 斎
Hiroshi Mukoyama
洋 向山
Masahisa Otake
雅久 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005024057A priority Critical patent/JP2006207974A/en
Priority to CNA2006100047573A priority patent/CN1815106A/en
Priority to KR1020060008601A priority patent/KR100695370B1/en
Priority to EP06001872A priority patent/EP1696188A3/en
Priority to US11/342,826 priority patent/US20060168997A1/en
Publication of JP2006207974A publication Critical patent/JP2006207974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • E01C11/224Surface drainage of streets
    • E01C11/225Paving specially adapted for through-the-surfacing drainage, e.g. perforated, porous; Preformed paving elements comprising, or adapted to form, passageways for carrying off drainage
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C15/00Pavings specially adapted for footpaths, sidewalks or cycle tracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2201/00Paving elements
    • E01C2201/20Drainage details
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/06Pavings made of prefabricated single units made of units with cement or like binders
    • E01C5/065Pavings made of prefabricated single units made of units with cement or like binders characterised by their structure or component materials, e.g. concrete layers of different structure, special additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating apparatus, realizing high-efficiency operation in the case of applying a compressor having an intermediate pressure part and a refrigerator including the refrigerating apparatus. <P>SOLUTION: This refrigerating apparatus 30 includes: the compressor 1 having the intermediate pressure part; a radiator 2 connected to the discharge side of the compressor 1; and endothermic means 10, 11 connected to the outlet side of the radiator 2 and having pressure reducing means 65, 66 and endothermic devices 57, 58. The outlet sides of the endothermic means 10, 11 are connected to a suction part having lower pressure than the intermediate pressure part of the compressor 1, and the refrigerant pipe at the outlet side of the radiator 2 is constructed to diverge. One diverging refrigerant pipe is connected to the endothermic means 10, 11, and the other diverging refrigerant pipe is connected to the intermediate pressure part of the compressor 1. The other refrigerant pipe is provided with a pressure reducing mechanism 31 and a heat exchanger 32, and the heat exchanger 32 is constructed to heat-exchange the refrigerant in the one refrigerant pipe with the refrigerant in the other refrigerant pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放熱器から出た冷媒を冷却する熱交換器を備えた冷凍装置及びこの冷凍装置を備えた冷蔵庫に関する。   The present invention relates to a refrigeration apparatus including a heat exchanger that cools refrigerant discharged from a radiator and a refrigerator including the refrigeration apparatus.

一般に、圧縮機、放熱器及び吸熱器等を備えた冷凍サイクルを有し、前記吸熱器において冷却対象を冷却する冷凍装置が知られている。   In general, a refrigeration apparatus having a refrigeration cycle including a compressor, a radiator, a heat absorber, and the like and cooling an object to be cooled in the heat absorber is known.

このような冷凍装置の一例として、特許文献1には、圧縮機と凝縮器を共有すると共に2つの吸熱器を並列に接続し、これらの吸熱器を切り替えて冷凍室と冷蔵室を互いに独立して冷却する冷蔵庫が開示されている。
特開2000−230767号公報
As an example of such a refrigeration apparatus, Patent Document 1 discloses that a compressor and a condenser are shared, and two heat absorbers are connected in parallel, and these heat absorbers are switched so that the freezer compartment and the refrigerator compartment are independent of each other. A refrigerator for cooling is disclosed.
JP 2000-230767 A

ところで、この種の冷凍装置において、中間圧部を有する圧縮機、例えば多段圧縮機構を持つ圧縮機を適用する場合がある。   By the way, in this kind of refrigeration apparatus, a compressor having an intermediate pressure part, for example, a compressor having a multistage compression mechanism may be applied.

このような中間圧部を有する圧縮機を上記の如き冷凍装置や冷蔵庫に適用する場合には、当該中間圧部の利用に適した冷凍サイクルを構築することにで、更に高効率な運転が可能な冷凍装置を実現できる場合がある。   When a compressor having such an intermediate pressure part is applied to a refrigeration apparatus or refrigerator as described above, a more efficient operation is possible by constructing a refrigeration cycle suitable for use of the intermediate pressure part. A simple refrigeration system may be realized.

そこで、本発明は、中間圧部を有する圧縮機を適用した場合に、高効率の運転を実現できる冷凍装置及びこの冷凍装置を備えた冷蔵庫を提供することを目的とする。   Therefore, an object of the present invention is to provide a refrigeration apparatus capable of realizing a highly efficient operation and a refrigerator equipped with the refrigeration apparatus when a compressor having an intermediate pressure section is applied.

本発明の冷凍装置は、中間圧部を有する圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続され減圧手段と吸熱器とを備える吸熱手段と、を備え、前記吸熱手段の出口側が前記圧縮機の前記中間圧部より低圧の吸い込み部に接続される冷凍装置において、前記放熱器の出口側の冷媒配管を分岐し、一方の冷媒配管は前記吸熱手段に接続され、他方の冷媒配管は前記圧縮機の中間圧部に接続されると共に、前記他方の冷媒配管には減圧機構と熱交換器とが備えられ、この熱交換器は前記一方の冷媒配管中の冷媒と前記他方の冷媒配管中の冷媒とを熱交換可能に構成されていることを特徴とする。   The refrigeration apparatus of the present invention includes a compressor having an intermediate pressure section, a radiator connected to the discharge side of the compressor, a heat absorbing means connected to the outlet side of the radiator, and a pressure reducing means and a heat absorber. A refrigerant pipe on the outlet side of the radiator is branched, the refrigerant pipe on the outlet side of the heat sink means being connected to a suction part having a lower pressure than the intermediate pressure part of the compressor. The other refrigerant pipe is connected to an intermediate pressure portion of the compressor, and the other refrigerant pipe is provided with a pressure reducing mechanism and a heat exchanger, and the heat exchanger is connected to the one heat absorbing means. The refrigerant in the refrigerant pipe and the refrigerant in the other refrigerant pipe are configured to be able to exchange heat.

請求項2に記載の発明は、請求項1の冷凍装置において、前記吸熱手段と前記圧縮機の吸い込み部との間の冷媒を、前記熱交換器を出た後の前記一方の冷媒配管中の冷媒と熱交換可能に構成した第1の熱交換器を備えたことを特徴とする。   According to a second aspect of the present invention, in the refrigeration apparatus according to the first aspect, the refrigerant between the heat absorption means and the suction portion of the compressor is supplied to the one refrigerant pipe after exiting the heat exchanger. A first heat exchanger configured to be able to exchange heat with the refrigerant is provided.

請求項3に記載の発明は、請求項1又は請求項2に記載の冷凍装置において、前記吸熱手段は、第1の減圧手段と第1の吸熱器とを備える第1の吸熱手段と、この第1の吸熱手段と並列に設けられ第2の減圧手段と第2の吸熱器とを備える第2の吸熱手段と、を備えて構成され、前記第1の吸熱手段及び前記第2の吸熱手段の出口側が合流した後、前記圧縮機の吸い込み部に接続されることを特徴とする。   According to a third aspect of the present invention, in the refrigeration apparatus according to the first or second aspect, the heat absorption means includes a first heat absorption means including a first pressure reduction means and a first heat absorber; A second heat absorbing means provided in parallel with the first heat absorbing means, and comprising a second pressure reducing means and a second heat absorber, the first heat absorbing means and the second heat absorbing means. The outlet sides of the compressors are connected to the suction part of the compressor after joining.

請求項4に記載の発明は、請求項3に記載の冷凍装置において、前記第1の吸熱器を出た後の冷媒と、前記一方の冷媒配管中での前記熱交換器と前記第1の減圧手段との間の冷媒と、を熱交換するための第1の熱交換器と、前記第2の吸熱器を出た後の冷媒と、前記一方の冷媒配管中での前記熱交換器と前記第2の減圧手段との間の冷媒と、を熱交換するための第2の熱交換器と、を備えたことを特徴とする。   According to a fourth aspect of the present invention, in the refrigeration apparatus according to the third aspect, the refrigerant after exiting the first heat absorber, the heat exchanger in the one refrigerant pipe, and the first A first heat exchanger for exchanging heat with the refrigerant between the decompression means, a refrigerant after exiting the second heat absorber, and the heat exchanger in the one refrigerant pipe; And a second heat exchanger for exchanging heat with the refrigerant between the second decompression unit and the second decompression unit.

請求項5に記載の発明は、請求項3に記載の冷凍装置において、前記熱交換器を出た後の前記一方の冷媒配管中の冷媒を前記第1の吸熱器を出た後の冷媒と熱交換するための第4の熱交換器と、この第4の熱交換器を出た後の前記一方の冷媒配管が第1の吸熱手段及び第2の吸熱手段に接続されると共に、前記第2の吸熱手段に接続される前記第4の熱交換器を出た後の前記一方の冷媒配管中の冷媒を前記第2の吸熱器を出た後の冷媒と熱交換するための第5の熱交換器を備え、前記第1の吸熱器を出た後であり且つ前記第4の熱交換器を出た後の冷媒配管と、前記第2の吸熱器を出た後であり且つ前記第5の熱交換器を出た後の冷媒配管と、が合流した後、前記圧縮機の吸い込み部に接続されることを特徴とする。   The invention according to claim 5 is the refrigeration apparatus according to claim 3, wherein the refrigerant in the one refrigerant pipe after exiting the heat exchanger is the refrigerant after exiting the first heat absorber. A fourth heat exchanger for exchanging heat and the one refrigerant pipe after exiting the fourth heat exchanger are connected to the first heat absorbing means and the second heat absorbing means, and A fifth refrigerant for exchanging heat between the refrigerant in the one refrigerant pipe after exiting the fourth heat exchanger connected to the second heat absorber and the refrigerant after exiting the second heat absorber. A heat exchanger, after exiting the first heat absorber and after exiting the fourth heat exchanger, after exiting the second heat absorber and the first The refrigerant pipe after exiting the heat exchanger of No. 5 joins and is connected to the suction part of the compressor.

請求項6に記載の発明は、請求項3乃至請求項5に記載の冷凍装置において、前記第1の吸熱手段と前記第2の吸熱手段とは選択的に異なる温度帯で機能することを特徴とする。   According to a sixth aspect of the present invention, in the refrigeration apparatus according to the third to fifth aspects, the first heat absorbing means and the second heat absorbing means function selectively in different temperature zones. And

請求項7に記載の発明は、請求項6に記載の冷凍装置において、前記第1の吸熱手段よりも前記第2の吸熱手段の方が低い温度帯で機能することを特徴とする。   The invention according to claim 7 is the refrigeration apparatus according to claim 6, wherein the second heat absorbing means functions in a lower temperature zone than the first heat absorbing means.

本発明の冷蔵庫は、請求項1乃至請求項7に記載の冷凍装置を備えたことを特徴とする。   A refrigerator according to the present invention includes the refrigeration apparatus according to any one of claims 1 to 7.

請求項9に記載の発明は、請求項8に記載の冷蔵庫において、冷蔵室と、この冷蔵室よりも低い温度で運転される冷凍室と、を備え、前記第1の吸熱手段により前記冷蔵室を冷却し、前記第2の吸熱手段により前記冷凍室を冷却することを特徴とする。   A ninth aspect of the present invention is the refrigerator according to the eighth aspect, comprising: a refrigerating room; and a freezing room that is operated at a temperature lower than the refrigerating room, wherein the refrigerating room is provided by the first heat absorbing means. And the freezing chamber is cooled by the second heat absorption means.

請求項10に記載の発明は、請求項9に記載の冷蔵庫において、前記冷蔵室及び/又は前記冷凍室が所定の温度以上である場合には、前記第1の吸熱手段及び前記第2の吸熱手段に冷媒を流通させることを特徴とする。   A tenth aspect of the present invention is the refrigerator according to the ninth aspect, wherein when the refrigerator compartment and / or the freezer compartment is at a predetermined temperature or higher, the first endothermic means and the second endothermic section. A refrigerant is circulated through the means.

請求項11に記載の発明は、請求項1乃至請求項7に記載の冷凍装置及び請求項8乃至請求項10に記載の冷蔵庫において、冷媒として二酸化炭素を用いたことを特徴とする。   The invention described in claim 11 is characterized in that in the refrigeration apparatus described in claims 1 to 7 and the refrigerator described in claims 8 to 10, carbon dioxide is used as a refrigerant.

本発明によれば、放熱器を出た冷媒を過冷却する熱交換回路を備えたことにより、高効率の運転が可能な冷凍装置が提供される。更に本発明によれば、高効率で運転可能な冷蔵庫が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the refrigeration apparatus in which a highly efficient driving | operation is possible is provided by providing the heat exchange circuit which supercools the refrigerant | coolant which came out of the heat radiator. Furthermore, according to the present invention, a refrigerator that can be operated with high efficiency is provided.

以下、本発明の冷凍装置及び当該冷凍装置を備えた冷蔵庫の好適な実施の形態を図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of a refrigeration apparatus of the present invention and a refrigerator provided with the refrigeration apparatus will be described in detail based on the drawings.

本発明の一実施例を図面に基づき詳述する。図1は、本発明の一実施例としての冷凍装置の冷媒回路図を示している。冷凍装置30は、圧縮機1と、この圧縮機1の吐出側に接続される放熱器2と、この放熱器2の出口側に接続される第1の吸熱手段10と、この第1の吸熱手段10と並列に設けられた第2の吸熱手段11と、熱交換回路20と、を備え、第1の吸熱手段10及び第2の吸熱手段11の出口側が圧縮機1の吸い込み側に、熱交換回路20の出口側が圧縮機1の中間圧部に接続され冷凍サイクルが構成されている。   An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of a refrigerating apparatus as one embodiment of the present invention. The refrigeration apparatus 30 includes a compressor 1, a radiator 2 connected to the discharge side of the compressor 1, a first heat absorption means 10 connected to the outlet side of the radiator 2, and the first heat absorption. A second heat absorption means 11 provided in parallel with the means 10 and a heat exchange circuit 20, and the outlet sides of the first heat absorption means 10 and the second heat absorption means 11 are connected to the suction side of the compressor 1. The outlet side of the exchange circuit 20 is connected to the intermediate pressure part of the compressor 1 to constitute a refrigeration cycle.

第1の吸熱手段10は、分岐点9Aからの冷媒が流通する第1膨張弁65と、冷蔵用の吸熱器57と、を含む。また第2の吸熱手段11は、上述した如く前記第1の吸熱手段10と並列に設けられ、分岐点9Aからの冷媒が流通する第2膨張弁66と、冷凍用の吸熱器58と、逆止弁52と、を含む。   The first heat absorption means 10 includes a first expansion valve 65 through which the refrigerant from the branch point 9A flows, and a refrigeration heat absorber 57. The second heat absorbing means 11 is provided in parallel with the first heat absorbing means 10 as described above, and the second expansion valve 66 through which the refrigerant from the branch point 9A flows, the refrigeration heat absorber 58, and the reverse A stop valve 52.

第1の吸熱手段10と第2の吸熱手段11とは、互いに選択的に異なる温度帯で機能するものであり、放熱器2からの冷媒配管が分岐点9Aにて分岐し、一方が第1の吸熱手段10、他方が第2の吸熱手段11として夫々が並列に接続され、圧縮機1の吸い込み口より前の合流点9Bにて再び合流する。   The first endothermic means 10 and the second endothermic means 11 function in mutually different temperature zones, the refrigerant pipe from the radiator 2 branches at the branch point 9A, and one of the first endothermic means 10 and the second endothermic means 11 is the first. These are connected in parallel as the second heat absorbing means 11 and the other is connected in parallel, and merge again at the junction 9B before the suction port of the compressor 1.

ここで第1膨張弁65及び第2膨張弁66は、絞りの程度を可変に構成される。この絞りの程度を変えることで、冷媒が吸熱器57、58に至るまでに所定の圧力に低下させ、同吸熱器57、58における冷媒の蒸発温度を制御することができると共に、第1及び第2の膨張弁65、66のうちの一方を全閉とすることにより第1の吸熱手段10又は第2の吸熱手段11とに選択的に冷媒を流通することが可能となる。   Here, the first expansion valve 65 and the second expansion valve 66 are configured so that the degree of throttling is variable. By changing the degree of this throttling, the refrigerant can be reduced to a predetermined pressure before reaching the heat absorbers 57, 58, and the evaporation temperature of the refrigerant in the heat absorbers 57, 58 can be controlled. By fully closing one of the two expansion valves 65 and 66, the refrigerant can be selectively circulated to the first heat absorbing means 10 or the second heat absorbing means 11.

また本実施例の冷凍装置30は、第1の吸熱手段10と第2の吸熱手段11との合流点9Bと圧縮機1の吸い込み側との間には、逆止弁53と、第1及び第2の吸熱器57、58を出た冷媒と上記分岐点9A手前の冷媒とを熱交換可能に設けられた第3熱交換器19と、を備える。   Further, the refrigeration apparatus 30 of the present embodiment includes a check valve 53, a first check valve 53, and a check valve 53 between the junction 9B of the first heat absorption means 10 and the second heat absorption means 11 and the suction side of the compressor 1. And a third heat exchanger 19 provided so that heat can be exchanged between the refrigerant that has exited the second heat absorbers 57 and 58 and the refrigerant that is 9A before the branch point.

熱交換回路20は、放熱器2の出口側の分岐点9Cから分岐した冷媒のうち、上記第1及び第2の吸熱手段10、11には流通しない冷媒が流通するものであり、第3膨張弁31と、冷却熱交換器32と、を含む。また冷却熱交換器32の出口側には、当該冷却熱交換器32から出た冷媒を圧縮機1の中間圧部に導入するための冷媒導入管6が接続されると共に、この冷媒導入管6には逆止弁7が備えられる。尚、第3膨張弁31は上記第1及び第2膨張弁65、66と同様に絞りの程度を可変に構成され、この第3膨張弁31の絞りの程度を変えることで、冷媒が冷却熱交換器32に至るまでに所定の圧力に低下させる。そして、第3膨張弁31を出た冷媒は、冷却熱交換器32において、分岐点9Cから第1及び第2の吸熱手段10、11に至る冷媒と熱交換して温められ、ガス冷媒となり、冷媒導入管6を経由して圧縮機1の中間圧部に戻される。   The heat exchange circuit 20 is a circuit in which a refrigerant that does not circulate flows through the first and second heat absorbing means 10 and 11 among the refrigerant branched from the branch point 9C on the outlet side of the radiator 2, and the third expansion. A valve 31 and a cooling heat exchanger 32 are included. Further, a refrigerant introduction pipe 6 for introducing the refrigerant from the cooling heat exchanger 32 into the intermediate pressure portion of the compressor 1 is connected to the outlet side of the cooling heat exchanger 32, and the refrigerant introduction pipe 6 Is provided with a check valve 7. The third expansion valve 31 is configured so that the degree of throttling is variable like the first and second expansion valves 65 and 66. By changing the degree of throttling of the third expansion valve 31, the refrigerant cools. The pressure is reduced to a predetermined pressure before reaching the exchanger 32. Then, the refrigerant exiting the third expansion valve 31 is heated by exchanging heat with the refrigerant from the branch point 9C to the first and second heat absorption means 10 and 11 in the cooling heat exchanger 32, and becomes a gas refrigerant. The refrigerant is returned to the intermediate pressure portion of the compressor 1 via the refrigerant introduction pipe 6.

圧縮機1は2段圧縮機であり、密閉容器内に1段圧縮部1Aと2段圧縮部1Bとを含み、1段圧縮部1Aと2段圧縮部1Bとを接続する前記密閉容器外の冷媒配管上に中間冷却器1Cが備えられる。また、上記冷媒導入管6は、冷却熱交換器32を出たガス冷媒を、圧縮機1の中間圧部、即ち中間冷却器1Cと2段圧縮部1Bとの間に導入可能に接続される。尚、冷却熱交換器32を出たガス冷媒は冷媒導入管6内の差圧により破線矢印で示すように圧縮機1の中間圧部に導入されるこの圧縮機1は2段圧縮機に限定するものではなく、例えば、1段圧縮機であれば冷媒導入管6は1段圧縮機の中間圧部に戻せばよい。また、複数台の圧縮機を接続した構成でも可能でよい。   The compressor 1 is a two-stage compressor, includes a first-stage compression unit 1A and a two-stage compression unit 1B in a hermetic container, and connects the first-stage compression unit 1A and the second-stage compression unit 1B. An intercooler 1C is provided on the refrigerant pipe. The refrigerant introduction pipe 6 is connected so that the gas refrigerant that has exited the cooling heat exchanger 32 can be introduced between the intermediate pressure portion of the compressor 1, that is, between the intermediate cooler 1C and the two-stage compression portion 1B. . The gas refrigerant exiting the cooling heat exchanger 32 is introduced into the intermediate pressure portion of the compressor 1 as indicated by the broken line arrow due to the differential pressure in the refrigerant introduction pipe 6. The compressor 1 is limited to a two-stage compressor. For example, in the case of a single-stage compressor, the refrigerant introduction pipe 6 may be returned to the intermediate pressure portion of the single-stage compressor. Further, a configuration in which a plurality of compressors are connected may be possible.

そして、第1及び第2の吸熱手段10、11は上述の如き構成を備えるため、例えば第2膨張弁66を閉じて第1膨張弁65を開く場合には吸熱器57側、即ち第1の吸熱手段10にのみ冷媒が流通し、その逆に第1膨張弁65を閉じて第2膨張弁66を開く場合には吸熱器58側、即ち第2の吸熱手段11にのみに冷媒が流通する。   Since the first and second heat absorbing means 10 and 11 have the above-described configuration, for example, when the second expansion valve 66 is closed and the first expansion valve 65 is opened, the heat absorber 57 side, that is, the first When the refrigerant flows only to the heat absorbing means 10 and conversely, when the first expansion valve 65 is closed and the second expansion valve 66 is opened, the refrigerant flows only to the heat absorber 58 side, that is, the second heat absorbing means 11. .

ここで、吸熱器57を経た冷媒は、逆止弁53を経た後、第3熱交換器19を経由すると共に、当該第3熱交換器19で冷却熱交換器32を出た冷媒と熱交換した後、圧縮機1の吸い込み口に戻される。また、吸熱器58を経た冷媒は、逆止弁52、53を経た後、第3熱交換器19を経由すると共に、当該第3熱交換器19で冷却熱交換器32を出た冷媒と熱交換した後、圧縮機1の吸い込み口に戻される。   Here, the refrigerant that has passed through the heat absorber 57 passes through the check valve 53 and then passes through the third heat exchanger 19 and also exchanges heat with the refrigerant that has exited the cooling heat exchanger 32 in the third heat exchanger 19. After that, it is returned to the suction port of the compressor 1. In addition, the refrigerant that has passed through the heat absorber 58 passes through the check valves 52 and 53 and then passes through the third heat exchanger 19, and the refrigerant and heat that have exited the cooling heat exchanger 32 in the third heat exchanger 19. After the replacement, it is returned to the suction port of the compressor 1.

更に本実施例では、吸熱器57を経た冷風が、ダクト57Aを経て冷蔵室21に送られ、吸熱器58を経た冷風が、ダクト58Aを経て冷凍室22に送られる。   Further, in this embodiment, the cold air that has passed through the heat absorber 57 is sent to the refrigerator compartment 21 through the duct 57A, and the cold air that has passed through the heat absorber 58 is sent to the freezer compartment 22 through the duct 58A.

ここで、本実施例の冷凍装置30には冷媒として環境負荷が小さく、可燃性及び毒性等を考慮して自然冷媒である二酸化炭素冷媒(CO2)を使用しており、圧縮機2の潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキレングリコール)、POE(ポリオールエステル)等が使用される。 Here, the refrigeration apparatus 30 of the present embodiment uses a carbon dioxide refrigerant (CO 2 ) which is a natural refrigerant in consideration of flammability, toxicity, and the like as a refrigerant, and lubricates the compressor 2. As the oil, for example, mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkylene glycol), POE (polyol ester) and the like are used.

以上の構成により、本実施例における冷凍装置30の動作について、図1及び図2を参照して説明する。図2は、本実施例における冷凍サイクルのエンタルピ・圧力(ph)線図である。   With the above configuration, the operation of the refrigeration apparatus 30 in the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 2 is an enthalpy / pressure (ph) diagram of the refrigeration cycle in this example.

まず冷凍運転(例えば、−26℃付近)につき、図2にて実線で示されるサイクル線図を用いて説明する。尚、この冷凍運転とは、上述した吸熱器58側、即ち第2の吸熱手段11に冷媒を流通させる場合である。本実施例において圧縮機1が運転されると、圧縮機1から吐出された冷媒は、放熱器2で放熱して冷却される。即ち、まず冷媒は(1)1段圧縮部1Aの吸い込み、(2)1段圧縮部1Aの吐出、(3)2段圧縮部1Bの吸い込み、(4)2段圧縮部1Bの吐出、の順に流通される。その後冷媒は、(5)放熱器2の出口、から分岐点9Cに至りここで分岐して、一部が熱交換回路20に、残りは第2の吸熱手段11に流通する。   First, the freezing operation (for example, around −26 ° C.) will be described with reference to a cycle diagram shown by a solid line in FIG. The refrigeration operation is a case where the refrigerant is circulated through the above-described heat absorber 58, that is, the second heat absorption means 11. When the compressor 1 is operated in this embodiment, the refrigerant discharged from the compressor 1 is radiated by the radiator 2 and cooled. That is, first, the refrigerant is (1) suction of the first stage compression section 1A, (2) discharge of the first stage compression section 1A, (3) suction of the second stage compression section 1B, and (4) discharge of the second stage compression section 1B. It is distributed in order. Thereafter, the refrigerant reaches (5) the outlet of the radiator 2 to the branch point 9C and branches here, partly flowing to the heat exchange circuit 20 and the rest to the second heat absorbing means 11.

分岐点9Cから熱交換回路20側に流通した冷媒は、(6)第3膨張弁31の出口に至り、ガス/液体の2相混合体になる。そしてこの冷媒は、2相混合体の状態で冷却熱交換器32において分岐点9Cから第2の吸熱手段11側に流通する冷媒と熱交換して温められ、ガス冷媒となり圧縮機1の中間圧部、即ち中間冷却器1Cと2段圧縮部1Bとの間に導入される。即ち、(6)は第3膨張弁31の出口であり、冷却熱交換器32の入口、(21)は冷却熱交換器32の出口であり、ここを経た冷媒は、(3)の2段圧縮部1Bの吸い込みに至り、2段圧縮部1Bで圧縮される。   The refrigerant flowing from the branch point 9C to the heat exchange circuit 20 side reaches (6) the outlet of the third expansion valve 31, and becomes a gas / liquid two-phase mixture. Then, this refrigerant is heated in the cooling heat exchanger 32 in the state of the two-phase mixture by exchanging heat with the refrigerant flowing from the branching point 9C to the second heat absorbing means 11 side, and becomes a gas refrigerant to be an intermediate pressure of the compressor 1 Part, that is, introduced between the intercooler 1C and the two-stage compression unit 1B. That is, (6) is the outlet of the third expansion valve 31, is the inlet of the cooling heat exchanger 32, (21) is the outlet of the cooling heat exchanger 32, and the refrigerant passing through this is the two stages of (3). The compression unit 1B is sucked and compressed by the two-stage compression unit 1B.

一方、分岐点9Cから第2の吸熱手段11側に流通した冷媒は、冷却熱交換器32で上記の如く熱交換回路20側に流通した冷媒と熱交換して過冷却された後、第3熱交換器19で更に冷却され、分岐点9Aで分岐して第2膨張弁66に至ることになる。(18)は冷却熱交換器32の出口であり、第3熱交換器19の入口、(7)は第3熱交換器19の出口であり、第2膨張弁66の入口、(8)は第2膨張弁66の出口、(22)は吸熱器58の出口である。吸熱器58に入った液冷媒は、蒸発して周囲から熱を吸収した後、第3熱交換器19で冷却熱交換器32から出た冷媒と熱交換した後、圧縮機1の吸い込みに戻る。即ち、(23)は第3熱交換器19の出口であり、(1)は1段圧縮部1Aの吸い込みである。   On the other hand, the refrigerant flowing from the branch point 9C to the second heat absorbing means 11 side is supercooled by exchanging heat with the refrigerant flowing to the heat exchange circuit 20 side as described above in the cooling heat exchanger 32, and then the third It is further cooled by the heat exchanger 19 and branched at the branch point 9A to reach the second expansion valve 66. (18) is the outlet of the cooling heat exchanger 32, the inlet of the third heat exchanger 19, (7) is the outlet of the third heat exchanger 19, the inlet of the second expansion valve 66, (8) An outlet (22) of the second expansion valve 66 is an outlet of the heat absorber 58. The liquid refrigerant that has entered the heat absorber 58 evaporates and absorbs heat from the surroundings, and then exchanges heat with the refrigerant that has exited the cooling heat exchanger 32 in the third heat exchanger 19 and then returns to the suction of the compressor 1. . That is, (23) is the outlet of the third heat exchanger 19, and (1) is the suction of the first stage compression unit 1A.

これに対して、冷蔵運転時(例えば、−5℃付近)には、図2にて破線で示すサイクルが形成される。尚、この冷蔵運転とは、上述した吸熱器57側、即ち第1の吸熱手段10に冷媒を流通させる場合である。この場合も圧縮機1が運転されると、圧縮機1から吐出された冷媒は、放熱器2で放熱して冷却される。即ちまず冷媒は、(9)1段圧縮部1Aの吸い込み、(10)1段圧縮部1Aの吐出、(11)中間冷却器1Cの出口であり、2段圧縮部1Bの吸い込み、(12)2段圧縮部1Bの吐出、の順に流通される。その後冷媒は、(5)放熱器2の出口、から分岐点9Cに至りここで分岐して、一部が熱交換回路20に、残りは第1の吸熱手段10に流通する。   On the other hand, during the refrigeration operation (for example, around −5 ° C.), a cycle indicated by a broken line in FIG. 2 is formed. In addition, this refrigeration operation is a case where a refrigerant | coolant is distribute | circulated to the heat absorber 57 side mentioned above, ie, the 1st heat absorption means 10. FIG. Also in this case, when the compressor 1 is operated, the refrigerant discharged from the compressor 1 is radiated by the radiator 2 and cooled. That is, first, the refrigerant is (9) suction of the first stage compression unit 1A, (10) discharge of the first stage compression unit 1A, (11) outlet of the intermediate cooler 1C, suction of the second stage compression unit 1B, (12) The two-stage compression unit 1B is discharged in this order. Thereafter, the refrigerant reaches (5) the outlet of the radiator 2 to the branch point 9C and branches here, partly flowing to the heat exchange circuit 20 and the rest to the first heat absorbing means 10.

分岐点9Cから熱交換回路20側に流通した冷媒は、(16)第3膨張弁31の出口に至り、ガス/液体の2相混合体になる。そしてこの冷媒は、2相混合体の状態で冷却熱交換器32において分岐点9Cから第1の吸熱手段10側に流通する冷媒と熱交換して温められ、ガス冷媒となり圧縮機1の中間圧部、即ち中間冷却器1Cと2段圧縮部1Bとの間に導入される。即ち、(16)は第3膨張弁31の出口であり、冷却熱交換器32の入口、(17)は冷却熱交換器32の出口であり、ここを経た冷媒は、(11)の2段圧縮部1Bの吸い込みに至り、2段圧縮部1Bで圧縮される。   The refrigerant flowing from the branch point 9C to the heat exchange circuit 20 side reaches (16) the outlet of the third expansion valve 31 and becomes a gas / liquid two-phase mixture. Then, this refrigerant is heated in the cooling heat exchanger 32 in the state of the two-phase mixture by exchanging heat with the refrigerant flowing from the branch point 9C to the first heat absorbing means 10 side, becomes a gas refrigerant, and becomes an intermediate pressure of the compressor 1 Part, that is, introduced between the intercooler 1C and the two-stage compression unit 1B. That is, (16) is the outlet of the third expansion valve 31, is the inlet of the cooling heat exchanger 32, (17) is the outlet of the cooling heat exchanger 32, and the refrigerant passing through this is the two stages of (11). The compression unit 1B is sucked and compressed by the two-stage compression unit 1B.

一方、分岐点9Cから第1の吸熱手段10側に流通した冷媒は、冷却熱交換器32で上記の如く熱交換回路20側に流通した冷媒と熱交換して過冷却された後、第3熱交換器19で更に冷却され、分岐点9Aで分岐して第1膨張弁65に至ることになる。(13)は冷却熱交換器32の出口であり、第3熱交換器19の入口、(14)は第3熱交換器19の出口であり、第1膨張弁65の入口、(15)は第1膨張弁65の出口、(24)は吸熱器57の出口である。吸熱器57に入った液冷媒は、蒸発して周囲から熱を吸収した後、第3熱交換器19で冷却熱交換器32から出た冷媒と熱交換した後、圧縮機1の吸い込みに戻る。即ち、(25)は第3熱交換器19の出口であり、(9)は1段圧縮部1Aの吸い込みである。冷凍運転時、冷蔵運転時共に以上の如く冷媒が循環して状態が変化し、冷凍サイクルが形成される。   On the other hand, the refrigerant circulated from the branch point 9C to the first heat absorbing means 10 side is supercooled by exchanging heat with the refrigerant circulated to the heat exchange circuit 20 side as described above in the cooling heat exchanger 32. It is further cooled by the heat exchanger 19 and branched at the branch point 9A to reach the first expansion valve 65. (13) is the outlet of the cooling heat exchanger 32, the inlet of the third heat exchanger 19, (14) is the outlet of the third heat exchanger 19, the inlet of the first expansion valve 65, (15) The outlet of the first expansion valve 65 (24) is the outlet of the heat absorber 57. The liquid refrigerant that has entered the heat absorber 57 evaporates and absorbs heat from the surroundings, and then exchanges heat with the refrigerant that has exited the cooling heat exchanger 32 in the third heat exchanger 19 and then returns to the suction of the compressor 1. . That is, (25) is the outlet of the third heat exchanger 19, and (9) is the suction of the first stage compression unit 1A. During both the freezing operation and the refrigerating operation, the refrigerant circulates and changes its state as described above, thereby forming a refrigerating cycle.

また、本実施例では冷媒回路内に二酸化炭素冷媒が封入されているため、放熱器2周辺での雰囲気温度、即ち図2中の(5)放熱器2出口、における温度が本実施例の如く+22℃程度の場合でも、従来のフロン系冷媒やHC系冷媒に用いられる冷媒回路、即ち放熱器2の直後に膨張弁65、66を設けるような冷媒回路では、膨張弁65、66に流入する冷媒の乾き度が高すぎるため、冷媒中のガス冷媒の割合が高く、十分な冷却性能を得ることが困難である。   In the present embodiment, since the carbon dioxide refrigerant is sealed in the refrigerant circuit, the ambient temperature around the radiator 2, that is, the temperature at (5) the outlet of the radiator 2 in FIG. Even in the case of about + 22 ° C., the refrigerant circuit used for the conventional chlorofluorocarbon refrigerant and HC refrigerant, that is, the refrigerant circuit in which the expansion valves 65 and 66 are provided immediately after the radiator 2 flows into the expansion valves 65 and 66. Since the dryness of the refrigerant is too high, the ratio of the gas refrigerant in the refrigerant is high, and it is difficult to obtain sufficient cooling performance.

そこで、本実施例では、放熱器2の出口側の冷媒配管を分岐してその一方に熱交換回路20を備え、この熱交換回路20の冷却熱交換器32により第1及び第2の吸熱手段10、11に流入する冷媒を過冷却し、また第3熱交換器19により更に冷却する構成としたことにより、上記の如き特性を持つ二酸化炭素冷媒を用いた場合でも高い冷却効果を得ることができる。またこのとき、熱交換回路20側の冷媒はガス冷媒として圧縮機1の中間圧部に導入するため、圧縮機1における圧縮効率をも向上させることができ、より一層冷凍装置30の効率を向上することができる。   Therefore, in this embodiment, the refrigerant pipe on the outlet side of the radiator 2 is branched and the heat exchange circuit 20 is provided on one side thereof, and the first and second heat absorption means are provided by the cooling heat exchanger 32 of the heat exchange circuit 20. Since the refrigerant flowing into the refrigerant 10 and 11 is supercooled and further cooled by the third heat exchanger 19, a high cooling effect can be obtained even when the carbon dioxide refrigerant having the above characteristics is used. it can. At this time, since the refrigerant on the heat exchange circuit 20 side is introduced into the intermediate pressure portion of the compressor 1 as a gas refrigerant, the compression efficiency in the compressor 1 can be improved, and the efficiency of the refrigeration apparatus 30 is further improved. can do.

また冷凍運転時は、冷蔵運転時と比較して、第2の吸熱手段11に流入する冷媒の過冷却をより大きくすることが必要であるが、本実施例では上記の如く熱交換回路20における第3膨張弁31の絞りの程度を可変としているため、冷凍運転時には冷蔵運転時よりも大きな過冷却を得ることができ、更に、冷凍運転時、冷蔵用の吸熱器57よりも低い温度帯で機能する吸熱器58を用いることにより、より高効率な冷凍運転を行うことが可能になる。   Further, during the refrigeration operation, it is necessary to further increase the supercooling of the refrigerant flowing into the second heat absorption means 11 as compared with the refrigeration operation. Since the degree of throttling of the third expansion valve 31 is variable, it is possible to obtain a larger supercooling during the refrigeration operation than during the refrigeration operation, and at a lower temperature range than the refrigeration heat absorber 57 during the refrigeration operation. By using the functioning heat absorber 58, a more efficient refrigeration operation can be performed.

以上詳述したように、本実施例では、熱交換回路20を備え、更には使用温度帯に基づき選択的に吸熱器57及び58を用いる構成としたことにより、温度帯の異なる冷凍運転及び冷蔵運転において、その温度に適した吸熱器を使用することができるようになり、各運転の運転効率の向上が期待できる。   As described in detail above, in this embodiment, the heat exchange circuit 20 is provided, and the heat absorbers 57 and 58 are selectively used based on the operating temperature range, so that the refrigeration operation and refrigeration in different temperature ranges are performed. In operation, a heat absorber suitable for the temperature can be used, and improvement in operation efficiency of each operation can be expected.

次に本実施例の冷凍装置30の冷蔵庫への適用例について図3を参照して説明する。   Next, an application example of the refrigeration apparatus 30 of this embodiment to a refrigerator will be described with reference to FIG.

図3は本実施例の冷凍装置30を備えた冷蔵庫の概略構成図を示している。この冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。そして、各室41、42の奥部には、夫々庫内仕切り壁61、62が設けられ、この庫内仕切り壁61、62で仕切られた風路44内には、上述した吸熱器57、58、並びにファン63、64が設置される。本構成では、冷蔵運転及び冷凍運転のサーモオン、サーモオフに従い、第1の吸熱手段10及び第2の吸熱手段11を上述した如く切り換え、いずれか一方の吸熱器57、58に冷媒を流し、それに対応したファン63、64を駆動する。吸熱器57に冷媒が流れる場合には冷蔵室41に冷風が供給され、吸熱器58に冷媒が流れる場合には冷凍室42に冷風が供給される。   FIG. 3 shows a schematic configuration diagram of a refrigerator provided with the refrigeration apparatus 30 of the present embodiment. The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. And the interior partition walls 61 and 62 are provided in the inner part of each chamber 41 and 42, respectively, In the air channel 44 partitioned by this interior partition walls 61 and 62, the heat absorber 57, 58 and fans 63 and 64 are installed. In this configuration, the first heat absorbing means 10 and the second heat absorbing means 11 are switched as described above in accordance with the thermo-ON and thermo-OFF of the refrigeration operation and the freezing operation, and the refrigerant is caused to flow through one of the heat absorbers 57 and 58. The fans 63 and 64 are driven. When the refrigerant flows through the heat absorber 57, cold air is supplied to the refrigerating chamber 41, and when the refrigerant flows through the heat absorber 58, cold air is supplied to the freezer chamber 42.

以上から本実施例の冷蔵庫40は、上記の如き冷凍装置30を備えるため、冷媒に二酸化炭素を用いた場合にも高い冷却性能と高効率運転を得ることができる。   As described above, since the refrigerator 40 of the present embodiment includes the refrigeration apparatus 30 as described above, high cooling performance and high efficiency operation can be obtained even when carbon dioxide is used as the refrigerant.

尚、上述した如く、本実施例の冷凍装置30では、冷凍運転時には第1膨張弁65を閉じて第2膨張弁66を開いて第2の吸熱手段11に冷媒を流通させ、冷蔵運転時には第2膨張弁66を閉じて第1膨張弁65を開いて第1の吸熱手段10に冷媒を流通させるものとしたが、これに限らず、例えば上記冷蔵庫40において、冷蔵室41及び冷凍室42が常温時で急速に冷却が必要な場合、所謂プルダウン時や、圧縮機1が運転停止状態から運転開始される場合や高負荷時、更には冷蔵室41及び冷凍室42が所定の温度以上である場合等には、第1膨張弁65及び第2膨張弁66の全てを必要に応じた開度に開くことで、第1の吸熱手段10及び第2の吸熱手段11の両側に冷媒を流通させ、各室41、42内を急速に冷却することもできる。   As described above, in the refrigeration apparatus 30 of the present embodiment, the first expansion valve 65 is closed and the second expansion valve 66 is opened during the freezing operation, and the refrigerant is circulated through the second heat absorbing means 11, and during the refrigeration operation, the first expansion valve 65 is opened. 2 The expansion valve 66 is closed and the first expansion valve 65 is opened to allow the refrigerant to flow through the first heat absorbing means 10. However, the present invention is not limited to this. For example, in the refrigerator 40, the refrigerator compartment 41 and the freezer compartment 42 are provided. When rapid cooling is required at normal temperature, when so-called pull-down, when the compressor 1 is started from a shutdown state or when the load is high, the refrigerator compartment 41 and the freezer compartment 42 are at a predetermined temperature or higher. In some cases, the first expansion valve 65 and the second expansion valve 66 are all opened to an opening as necessary, so that the refrigerant flows through both sides of the first heat absorption means 10 and the second heat absorption means 11. The chambers 41 and 42 can be cooled rapidly. .

次に図4を参照して、本発明の別の実施例を説明する。図4はこの場合の冷凍装置50の冷媒回路図を示している。本実施例では、上記実施例1と比較した場合、第3熱交換器19の代わりに、第1及び第2熱交換器17、18を有している点が相違する。即ち、本実施例では吸熱器57、58を出た冷媒が合流点9Bで合流する前に、第1及び第2膨張弁65、66に流入しようとする冷媒と熱交換する構成となる。また、本実施例の冷凍装置50は上記実施例1の冷凍装置30と同様に、冷蔵庫に適用することが可能であることは云うまでもない。   Next, another embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a refrigerant circuit diagram of the refrigeration apparatus 50 in this case. The present embodiment is different from the first embodiment in that first and second heat exchangers 17 and 18 are provided instead of the third heat exchanger 19. That is, in this embodiment, the refrigerant that has exited the heat absorbers 57 and 58 is configured to exchange heat with the refrigerant that is about to flow into the first and second expansion valves 65 and 66 before joining at the junction 9B. Needless to say, the refrigeration apparatus 50 according to the present embodiment can be applied to a refrigerator, similarly to the refrigeration apparatus 30 according to the first embodiment.

次に図5を参照して、本発明の更に別の実施例を説明する。図5はこの場合の冷凍装置70の冷媒回路図を示している。本実施例では、上記実施例1と比較した場合、第3熱交換器19を有さず、まず冷却熱交換器32を出た冷媒は分岐点9Aの前に吸熱器57を出た冷媒と第4熱交換器15で熱交換をしている点及び第2の吸熱手段11側に流入する冷媒のみ吸熱器58を出た冷媒と第5熱交換器16で熱交換している点が相違する。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a refrigerant circuit diagram of the refrigeration apparatus 70 in this case. In this embodiment, when compared with the first embodiment, the third heat exchanger 19 is not provided, and the refrigerant that first exits the cooling heat exchanger 32 is the same as the refrigerant that exits the heat absorber 57 before the branch point 9A. The difference is that the fourth heat exchanger 15 exchanges heat and only the refrigerant flowing into the second heat absorbing means 11 side exchanges heat with the refrigerant that has exited the heat absorber 58 and the fifth heat exchanger 16. To do.

尚、本実施例の冷凍装置70においても上記各実施例の冷凍装置と同様に、冷蔵庫に適用可能であることは云うまでもない。   Needless to say, the refrigeration apparatus 70 of the present embodiment can also be applied to a refrigerator in the same manner as the refrigeration apparatuses of the above embodiments.

次に図6を参照して、本発明の第4の実施例を説明する。図6はこの場合の冷凍装置90の冷媒回路図を示している。本実施例では、上記実施例1と比較した場合、分岐点9Aの位置に三方弁91が設けられると共に、第1及び第2の吸熱手段10、11の代わりに第3及び第4の吸熱手段10B、11Bを備えた点が相違する。   Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a refrigerant circuit diagram of the refrigeration apparatus 90 in this case. In the present embodiment, when compared with the first embodiment, a three-way valve 91 is provided at the position of the branch point 9A, and the third and fourth endothermic means instead of the first and second endothermic means 10 and 11 are provided. The difference is that 10B and 11B are provided.

第3の吸熱手段10Bは、第1キャピラリチューブ92と吸熱器57とを含み、第4の吸熱手段11Bは、第2キャピラリチューブ93と吸熱器58とを含む。   The third heat absorbing means 10B includes a first capillary tube 92 and a heat absorber 57, and the fourth heat absorbing means 11B includes a second capillary tube 93 and a heat absorber 58.

本実施例の冷凍装置90は、三方弁91により、第3の吸熱手段10Bに冷媒を流通させるか、又は第4の吸熱手段11Bに冷媒を流通させるか、を選択することにより冷蔵運転及び冷凍運転を選択可能である。以上から、本実施例の冷凍装置90では、各吸熱手段において膨張弁65、66の代わりにキャピラリチューブ92、93を用いているので、より低コストで本発明の冷凍装置を実現可能である。   In the refrigeration apparatus 90 of the present embodiment, the three-way valve 91 selects whether to circulate the refrigerant through the third heat absorption means 10B or the refrigerant through the fourth heat absorption means 11B. Operation can be selected. From the above, in the refrigeration apparatus 90 of the present embodiment, the capillary tubes 92 and 93 are used in place of the expansion valves 65 and 66 in each heat absorbing means, so that the refrigeration apparatus of the present invention can be realized at lower cost.

尚、上記実施例2、3の冷凍装置50、70においても、本実施例の如き第3及び第4の吸熱手段10B、11Bを適用することが可能であり、また本実施例の冷凍装置90においても上記各実施例の冷凍装置と同様に、冷蔵庫に適用可能であることは云うまでもない。   Note that the third and fourth heat absorbing means 10B and 11B as in the present embodiment can also be applied to the refrigeration apparatuses 50 and 70 in the second and third embodiments, and the refrigeration apparatus 90 in the present embodiment. However, it is needless to say that the present invention can be applied to a refrigerator as in the refrigeration apparatus of the above embodiments.

以上、各実施例により本発明を説明したが、本発明は、これに限定されるものではなく、種々の変更実施が可能である。例えば、上記各実施例では、冷媒回路中に二酸化炭素冷媒を封入しているが、これに限定されるものではなく、それ以外のフロン系冷媒等を封入したものにも適用可能である。   Although the present invention has been described above with reference to each embodiment, the present invention is not limited to this, and various modifications can be made. For example, in each of the above embodiments, the carbon dioxide refrigerant is enclosed in the refrigerant circuit. However, the present invention is not limited to this, and the present invention can be applied to other refrigerant-filled refrigerants.

また、上記各実施例における第3膨張弁31及び上記実施例1、2及び3における膨張弁65及び66は必要に応じてキャピラリチューブに変更可能である。   Further, the third expansion valve 31 in each of the above embodiments and the expansion valves 65 and 66 in the above embodiments 1, 2, and 3 can be changed to capillary tubes as necessary.

本発明の冷凍装置の一実施形態を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one Embodiment of the freezing apparatus of this invention. 本発明の冷凍装置の一実施形態における冷凍サイクルのエンタルピ・圧力線図である。It is an enthalpy and pressure diagram of the refrigerating cycle in one embodiment of the refrigerating device of the present invention. 本発明の一実施形態における冷凍装置の冷蔵庫への適用例を示す概略構成図である。It is a schematic block diagram which shows the example of application to the refrigerator of the freezing apparatus in one Embodiment of this invention. 本発明の冷凍装置の別の実施形態を示す冷媒回路図である。It is a refrigerant circuit figure which shows another embodiment of the freezing apparatus of this invention. 本発明の冷凍装置の更に別の実施形態を示す冷媒回路図である。It is a refrigerant circuit figure which shows another embodiment of the freezing apparatus of this invention. 本発明の冷凍装置の第4の実施例を示す冷媒回路図である。It is a refrigerant circuit figure which shows the 4th Example of the freezing apparatus of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
6 冷媒導入管
7、52、53 逆止弁
10 第1の吸熱手段
11 第2の吸熱手段
15 第4熱交換器
16 第5熱交換器
17 第1熱交換器
18 第2熱交換器
19 第3熱交換器
20 熱交換回路
21、41 冷蔵室
22、42 冷凍室
30、50、70、90 冷凍装置
31 第3膨張弁
32 冷却熱交換器
40 冷蔵庫
57、58 吸熱器
63、64 ファン
65 第1膨張弁
66 第2膨張弁
91 三方弁
92 第1キャピラリチューブ
93 第2キャピラリチューブ



DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 6 Refrigerant introduction pipe 7, 52, 53 Check valve 10 1st heat absorption means 11 2nd heat absorption means 15 4th heat exchanger 16 5th heat exchanger 17 1st heat exchanger 18 1st 2 heat exchanger 19 3rd heat exchanger 20 heat exchange circuit 21, 41 refrigerator compartment 22, 42 freezer compartment 30, 50, 70, 90 refrigeration equipment 31 third expansion valve 32 cooling heat exchanger 40 refrigerator 57, 58 heat absorber 63, 64 Fan 65 First expansion valve 66 Second expansion valve 91 Three-way valve 92 First capillary tube 93 Second capillary tube



Claims (11)

中間圧部を有する圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続され減圧手段と吸熱器とを備える吸熱手段と、を備え、前記吸熱手段の出口側が前記圧縮機の前記中間圧部より低圧の吸い込み部に接続される冷凍装置において、
前記放熱器の出口側の冷媒配管を分岐し、一方の冷媒配管は前記吸熱手段に接続され、他方の冷媒配管は前記圧縮機の中間圧部に接続されると共に、前記他方の冷媒配管には減圧機構と熱交換器とが備えられ、この熱交換器は前記一方の冷媒配管中の冷媒と前記他方の冷媒配管中の冷媒とを熱交換可能に構成されていることを特徴とする冷凍装置。
A compressor having an intermediate pressure portion, a radiator connected to the discharge side of the compressor, and a heat absorbing means connected to the outlet side of the radiator and having a pressure reducing means and a heat absorber. In the refrigerating apparatus in which the outlet side of the compressor is connected to a suction portion having a lower pressure than the intermediate pressure portion of the compressor
The refrigerant pipe on the outlet side of the radiator is branched, one refrigerant pipe is connected to the heat absorbing means, the other refrigerant pipe is connected to the intermediate pressure portion of the compressor, and the other refrigerant pipe is connected to the other refrigerant pipe. A refrigeration apparatus comprising a decompression mechanism and a heat exchanger, wherein the heat exchanger is configured to exchange heat between the refrigerant in the one refrigerant pipe and the refrigerant in the other refrigerant pipe. .
前記吸熱手段と前記圧縮機の吸い込み部との間の冷媒を、前記熱交換器を出た後の前記一方の冷媒配管中の冷媒と熱交換可能に構成した第1の熱交換器を備えたことを特徴とする請求項1に記載の冷凍装置。   A first heat exchanger configured to exchange heat between the refrigerant between the heat absorption means and the suction portion of the compressor with the refrigerant in the one refrigerant pipe after leaving the heat exchanger; The refrigeration apparatus according to claim 1. 前記吸熱手段は、第1の減圧手段と第1の吸熱器とを備える第1の吸熱手段と、この第1の吸熱手段と並列に設けられ第2の減圧手段と第2の吸熱器とを備える第2の吸熱手段と、を備えて構成され、
前記第1の吸熱手段及び前記第2の吸熱手段の出口側が合流した後、前記圧縮機の吸い込み部に接続されることを特徴とする請求項1又は請求項2に記載の冷凍装置。
The heat absorbing means includes a first heat absorbing means including a first pressure reducing means and a first heat absorber, and a second pressure reducing means and a second heat absorber provided in parallel with the first heat absorbing means. A second heat absorbing means provided with,
3. The refrigeration apparatus according to claim 1, wherein an outlet side of the first heat absorption unit and the second heat absorption unit merges and then is connected to a suction portion of the compressor. 4.
前記第1の吸熱器を出た後の冷媒と、前記一方の冷媒配管中での前記熱交換器と前記第1の減圧手段との間の冷媒と、を熱交換するための第1の熱交換器と、
前記第2の吸熱器を出た後の冷媒と、前記一方の冷媒配管中での前記熱交換器と前記第2の減圧手段との間の冷媒と、を熱交換するための第2の熱交換器と、を備えたことを特徴とする請求項3に記載の冷凍装置。
The first heat for exchanging heat between the refrigerant after leaving the first heat absorber and the refrigerant between the heat exchanger and the first pressure reducing means in the one refrigerant pipe. An exchange,
Second heat for exchanging heat between the refrigerant after leaving the second heat absorber and the refrigerant between the heat exchanger and the second decompression means in the one refrigerant pipe. The refrigeration apparatus according to claim 3, further comprising an exchanger.
前記熱交換器を出た後の前記一方の冷媒配管中の冷媒を前記第1の吸熱器を出た後の冷媒と熱交換するための第4の熱交換器と、この第4の熱交換器を出た後の前記一方の冷媒配管が第1の吸熱手段及び第2の吸熱手段に接続される冷凍装置において、
前記第2の吸熱手段に接続される前記第4の熱交換器を出た後の前記一方の冷媒配管中の冷媒を前記第2の吸熱器を出た後の冷媒と熱交換するための第5の熱交換器を備え、
前記第1の吸熱器を出た後であり且つ前記第4の熱交換器を出た後の冷媒配管と、前記第2の吸熱器を出た後であり且つ前記第5の熱交換器を出た後の冷媒配管と、が合流した後、前記圧縮機の吸い込み部に接続されることを特徴とする請求項3に記載の冷凍装置。
A fourth heat exchanger for exchanging heat between the refrigerant in the one refrigerant pipe after exiting the heat exchanger and the refrigerant after exiting the first heat absorber, and the fourth heat exchange In the refrigeration apparatus in which the one refrigerant pipe after leaving the container is connected to the first heat absorption means and the second heat absorption means,
A first heat exchanger for exchanging heat between the refrigerant in the one refrigerant pipe after leaving the fourth heat exchanger connected to the second heat absorbing means and the refrigerant after leaving the second heat absorber; 5 heat exchangers,
A refrigerant pipe after exiting the first heat absorber and after exiting the fourth heat exchanger, and after exiting the second heat absorber and the fifth heat exchanger. 4. The refrigeration apparatus according to claim 3, wherein the refrigerant pipe is connected to a suction portion of the compressor after joining the refrigerant pipe after coming out.
前記第1の吸熱手段と前記第2の吸熱手段とは選択的に異なる温度帯で機能することを特徴とする請求項3乃至請求項5に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 3 to 5, wherein the first heat absorption means and the second heat absorption means function selectively in different temperature zones. 前記第1の吸熱手段よりも前記第2の吸熱手段の方が低い温度帯で機能することを特徴とする請求項6に記載の冷凍装置。   The refrigeration apparatus according to claim 6, wherein the second heat absorption unit functions in a lower temperature range than the first heat absorption unit. 請求項1乃至請求項7に記載の冷凍装置を備えたことを特徴とする冷蔵庫。   A refrigerator comprising the refrigeration apparatus according to claim 1. 冷蔵室と、この冷蔵室よりも低い温度で運転される冷凍室と、を備え、
前記第1の吸熱手段により前記冷蔵室を冷却し、前記第2の吸熱手段により前記冷凍室を冷却することを特徴とする請求項8に記載の冷蔵庫。
A refrigerator compartment and a freezer compartment operated at a temperature lower than the refrigerator compartment,
9. The refrigerator according to claim 8, wherein the refrigerator compartment is cooled by the first heat absorption means, and the freezer compartment is cooled by the second heat absorption means.
前記冷蔵室及び/又は前記冷凍室が所定の温度以上である場合には、前記第1の吸熱手段及び前記第2の吸熱手段に冷媒を流通させることを特徴とする請求項9に記載の冷蔵庫。   The refrigerator according to claim 9, wherein when the refrigerator compartment and / or the freezer compartment has a predetermined temperature or higher, a refrigerant is circulated through the first heat absorbing means and the second heat absorbing means. . 冷媒として二酸化炭素を用いたことを特徴とする請求項1乃至請求項7に記載の冷凍装置及び請求項8乃至請求項10に記載の冷蔵庫。



The refrigeration apparatus according to any one of claims 1 to 7 and the refrigerator according to any one of claims 8 to 10, wherein carbon dioxide is used as a refrigerant.



JP2005024057A 2005-01-31 2005-01-31 Refrigerating apparatus and refrigerator Pending JP2006207974A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005024057A JP2006207974A (en) 2005-01-31 2005-01-31 Refrigerating apparatus and refrigerator
CNA2006100047573A CN1815106A (en) 2005-01-31 2006-01-27 Refrigerating device and refrigerator
KR1020060008601A KR100695370B1 (en) 2005-01-31 2006-01-27 Refrigerating apparatus and refrigerator
EP06001872A EP1696188A3 (en) 2005-01-31 2006-01-30 Refrigerating device and refrigerator
US11/342,826 US20060168997A1 (en) 2005-01-31 2006-01-31 Refrigerating device and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024057A JP2006207974A (en) 2005-01-31 2005-01-31 Refrigerating apparatus and refrigerator

Publications (1)

Publication Number Publication Date
JP2006207974A true JP2006207974A (en) 2006-08-10

Family

ID=36118319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024057A Pending JP2006207974A (en) 2005-01-31 2005-01-31 Refrigerating apparatus and refrigerator

Country Status (5)

Country Link
US (1) US20060168997A1 (en)
EP (1) EP1696188A3 (en)
JP (1) JP2006207974A (en)
KR (1) KR100695370B1 (en)
CN (1) CN1815106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249209A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Refrigerating device
KR101185257B1 (en) 2006-07-06 2012-09-21 다이킨 고교 가부시키가이샤 Air conditioning system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042058B2 (en) 2008-02-07 2012-10-03 三菱電機株式会社 Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
JP5120056B2 (en) * 2008-05-02 2013-01-16 ダイキン工業株式会社 Refrigeration equipment
EP2869004B1 (en) * 2013-11-04 2019-05-01 LG Electronics Inc. Refrigerator and method for controlling the same
US10830499B2 (en) * 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179777A (en) * 1982-03-03 1983-10-21 三洋電機株式会社 Refrigerator
JPS6038560A (en) * 1983-08-11 1985-02-28 三菱電機株式会社 Two-step compression refrigerator
JPH0476358A (en) * 1990-07-18 1992-03-11 Mitsubishi Electric Corp Device in refrigerating cycle
JPH04313646A (en) * 1991-04-10 1992-11-05 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH05187728A (en) * 1991-06-24 1993-07-27 Baltimore Aircoil Co Inc Method and device for controlling head pressure of air-conditioning or refrigeration system
JPH05223370A (en) * 1991-11-04 1993-08-31 General Electric Co <Ge> Refrigerator
JPH08144971A (en) * 1994-11-15 1996-06-04 Nippon Soken Inc Scroll type compressor and refrigerating cycle
JPH09170832A (en) * 1995-11-14 1997-06-30 Lg Electronics Inc Refrigerating cycle device having two evaporation temperature
JP2000230767A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Refrigerator
JP2001317832A (en) * 2000-05-10 2001-11-16 Daikin Ind Ltd Air conditioning apparatus
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2143014B (en) * 1983-05-16 1986-09-17 Hotpoint Ltd Refrigerator/freezer units
US4947655A (en) * 1984-01-11 1990-08-14 Copeland Corporation Refrigeration system
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
CA2080219A1 (en) * 1991-11-04 1993-05-05 Leroy John Herbst Household refrigerator with improved refrigeration circuit
US5603227A (en) * 1995-11-13 1997-02-18 Carrier Corporation Back pressure control for improved system operative efficiency
US6032472A (en) * 1995-12-06 2000-03-07 Carrier Corporation Motor cooling in a refrigeration system
EP0924478A3 (en) * 1997-12-15 2000-03-22 Carrier Corporation Refrigeration system with integrated oil cooling heat exchanger
US5899091A (en) * 1997-12-15 1999-05-04 Carrier Corporation Refrigeration system with integrated economizer/oil cooler
US6138467A (en) * 1998-08-20 2000-10-31 Carrier Corporation Steady state operation of a refrigeration system to achieve optimum capacity
US6324858B1 (en) * 1998-11-27 2001-12-04 Carrier Corporation Motor temperature control
WO2001022008A1 (en) * 1999-09-24 2001-03-29 Sanyo Electric Co., Ltd. Multi-stage compression refrigerating device
US6202438B1 (en) * 1999-11-23 2001-03-20 Scroll Technologies Compressor economizer circuit with check valve
US6428284B1 (en) * 2000-03-16 2002-08-06 Mobile Climate Control Inc. Rotary vane compressor with economizer port for capacity control
US6442967B1 (en) * 2001-10-10 2002-09-03 Altech Controls Corporation Refrigeration system with coaxial suction and liquid tubing
US6928828B1 (en) * 2004-01-22 2005-08-16 Carrier Corporation Tandem compressors with economized operation
US7257958B2 (en) * 2004-03-10 2007-08-21 Carrier Corporation Multi-temperature cooling system
JP4459776B2 (en) * 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
US7228707B2 (en) * 2004-10-28 2007-06-12 Carrier Corporation Hybrid tandem compressor system with multiple evaporators and economizer circuit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179777A (en) * 1982-03-03 1983-10-21 三洋電機株式会社 Refrigerator
JPS6038560A (en) * 1983-08-11 1985-02-28 三菱電機株式会社 Two-step compression refrigerator
JPH0476358A (en) * 1990-07-18 1992-03-11 Mitsubishi Electric Corp Device in refrigerating cycle
JPH04313646A (en) * 1991-04-10 1992-11-05 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH05187728A (en) * 1991-06-24 1993-07-27 Baltimore Aircoil Co Inc Method and device for controlling head pressure of air-conditioning or refrigeration system
JPH05223370A (en) * 1991-11-04 1993-08-31 General Electric Co <Ge> Refrigerator
JPH08144971A (en) * 1994-11-15 1996-06-04 Nippon Soken Inc Scroll type compressor and refrigerating cycle
JPH09170832A (en) * 1995-11-14 1997-06-30 Lg Electronics Inc Refrigerating cycle device having two evaporation temperature
JP2000230767A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Refrigerator
JP2001317832A (en) * 2000-05-10 2001-11-16 Daikin Ind Ltd Air conditioning apparatus
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185257B1 (en) 2006-07-06 2012-09-21 다이킨 고교 가부시키가이샤 Air conditioning system
US8656729B2 (en) 2006-07-06 2014-02-25 Daikin Industries, Ltd. Air conditioning system with defrosting operation
JP2008249209A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Refrigerating device

Also Published As

Publication number Publication date
KR100695370B1 (en) 2007-03-16
US20060168997A1 (en) 2006-08-03
EP1696188A2 (en) 2006-08-30
KR20060088039A (en) 2006-08-03
EP1696188A3 (en) 2008-02-13
CN1815106A (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US7331196B2 (en) Refrigerating apparatus and refrigerator
JP4101252B2 (en) refrigerator
US7293428B2 (en) Refrigerating machine
US9103571B2 (en) Refrigeration apparatus
JP4952210B2 (en) Air conditioner
EP1577622A2 (en) Refrigerating machine
JP2006275495A (en) Refrigerating device and refrigerator
US20060218952A1 (en) Refrigerating device and refrigerator
KR100695370B1 (en) Refrigerating apparatus and refrigerator
JP2006207980A (en) Refrigerating apparatus and refrigerator
JP4118254B2 (en) Refrigeration equipment
JP2009133593A (en) Cooling apparatus
JP2007093105A (en) Freezing device and gas-liquid separator
JP2005257236A (en) Freezing device
JP2006207982A (en) Refrigerating apparatus and refrigerator
JP5895662B2 (en) Refrigeration equipment
JP4115414B2 (en) Refrigeration equipment
JP4104519B2 (en) Refrigeration system
JP2006266655A (en) Refrigerating device, refrigerator, and gas-liquid separator
JP2005265316A (en) Refrigeration device
KR100624811B1 (en) Circulation Device For Receiver refrigerants
JP2010112618A (en) Air conditioning device
JP2005221205A (en) Refrigerant apparatus
JP2005214536A (en) Refrigeration device
JP2008128564A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415