JP2005221091A - Radiator and forming method of heat receiving unit - Google Patents

Radiator and forming method of heat receiving unit Download PDF

Info

Publication number
JP2005221091A
JP2005221091A JP2004026469A JP2004026469A JP2005221091A JP 2005221091 A JP2005221091 A JP 2005221091A JP 2004026469 A JP2004026469 A JP 2004026469A JP 2004026469 A JP2004026469 A JP 2004026469A JP 2005221091 A JP2005221091 A JP 2005221091A
Authority
JP
Japan
Prior art keywords
radiator
heat
flow path
heat receiving
receiving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004026469A
Other languages
Japanese (ja)
Inventor
Naohiro Konosu
直広 鴻巣
Masato Takahashi
正人 高橋
Atsushi Yanase
淳 梁瀬
Kimihisa Kaneko
公寿 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004026469A priority Critical patent/JP2005221091A/en
Publication of JP2005221091A publication Critical patent/JP2005221091A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiator, reducing change in configuration of a radiator to the utmost, hardly influenced by electrolytic corrosion that causes metal ions to dissolve in cooling water, and a forming method of a heat receiving unit constituting the above radiator. <P>SOLUTION: In a water-cooled radiator 1, a LD (laser diode) array 200, which is a heating unit, is installed, and the LD array 200 is cooled by cooling water 900 flowing through a passage 2 formed in the interior thereof. The radiator 1 includes a protective layer (a titanium oxide layer) 3 covering the surface of the passage forming surface (the surface) of the passage 2 in the radiator 1 to electrically insulate the cooling water 900 from the radiator 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体レーザダイオード(以下、単にLDと略記する)アレイなど放熱体を冷却する液冷式の放熱器、および、この放熱器を構成する受熱体の形成方法に関する。   The present invention relates to a liquid-cooled radiator that cools a radiator such as a semiconductor laser diode (hereinafter simply abbreviated as LD) array, and a method for forming a heat receiver that constitutes the radiator.

高出力のLDは他の部品とともに一体に搭載されたLDアレイとして使用されることが一般的である。このLDは発熱密度が数十〜数百W/cm程度と大きいため、LDアレイ全体は温度上昇し、LDのレーザ出力、効率、発信波長、素子寿命が大きな影響を受ける。従って、LDアレイから熱をいかに除去するかが非常に重要な課題となっている。 In general, a high-power LD is used as an LD array mounted together with other components. Since this LD has a heat generation density as high as several tens to several hundreds W / cm 2, the temperature of the entire LD array rises, and the laser output, efficiency, transmission wavelength, and element life of the LD are greatly affected. Therefore, how to remove heat from the LD array is a very important issue.

このような熱対策としては、例えば、放熱器の使用が考えられる。放熱器をLDアレイに接触した状態で取り付けて、効率良く放熱を行うものである。
しかしながら、放熱器と接触するLDアレイの接触面は、例えば横幅10mm×縦幅1〜1.5mm程度であり、放熱器との接触面積が非常に小さい。このため、単なる空冷式の放熱器ではLDの発熱量が放熱量よりも上回り、LDアレイの温度上昇が抑えきれなかった。このような事情から、LDアレイ用の放熱器は、内部に流路を設けた液冷式(一般的には水冷式)の放熱器を用いるのが一般的である。
As such a heat countermeasure, for example, use of a radiator can be considered. A radiator is attached in contact with the LD array to efficiently radiate heat.
However, the contact surface of the LD array that comes into contact with the radiator is, for example, about 10 mm in width and about 1 to 1.5 mm in length, and the contact area with the radiator is very small. For this reason, with a simple air-cooled radiator, the amount of heat generated by the LD exceeds the amount of heat released, and the temperature rise of the LD array could not be suppressed. In view of such circumstances, it is common to use a liquid-cooled (generally water-cooled) radiator having a flow path therein as an LD array radiator.

この従来技術によるLDアレイの放熱について概略説明する。図12はLDアレイ放熱システムの模式的なシステム構成図である。LDアレイ放熱システムは、放熱器100、LDアレイ200、電力供給装置300、給排水用マニホールド400、流路500、タンク600、流路700、ポンプ800、を備え、冷却水(具体的には純水)900が循環するシステムである。   The heat dissipation of the LD array according to this prior art will be outlined. FIG. 12 is a schematic system configuration diagram of the LD array heat dissipation system. The LD array heat dissipation system includes a radiator 100, an LD array 200, a power supply device 300, a water supply / drain manifold 400, a flow channel 500, a tank 600, a flow channel 700, and a pump 800, and includes cooling water (specifically pure water). ) 900 is a circulating system.

本システムにおいて、高出力のLD(図示せず)を搭載したLDアレイ200が、ロー材等により接合されて、放熱器100に直接マウントされる。このLDアレイ200は、電力供給装置300→放熱器100→LDアレイ200→LDという経路を経て電力が供給されて、LDアレイ200中のLDを発光させる方式としている。このような高出力のLDには1個当たり40〜100Wという電力が印加されるため、放熱器100の内部にもこの大電力が印加され、電流iが流れることとなる。   In this system, an LD array 200 on which a high-power LD (not shown) is mounted is joined by a brazing material or the like and directly mounted on the radiator 100. The LD array 200 is configured such that power is supplied through a path of the power supply device 300 → the radiator 100 → the LD array 200 → the LD, and the LD in the LD array 200 emits light. Since such a high output LD is applied with a power of 40 to 100 W per one, this large power is also applied to the inside of the radiator 100 and the current i flows.

また、本システムでは、放熱器100に冷却水900を供給、排出する循環系を形成しており、ポンプ800によりタンク600の冷却水900が流路700→ポンプ800→給排水用マニホールド400の流路400a→放熱器100の流路101→給排水用マニホールド400の流路400b→流路500と循環する。この際、LDアレイ200→放熱器100→流路101内の冷却水900へという経路で熱伝導されて、LDアレイ200を冷却する。   Further, in this system, a circulation system for supplying and discharging the cooling water 900 to and from the radiator 100 is formed, and the cooling water 900 in the tank 600 is transferred from the flow path 700 to the pump 800 to the supply and drainage manifold 400 by the pump 800. 400a → the flow path 101 of the radiator 100 → the flow path 400b of the water supply / drainage manifold 400 → the flow path 500 circulates. At this time, the LD array 200 is cooled by heat conduction through a path from the LD array 200 to the radiator 100 to the cooling water 900 in the flow channel 101.

続いて、この放熱器100の構造の詳細について概略説明する。図13は放熱器のP−P線断面図である。図14は放熱器の断面図であり、図14(a)はA−A線断面のA矢視図、図14(b)はB−B線断面のB矢視図、図14(c)はC−C線断面のC矢視図である。図15は放熱器の断面図であり、図15(a)は接合前のQ−Q線断面のQ矢視図、図15(b)は接合後のQ−Q線断面のQ矢視図である。   Subsequently, the details of the structure of the radiator 100 will be schematically described. FIG. 13 is a cross-sectional view taken along the line P-P of the radiator. 14 is a cross-sectional view of the radiator, FIG. 14 (a) is a cross-sectional view taken along the line A-A, FIG. 14 (b) is a cross-sectional view taken along the line BB, and FIG. 14 (c). These are C arrow directional views of a CC line cross section. FIG. 15 is a cross-sectional view of the radiator, FIG. 15 (a) is a view taken along the line Q-Q before joining, and FIG. 15 (b) is a view taken along the line Q-Q after joining. It is.

放熱器100は、高出力LDアレイ用の放熱器であり、図13で示すように、板状の下受熱体110,中受熱体120,上受熱体130を積み重ねた3層の構造を採用している。これら下受熱体110,中受熱体120,上受熱体130は、ともに熱伝導が良好な金属材料を用いて製作されている。
下受熱体110は、図13や,図14(c)のC矢視方向から見た下受熱体110の上面図のように、給水口111、放熱フィン112、下面水路113、流路絞り部114、排水口115を備える。なお、点描部は貫通してない、つまり底がある穴であることを表している。
中受熱体120は、図13や,図14(b)のB矢視方向から見た中受熱体120の上面図のように、円形連通孔121、円形連通孔122、隔壁123、貫通孔124、上座グリ部125、下座グリ部126(図13参照)を備える。点描部は底がある穴であることを表している。
上受熱体130は、図13や,図14(a)のA矢視方向から見た上受熱体130の下面図のように、給水口131、上面水路132、放熱フィン133を備える。点描部は底がある穴であることを表している。
図15(a)のように接合前の下受熱体110,中受熱体120,上受熱体130に対してロー材シート(図示せず)を挟んだ拡散接合や半田などにより、図15(b)のように気密を維持した状態で且つ熱伝導良好な状態に接合されている。このような接合により、図15(a),(b)で示すような下受熱体110,中受熱体120,上受熱体130に連通する流路が形成される。なお、図示しないが接合面では薄い接合層が形成される。
The radiator 100 is a radiator for a high-power LD array, and employs a three-layer structure in which a plate-like lower heat receiving body 110, a middle heat receiving body 120, and an upper heat receiving body 130 are stacked as shown in FIG. ing. The lower heat receiving body 110, the middle heat receiving body 120, and the upper heat receiving body 130 are all manufactured using a metal material having good heat conduction.
The lower heat receiving body 110 includes a water supply port 111, a heat radiating fin 112, a lower surface water channel 113, a flow path restricting portion as shown in the top view of the lower heat receiving body 110 viewed from the direction of arrow C in FIG. 13 and FIG. 14 (c). 114 and a drainage port 115. Note that the stippled portion is not penetrating, that is, a hole with a bottom.
The intermediate heat receiving body 120 has a circular communication hole 121, a circular communication hole 122, a partition wall 123, and a through hole 124 as shown in the top view of the intermediate heat reception body 120 viewed from the direction of arrow B in FIG. 13 and FIG. , An upper spot facing part 125 and a lower spot facing part 126 (see FIG. 13). The stippled area represents a hole with a bottom.
The upper heat receiving body 130 includes a water supply port 131, an upper surface water channel 132, and heat radiating fins 133 as shown in the bottom view of the upper heat receiving body 130 as viewed from the direction of arrow A in FIG. 13 and FIG. The stippled area represents a hole with a bottom.
As shown in FIG. 15A, diffusion bonding, solder, or the like sandwiching a brazing material sheet (not shown) with respect to the lower heat receiving body 110, the middle heat receiving body 120, and the upper heat receiving body 130 before bonding, as shown in FIG. ) In a state in which the airtightness is maintained as shown in FIG. By such joining, a flow path communicating with the lower heat receiving body 110, the middle heat receiving body 120, and the upper heat receiving body 130 as shown in FIGS. 15A and 15B is formed. Although not shown, a thin bonding layer is formed on the bonding surface.

続いて、このような構成の放熱器100における冷却水の流れについて説明する。図13で示すように、放熱フィン133の上側でLDアレイ200が上受熱体130に接合されている。冷却水900は、図13で示すように、流路400aから下受熱体110の給水口111に導かれ、そのまま中受熱体120の円形連通口121を通過して、上受熱体130の給水口131まで到達する。上受熱体130の上面水路132は面積が拡大された流路であり、冷却水900も面積が拡大されて放熱フィン133に到達する。この際、給水側の圧力損失を低減させるために、放熱フィン133の手前まで中受熱体120に上座グリ部125を設けて流路断面積を拡大させ、放熱フィン133に冷却水900が流入する際、流速を向上させて熱交換効率を高めるようにしている。   Next, the flow of cooling water in the radiator 100 having such a configuration will be described. As shown in FIG. 13, the LD array 200 is joined to the upper heat receiving body 130 on the upper side of the radiation fins 133. As shown in FIG. 13, the cooling water 900 is guided from the flow path 400 a to the water supply port 111 of the lower heat receiving body 110, passes through the circular communication port 121 of the middle heat receiving body 120 as it is, and the water supply port of the upper heat receiving body 130. Reach up to 131. The upper surface water channel 132 of the upper heat receiving body 130 is a channel having an enlarged area, and the cooling water 900 also has an enlarged area and reaches the radiation fins 133. At this time, in order to reduce the pressure loss on the water supply side, the upper counterbore 125 is provided in the intermediate heat receiving body 120 just before the heat radiation fins 133 to enlarge the cross-sectional area of the flow path, and the cooling water 900 flows into the heat radiation fins 133. At this time, the heat exchange efficiency is improved by increasing the flow rate.

この放熱フィン133まで到達した冷却水900は、放熱フィン133と冷却水900とでLDアレイ200の高い熱と冷却水900の低い熱とが熱交換され、中受熱体120の円形連通口122を通り下受熱体110に設けられた放熱フィン112の間を通り、下面水路113に到達する。ここで、冷却水900は流路絞り部114により2つに分流し排水口115で再び合流し、放熱器100外に排出される。この際、圧力損失を低減させるために、放熱フィン113の後ろ側に中受熱体120に下座グリ部126(図13参照)を設けて流路断面積を拡大させている。同様に、排水口115の圧力損失を低減させるため、中受熱体120に貫通孔124を設け流路断面積を拡大させている。   The cooling water 900 that has reached the radiating fins 133 exchanges heat between the high heat of the LD array 200 and the low heat of the cooling water 900 between the radiating fins 133 and the cooling water 900, so that the circular communication port 122 of the intermediate heat receiving body 120 is exchanged. It passes between the radiation fins 112 provided on the street lower heat receiving body 110 and reaches the lower surface water channel 113. Here, the cooling water 900 is divided into two by the flow path narrowing portion 114, merged again at the drainage port 115, and discharged outside the radiator 100. At this time, in order to reduce the pressure loss, the lower counterbore 126 (see FIG. 13) is provided on the intermediate heat receiving body 120 on the rear side of the radiating fin 113 to enlarge the cross-sectional area of the flow path. Similarly, in order to reduce the pressure loss of the drain port 115, the through-hole 124 is provided in the intermediate heat receiving body 120 to increase the cross-sectional area of the flow path.

この放熱器100では冷却効果を高めるため、放熱フィン133に特徴を持たせている。放熱器100の放熱フィン133はLDアレイ200が取り付けられる位置の下側に設けられており、LDアレイ200で発生した熱を上受熱体130で放熱し板厚方向に熱伝導させ、LDアレイ200の数倍の長さに設計された放熱フィン133に導かせている。
多数の放熱フィン133に冷却水900が接するため効率よく熱交換が行われる。しかし、上受熱体130に設けられた放熱フィン133だけでは放熱量が充分でないため、中受熱体120の隔壁123に熱伝導させ、さらに下受熱体110に設けた放熱フィン112に熱伝導させ放熱量を増加させる構造としている(図14,図15参照)。
このような構成のため、放熱器100は放熱量を高めている。従来技術はこのようなものであった。
In this heat radiator 100, the heat radiation fin 133 is characterized in order to enhance the cooling effect. The radiating fins 133 of the radiator 100 are provided below the position where the LD array 200 is attached. The heat generated by the LD array 200 is radiated by the upper heat receiving body 130 and is thermally conducted in the thickness direction. The heat radiating fins 133 are designed to have a length several times that of the radiating fin 133.
Since the cooling water 900 is in contact with the numerous radiating fins 133, heat exchange is performed efficiently. However, since the heat radiation amount is not sufficient only by the heat radiation fins 133 provided on the upper heat receiving body 130, heat conduction is performed to the partition wall 123 of the middle heat receiving body 120, and heat conduction is further performed to the heat radiation fins 112 provided on the lower heat receiving body 110. The structure increases the amount of heat (see FIGS. 14 and 15).
Due to such a configuration, the radiator 100 increases the heat radiation amount. The prior art was like this.

また、従来技術の他の放熱器として、例えば、特許文献1に記載された発明が知られている。特許文献1に記載された冷却装置も、レーザダイオード冷却用途の冷却装置であって、金属シートを多層に積層して製作するものである。   Further, as another heat radiator of the prior art, for example, the invention described in Patent Document 1 is known. The cooling device described in Patent Document 1 is also a cooling device for cooling a laser diode, and is manufactured by laminating metal sheets in multiple layers.

特開平10−209531号公報(段落番号0036,0038,図1)Japanese Patent Laid-Open No. 10-209531 (paragraph numbers 0036 and 0038, FIG. 1)

図12〜図15を用いて説明した従来技術の放熱器100は、LDアレイ200に搭載されたLDへの電源供給のため放熱器100と電気的に接続されて電源経路が放熱器100内に形成されている。LDには最大1000Wもの電力が印可されるというものであり、放熱器100にも、例えば、図12中の一点鎖線のような電路で電流iが流れ、放熱器100に電界がかかることになる。また、放熱器100と冷却水900とが直接接触している。この場合、放熱器100の材料である金属が水のような電解質に触れ、イオン化傾向により、冷却水900の中に金属イオンが溶け出す。しかも、放熱器100の内部には上述のように大きな電界が印加されているので、金属イオンの溶け出しが加速されて電食現象を引き起こす。
従来技術では、熱伝導を良くするため、放熱器100の材料として銅材を用い、加えて放熱器100を製作する場合、製造コストを低く抑えるため、放熱器100に表面処理を行わず、拡散接合等により接合しているので、イオン化傾向は高くなり前述のように電食による腐食が発生する。
The prior art radiator 100 described with reference to FIGS. 12 to 15 is electrically connected to the radiator 100 to supply power to the LD mounted on the LD array 200, and the power supply path is in the radiator 100. Is formed. A maximum of 1000 W of power is applied to the LD, and the current i flows through the heat sink 100 as well, for example, as shown by a dashed line in FIG. 12, and an electric field is applied to the heat sink 100. . Further, the radiator 100 and the cooling water 900 are in direct contact. In this case, the metal which is the material of the radiator 100 touches the electrolyte such as water, and metal ions are dissolved in the cooling water 900 due to the ionization tendency. In addition, since a large electric field is applied to the inside of the radiator 100 as described above, the dissolution of metal ions is accelerated to cause an electrolytic corrosion phenomenon.
In the prior art, in order to improve heat conduction, copper material is used as the material of the radiator 100. In addition, when the radiator 100 is manufactured, the radiator 100 is not subjected to surface treatment in order to keep the manufacturing cost low. Since bonding is performed by bonding or the like, the ionization tendency is increased, and corrosion due to electrolytic corrosion occurs as described above.

しかも、図12で示すように、LDアレイ放熱システムでは金属製の給排水用マニホールド400など他の金属部品の中も冷却水900が流れ、この金属部品等は電気的にLDの電力供給装置300とGNDが共通になっている場合が多い。
冷却水900は電気抵抗が1MΩ・cm以上の純水を用いているので、電食の現象は起こり難いが、時間経過と共に、冷却水900内に溶け出した金属イオンにより電気抵抗が低くなり電流が流れ易くなると、金属部品がGNDに設置されているので、放熱器100内を通過する際、冷却するにも電界が加わり放熱器100からの金属イオンの溶け出しが激しくなってくる。
In addition, as shown in FIG. 12, in the LD array heat dissipation system, cooling water 900 flows also in other metal parts such as a metal water supply / drainage manifold 400, and these metal parts are electrically connected to the LD power supply device 300. In many cases, GND is common.
Since the cooling water 900 uses pure water having an electric resistance of 1 MΩ · cm or more, the phenomenon of electrolytic corrosion is unlikely to occur, but as time passes, the electric resistance decreases due to the metal ions dissolved in the cooling water 900. When the metal flows easily, the metal parts are installed in the GND, and therefore, when passing through the radiator 100, an electric field is applied to the cooling and the melting of the metal ions from the radiator 100 becomes intense.

特にLDを搭載したLDアレイ200をマウントしている放熱器100の直下には放熱フィン133を実装させているが、この部分は冷却水900の流速が速いため電食による腐食が特に激しく、放熱フィン133部分が全て溶けてしまうという現象が起こると冷却ができなくなり、LDの温度上昇が著しく大きくなってLDが破損するおそれがあった。
この種の放熱器100は、出力を大きくする場合、放熱器100を数十段積層して放熱効果を高める使い方も行っている。この場合はLDはシリーズに電力を供給するので、最上段の放熱器に流れる冷却水にはGNDからみて相当大きな電界が印加されることになり、電食の問題は更に重要になってくる。しかしながら、電食の問題は解決されていなかった。
In particular, the radiation fins 133 are mounted directly under the radiator 100 mounting the LD array 200 on which the LD is mounted. However, since the flow speed of the cooling water 900 is high in this portion, corrosion due to electrolytic corrosion is particularly severe. When the phenomenon that the fins 133 are completely melted occurs, the cooling cannot be performed, and the temperature rise of the LD is remarkably increased, and the LD may be damaged.
This type of radiator 100 is also used to increase the heat dissipation effect by stacking several tens of radiators 100 when increasing the output. In this case, since the LD supplies electric power to the series, a considerably large electric field is applied to the cooling water flowing in the uppermost radiator from the viewpoint of GND, and the problem of electrolytic corrosion becomes more important. However, the problem of electric corrosion has not been solved.

また、従来技術では冷却特性に問題があった。
LDアレイ200の大出力化に伴う温度上昇を抑えるためには、冷却水との熱交換効率を更に高める必要がある。図16は管壁の地肌が露出した流路に冷却水を流したときの流れの状態を表した模式図であり、図16(a)は流路断面積大の模式図、図16(b)は流路断面積小の模式図、図16(c)は管壁の拡大図である。図17は電力印加による影響を説明する説明図であり、図17(a)は時間−電力線図、図17(b)は電力と温度との関係を説明する説明図である。
図16(a)に示すように、流路101に冷却水900を流すと管壁101aの管摩擦抵抗と流体の粘性により流速分布が発生する。この管摩擦抵抗により流路101を流れる流体の抵抗、即ち圧力損失を増大させている。この影響は、図16(b)で示すように熱交換性能を高める(流速を速くする)ため流路断面積を小さくした場合、管摩擦抵抗の影響により、圧力損失が著しく増大する。
Further, the conventional technique has a problem in cooling characteristics.
In order to suppress the temperature rise accompanying the increase in output of the LD array 200, it is necessary to further increase the efficiency of heat exchange with the cooling water. FIG. 16 is a schematic diagram showing a flow state when cooling water is passed through the flow channel with the bare pipe wall exposed, and FIG. 16A is a schematic diagram of the flow channel cross-sectional area, FIG. ) Is a schematic diagram of a small channel cross-sectional area, and FIG. 16C is an enlarged view of the tube wall. FIG. 17 is an explanatory diagram for explaining the influence of power application, FIG. 17 (a) is a time-power diagram, and FIG. 17 (b) is an explanatory diagram for explaining the relationship between power and temperature.
As shown in FIG. 16A, when the cooling water 900 is caused to flow through the flow path 101, a flow velocity distribution is generated due to the pipe friction resistance of the pipe wall 101a and the viscosity of the fluid. This pipe frictional resistance increases the resistance of the fluid flowing through the channel 101, that is, the pressure loss. As shown in FIG. 16 (b), when the flow path cross-sectional area is reduced to increase the heat exchange performance (increase the flow velocity), the pressure loss significantly increases due to the effect of pipe frictional resistance.

また、管摩擦抵抗により管壁101a付近の流速は小さいため、放熱器100本体から流体に熱が移動する熱伝達による熱抵抗が大きくなり、熱交換性能が低下する。
更に、管壁101aの表面の濡れ性が悪いと、図16(c)のように管壁101aを拡大視すると、表面には微小な凹凸があり、この凹部には冷却水がなじまずに空気層102が生じる。空気層102は断熱材となり、管壁101aからの熱は主に凸部のみからの熱伝達になるので、熱交換性能を著しく劣化させる原因となっている。
Moreover, since the flow velocity in the vicinity of the tube wall 101a is small due to the tube frictional resistance, the heat resistance due to heat transfer from the radiator 100 main body to the fluid increases, and the heat exchange performance decreases.
Furthermore, when the wettability of the surface of the tube wall 101a is poor, when the tube wall 101a is enlarged as shown in FIG. 16C, the surface has minute unevenness, and the cooling water does not fit in the recessed portion. Layer 102 results. The air layer 102 becomes a heat insulating material, and the heat from the tube wall 101a is mainly transferred only from the convex portion, which causes a significant deterioration in heat exchange performance.

さらに、図17(a)に示すように、この種の放熱器100はLDに印加する電力は連続的ではなく、高周波パルスの如く断続的で印加パターンも様々である。
このような、使われ方をする放熱器100において、前記のような管の管摩擦抵抗の影響で管壁101a表面付近の流速が遅く、且つ管壁101a表面の濡れ性が悪いため著しく熱交換性能が低下すると、図17(b)に示すように電力印加開始時間から放熱器100の温度上昇が安定状態(定常状態)になるまでの加熱応答時間が長くなる。同様に電力遮断時から放熱器100の温度降下するまでの冷却応答時間も長くなる。加熱又は冷却応答時間が長くなると、LDの発信波長に直接影響を及ぼし、印加電力のON−OFFサイクルが早いと発信波長が安定しないという問題が生じる。
Further, as shown in FIG. 17A, in this type of radiator 100, the power applied to the LD is not continuous, but intermittent, such as a high-frequency pulse, and the application pattern is various.
In such a heat radiator 100 that is used, the heat flow is remarkably reduced because the flow velocity near the surface of the tube wall 101a is slow due to the influence of the tube frictional resistance of the tube and the wettability of the surface of the tube wall 101a is poor. When the performance is lowered, as shown in FIG. 17 (b), the heating response time from when the power application start time until the temperature rise of the radiator 100 becomes a stable state (steady state) becomes longer. Similarly, the cooling response time from when the power is interrupted until the temperature of the radiator 100 drops is also increased. If the heating or cooling response time is long, the transmission wavelength of the LD is directly affected, and if the ON / OFF cycle of the applied power is fast, the transmission wavelength is not stable.

また、これら問題は、特許文献1に記載された発明でも起こり得るものであり、対策が要請されていた。   Further, these problems can occur even in the invention described in Patent Document 1, and countermeasures have been demanded.

そこで、上記した問題点に鑑みて本発明はなされたものであり、その目的は、構成の変更は極力少ないままに冷却性能を向上させ、さらに冷却水内に金属イオンが溶け出す電食の影響を受けない放熱器を、また、このような放熱器を構成する受熱体の受熱体の形成方法を提供することにある。   Therefore, the present invention has been made in view of the above-described problems, and the purpose thereof is to improve the cooling performance while minimizing the configuration, and further to the influence of electrolytic corrosion that metal ions dissolve into the cooling water. Another object of the present invention is to provide a heat sink that does not receive heat and a method of forming a heat receiver of the heat receiver that constitutes such a radiator.

上記の課題を解決するため、本発明の請求項1に係る発明の放熱器は、
外側に発熱体が接触して取り付けられ、内側に形成された流路を流れる冷却液によりこの発熱体を冷却する液冷式の放熱器において、
放熱器内部の流路形成面を覆い、冷却液と放熱器とを電気的に絶縁する保護層を、
備えることを特徴とする。
In order to solve the above problems, a radiator of the invention according to claim 1 of the present invention provides:
In a liquid-cooled radiator in which a heating element is attached in contact with the outside and the heating element is cooled by a coolant flowing through a flow path formed on the inside,
A protective layer that covers the flow path forming surface inside the radiator and electrically insulates the coolant from the radiator,
It is characterized by providing.

また、本発明の請求項2に係る発明の放熱器は、
請求項1に記載の放熱器において、
前記保護層は、電気的に絶縁するとともに摩擦抵抗を低減する酸化チタン層であることを特徴とする。
Moreover, the radiator of the invention according to claim 2 of the present invention is
The heat radiator according to claim 1,
The protective layer is a titanium oxide layer that is electrically insulated and reduces frictional resistance.

また、本発明の請求項3に係る発明の放熱器は、
請求項1または請求項2に記載の放熱器において、
前記発熱体は、前記放熱器を電源経路の一部として電気的に接続する半導体レーザダイオードを搭載したレーザダイオードアレイであることを特徴とする。
Moreover, the radiator of the invention according to claim 3 of the present invention is
The heat radiator according to claim 1 or 2,
The heating element is a laser diode array on which a semiconductor laser diode that electrically connects the radiator as a part of a power supply path is mounted.

また、本発明の請求項4に係る発明の放熱器は、
請求項1〜請求項3の何れか一項に記載の放熱器において、
前記放熱器は、
保護層が形成された流路形成面と、この流路形成面以外であって地金属が現れた接合面と、を有する板状の受熱体と、
これら受熱体の接合面で接合する接合層と、
を備え、複数枚から成る受熱体を接合層により接合して積層し、保護層で覆われた流路が形成される構造を有することを特徴とする。
Moreover, the radiator of the invention according to claim 4 of the present invention is
In the heat radiator as described in any one of Claims 1-3,
The radiator is
A plate-shaped heat receiving body having a flow path forming surface on which a protective layer is formed, and a joint surface on which a ground metal appears other than the flow path forming surface;
A bonding layer bonded at the bonding surface of these heat receivers;
And having a structure in which a plurality of heat receiving bodies are joined and laminated by a joining layer to form a flow path covered with a protective layer.

また、本発明の請求項5に係る発明の放熱器は、
請求項4に記載の放熱器において、
前記接合層は、ロー材、ロー材シートまたは拡散接合により受熱体の接合面同士を電気的、熱的、および、機械的に接合して形成した接合層であることを特徴とする。
Moreover, the radiator of the invention according to claim 5 of the present invention is
The heat radiator according to claim 4,
The bonding layer is a bonding layer formed by electrically, thermally, and mechanically bonding the bonding surfaces of the heat receiving bodies by a brazing material, a brazing material sheet, or diffusion bonding.

本発明の請求項6に係る発明の受熱体の形成方法は、
請求項4に記載された放熱器を構成する受熱体の形成方法であって、
流路形成面と、流路形成面以外の接合面と、を有する受熱体を形成する受熱体形成工程と、
受熱体の全面にマスク膜を塗布するマスク膜塗布工程と、
流路形成面を含む面上のマスク膜の上にレジストを塗布するレジスト塗布工程と、
マスクをレジスト上に載置し、接合面上のレジストを露光するレジスト露光工程と、
レジストを現像して流路形成面のレジストを剥離させるパターニング現像工程と、
流路形成面上のマスク膜を除去して流路形成面の地金属を露出させるマスク膜エッチング工程と、
全てのレジストを剥離するレジスト剥離工程と、
スパッタリング、イオンプレーティングなどのPVD法、または、CVD法により流路形成面を含む面に成膜する成膜工程と、
マスク膜を剥離して流路形成面にのみ保護層を形成するマスク膜剥離工程と、
を有することを特徴とする。
The method for forming the heat receiving body of the invention according to claim 6 of the present invention comprises:
A method for forming a heat receiving body constituting the radiator according to claim 4,
A heat receiving body forming step of forming a heat receiving body having a flow path forming surface and a joint surface other than the flow path forming surface;
A mask film coating process for coating a mask film on the entire surface of the heat receiver;
A resist coating step of coating a resist on the mask film on the surface including the flow path forming surface;
A resist exposure step of placing a mask on the resist and exposing the resist on the bonding surface;
A patterning development step of developing the resist and peeling off the resist on the flow path forming surface;
A mask film etching step for removing the mask film on the flow path forming surface and exposing the ground metal on the flow path forming surface;
A resist stripping process for stripping all resists;
A film forming step of forming a film on a surface including a flow path forming surface by a PVD method such as sputtering or ion plating, or a CVD method;
A mask film peeling step for peeling the mask film and forming a protective layer only on the flow path forming surface;
It is characterized by having.

本発明では、放熱器の流路の全面に保護層(特に酸化チタン層が好ましい)を形成する。この保護層の形成方法は、シリコンのウェットエッチング技術を用いるものであり、放熱器を構成する複数の受熱体の外観と接合面のみに金属のマスク膜を形成し、受熱体の流路形成面を含む全面にスパッタリング方法にて保護層を形成した後、マスク膜を除去すれば、受熱体接合面には保護層がなく地金属が露出し、また、流路形成面(詳しくは流路底面及び流路傾斜面であり、流路傾斜面と接合面との境界であるエッジ部まで)には完全に保護層を成膜することが可能になり、各受熱体の接合面では通常のロー材シートによる接合や拡散接合による接合層を形成して接合が可能になる。このように構成された放熱器は、流路形成面の流路傾斜面のエッジ部まで保護層が形成されているので、接合時に流路内部のみが完全に保護層で覆われ、冷却水と放熱器とを電気的に絶縁する。また保護層により管壁の濡れ性を向上させて、熱冷却性能を高める。   In the present invention, a protective layer (particularly a titanium oxide layer is preferable) is formed on the entire surface of the flow path of the radiator. This protective layer forming method uses a wet etching technique of silicon, forms a metal mask film only on the appearance and joint surfaces of a plurality of heat receiving bodies constituting a heat radiator, and forms a flow path forming surface of the heat receiving bodies. If a mask layer is removed after forming a protective layer on the entire surface including the surface of the heat-receiving body, there will be no protective layer on the heat receiving member bonding surface, and the ground metal will be exposed. In addition, it is possible to form a protective layer completely on the inclined surface of the flow path and up to the edge portion that is the boundary between the inclined surface of the flow path and the bonding surface. Joining is possible by forming a joining layer by joining with a material sheet or diffusion joining. In the radiator configured in this way, since the protective layer is formed up to the edge portion of the channel inclined surface of the channel forming surface, only the inside of the channel is completely covered with the protective layer at the time of joining. Insulates the heatsink electrically. In addition, the protective layer improves the wettability of the tube wall and enhances the heat cooling performance.

以上のような本発明によれば、構成の変更は極力少ないまま冷却性能を向上させ、さらに冷却水内に金属イオンが溶け出す電食の影響を受けない放熱器を、また、このような放熱器を構成する受熱体の受熱体の形成方法を提供することができる。   According to the present invention as described above, it is possible to improve the cooling performance while minimizing the configuration as much as possible, and further to provide a radiator that is not affected by the electrolytic corrosion in which metal ions dissolve in the cooling water. It is possible to provide a method for forming the heat receiving body of the heat receiving body constituting the container.

続いて、本発明を実施するための最良の形態の放熱器を用いるLDアレイの放熱について図を参照しつつ概略説明する。図1は本形態の放熱器を含むLDアレイ放熱システムの模式的なシステム構成図である。LDアレイ放熱システムは、放熱器1、LDアレイ200、電力供給装置300、給排水用マニホールド400、流路500、タンク600、流路700、ポンプ800、を備え、冷却水900が循環するシステムである。
本システムでは放熱器1が新規であるが、他の構成や冷却水循環系等は従来技術と同じであり図12と同じ符号を付すと共に、その重複する説明を省略する。
この放熱器1の流路2の全面には保護層3が形成されている点が新規な点である。放熱器1と冷却水900との界面に介在する保護層3により電気的な絶縁が確保される。このため、LD通電時に、LDアレイ200と電力供給装置300との間で放熱器1により電源経路が形成され、電力供給により大きな電界が加わっても、保護層3により冷却水900には電気的経路が形成されないため、電食により放熱器1から冷却水900へ金属イオンが溶け出すことはない。なお、保護層3としては電気的な絶縁が確保できるものであれば、適宜採用が可能である。
このような放熱器1では、電食の発生が抑止される。
Next, heat radiation of the LD array using the best mode heat radiator for carrying out the present invention will be schematically described with reference to the drawings. FIG. 1 is a schematic system configuration diagram of an LD array heat dissipation system including a heat radiator of the present embodiment. The LD array heat dissipation system includes a radiator 1, an LD array 200, a power supply device 300, a water supply / drain manifold 400, a flow path 500, a tank 600, a flow path 700, and a pump 800, and the cooling water 900 circulates. .
Although the radiator 1 is new in this system, other configurations, the cooling water circulation system, and the like are the same as those in the prior art, and are given the same reference numerals as in FIG.
The point that the protective layer 3 is formed on the entire surface of the flow path 2 of the radiator 1 is a novel point. Electrical protection is ensured by the protective layer 3 interposed at the interface between the radiator 1 and the cooling water 900. For this reason, when the LD is energized, a power path is formed by the radiator 1 between the LD array 200 and the power supply device 300, and even if a large electric field is applied due to the power supply, the protective layer 3 is electrically connected to the cooling water 900. Since no path is formed, metal ions do not dissolve from the radiator 1 to the cooling water 900 due to electrolytic corrosion. The protective layer 3 can be appropriately employed as long as electrical insulation can be ensured.
In such a radiator 1, the occurrence of electrolytic corrosion is suppressed.

この保護層3としては、特に、電気的な絶縁とともに流路2の管壁の地金属よりも濡れ性を高めて管摩擦抵抗を低減する酸化チタンによる保護層(酸化チタン層)が好ましい。この酸化チタンによる保護層を採用する理由について説明する。図2は管壁に酸化チタン層が形成された流路に冷却水を流したときの流れの状態を表した模式図であり、図2(a)は流路断面積大の模式図、図2(b)は流路断面積小の模式図、図2(c)は管壁の拡大図である。   The protective layer 3 is particularly preferably a protective layer (titanium oxide layer) made of titanium oxide that is electrically insulated and has higher wettability than the ground metal of the pipe wall of the flow path 2 to reduce pipe frictional resistance. The reason for employing this titanium oxide protective layer will be described. FIG. 2 is a schematic diagram showing a flow state when cooling water is passed through a flow channel having a titanium oxide layer formed on the tube wall, and FIG. 2 (a) is a schematic diagram of the cross-sectional area of the flow channel. 2 (b) is a schematic diagram of a small channel cross-sectional area, and FIG. 2 (c) is an enlarged view of the tube wall.

酸化チタンは光触媒として紫外線を照射すると超親水性効果が向上する。このような効果は一度紫外線を照射すれば永続的に続く効果である。流路2に成膜により形成した保護層(酸化チタン層)3に紫外線を照射した上で放熱器1を形成すると、この保護層(酸化チタン層)3に超親水性効果が現れて管壁2a表面の濡れ性が飛躍的に向上することから、図16(a)と比較しても、図2(a)に示すように管摩擦抵抗が減り管壁2aの表面の流速が著しく増加し熱交換性能が向上する。これは熱交換性能を一段と向上させるために流路断面積を小さくしたとしても、管壁2aの表面の管摩擦抵抗が充分に低く、図16(b)と比較しても、図2(b)に示すように、流速が充分に高く熱交換性能が大きい。   When titanium oxide is irradiated with ultraviolet rays as a photocatalyst, the superhydrophilic effect is improved. Such an effect is a permanent effect once irradiated with ultraviolet rays. When the radiator 1 is formed after the protective layer (titanium oxide layer) 3 formed by film formation in the flow path 2 is irradiated with ultraviolet rays, a superhydrophilic effect appears in the protective layer (titanium oxide layer) 3 and the tube wall Since the wettability of the surface of 2a is drastically improved, as compared with FIG. 16 (a), the pipe friction resistance is reduced and the flow velocity on the surface of the pipe wall 2a is remarkably increased as shown in FIG. 2 (a). Heat exchange performance is improved. Even if the cross-sectional area of the flow path is reduced in order to further improve the heat exchange performance, the pipe friction resistance on the surface of the pipe wall 2a is sufficiently low. Compared to FIG. 16 (b), FIG. ), The flow rate is sufficiently high and the heat exchange performance is large.

このように超親水性効果の向上によって熱交換量が増大するのは、図2(c)に示すように管壁2aの表面の微小な凹凸部に冷却水900が殆ど接触するので、管壁2a全面からの放熱が可能になるからである。
保護層(酸化チタン層)3により管壁2a表面の親水性が改善されるため、管摩擦抵抗が著しく低減されて管壁2a付近の冷却水速度が速くなって冷却性能が高くなる。これにより、LDアレイ200に通電した時に応答性が飛躍的に向上し、LDアレイ200の発信波長も瞬時に安定化させることが可能である。
また、放熱器1内の流路2の全部の管壁2aの管摩擦抵抗を大幅に低減させることができるので圧力損失を低減させることが可能である。
The amount of heat exchange increases due to the improvement of the superhydrophilic effect in this way because the cooling water 900 almost contacts the minute irregularities on the surface of the tube wall 2a as shown in FIG. 2 (c). This is because heat radiation from the entire surface 2a becomes possible.
Since the hydrophilicity of the surface of the tube wall 2a is improved by the protective layer (titanium oxide layer) 3, the tube friction resistance is remarkably reduced, the cooling water speed near the tube wall 2a is increased, and the cooling performance is improved. As a result, the responsiveness is dramatically improved when the LD array 200 is energized, and the transmission wavelength of the LD array 200 can be instantly stabilized.
Moreover, since the pipe friction resistance of all the pipe walls 2a of the flow path 2 in the radiator 1 can be greatly reduced, it is possible to reduce the pressure loss.

続いて、この放熱器1の構造の詳細について概略説明する。図3は放熱器のP−P線断面図である。図4は放熱器の断面図であり、図4(a)はA−A線断面のA矢視図、図4(b)はB−B線断面のB矢視図、図4(c)はC−C線断面のC矢視図である。   Then, the detail of the structure of this heat radiator 1 is demonstrated roughly. FIG. 3 is a cross-sectional view of the radiator taken along the line P-P. 4 is a cross-sectional view of the radiator, FIG. 4 (a) is a cross-sectional view taken along the line A-A, FIG. 4 (b) is a cross-sectional view taken along the line BB, and FIG. 4 (c). These are C arrow directional views of a CC line cross section.

放熱器1は、高出力LDアレイ用の放熱器であり、図3で示すように、板状の下受熱体10,中受熱体20,上受熱体30を積み重ねた3層の構造を採用している。これら下受熱体10,中受熱体20,上受熱体30は、ともに熱伝導が良好な金属材料を用いて製作されている。これら下受熱体10,中受熱体20,上受熱体30には、それぞれ貫通孔(例えば中受熱体20の円形連通口22)、有底穴(例えば下受熱体10の下面水路13)、または、平面(例えば中受熱体20の貫通孔24と接して保護層34が形成される上受熱体30の平面)というような流路形成面が形成され、されにそれら流路形成面に酸化チタン層である保護層3が形成されている。この流路形成面以外は地金属が現れた接合面となっている。
下受熱体10は、図3や、図4(c)のようにC矢視方向から見た下受熱体10の上面図のように、給水口11、放熱フィン12、下面水路13、流路絞り部14、排水口15を備える。点描部は底がある穴であって保護層3が形成されることを表している。
中受熱体20は、図3や、図4(b)のようにB矢視方向から見た中受熱体20の上面図のように、円形連通孔21、円形連通孔22、隔壁23、貫通孔24、上座グリ部25、下座グリ部26(図3参照)を備える。点描部は底がある穴であって保護層3が形成されることを表している。
上受熱体30は、図3や、図4(a)のようにA矢視方向から見た上受熱体30の下面図のように、給水口31、上面水路32、放熱フィン33、保護層34を備える。上面水路32の点描部は底がある穴であって保護層3が形成されることを表し、また、保護層34の網目部は穴ではなく平面に保護層のみが形成されることを表している。
The radiator 1 is a radiator for a high-power LD array, and employs a three-layer structure in which a plate-like lower heat receiving body 10, a middle heat receiving body 20, and an upper heat receiving body 30 are stacked as shown in FIG. ing. The lower heat receiving body 10, the middle heat receiving body 20, and the upper heat receiving body 30 are all manufactured using a metal material having good heat conduction. These lower heat receiving body 10, middle heat receiving body 20, and upper heat receiving body 30 are each provided with a through hole (for example, circular communication port 22 of middle heat receiving body 20), a bottomed hole (for example, lower surface water channel 13 of lower heat receiving body 10), or A flow path forming surface such as a flat surface (for example, a flat surface of the upper heat receiving body 30 on which the protective layer 34 is formed in contact with the through hole 24 of the intermediate heat receiving body 20) is formed, and titanium oxide is formed on these flow path forming surfaces. A protective layer 3 as a layer is formed. Other than this flow path forming surface, it is a joint surface on which ground metal appears.
The lower heat receiving body 10 includes a water supply port 11, a heat radiating fin 12, a lower surface water channel 13, a flow path, as shown in the top view of the lower heat receiving body 10 viewed from the direction of arrow C as shown in FIG. 3 and FIG. The throttle part 14 and the drain port 15 are provided. The stippled portion is a hole with a bottom and represents that the protective layer 3 is formed.
The intermediate heat receiving body 20 has a circular communication hole 21, a circular communication hole 22, a partition wall 23, a penetrating hole as shown in the top view of the intermediate heat receiving body 20 as viewed from the direction of arrow B as shown in FIG. 3 and FIG. A hole 24, an upper counterbore part 25, and a lower counterbore part 26 (see FIG. 3) are provided. The stippled portion is a hole with a bottom and represents that the protective layer 3 is formed.
As shown in FIG. 3 and the bottom view of the upper heat receiving body 30 as viewed from the direction of arrow A as shown in FIG. 34 is provided. The dotted portion of the upper surface water channel 32 indicates that the protective layer 3 is formed with a hole with a bottom, and the mesh portion of the protective layer 34 indicates that only the protective layer is formed on a plane, not a hole. Yes.

これら下受熱体10,中受熱体20,上受熱体30は接合面同士を接合する接合層により接合して積層するとともに図3のような流路が形成される。
この接合層は、図示しないが、ロー材、ロー材シートまたは拡散接合により各受熱体の接合面同士を電気的、熱的、機械的に接合して形成した層である。ロー材は、銅など溶接が使用できない材料のときに使用され、ロー材(銅と金、または銅と銀の合金)を接続したい所にはさんで真空炉の中へ入れ、加熱してロー材を溶かして接続する。これにより一体に形成された放熱器1となる。また、拡散接合は下受熱体10,中受熱体20,上受熱体30をプレス機で挟持加圧した状態で熱を加えて接合する。放熱器1はこのようにして構成される。
These lower heat receiving body 10, middle heat receiving body 20, and upper heat receiving body 30 are bonded and laminated by a bonding layer that bonds the bonding surfaces to each other, and a flow path as shown in FIG. 3 is formed.
Although not shown, this bonding layer is a layer formed by electrically, thermally, and mechanically bonding the bonding surfaces of the heat receiving bodies by brazing, a brazing material sheet, or diffusion bonding. The brazing material is used for materials that cannot be welded, such as copper. Place the brazing material (copper and gold, or an alloy of copper and silver) in a vacuum furnace and connect it to a soldering furnace. Melt the material and connect. Thereby, it becomes the heat radiator 1 formed integrally. Diffusion bonding is performed by applying heat in a state where the lower heat receiving body 10, the middle heat receiving body 20, and the upper heat receiving body 30 are sandwiched and pressed by a press. The radiator 1 is configured in this way.

このような本形態の放熱器1は、流路2に保護層3が形成されたため、冷却水との間で電気的絶縁が確保され、電食が防止される。
さらに保護層3が酸化チタン層3とすれば放熱器1内全ての流路形成面の管摩擦抵抗を大幅に低減させることができて圧力損失を低減させることも可能となり、これにより、本形態の放熱器1と従来技術の放熱器100とでは、図4と図14とで比較しても明らかなように、円形連通口22の径が小さくなって隔壁23のや放熱フィン12,33の数を増大させることができ、冷却水900との接触面積を大幅に増加させて冷却効果も高めることができる。
In the radiator 1 of this embodiment, since the protective layer 3 is formed in the flow path 2, electrical insulation is ensured between the cooling water and the electrolytic corrosion is prevented.
Furthermore, if the protective layer 3 is the titanium oxide layer 3, the pipe friction resistance of all the flow path forming surfaces in the radiator 1 can be greatly reduced, and the pressure loss can be reduced. As shown in FIG. 4 and FIG. 14, the diameter of the circular communication port 22 is reduced so that the partition wall 23 and the radiating fins 12 and 33 of the radiator 1 and the prior art radiator 100 of FIG. The number can be increased, and the contact area with the cooling water 900 can be greatly increased to enhance the cooling effect.

続いて、このような構成の放熱器1における冷却水900の流れについて説明する。
図1で示すように、放熱フィン1の上面の端部にはLDアレイ200が接合されている。冷却水900は、図1,図3,図4で示すように、下受熱体10の給水口11に導かれた冷却水900はそのまま中受熱体20の円形連通口21を通過して、上受熱体30の給水口31まで到達する。
上受熱体30の上面水路32は面積が拡大された流路であり、冷却水900は面積が拡大されて放熱フィン33に到達する。この際、給水側の圧力損失を低減させるために、放熱フィン33の手前まで中受熱体20に上座グリ部25を設けて流路断面積を拡大させ、放熱フィン33に冷却水900が流入する際、流速を向上させて熱交換効率を高めるようにしている。
放熱フィン33まで到達した冷却水900は、放熱フィン33と冷却水900とでLDアレイ200の高熱と冷却水900の低熱とで熱交換され、中受熱体20の円形連通口22を通り、下受熱体10に設けられた放熱フィン12の間を通り、下面水路13に到達する。ここで、冷却水900は流路絞り部14により2つに分流し排水口15で再び合流し、放熱器1の外に排出される。この際、圧力損失を低減させるために、放熱フィン13の後ろ側に中受熱体20に下座グリ部26(図3参照)を設けて流路断面積を拡大させている。同様に、排水口15の圧力損失を低減させるため、中受熱体20に貫通孔24を設け流路断面積を拡大させている。
Next, the flow of the cooling water 900 in the radiator 1 having such a configuration will be described.
As shown in FIG. 1, an LD array 200 is bonded to the end portion of the upper surface of the radiation fin 1. As shown in FIGS. 1, 3, and 4, the cooling water 900 guided to the water supply port 11 of the lower heat receiving body 10 passes through the circular communication port 21 of the middle heat receiving body 20 as it is, It reaches the water supply port 31 of the heat receiving body 30.
The upper surface water channel 32 of the upper heat receiving body 30 is a channel whose area is enlarged, and the cooling water 900 is enlarged in area and reaches the radiation fins 33. At this time, in order to reduce the pressure loss on the water supply side, the upper counterbore 25 is provided in the middle heat receiving body 20 just before the heat radiation fin 33 to enlarge the cross-sectional area of the flow path, and the cooling water 900 flows into the heat radiation fin 33. At this time, the heat exchange efficiency is improved by increasing the flow rate.
The cooling water 900 that has reached the radiating fins 33 is heat-exchanged between the radiating fins 33 and the cooling water 900 by the high heat of the LD array 200 and the low heat of the cooling water 900, passes through the circular communication port 22 of the intermediate heat receiving body 20, It passes between the radiation fins 12 provided in the heat receiving body 10 and reaches the lower surface water channel 13. Here, the cooling water 900 is divided into two by the flow restrictor 14, merged again at the drain port 15, and discharged to the outside of the radiator 1. At this time, in order to reduce the pressure loss, the lower counterbore 26 (see FIG. 3) is provided on the intermediate heat receiving body 20 on the rear side of the radiating fins 13 to enlarge the flow path cross-sectional area. Similarly, in order to reduce the pressure loss of the drain port 15, a through hole 24 is provided in the intermediate heat receiving body 20 to increase the flow path cross-sectional area.

この放熱器1では冷却効果を高めるため、放熱フィン33に特徴を持たせている。放熱器1の放熱フィン33はLDアレイ200が取り付けられる位置の下側に設けられており、LDアレイ200で発生した熱を上受熱体30で放熱し板厚方向に熱伝導させ、LDアレイ200の数倍の長さに設計された放熱フィン33に導かせている。
また、上受熱体30に設けられた放熱フィン33だけでは放熱量が充分でないため、中受熱体20の隔壁23に熱伝導させ、さらに下受熱体10に設けた放熱フィン12に熱伝導させ放熱量を増加させる構造としている。
ここで着目すべきは、先に説明したように、放熱器1内全ての流路2の壁面2aの管摩擦抵抗を大幅に低減させて従来技術の放熱器100(図14参照)よりも円形連通口22の管径を小さくでき、放熱フィン12,33の実装密度も高くすることが可能になり、より大きな伝熱性能を得ることが可能である。
In the radiator 1, the radiating fins 33 are characterized in order to enhance the cooling effect. The heat radiating fins 33 of the radiator 1 are provided below the position where the LD array 200 is attached. The heat generated in the LD array 200 is radiated by the upper heat receiving body 30 and thermally conducted in the plate thickness direction. The heat radiating fins 33 are designed to have a length several times that of the radiating fin 33.
Further, since the heat radiation amount is not sufficient only by the heat radiating fins 33 provided on the upper heat receiving body 30, heat conduction is performed to the partition wall 23 of the middle heat receiving body 20, and heat conduction is further performed to the heat radiation fins 12 provided on the lower heat receiving body 10. The structure increases the amount of heat.
It should be noted here that, as described above, the pipe friction resistance of the wall surfaces 2a of all the flow paths 2 in the radiator 1 is greatly reduced to be more circular than the conventional radiator 100 (see FIG. 14). The tube diameter of the communication port 22 can be reduced, the mounting density of the radiation fins 12 and 33 can be increased, and greater heat transfer performance can be obtained.

このような放熱器1では、放熱器1の流路2の管壁2aの保護層3が電気的に絶縁して冷却水900にイオンが溶け出ないため電気が流れなくなり、電食による腐食が発生しない。且つ放熱器1を構成する下受熱体10,中受熱体20,上受熱体30の接合部は地金属を電気的、熱的に接合させているため、電気・熱ともに良好な導電性が得られるので、半導体部品や半導体レーザ等に容易に通電させることが可能である。
また、保護層3が酸化チタン層の場合には親和性が向上することで冷却性能も高められるため、高出力のLDに適用することが可能となる。
In such a radiator 1, since the protective layer 3 of the tube wall 2a of the flow path 2 of the radiator 1 is electrically insulated and ions do not dissolve in the cooling water 900, electricity does not flow, and corrosion due to electrolytic corrosion occurs. Does not occur. In addition, since the joints of the lower heat receiving body 10, the middle heat receiving body 20, and the upper heat receiving body 30 constituting the radiator 1 are obtained by electrically and thermally bonding the base metal, good electrical and thermal conductivity can be obtained. Therefore, it is possible to easily energize a semiconductor component or a semiconductor laser.
Further, when the protective layer 3 is a titanium oxide layer, the affinity is improved, so that the cooling performance is also improved. Therefore, the protective layer 3 can be applied to a high output LD.

続いて、放熱器1の製造方法について説明する。ここで本発明の酸化チタンを放熱器の流路内に成膜して保護層3を形成する方法としてシリコンのウェットエッチング技術を適用した理由を図を参照しつつ述べる。図5はスパッタリングの説明図であり、図5(a)はスパッタリング成膜の説明図、図5(b)は成膜した保護層の説明図である。図6はスパッタリングマスク成膜の説明図であり、図6(a)はスパッタリングの説明図、図6(b)は成膜した保護層の説明図である。   Then, the manufacturing method of the heat radiator 1 is demonstrated. Here, the reason why the silicon wet etching technique is applied as a method for forming the protective layer 3 by forming the titanium oxide of the present invention in the flow path of the radiator will be described with reference to the drawings. FIG. 5 is an explanatory view of sputtering, FIG. 5 (a) is an explanatory view of sputtering film formation, and FIG. 5 (b) is an explanatory view of a protective layer formed. FIG. 6 is an explanatory view of sputtering mask film formation, FIG. 6 (a) is an explanatory view of sputtering, and FIG. 6 (b) is an explanatory view of a deposited protective layer.

酸化チタンを流路に形成する方法はディップ法やスプレー塗布などあるが、いずれも膜厚が薄くできない、密着強度が低いなど信頼性が乏しい。そこで、成膜が緻密で密着強度が高い方法としてスパッタリング等のPVD法やCVD法が有効になる。しかしながら、図5(a)に示すように、マスク無しでスパッタ装置40にターゲット(酸化チタン:TiO)41を載置してスパッタリングを行うと、流路形成面42と同時に接合面43まで含めた全面に酸化チタンが成膜されてしまう。酸化チタンは表面は電気的に絶縁する層なので、図5(b)のように拡散接合する際、接合温度が非常に高くなるのと同時に、各受熱体間が電気的に絶縁されてしまうので、何らかの通電方法が必要になり構造の複雑化やそれに伴うコストアップ等を引き起こす。 There are methods for forming titanium oxide in the flow path, such as a dipping method and spray coating, but none of them has a low reliability because the film thickness cannot be reduced and the adhesion strength is low. Therefore, a PVD method such as sputtering or a CVD method is effective as a method for forming a dense film and having high adhesion strength. However, as shown in FIG. 5A, when sputtering is performed by placing a target (titanium oxide: TiO 2 ) 41 on the sputtering apparatus 40 without a mask, the flow path forming surface 42 and the bonding surface 43 are included. Titanium oxide is deposited on the entire surface. Since the surface of titanium oxide is an electrically insulating layer, when diffusion bonding is performed as shown in FIG. 5B, the bonding temperature becomes very high, and at the same time, the heat receiving bodies are electrically insulated. Some kind of energization method is required, resulting in a complicated structure and associated cost increase.

この種の問題を解決するための手段として、図6(a)に示すようにスパッタリングする際に、マスク44を用いると下受熱体10,中受熱体20,上受熱体30の接合面が未成膜部45となって酸化チタンは成膜されない。しかし、マスク44は通常金属の板材に所定のスリット幅を加工してマスク44としているが加工精度に限界があるので、各受熱体の接合面の幅より若干大きめに加工し、接合面には酸化チタンを成膜させないようにしている。   As a means for solving this type of problem, when sputtering is performed as shown in FIG. 6A, the joint surfaces of the lower heat receiving body 10, the middle heat receiving body 20, and the upper heat receiving body 30 are not formed. Titanium oxide is not formed as the film portion 45. However, the mask 44 is usually processed into a mask 44 by processing a predetermined slit width on a metal plate material. However, since the processing accuracy is limited, the mask 44 is processed to be slightly larger than the width of the bonding surface of each heat receiving body. Titanium oxide is not deposited.

この場合、スパッタリングの特徴として、ターゲット41である酸化チタンの塊にイオン化されたArガスを吹き付けてアルゴンによりはじき飛ばされた酸化チタンが受熱体に直線的に飛んでいくというものであり、マスク44によって傾斜面などへは成膜できない。酸化チタンが成膜できない部分は冷却水と直接接触するので、電食により金属イオンが冷却水に溶け出してしまうことになる。このような場合の解決手段として、イオンプレーティングの方法がある。この方法によれば傾斜面等への成膜も可能な技術はあるが、スパッタ時の受熱体はマスクの上に載せている程度で接合面にマスクが完全に密着していないため、僅かな隙間に酸化チタンが進入してしまう問題もあり、受熱体への絶縁膜による保護層形成には何らかの対策が必要であり、本発明のシリコンのウェットエッチング技術を用いることで流路形成面のみに完全に成膜することが可能となった。   In this case, as a feature of sputtering, the ionized Ar gas is blown onto the titanium oxide lump as the target 41, and the titanium oxide repelled by argon is linearly blown to the heat receiving body. Films cannot be formed on inclined surfaces. Since the portion where titanium oxide cannot be formed is in direct contact with the cooling water, the metal ions are dissolved in the cooling water by electrolytic corrosion. As a means for solving such a case, there is an ion plating method. According to this method, there is a technique capable of forming a film on an inclined surface or the like. However, since the heat receiving body at the time of sputtering is placed on the mask and the mask is not completely adhered to the bonding surface, There is also a problem that titanium oxide enters the gap, and some measures are required for forming a protective layer with an insulating film on the heat receiving body, and only on the flow path formation surface by using the silicon wet etching technology of the present invention. It became possible to form a film completely.

続いて、シリコンのウェットエッチング技術を用いて形成した受熱体を用いる放熱器の製造方法について説明する。図7,図8は受熱体の形成方法を説明する説明図、図9は保護層(酸化チタン層)の説明図であり、図9(a)は流路側面の保護層を示す図、図9(b)は内側湾曲面の保護層を示す図である。
受熱体の接合面では地金属を露出し、流路形成面にのみ保護層(酸化チタン層)を形成する必要があり、このような保護層を形成する方法について述べる。ここに受熱体の例として下受熱体10を、また、保護層として酸化チタン層を例に挙げて説明する。予め流路形成面と、流路形成面以外の接合面と、を有する下受熱体10を形成する(受熱体形成工程)。
Then, the manufacturing method of the heat sink using the heat receiving body formed using the wet etching technique of silicon is demonstrated. 7 and 8 are explanatory views for explaining a method of forming a heat receiving member, FIG. 9 is an explanatory view of a protective layer (titanium oxide layer), and FIG. 9A is a view showing a protective layer on the side surface of the flow path. 9 (b) is a view showing a protective layer having an inner curved surface.
It is necessary to expose the ground metal on the joining surface of the heat receiving body and form a protective layer (titanium oxide layer) only on the flow path forming surface. A method for forming such a protective layer will be described. Here, the lower heat receiving body 10 will be described as an example of the heat receiving body, and a titanium oxide layer will be described as an example of the protective layer. The lower heat receiving body 10 having a flow path forming surface and a joint surface other than the flow path forming surface is formed in advance (heat receiving body forming step).

工程1)図7(a)で示すように下受熱体10の全面にマスク膜51を塗布する。これは例えばアルミニウム(Al)などが用いられる。(マスク膜(Al)塗布工程)
工程2)図7(b)で示すように、流路形成面上にあるマスク膜51の上にのみレジスト52を塗布する。この場合流路形成面の傾斜面に沿って立体的に塗布する。(レジスト塗布工程)
工程3)図7(c)で示すようにガラス基材にパターニングされたマスク53を載置して露光する。パターニングの無いスリット53aでは光が透過して接合面上にあるレジストは露光され、パターニングがあるマスク53では光が遮光されて流路形成面上にあるレジストは露光されない(レジスト露光工程)。
工程4)図7(d)で示すようにレジスト52を現像して露光したレジストを硬化させて接合面43上にレジストを残し、また、露光していないレジスト52を剥離させる(パターニング現像工程)。
Step 1) As shown in FIG. 7A, a mask film 51 is applied to the entire surface of the lower heat receiving body 10. For example, aluminum (Al) or the like is used. (Mask film (Al) coating process)
Step 2) As shown in FIG. 7B, a resist 52 is applied only on the mask film 51 on the flow path forming surface. In this case, it is applied three-dimensionally along the inclined surface of the flow path forming surface. (Resist application process)
Step 3) As shown in FIG. 7C, a mask 53 patterned on the glass substrate is placed and exposed. In the slit 53a without patterning, light is transmitted and the resist on the bonding surface is exposed, and in the mask 53 with patterning, the light is shielded and the resist on the flow path forming surface is not exposed (resist exposure step).
Step 4) As shown in FIG. 7D, the resist 52 is developed and the exposed resist is cured to leave the resist on the bonding surface 43, and the unexposed resist 52 is peeled off (patterning development step). .

なお、前記した工程3,4では露光された部分が現像後に残るネガ型フォトレジストを用いているが、代わりに露光されなかった部分が像として残るポジ型フォトレジストを用いても良い。この場合、工程3ではマスクのパターニングは光が透過して流路形成面上にあるレジストは露光され、パターニングがあるマスク53では光が遮光されて接合面上にあるレジストは露光されない。また、工程4ではレジスト52を現像して露光していないレジストを硬化させ、また、露光したレジスト52を剥離させることとなる。このようにしても本発明の実施は可能である。   In Steps 3 and 4 described above, a negative photoresist in which the exposed portion remains after development is used, but a positive photoresist in which the unexposed portion remains as an image may be used instead. In this case, in the patterning of the mask in step 3, light is transmitted and the resist on the flow path forming surface is exposed, and in the mask 53 with patterning, the light is shielded and the resist on the bonding surface is not exposed. In step 4, the resist 52 is developed to harden the resist that has not been exposed, and the exposed resist 52 is peeled off. Even in this way, the present invention can be implemented.

工程5)エッチングを行うと、図8(a)で示すように硬化したレジスト52の下側、つまり下受熱体10の接合面上にあるマスク膜51は残り、また、流路形成面上のマスク膜を除去して流路形成面の地金属部分だけ露出させる(マスク膜エッチング工程)。
工程6)レジストを剥離して図8(b)で示すように下受熱体10の流路形成面以外をマスク膜51で覆った状態とする(レジスト剥離工程)。
工程7)このような下受熱体10に対してスパッタリングを行い、図8(c)で示すように、下受熱体10の流路形成面の地肌やマスク膜51を含めて全面にスパッタにより酸化チタンを成膜して酸化チタン膜54を形成する(酸化チタン成膜工程)。
工程8)最後にマスク膜51を全て剥離する。接合面43に成膜された酸化チタン膜54はマスク膜52ともども綺麗に除去され、且つ接合面と流路形成面(図8(d)では流路傾斜面)の境界エッジ部分まで完全に酸化チタンによる保護層(酸化チタン層)55が成膜される(マスク膜剥離工程)。
これにより図8(d)で示すように流路形成面のみに保護層(酸化チタン層)55が設けられた受熱体が形成される。接合面43は地金属のままなので、拡散接合等で容易に接合が可能になる。
Step 5) When etching is performed, the mask film 51 on the lower side of the cured resist 52, that is, on the bonding surface of the lower heat receiving body 10, remains as shown in FIG. The mask film is removed and only the ground metal portion of the flow path forming surface is exposed (mask film etching process).
Step 6) The resist is peeled and the state other than the flow path forming surface of the lower heat receiving body 10 is covered with the mask film 51 as shown in FIG. 8B (resist peeling step).
Step 7) Sputtering is performed on the lower heat receiving body 10 and, as shown in FIG. 8C, the entire surface including the ground and the mask film 51 on the flow path forming surface of the lower heat receiving body 10 is oxidized by sputtering. A titanium oxide film 54 is formed by depositing titanium (titanium oxide film forming step).
Step 8) Finally, the entire mask film 51 is peeled off. The titanium oxide film 54 formed on the bonding surface 43 is removed cleanly together with the mask film 52, and is completely oxidized up to the boundary edge portion between the bonding surface and the channel forming surface (the channel inclined surface in FIG. 8D). A protective layer (titanium oxide layer) 55 made of titanium is formed (mask film peeling step).
As a result, as shown in FIG. 8D, a heat receiving body in which the protective layer (titanium oxide layer) 55 is provided only on the flow path forming surface is formed. Since the joint surface 43 is a ground metal, it can be easily joined by diffusion joining or the like.

なお、スパッタリングでは原理的に垂直部や内側に湾曲した部分には成膜できないため、図3に示す中受熱体20の連通孔22や、下受熱体10や上受熱体30の有底穴の下面水路13や上面水路32をエッチング等で成形した場合、スパッタリングでは、原理的に鉛直部や湾曲部に成膜されない。そこで、イオンプレーティングに代表されるような、PVD法やCVD法の何れかによれば成膜可能である。これにより図9(a)で示すように、例えば中受熱体20の円形連通口22の側面や、図9(b)の下受熱体10や上受熱体30の有底穴の下面水路13や上面水路32の内側湾曲面でも保護膜が形成される。   Note that, in principle, sputtering cannot form a film on a vertical portion or an inwardly curved portion, and therefore the communication holes 22 of the middle heat receiving body 20 and the bottomed holes of the lower heat receiving body 10 and the upper heat receiving body 30 shown in FIG. When the lower surface water channel 13 and the upper surface water channel 32 are formed by etching or the like, the film is not formed on the vertical portion or the curved portion in principle by sputtering. Therefore, the film can be formed by either PVD method or CVD method as typified by ion plating. Accordingly, as shown in FIG. 9A, for example, the side surface of the circular communication port 22 of the middle heat receiving body 20, the lower surface water channel 13 of the bottomed hole of the lower heat receiving body 10 and the upper heat receiving body 30 of FIG. A protective film is also formed on the inner curved surface of the upper surface water channel 32.

続いて、このような下受熱体10,中受熱体20,上受熱体30を貼り合わせる。図10は放熱器の断面図で、図10(a)は接合前のQ−Q線断面のQ矢視図、図10(b)は接合後のQ−Q線断面のQ矢視図である。
スパッタリングにて成膜した保護層(酸化チタン層)55が流路形成面に設けられた下受熱体10,中受熱体20,上受熱体30に対してロー材シート(図示せず)を挟んだ拡散接合や半田などにより、図10(b)のように気密を維持した状態で且つ熱伝導良好な状態に接合する。接合面には酸化チタンによる保護層が形成されておらず、地金属同士を接合してより強固に密着させることができる。また、電気的な絶縁層がないため、熱伝導・電気経路の形成が確実に行われる。
Subsequently, the lower heat receiving body 10, the middle heat receiving body 20, and the upper heat receiving body 30 are bonded together. FIG. 10 is a cross-sectional view of the radiator, FIG. 10A is a view taken along the line Q-Q before joining, and FIG. 10B is a view taken along the line Q-Q taken along the line Q-Q after joining. is there.
A protective layer (titanium oxide layer) 55 formed by sputtering sandwiches a brazing material sheet (not shown) with respect to the lower heat receiving body 10, the middle heat receiving body 20, and the upper heat receiving body 30 provided on the flow path forming surface. By means of diffusion bonding or soldering, bonding is performed in a state where airtightness is maintained and heat conduction is good as shown in FIG. A protective layer made of titanium oxide is not formed on the bonding surface, and the base metals can be bonded to each other more firmly. In addition, since there is no electrical insulating layer, the heat conduction and the formation of the electrical path are reliably performed.

このような放熱器では各種の変形が可能であり、例えば、熱交換量を増大させるために、図11に示すように、中受熱体20の内部に冷却水を往復動させるような場合であっても管摩擦抵抗が先に述べた原理により大幅に低減されていて濡れ性の向上から冷却性能をより高くすることができ、冷却水循環装置なども小型にできるメリットもある。   Such a radiator can be variously modified. For example, in order to increase the heat exchange amount, the cooling water is reciprocated inside the intermediate heat receiving body 20 as shown in FIG. However, the pipe frictional resistance is greatly reduced by the principle described above, so that the cooling performance can be further improved due to the improvement of wettability, and the cooling water circulation device can be downsized.

本発明によれば、シリコンのウェットエッチングのマスク膜成形を用いて酸化チタンを成膜させることで、放熱器内部の水路のみに容易に絶縁層を形成させることが可能である。これにより、冷却水と放熱器の地金属が直接接触することがないのでLDアレイに大きな電界を印加しても電食による冷却水内への金属イオン流出を抑制できる。
また、各受熱体を接合する際、シリコンのウェットエッチングのマスク膜成形を用いたことにより、前記受熱体の接合部には酸化チタンが成膜されることがないので、従来のような拡散接合を用いて容易に接合することが可能になる。前記受熱体にNiやAuメッキなどを施して、AuSn半田等による接合も可能である。
更に、接合部に酸化チタン層がないので、この部分も従来装置同様電気を良好に通すことが可能になり且つ、放熱器内部への熱拡散も良好となるメリットもある。また、酸化チタンは腐食に強いので一般の水道水などでも適応が可能なメリットもある。
According to the present invention, it is possible to easily form the insulating layer only in the water channel inside the radiator by forming the titanium oxide film by using the mask film forming of the wet etching of silicon. Thereby, since cooling water and the ground metal of a radiator do not contact directly, even if a big electric field is applied to LD array, the metal ion outflow into the cooling water by electrolytic corrosion can be suppressed.
In addition, when bonding each heat receiving body, since titanium oxide is not formed on the bonding portion of the heat receiving body by using a silicon wet etching mask film forming, diffusion bonding as in the prior art It becomes possible to join easily using. Ni or Au plating or the like is applied to the heat receiving body, and bonding with AuSn solder or the like is also possible.
Further, since there is no titanium oxide layer at the joint, it is possible to conduct electricity as well as this part as in the conventional device, and there is an advantage that heat diffusion into the radiator is also good. In addition, since titanium oxide is resistant to corrosion, there is a merit that it can be applied even with general tap water.

本発明を実施するための最良の形態の放熱器を含むLDアレイ放熱システムの模式的なシステム構成図である。1 is a schematic system configuration diagram of an LD array heat dissipation system including a heatsink of the best mode for carrying out the present invention. 管壁に酸化チタン層が形成された流路に冷却水を流したときの流れの状態を表した模式図であり、図2(a)は流路断面積大の模式図、図2(b)は流路断面積小の模式図、図2(c)は管壁の拡大図である。FIG. 2A is a schematic diagram showing a flow state when cooling water is passed through a flow channel in which a titanium oxide layer is formed on a tube wall, and FIG. 2A is a schematic diagram of a flow channel cross-sectional area, FIG. ) Is a schematic diagram of a small channel cross-sectional area, and FIG. 2C is an enlarged view of a tube wall. 放熱器のP−P線断面図である。It is PP line sectional drawing of a heat radiator. 放熱器の断面図であり、図4(a)はA−A線断面のA矢視図、図4(b)はB−B線断面のB矢視図、図4(c)はC−C線断面のC矢視図である。4A is a cross-sectional view of the radiator, FIG. 4A is a cross-sectional view taken along the line A-A, FIG. 4B is a cross-sectional view taken along the line B-B, and FIG. It is C arrow line view of a C line cross section. スパッタリングの説明図であり、図5(a)はスパッタリング成膜の説明図、図5(b)は成膜した保護層の説明図である。FIG. 5A is an explanatory view of sputtering, FIG. 5A is an explanatory view of sputtering film formation, and FIG. 5B is an explanatory view of a protective layer formed. スパッタリングマスク成膜の説明図であり、図6(a)はスパッタリングの説明図、図6(b)は成膜した保護層の説明図である。FIG. 6A is an explanatory view of sputtering mask film formation, FIG. 6A is an explanatory view of sputtering, and FIG. 6B is an explanatory view of a protective layer formed. 受熱体の形成方法を説明する説明図である。It is explanatory drawing explaining the formation method of a heat receiving body. 受熱体の形成方法を説明する説明図である。It is explanatory drawing explaining the formation method of a heat receiving body. 保護層(酸化チタン層)の説明図であり、図9(a)は流路側面の保護層を示す図、図9(b)は内側湾曲面の保護層を示す図である。It is explanatory drawing of a protective layer (titanium oxide layer), Fig.9 (a) is a figure which shows the protective layer of a flow-path side, FIG.9 (b) is a figure which shows the protective layer of an inner side curved surface. 放熱器の断面図で、図10(a)は接合前のQ−Q線断面のQ矢視図、図10(b)は接合後のQ−Q線断面のQ矢視図である。FIG. 10A is a cross-sectional view of the radiator, and FIG. 10A is a view taken along the line Q-Q before joining, and FIG. 10B is a view taken along the line Q-Q after joining. 他の形態の放熱器の断面構成図である。It is a cross-sectional block diagram of the heat radiator of another form. LDアレイ放熱システムの模式的なシステム構成図である。It is a typical system block diagram of LD array heat dissipation system. 放熱器のP−P線断面図である。It is PP line sectional drawing of a heat radiator. 放熱器の断面図であり、図14(a)はA−A線断面のA矢視図、図14(b)はB−B線断面のB矢視図、図14(c)はC−C線断面のC矢視図である。14A is a cross-sectional view of the radiator, FIG. 14A is a cross-sectional view taken along the line A-A, FIG. 14B is a cross-sectional view taken along the line B-B, and FIG. It is C arrow line view of a C line cross section. 放熱器の断面図であり、図15(a)は接合前のQ−Q線断面のQ矢視図、図15(b)は接合後のQ−Q線断面のQ矢視図である。FIG. 15A is a cross-sectional view of the radiator, FIG. 15A is a view taken along the Q-Q line before joining, and FIG. 15B is a view taken along the Q-Q line taken after joining. 管壁の地肌が露出した流路に冷却水を流したときの流れの状態を表した模式図であり、図16(a)は流路断面積大の模式図、図16(b)は流路断面積小の模式図、図16(c)は管壁の拡大図である。FIG. 16A is a schematic diagram illustrating a flow state when cooling water is passed through a flow channel in which the background of the pipe wall is exposed. FIG. 16A is a schematic diagram of a cross-sectional area of the flow channel, and FIG. FIG. 16C is a schematic view of a small road cross-sectional area, and FIG. 電力印加による影響を説明する説明図であり、図17(a)は時間−電力線図、図17(b)は電力と温度との関係を説明する説明図である。It is explanatory drawing explaining the influence by electric power application, FIG. 17 (a) is a time-power diagram, FIG.17 (b) is explanatory drawing explaining the relationship between electric power and temperature.

符号の説明Explanation of symbols

1:放熱器
2:流路
2a:管壁
3:保護層
10:下受熱体
11:給水口
12:放熱フィン
13:下面水路
14:流路絞り部
15:排水口
20:中受熱体
21:円形連通孔
22:円形連通孔
23:隔壁
24:貫通孔
25:上座グリ部
26:下座グリ部
30:下受熱体
31:給水口
32:上面水路
33:放熱フィン
34:保護層
40:スパッタ装置
41:ターゲット
42:流路形成面
43:接合面
44:マスク
45:未成膜部
51:マスク膜
52:レジスト
53:マスク
53a:スリット
54:酸化チタン膜
55:保護層(酸化チタン層)
200:LDアレイ
300:電力供給装置
400:給排水用マニホールド
400a,400b:流路
500:流路
600:タンク
700:流路
800:ポンプ
900:冷却水
1: Radiator 2: Flow path 2a: Tube wall 3: Protective layer 10: Lower heat receiving body 11: Water supply port 12: Heat radiation fin 13: Lower surface water channel 14: Channel throttle 15: Drain port 20: Medium heat receiving body 21: Circular communication hole 22: Circular communication hole 23: Partition wall 24: Through hole 25: Upper counterbore part 26: Lower counterbore part 30: Lower heat receiving body 31: Water supply port 32: Upper surface water channel 33: Radiation fin 34: Protective layer 40: Spatter Device 41: Target 42: Flow path forming surface 43: Bonding surface 44: Mask 45: Undeposited portion 51: Mask film 52: Resist 53: Mask 53a: Slit 54: Titanium oxide film 55: Protective layer (titanium oxide layer)
200: LD array 300: Electric power supply device 400: Manifolds 400a and 400b for water supply / drainage: Channel 500: Channel 600: Tank 700: Channel 800: Pump 900: Cooling water

Claims (6)

外側に発熱体が接触して取り付けられ、内側に形成された流路を流れる冷却液によりこの発熱体を冷却する液冷式の放熱器において、
放熱器内部の流路形成面を覆い、冷却液と放熱器とを電気的に絶縁する保護層を、
備えることを特徴とする放熱器。
In a liquid-cooled radiator in which a heating element is attached in contact with the outside and the heating element is cooled by a coolant flowing through a flow path formed on the inside,
A protective layer that covers the flow path forming surface inside the radiator and electrically insulates the coolant from the radiator,
A heat radiator characterized by comprising.
請求項1に記載の放熱器において、
前記保護層は、電気的に絶縁するとともに摩擦抵抗を低減する酸化チタン層であることを特徴とする放熱器。
The heat radiator according to claim 1,
The radiator is a titanium oxide layer that is electrically insulated and reduces frictional resistance.
請求項1または請求項2に記載の放熱器において、
前記発熱体は、前記放熱器を電源経路の一部として電気的に接続する半導体レーザダイオードを搭載したレーザダイオードアレイであることを特徴とする放熱器。
The heat radiator according to claim 1 or 2,
The heat radiator is a laser diode array on which a semiconductor laser diode that electrically connects the heat radiator as a part of a power supply path is mounted.
請求項1〜請求項3の何れか一項に記載の放熱器において、
前記放熱器は、
保護層が形成された流路形成面と、この流路形成面以外であって地金属が現れた接合面と、を有する板状の受熱体と、
これら受熱体の接合面で接合する接合層と、
を備え、複数枚から成る受熱体を接合層により接合して積層し、保護層で覆われた流路が形成される構造を有することを特徴とする放熱器。
In the heat radiator as described in any one of Claims 1-3,
The radiator is
A plate-shaped heat receiving body having a flow path forming surface on which a protective layer is formed, and a joint surface on which a ground metal appears other than the flow path forming surface;
A bonding layer bonded at the bonding surface of these heat receivers;
A heat radiator having a structure in which a plurality of heat receiving bodies are joined and laminated by a joining layer, and a flow path covered with a protective layer is formed.
請求項4に記載の放熱器において、
前記接合層は、ロー材、ロー材シートまたは拡散接合により受熱体の接合面同士を電気的、熱的、および、機械的に接合して形成した接合層であることを特徴とする放熱器。
The heat radiator according to claim 4,
The radiator is a radiator formed by joining the joining surfaces of the heat receiving bodies electrically, thermally and mechanically by brazing, brazing sheet or diffusion bonding.
請求項4に記載された放熱器を構成する受熱体の形成方法であって、
流路形成面と、流路形成面以外の接合面と、を有する受熱体を形成する受熱体形成工程と、
受熱体の全面にマスク膜を塗布するマスク膜塗布工程と、
流路形成面を含む面上のマスク膜の上にレジストを塗布するレジスト塗布工程と、
マスクをレジスト上に載置し、接合面上のレジストを露光するレジスト露光工程と、
レジストを現像して流路形成面のレジストを剥離させるパターニング現像工程と、
流路形成面上のマスク膜を除去して流路形成面の地金を露出させるマスク膜エッチング工程と、
全てのレジストを剥離するレジスト剥離工程と、
スパッタリング、イオンプレーティングなどのPVD法、または、CVD法により流路形成面を含む面に成膜する成膜工程と、
マスク膜を剥離して流路形成面にのみ保護層を形成するマスク膜剥離工程と、
を有することを特徴とする受熱体の形成方法。
A method for forming a heat receiving body constituting the radiator according to claim 4,
A heat receiving body forming step of forming a heat receiving body having a flow path forming surface and a joint surface other than the flow path forming surface;
A mask film coating process for coating a mask film on the entire surface of the heat receiver;
A resist coating step of coating a resist on the mask film on the surface including the flow path forming surface;
A resist exposure step of placing a mask on the resist and exposing the resist on the bonding surface;
A patterning development step of developing the resist and peeling off the resist on the flow path forming surface;
A mask film etching step for removing the mask film on the flow path forming surface and exposing the metal on the flow path forming surface;
A resist stripping process for stripping all resists;
A film forming step of forming a film on a surface including a flow path forming surface by a PVD method such as sputtering or ion plating, or a CVD method;
A mask film peeling step for peeling the mask film and forming a protective layer only on the flow path forming surface;
A method of forming a heat receiving body, comprising:
JP2004026469A 2004-02-03 2004-02-03 Radiator and forming method of heat receiving unit Withdrawn JP2005221091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026469A JP2005221091A (en) 2004-02-03 2004-02-03 Radiator and forming method of heat receiving unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026469A JP2005221091A (en) 2004-02-03 2004-02-03 Radiator and forming method of heat receiving unit

Publications (1)

Publication Number Publication Date
JP2005221091A true JP2005221091A (en) 2005-08-18

Family

ID=34996875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026469A Withdrawn JP2005221091A (en) 2004-02-03 2004-02-03 Radiator and forming method of heat receiving unit

Country Status (1)

Country Link
JP (1) JP2005221091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092236A (en) * 2014-11-05 2016-05-23 株式会社リコー Laser module
WO2022220173A1 (en) * 2021-04-13 2022-10-20 三菱電機株式会社 Semiconductor laser module and laser processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092236A (en) * 2014-11-05 2016-05-23 株式会社リコー Laser module
WO2022220173A1 (en) * 2021-04-13 2022-10-20 三菱電機株式会社 Semiconductor laser module and laser processing apparatus

Similar Documents

Publication Publication Date Title
JP4654942B2 (en) Surface lighting device
JP4929612B2 (en) Semiconductor laser device and heat sink
JP7022901B2 (en) Semiconductor laser device
US7294926B2 (en) Chip cooling system
US8199505B2 (en) Jet impingement heat exchanger apparatuses and power electronics modules
US7265977B2 (en) Active liquid metal thermal spreader
US8929071B2 (en) Low cost manufacturing of micro-channel heatsink
JP4224217B2 (en) Semiconductor laser stack equipment
US7486710B2 (en) Semiconductor laser device and method of manufacturing the same
JP2006310363A (en) Power semiconductor device
WO2003107728A1 (en) High performance cold plate
JP2006234362A (en) Heat exchanger and method of manufacturing the same
US11090750B2 (en) Method for producing a cooling device, a cooling device and a cooling arrangement
JP2008300596A (en) Heat sink and semiconductor laser device
JPH09307040A (en) Semiconductor device, inverter, and manufacture of semiconductor device
JP2003332642A (en) Thermoelectric conversion element unit
US20190373768A1 (en) Electronics cold plate
KR100606320B1 (en) Cooling apparatus for semiconductor component and semiconductor laser apparatus
US20190218667A1 (en) Method for producing hollow structure, plated composite and hollow structure
JP4350606B2 (en) Method for manufacturing printed wiring board
JP4618136B2 (en) Power module substrate manufacturing method
JP2003338592A (en) Semiconductor module
US7075959B1 (en) Cooling device for diode pumped laser
JP2005221091A (en) Radiator and forming method of heat receiving unit
CN115084058B (en) Power semiconductor device packaging structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403