JP2005220214A - Method for producing polyester composition - Google Patents

Method for producing polyester composition Download PDF

Info

Publication number
JP2005220214A
JP2005220214A JP2004028986A JP2004028986A JP2005220214A JP 2005220214 A JP2005220214 A JP 2005220214A JP 2004028986 A JP2004028986 A JP 2004028986A JP 2004028986 A JP2004028986 A JP 2004028986A JP 2005220214 A JP2005220214 A JP 2005220214A
Authority
JP
Japan
Prior art keywords
poss
polyester
group
producing
polyester composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004028986A
Other languages
Japanese (ja)
Inventor
Minoru Uchida
実 内田
Daisuke Kawakami
大輔 川上
Masatoshi Aoyama
雅俊 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004028986A priority Critical patent/JP2005220214A/en
Publication of JP2005220214A publication Critical patent/JP2005220214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester composition having improved heat resistance by a rise in glass transition temperature or melting point and remarkably improved thermal or mechanical characteristics such as rigidity, breaking strength or dimensional stability by finely dispersing a new inorganic or organic composite compound into a nanosize in a polyester. <P>SOLUTION: A method for producing the polyester composition is characterized as follows. A specific polyhedral oligometric silsesquioxane (POSS) is added in an optional stage to the completion of polymerization of the polyester when the polyester composed of a bifunctional acid component mainly composed of a dicarboxylic acid and at least one kind of glycol component is produced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はポリヘドラルオリゴメトリックシルセスキオキサン(Polyhedral OrigometricSilSesquioxane、別名籠状シルセスキオキサン、以下POSSという)を含有するポリエステル組成物の製造方法に関する。さらに詳しくは、融点・ガラス転移点温度などの熱的特性が改善され、かつ剛性、破壊強度、寸法安定性などの機械的特性が優れたポリエステル組成物の製造方法に関する。   The present invention relates to a method for producing a polyester composition containing polyhedral oligomeric silsesquioxane (Polyhedral Origometric SilSesquioxane, also called cage silsesquioxane, hereinafter referred to as POSS). More specifically, the present invention relates to a method for producing a polyester composition having improved thermal characteristics such as melting point and glass transition temperature and excellent mechanical characteristics such as rigidity, fracture strength and dimensional stability.

今日工業的に製造されているポリエステル、例えばポリエチレンテレフタレート(以下PETという)を主成分とするポリエステルは優れた物理的、化学的特性を有しており、繊維、フィルム、およびその他の成型品として広く使用されている。このポリエステルの優れた各種特性を生かして、繊維、フィルム、およびその他の成型品の特性を更に向上させることが望まれている。   Polyesters that are industrially produced today, such as polyesters based on polyethylene terephthalate (hereinafter referred to as PET), have excellent physical and chemical properties and are widely used as fibers, films, and other molded articles. in use. It is desired to further improve the properties of fibers, films, and other molded articles by taking advantage of various excellent properties of this polyester.

ポリエステルに無機微粒子を配合・分散させることによって、フィルム用途における易滑性、耐摩耗性、耐スクラッチ性等の向上、また、繊維用途での艶消し・透け防止や発色性の向上、耐摩耗性や力学特性の改善、さらには複合材料用途等においてもマトリックス中に混合して圧縮強さや引っ張り強さ等の物性を改良することが行われている。例えば、直鎖状又は分岐の形状を有するコロイダルシリカ粒子をポリエステルに分散させて滑り性、耐摩耗性、耐スクラッチ性に優れたフィルム、繊維を得るのに適したポリエステル樹脂(特許文献1)、粒径が0.3μm以下の四窒化ケイ素粒子又は炭化ケイ素粒子をポリエステルに添加して力学的特性(寸法安定性、耐熱性)を改善し産業用途に適したポリエステル繊維を得る方法(特許文献2)、さらには繊維中に平均粒径0.002μm以上0.50μm以下の固体(シリカ)微粒子を特定量含有させるこによって、高タフネスでかつ、耐屈曲摩耗性および耐屈曲疲労性に優れた繊維(特許文献3)等を得る試みも行われている。   By blending and dispersing inorganic fine particles in polyester, it improves slipperiness, abrasion resistance, scratch resistance, etc. in film applications, and also improves matting and see-through prevention and color development, and wear resistance in textile applications. In addition, improvement of physical properties such as compressive strength and tensile strength by mixing in a matrix is also carried out for improvement of mechanical properties and for composite materials. For example, a colloidal silica particle having a linear or branched shape is dispersed in polyester to provide a film excellent in slipperiness, abrasion resistance, and scratch resistance, and a polyester resin suitable for obtaining fibers (Patent Document 1). A method of obtaining polyester fibers suitable for industrial use by adding silicon tetranitride particles or silicon carbide particles having a particle size of 0.3 μm or less to polyester to improve mechanical properties (dimensional stability, heat resistance) (Patent Document 2) ) And a fiber having high toughness and excellent bending wear resistance and bending fatigue resistance by containing a specific amount of solid (silica) fine particles having an average particle size of 0.002 μm or more and 0.50 μm or less in the fiber. Attempts have also been made to obtain (Patent Document 3) and the like.

これら以外にもポリエステルに各種無機微粒子を配合して、特に力学的特性を改善しようという試みが多数なされてきたものの、工業的に十分に満足のいくものは未だ得られていない状況にある。この原因としては使用する粒子そのものの分散性が不十分であったり、ポリエステル製造時に凝集したりして結果的にポリエステル中に存在する粒子サイズが大きいために、分子レベルでポリマーに作用することが困難であると考えられる。   In addition to these, many attempts have been made to improve various mechanical properties by blending various inorganic fine particles with polyester, but there are no industrially satisfactory ones yet. This is because the particles themselves used are insufficiently dispersible or agglomerate during the production of the polyester, resulting in the large particle size present in the polyester, which can act on the polymer at the molecular level. It is considered difficult.

近年、POSSを適用して各種ポリマーの耐熱性や粘弾性特性を向上させる試みが行われている。例えば、ポリメタメチルアクリレート(PMMA)やポリプロピレン(PP)、ポリイミド(PI)、ポリスチレン(PS)、ポリウレタン(PU)などのポリマーにPOSSを配合して、それぞれのポリマーにおける耐熱性や粘弾性特性を向上させることが可能である等の報告がなされている(非特許文献1)。   In recent years, attempts have been made to improve the heat resistance and viscoelastic properties of various polymers by applying POSS. For example, POSS is blended with polymers such as polymetamethyl acrylate (PMMA), polypropylene (PP), polyimide (PI), polystyrene (PS), polyurethane (PU), etc., and the heat resistance and viscoelastic properties of each polymer are It has been reported that it can be improved (Non-Patent Document 1).

一方、POSSのポリエステルへの適用についても試みられている(非特許文献2)が、ポリエステル中におけるPOSSの分散径は数ミクロン以上であり、ヤング率などの物理的特性の改善は全く見られない状況にある。このような背景から、ポリエステルの熱的特性、物理的特性を改善するために、分子レベルのサイズを有するPOSSをポリエステル中でナノサイズに微分散させることが求められていた。
特開平05−078557号公報 特開平07−138812号公報 特開平07−011512号公報 Macromolecules vol.29 p7302 第224回米国化学会国際会議予稿集POLY191(2002)
On the other hand, attempts have been made to apply POSS to polyester (Non-patent Document 2), but the dispersion diameter of POSS in the polyester is several microns or more, and physical properties such as Young's modulus are not improved at all. Is in the situation. Against this background, in order to improve the thermal properties and physical properties of polyester, it has been demanded to finely disperse POSS having a molecular level size into a nano size in the polyester.
Japanese Patent Application Laid-Open No. 05-0778557 JP 07-138812 A Japanese Patent Laid-Open No. 07-011512 Macromolecules vol.29 p7302 Proceedings of the 224th American Chemical Society International Conference POLY191 (2002)

本発明の目的は上記従来の問題を解消し、新規な無機・有機複合化合物であるPOSSをポリエステル中でナノサイズに微分散させることによって、ガラス転移点や融点の上昇による耐熱性向上、剛性・破壊強度や寸法安定性等の熱的・機械的特性を飛躍的に改善されたポリエステル組成物の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned conventional problems, and finely disperse POSS, which is a novel inorganic / organic composite compound, into a nanosize in polyester, thereby improving the heat resistance by increasing the glass transition point and melting point, An object of the present invention is to provide a method for producing a polyester composition in which thermal and mechanical properties such as fracture strength and dimensional stability are drastically improved.

上記課題を解決するため、本発明者らは、ジカルボン酸を主とする二官能性酸成分と少なくとも一種のグリコール成分よりなるポリエステルを製造するに際し、下記一般式で表され、かつ(1)および(2)を満たすポリヘドラルオリゴメトリックシルセスキオキサン(POSS)を、ポリエステルの重合が完結するまでの任意の段階で添加することを特徴とするポリエステル組成物の製造方法によって達成できる。   In order to solve the above problems, the present inventors have represented the following general formula, and (1) and (1) when producing a polyester comprising a difunctional acid component mainly composed of dicarboxylic acid and at least one glycol component. Polyhedral oligomeric silsesquioxane (POSS) satisfying (2) can be achieved by a method for producing a polyester composition, which is added at any stage until the polymerization of the polyester is completed.

(RSiO1.5n (A)
(RSiO1.5l(RXSiO)k (B)
[一般式(A)、(B)において、Rは水素原子、炭素原子数1から20の置換又は非置換の炭化水素基又はケイ素原子数1から10のケイ素原子含有基から選ばれ、Rは全て同一でも複数の基で構成されていても良い。一般式(B)においてXはOR1(R1は水素原子、アルキル基、アリール基、第4級アンモニウムラジカル)、ハロゲン原子及び上記Rの中から選ばれる少なくとも一つの官能基であり、(RXSiO)k中のXは全て同じでも異なっていても良い。又(RXSiO)k中の2個のXが互いに連結して下記一般式(C)で表される連結構造を形成しても良い。
(RSiO 1.5 ) n (A)
(RSiO 1.5 ) l (RXSiO) k (B)
[In the general formulas (A) and (B), R is selected from a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a silicon atom-containing group having 1 to 10 silicon atoms; All may be composed of the same or plural groups. In the general formula (B), X is OR 1 (R 1 is a hydrogen atom, an alkyl group, an aryl group, a quaternary ammonium radical), a halogen atom, or at least one functional group selected from R, and (RXSiO ) X in k may be the same or different. Further, two X in (RXSiO) k may be connected to each other to form a connection structure represented by the following general formula (C).

Figure 2005220214
Figure 2005220214

Y及びZは、Xと同じ基の群の中から選ばれ、YとZは同じでも異なっていても良い。nは6から14の整数、lは2から12の整数、kは2又は3である。]
(1)熱重量分析法によるTpでの重量減少率が5重量%以下
(2)融点がTp以下
ただし、Tp=Tm+30℃
Tm=ポリエステルの融点(℃)
Y and Z are selected from the same group of groups as X, and Y and Z may be the same or different. n is an integer of 6 to 14, l is an integer of 2 to 12, and k is 2 or 3. ]
(1) Weight reduction rate at Tp by thermogravimetric analysis is 5% by weight or less (2) Melting point is Tp or less, provided that Tp = Tm + 30 ° C.
Tm = melting point of polyester (° C)

新規な無機・有機複合化合物であるPOSSをポリエステル中でナノサイズに微分散させることによって、ガラス転移点や融点の上昇による耐熱性向上、剛性・破壊強度や寸法安定性等の熱的・機械的特性を飛躍的に改善されたポリエステル組成物を得ることができる。   POSS, a new inorganic / organic composite compound, is finely dispersed in nano-size in polyester to improve heat resistance by increasing the glass transition point and melting point, and to provide thermal and mechanical properties such as rigidity, fracture strength and dimensional stability. A polyester composition having dramatically improved characteristics can be obtained.

本発明でいうポリエステルとは、ジカルボン酸化合物とジオール化合物のエステル結合から形成される重合体であり、ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、ジフェニルジカルボン酸、アジピン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸、5ーナトリウムスルホイソフタル酸、5−テトラブチルホソホニウムイソフタル酸等の芳香族、脂肪族、脂環族ジカルボン酸およびそれらの誘導体を挙げることができる。またジオール化合物としては、エチレングリコール、プロピレングリコール、ブチレングリコール、テトラメチレングリコール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール、ビスフェノールA、ビスフェノールSのような芳香族、脂肪族、脂環族のジオール化合物を挙げることができる。   The polyester referred to in the present invention is a polymer formed from an ester bond of a dicarboxylic acid compound and a diol compound. Examples of the dicarboxylic acid compound include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, and diphenyldicarboxylic acid. Aromatic, aliphatic and alicyclic dicarboxylic acids such as acid, adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylfosphonium isophthalic acid and their derivatives Can be mentioned. Examples of the diol compound include ethylene glycol, propylene glycol, butylene glycol, tetramethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, neopentyl glycol, polyalkylene glycol, bisphenol A, and bisphenol S, aromatic and aliphatic. And alicyclic diol compounds.

本発明で好ましく用いることのできるポリエステルとしては、PET、ポリエチレン−2,6−ナフタレート(以下2,6−PENという)、ポリプロピレンテレフタレート(以下PPTという)、ポリブチレンテレフタレート(以下PBTという)であり、より好ましくはPETである。   Polyesters that can be preferably used in the present invention are PET, polyethylene-2,6-naphthalate (hereinafter referred to as 2,6-PEN), polypropylene terephthalate (hereinafter referred to as PPT), and polybutylene terephthalate (hereinafter referred to as PBT). More preferably, it is PET.

また、本発明で用いるポリエステルは、発明の主旨を損ねない範囲で他の第3成分が共重合されていても良い。さらに、本発明のポリエステルは艶消剤、難燃剤、滑剤等の添加剤を少量含有しても良い。   In addition, the polyester used in the present invention may be copolymerized with another third component within a range that does not impair the gist of the invention. Furthermore, the polyester of the present invention may contain a small amount of additives such as matting agents, flame retardants, and lubricants.

本発明におけるPOSSについて説明する。シルセスキオキサンとはTレジンとも呼ばれるもので、通常のシリカが(SiO2)の一般式で表されるのに対し、シルセスキオキサンは(RSiO1.5)で表される化合物であり、通常はテトラエトキシシランのようなテトラアルコキシシランの1つのアルコキシ基をアルキル基またはアリール基に置き換えた化合物の加水分解−重縮合で合成されるポリシロキサンであり、分子配列の形状として、代表的には無定形、ラダー状、籠状(完全縮合ケージ状)や完全縮合ケージ状からケイ素原子が一原子少ないタイプや一部ケイ素−酸素結合が切断されたタイプが知られている。 POSS in the present invention will be described. Silsesquioxane is also called T-resin, and ordinary silica is represented by the general formula (SiO 2 ), whereas silsesquioxane is a compound represented by (RSiO 1.5 ) Is a polysiloxane synthesized by hydrolysis-polycondensation of a compound in which one alkoxy group of a tetraalkoxysilane such as tetraethoxysilane is replaced with an alkyl group or an aryl group. There are known amorphous, ladder-like, cage-like (fully condensed cage-like) and fully-condensed cage-like types in which one silicon atom is less, and types in which some silicon-oxygen bonds are broken.

本発明に用いられるPOSSは前記分子配列形状のうち、籠状のもの、またはその部分開裂構造体であるが、籠が閉じた構造のシルセスキオキサンでも、籠の一部が開いた構造のシルセスキオキサンでもよい。したがって、本発明には多様な構造の籠状シルセスキオキサン、またはその部分開裂構造体が使用可能であり、その具体例としては、例えば以下の一般式(A)及び一般式(B)で示される化合物が挙げられる。
(RSiO1.5n (A)
(RSiO1.5l(RXSiO)k (B)
[一般式(A)、(B)において、Rは水素原子、炭素原子数1から20の置換又は非置換の炭化水素基又はケイ素原子数1から10のケイ素原子含有基から選ばれ、Rは全て同一でも複数の基で構成されていても良い。一般式(B)においてXはOR1(R1は水素原子、アルキル基、アリール基、第4級アンモニウムラジカル)、ハロゲン原子及び上記Rの中から選ばれる少なくとも一つの官能基であり、(RXSiO)k中のXは全て同じでも異なっていても良い。又(RXSiO)k中の2個のXが互いに連結して一般式(C)で表される連結構造を形成しても良い。
POSS used in the present invention is a cage-like structure of the molecular arrangement or a partially cleaved structure thereof, but silsesquioxane having a closed cage structure has a structure in which a part of the cage is opened. Silsesquioxane may be used. Accordingly, various structures of cage silsesquioxane or partially cleaved structures thereof can be used in the present invention. Specific examples thereof include, for example, the following general formulas (A) and (B): And the compounds shown.
(RSiO 1.5 ) n (A)
(RSiO 1.5 ) l (RXSiO) k (B)
[In the general formulas (A) and (B), R is selected from a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a silicon atom-containing group having 1 to 10 silicon atoms; All may be composed of the same or plural groups. In the general formula (B), X is OR 1 (R 1 is a hydrogen atom, an alkyl group, an aryl group, a quaternary ammonium radical), a halogen atom, or at least one functional group selected from R, and (RXSiO ) X in k may be the same or different. Further, two Xs in (RXSiO) k may be connected to each other to form a connection structure represented by the general formula (C).

Figure 2005220214
Figure 2005220214

Y及びZはXと同じ基の群の中から選ばれ、YとZは同じでも異なっていても良い。nは6から14の整数、lは2から12の整数、kは2又は3である。]
一般式(A)で表される籠状シルセスキオキサンの具体例としては、(RSiO1.56の化学式で表されるタイプ(下記式化3)、(RSiO1.58の化学式で表されるタイプ(下記式化4))、(RSiO1.510の化学式で表されるタイプ(下記式化5)、(RSiO1.512の化学式で表されるタイプ(下記式化6)がある。
Y and Z are selected from the same group of groups as X, and Y and Z may be the same or different. n is an integer of 6 to 14, l is an integer of 2 to 12, and k is 2 or 3. ]
Specific examples of the cage silsesquioxane represented by the general formula (A) include a type represented by the chemical formula of (RSiO 1.5 ) 6 (the following formula 3) and a chemical formula of (RSiO 1.5 ) 8. Type (represented by the following formula 4)), a type represented by the chemical formula (RSiO 1.5 ) 10 (the following formula 5), and a type represented by the chemical formula (RSiO 1.5 ) 12 (the following formula 6).

Figure 2005220214
Figure 2005220214

Figure 2005220214
Figure 2005220214

Figure 2005220214
Figure 2005220214

Figure 2005220214
Figure 2005220214

また、一般式(B)で表される籠状シルセスキオキサンの部分開裂構造体の具体例としては、以下の構造が例示される。例えば、一般式化3の一部が脱離した構造であるトリシラノール体あるいはそれから誘導される(RSiO1.54(RXSiO)3の化学式で表されるタイプ(下記一般式化7:前記トリシラノール体はX=OHの場合)、一般式化7で示される3個のXのうち2個のXが一般式(C)で示される構造で連結される部分開裂構造体(RSiO1.54(RXSiO)3の化学式で表されるタイプ、一般式化3の一部が開裂したジシラノール体あるいはそれから誘導される(RSiO1.56(RXSiO)2の化学式で表されるタイプ(下記一般式化8:前記ジシラノール体は一般式化7においてX=OHの場合)等が挙げられる。一般式化7及び化8中の同一ケイ素原子に結合しているRとXあるいはYとZはお互いの位置を交換したものでもよい。 Moreover, the following structures are illustrated as a specific example of the partial cleavage structure of the cage-shaped silsesquioxane represented by general formula (B). For example, a trisilanol body in which a part of the general formula 3 is eliminated or a type represented by a chemical formula of (RSiO 1.5 ) 4 (RXSiO) 3 derived therefrom (the following general formula 7: the above trisilanol In the case of X = OH), a partially cleaved structure (RSiO 1.5 ) 4 (RSiO 1.5 ) 4 in which two of the three Xs represented by the general formula 7 are linked by the structure represented by the general formula (C) A type represented by the chemical formula of (RXSiO) 3 , a disilanol body in which a part of the general formula 3 is cleaved, or a type represented by the chemical formula of (RSiO 1.5 ) 6 (RXSiO) 2 derived therefrom (general formula 8 below) : Examples of the disilanol compound include those in the case of X = OH in the general formula 7. R and X or Y and Z bonded to the same silicon atom in the general formulas 7 and 8 may be exchanged in position.

Figure 2005220214
Figure 2005220214

Figure 2005220214
Figure 2005220214

化3〜化8中のRとしては1種類で籠状シルセスキオキサンを構成しても良いし、2種類以上の置換基で構成しても良い。具体的なRとしては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロヘキシル基、シクロペンチル基、トリフルオロプロピル基、フェニル基、トリメチルシロキシ基の他、1,2−プロパンジオールなどのジオール、アミノプロピル基などのアミノ基、グリシジル基などのエポキシ基、メチルプロピオネート基などのエステル基、アクリル基、メタクリル基、イソシアネート基、ビニル基、ノルボネニルエチル基などが挙げられるが、これらに限定されるものではない。   As R in Chemical Formulas 3 to 8, one type may form a cage silsesquioxane or two or more types of substituents. Specific examples of R include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, cyclohexyl group, cyclopentyl group, trifluoropropyl group, phenyl group, trimethylsiloxy group, Diols such as 2-propanediol, amino groups such as aminopropyl groups, epoxy groups such as glycidyl groups, ester groups such as methylpropionate groups, acrylic groups, methacrylic groups, isocyanate groups, vinyl groups, norbonenylethyl groups However, it is not limited to these.

本発明で用いられるPOSSはポリエステルの融点をTm(℃)としたとき、Tp=Tm+30(℃)で定義される温度での熱重量分析法における重量減少率が、5重量%以下であることが必要である。   In the POSS used in the present invention, when the melting point of the polyester is Tm (° C.), the weight reduction rate in the thermogravimetric analysis method at a temperature defined by Tp = Tm + 30 (° C.) is 5% by weight or less. is necessary.

これはポリマーの重合反応系への添加時、あるいは溶融成形時のPOSSの飛散や劣化が少なく、所望の割合でポリマーに導入することができることから、最終製品に熱劣化物の残存がなく、製品諸特性の低下を抑制できること、また、一般にポリエステルは融点+30℃程度の高温で成形されるため、ポリマー中に含有されるPOSSがこの温度で十分な耐熱性を持つことが好ましい。   This is because there is little scattering and deterioration of POSS at the time of addition of the polymer to the polymerization reaction system or at the time of melt molding, and it can be introduced into the polymer at a desired ratio. Since deterioration of various properties can be suppressed, and polyester is generally molded at a high temperature of about melting point + 30 ° C., it is preferable that POSS contained in the polymer has sufficient heat resistance at this temperature.

このような観点から、1つのPOSS分子を構成するRの70%以上がペンチル基、ヘキシル基、オクチル基、シクロヘキシル基、シクロペンチル基、フェニル基、トリメチルシロキシ基、ノルボネニルエチル基のうちの1つまたは2つ以上から構成されるPOSSが好ましく用いられる。   From this point of view, 70% or more of R constituting one POSS molecule is one of pentyl group, hexyl group, octyl group, cyclohexyl group, cyclopentyl group, phenyl group, trimethylsiloxy group, norbornenylethyl group. One or two or more POSSs are preferably used.

具体的なPOSSとしては、オクタシクロペンチルPOSS、オクタシクロヘキシルPOSS、オクタフェニルPOSS、オクタトリメチルシロキシPOSS、トリスノルボネニルエチルシクロヘキシルPOSS、トリスノルボネニルエチルシクロペンチルPOSS(以下TNCP−POSSという)、トリスノルボネニルエチルシクロイソブチルPOSS、グリシジルイソオクチルPOSS(以下GIO−POSSという)、メタクリルイソオクチルPOSSなどが挙げられる。   Specific examples of POSS include octacyclopentyl POSS, octacyclohexyl POSS, octaphenyl POSS, octatrimethylsiloxy POSS, trisnorbornenylethyl cyclohexyl POSS, trisnorbonenyl ethylcyclopentyl POSS (hereinafter referred to as TNCP-POSS), trisnorbone. Examples thereof include nylethylcycloisobutyl POSS, glycidyl isooctyl POSS (hereinafter referred to as GIO-POSS), and methacrylic isooctyl POSS.

また、本発明のPOSSの融点は、ポリエステル中にPOSSを分子レベルで分散するためにTp以下であることが必要であり、さらにポリマーの成形温度でPOSSが液体であるものが好ましく用いらる。具体的には構成するSiの数が異なるPOSS分子の混合体であるケージミクスチャーを挙げることができるが、ケージミクスチャーの場合には、POSSが結晶構造を作りにくいこと、また、分子同士のパッキング性が低下するためにPOSS融点が低くなりやすく、より好ましい。   Further, the melting point of the POSS of the present invention is required to be Tp or less in order to disperse POSS in the molecular level in the polyester, and those having a liquid POSS at the polymer molding temperature are preferably used. Specifically, a cage mixture, which is a mixture of POSS molecules with different numbers of Si, can be cited. However, in the case of a cage mixture, it is difficult for POSS to form a crystal structure and the packing property between molecules. Is lower, the POSS melting point tends to be low, which is more preferable.

また、1つのPOSS分子が複数の種類のRを有するPOSSの集合体や、Rの種類が異なるPOSS分子の集合体の場合にもPOSS同士のパッキング性が低下するため、結晶化が阻害されることからPOSSの融点が低下しやすく、好ましい。具体的なPOSSとしては、イソオクチルPOSSのケージミクスチャー(以下IOCG−POSSという)、フェネチルPOSSのケージミクスチャー(以下PECG−POSSという)等を挙げることができる。   In addition, even in the case of a POSS assembly in which one POSS molecule has a plurality of types of R, or a POSS molecule assembly having different types of R, the packing property between POSSs is reduced, so that crystallization is inhibited. Therefore, the melting point of POSS tends to decrease, which is preferable. Specific examples of the POSS include a cage mixture of isooctyl POSS (hereinafter referred to as IOCG-POSS) and a cage mixture of phenethyl POSS (hereinafter referred to as PECG-POSS).

本発明におけるPOSSの添加時期は重合反応が完結するまでの任意の段階で添加できる。   In the present invention, the POSS can be added at any stage until the polymerization reaction is completed.

PETを例にして説明すると、一般的にポリエステルの重合は、(1)テレフタル酸とエチレングリコールを原料として直接エステル化反応によって低分子量体を得、さらにその後の重合反応によって高分子量のポリマーを得るプロセス、(2)テレフタル酸ジメチルとエチレングリコールを原料としてエステル交換反応によって低分子量体を得、さらにその後の重合反応によって高分子量のポリマーを得るプロセスにて行われる。   To explain PET as an example, in general, polymerization of polyester is as follows: (1) A low molecular weight product is obtained by direct esterification reaction using terephthalic acid and ethylene glycol as raw materials, and a high molecular weight polymer is obtained by subsequent polymerization reaction. Process, (2) A low molecular weight product is obtained by transesterification using dimethyl terephthalate and ethylene glycol as raw materials, and then a high molecular weight polymer is obtained by subsequent polymerization reaction.

本発明は、(1)又は(2)の一連の反応におけるポリエステルの重合が完結するまでの任意の段階、すなわち、エステル化反応開始前、エステル化反応中、エステル化反応後、あるいはエステル交換反応開始前、エステル交換反応中、エステル交換反応後、さらに重合開始前から重合が完結するまでの任意の段階で添加することができるが、操作性およびポリエステル中でのPOSSの分散性の点から重合前に添加するのが好ましい。また、これらのプロセスにおける任意の段階でPOSSを分割添加してもよい。   The present invention provides an arbitrary stage until the polymerization of the polyester in the series of reactions (1) or (2) is completed, that is, before the esterification reaction starts, during the esterification reaction, after the esterification reaction, or the transesterification reaction. It can be added at any stage before the start, during the transesterification reaction, after the transesterification reaction, and before the completion of the polymerization until the completion of the polymerization. From the viewpoint of operability and dispersibility of POSS in the polyester It is preferable to add it before. In addition, POSS may be dividedly added at an arbitrary stage in these processes.

なお、POSSの添加はポリエステルの反応系にそのまま添加してもよいが、予め該POSSをエチレングリコールなどのポリエステルを形成するジオール成分を含む溶媒と混合し、溶液またはスラリーとして添加してもよい。   The POSS may be added to the polyester reaction system as it is, but the POSS may be mixed in advance with a solvent containing a diol component forming a polyester such as ethylene glycol and added as a solution or slurry.

また、所定割合のポリエステルとPOSSを共溶媒(例えばヘキサフルオロイソプロパノール/クロロホルム混合溶媒)に25〜50℃の温度条件下で溶解し、得られた溶液を両者の貧溶媒(例えばアセトン)中に投入することによって沈殿物を得て、この沈殿物の溶媒を除去したものを添加してもよい。   Also, a predetermined proportion of polyester and POSS are dissolved in a co-solvent (eg, hexafluoroisopropanol / chloroform mixed solvent) at a temperature of 25 to 50 ° C., and the resulting solution is put into both poor solvents (eg, acetone). Thus, a precipitate may be obtained, and the precipitate from which the solvent is removed may be added.

本発明のポリエステル中でのPOSS添加量は20重量%以下であることが好ましい。20重量%以下であるとポリエステル中でのPOSS自体の凝集発生がなく、分散性が良好であり、所望の熱・機械的特性をもつポリエステルを得ることが可能となる。   The amount of POSS added in the polyester of the present invention is preferably 20% by weight or less. When it is 20% by weight or less, POSS itself does not aggregate in the polyester, dispersibility is good, and it is possible to obtain a polyester having desired thermal and mechanical properties.

一方、POSS含有量が1重量%以上であるとポリマー分子鎖に物理架橋剤として作用するPOSS分子の量が十分となり、熱的・機械的特性が向上するので好ましく、POSS含有量が3重量%以上であるとさらに好ましい。   On the other hand, if the POSS content is 1% by weight or more, the amount of POSS molecules acting as a physical cross-linking agent on the polymer molecular chain is sufficient, and the thermal and mechanical properties are improved, and the POSS content is preferably 3% by weight. More preferably, the above is true.

なお、特定のPOSSをポリエステル中で微分散させることによって熱的・機械的特性を改善・向上させる理由は明らかではないが、分子レベルまで微細化したPOSS粒子がポリエステル分子鎖の分子運動を抑制しているものと考えられる。すなわち、POSSがポリエステル分子鎖を可逆的に吸脱着する、いわゆる物理的架橋剤として作用するが、この作用は可逆的な架橋であるため、共有結合による架橋と異なってゲル化のような成形加工性を阻害するような問題を引き起こすことなく分子鎖の運動性を低下させることが可能であり、分子の運動性が低下するために融解時の緩和が阻害される。その結果、エントロピー変化の低下によって融点の上昇、また、分子運動の阻害による自由体積の減少のためにガラス転移点の上昇やヤング率の向上に寄与しているものと推定されるが、さらに物理的な架橋効果は収縮率の低下に貢献し、材料の寸法安定性の向上に寄与しているものと考えられる。   The reason for improving and improving the thermal and mechanical properties by finely dispersing specific POSS in the polyester is not clear, but the POSS particles refined to the molecular level suppress the molecular motion of the polyester molecular chain. It is thought that. In other words, POSS acts as a so-called physical cross-linking agent that reversibly absorbs and desorbs polyester molecular chains. However, since this action is reversible cross-linking, molding processing such as gelation is different from cross-linking by covalent bonds. It is possible to reduce the mobility of the molecular chain without causing a problem that inhibits the sexiness, and the mobility of the molecule is lowered, so that relaxation during melting is inhibited. As a result, it is estimated that the decrease in entropy contributes to the increase in melting point and the increase in glass transition point and the improvement of Young's modulus due to the decrease in free volume due to the inhibition of molecular motion. Such a cross-linking effect contributes to a reduction in shrinkage and is considered to contribute to an improvement in dimensional stability of the material.

一般の汎用プラスチックの弱点である耐熱性、強度、耐衝撃性、耐候性等の改善によって、自動車部品やOA機器の機構部品、電気・電子材料などの先端技術分野に利用される。   By improving heat resistance, strength, impact resistance, weather resistance, etc., which are weak points of general-purpose plastics, they are used in advanced technology fields such as automotive parts, mechanical parts of OA equipment, and electrical / electronic materials.

実施例中のPOSSの物性、およびポリエステルの物性は以下に述べる方法で測定した。(1)POSSの熱重量(TGA)重量減少率
下記装置を用いて、室温より450℃まで昇温しつつ重量の変化を測定し、200℃ および300℃でのそれぞれの重量減少率の差を求めた。
The physical properties of POSS and polyester in the examples were measured by the methods described below. (1) Thermogravimetric (TGA) weight loss rate of POSS Using the following equipment, the change in weight was measured while raising the temperature from room temperature to 450 ° C, and the difference in the respective weight loss rates at 200 ° C and 300 ° C was calculated. Asked.

装置 :BRUKER(AXS)TG−DTA 2000S
条件 :昇温速度 10℃/分(室温〜450℃)
N2下(流量50ml/分)
試料量:10mg
(2)POSSの平均分散径
<透過型電子顕微鏡観察>
装置 :透過型電子顕微鏡(日立製H−7100FA型)
条件 :加速電圧 100kV
試料調製:超薄切片法
試料厚み:50nm
<画像解析>
各試料の透過型電子顕微鏡写真をスキャナーにてコンピューターに取り込んだ。その後、専用ソフト(プラネトロン社製 Image Pro Plus Ver. 4.0)にて画像解析を行った。トーンカーブを操作することにより、明るさとコントラストを調整し、その後ガウスフィルターを用いて得た画像の高コントラスト成分の円相当径のうちをランダムに100点観察し、その平均値を平均分散径とした。
Apparatus: BRUKER (AXS) TG-DTA 2000S
Condition: Temperature rising rate 10 ° C./min (room temperature to 450 ° C.)
Under N2 (flow rate 50ml / min)
Sample amount: 10mg
(2) POSS average dispersion diameter <Transmission electron microscope observation>
Apparatus: Transmission electron microscope (Hitachi H-7100FA type)
Condition: Acceleration voltage 100kV
Sample preparation: Ultra-thin section method Sample thickness: 50 nm
<Image analysis>
Transmission electron micrographs of each sample were taken into a computer with a scanner. Thereafter, image analysis was performed with dedicated software (Image Pro Plus Ver. 4.0, manufactured by Planetron). By manipulating the tone curve, brightness and contrast are adjusted, and then 100 points of the equivalent circle diameter of the high contrast component of the image obtained using a Gaussian filter are randomly observed, and the average value is taken as the average dispersion diameter. did.

画像処理の手順及びパラメータ:
A.平坦化1回
B.コントラスト+30
C.ガウス1回
D.コントラスト+30、輝度−10
E.ガウス1回
平面化フィルター:背景(黒)、オブジェクト幅(20pix)
ガウスフィルター:サイズ(7)、強さ(10)
(3)ポリエステル中のPOSS含有量測定
ポリエステルとPOSSとの両者を溶解する溶媒(ヘキサフルオロイソプロパノール/クロロホルム混合溶液)に溶解し、1H核のNMRスペクトルを測定する。得られたスペクトルで、ポリエステル、POSSに特有の吸収のピーク面積強度をもとめ、その比率とプロトン数よりブレンドのモル比を算出する。さらに各々のポリマーの単位ユニットに相当する式量より重量比を算出する。
Image processing procedures and parameters:
A. One leveling B. Contrast +30
C. Gauss 1 time Contrast +30, brightness -10
E. Gaussian flattening filter: background (black), object width (20 pix)
Gaussian filter: size (7), strength (10)
(3) POSS content measurement in polyester It dissolves in the solvent (hexafluoroisopropanol / chloroform mixed solution) which melt | dissolves both polyester and POSS, and measures the NMR spectrum of 1H nucleus. From the obtained spectrum, the peak area intensity of absorption peculiar to polyester and POSS is obtained, and the molar ratio of the blend is calculated from the ratio and the number of protons. Further, the weight ratio is calculated from the formula amount corresponding to the unit unit of each polymer.

装置:BRUKER DRX-500(ブルカー社)
溶媒:ヘキサフルオロイソプロパノール/クロロホルム混合溶液
:499.8MHz基準
:TMS(0ppm)
測定温度 :30℃観測幅
:10KHzデータ点
:64K acquisiton time
:4.952秒pulse delay time
:3.048秒積算回数
:256回
(4)ガラス転移温度(Tg)、融点(Tm)
下記装置および条件で比熱測定を行い、JIS K7121に従って決定した。
Equipment: BRUKER DRX-500 (Bruker)
Solvent: Hexafluoroisopropanol / chloroform mixed solution
: 499.8MHz standard
: TMS (0ppm)
Measurement temperature: 30 ° C observation width
: 10KHz data point
: 64K acquisiton time
: 4.952 seconds pulse delay time
: 3.048 seconds integration count
: 256 times (4) Glass transition temperature (Tg), melting point (Tm)
Specific heat was measured with the following equipment and conditions, and determined according to JIS K7121.

装置 :TA Instrument社製温度変調DSC
測定条件:
加熱温度 :270〜600K(RCS冷却法)
温度校正 :高純度インジウムおよびスズの融点
温度変調振幅:±1K
温度変調周期:60秒
昇温ステップ:5K
試料重量 :5mg
試料容器 :アルミニウム製開放型容器(22mg)
参照容器 :アルミニウム製開放型容器(18mg)
なお、ここでのガラス転移温度は下記式により算出した。
ガラス転移温度=(補外ガラス転移開始温度+補外ガラス転移終了温度)/2
(5)固有粘度[η]
25℃で、オルトクロロフェノール中0.1g/ml濃度で測定した溶液粘度から、下式で計算した値を用いた。単位は[dl/g]で示す。
Apparatus: Temperature modulation DSC manufactured by TA Instrument
Measurement condition:
Heating temperature: 270-600K (RCS cooling method)
Temperature calibration: Melting point of high purity indium and tin
Temperature modulation amplitude: ± 1K
Temperature modulation period: 60 seconds
Temperature rising step: 5K
Sample weight: 5mg
Sample container: Aluminum open container (22 mg)
Reference container: Aluminum open container (18mg)
In addition, the glass transition temperature here was computed by the following formula.
Glass transition temperature = (extrapolated glass transition start temperature + extrapolated glass transition end temperature) / 2
(5) Intrinsic viscosity [η]
The value calculated by the following formula was used from the solution viscosity measured at 25 ° C. at a concentration of 0.1 g / ml in orthochlorophenol. The unit is indicated by [dl / g].

ηsp/C=[η]+K[η]2・C
ここで、ηsp=(溶液粘度/溶媒粘度)−1であり、Cは、溶媒100mlあたりの溶解ポリマー重量(g/100ml、通常1.2)、Kはハギンス定数(0.343とする)である。また、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定した。単位は[dl/g]で示す。
(6)曲げ特性
本発明のポリエステル樹脂組成物を乾燥(140℃、5時間)した後、型締圧80tの射出成形機を用い、シリンダー温度270〜300℃にて、厚み約6.4mm、幅約12.7mm、長さ約127mmの試験片を作製した。得られた試験片の曲げ特性を、ASTM D−790に従って測定した。
(7)反り
本発明のポリエステル樹脂組成物を乾燥(140℃、5時間)した後、型締圧80tの射出成形機を用い、金型温度120℃、シリンダー温度270〜300℃にて、寸法約120×120×1mmの平板状試験片を作製した。平面上に上記の平板状試験片を置き、試験片の4隅の内の1カ所を押さえ、残り3隅の内、平面からの距離が最も大きい値を隙間ゲージやノギス等を用いて測定した。4隅それぞれを押さえ、得られた反り値の平均値を求めた。反り値は小さいほど優れている。
η sp / C = [η] + K [η] 2 · C
Here, η sp = (solution viscosity / solvent viscosity) −1, C is the weight of dissolved polymer per 100 ml of solvent (g / 100 ml, usually 1.2), and K is the Huggins constant (assuming 0.343) It is. The solution viscosity and solvent viscosity were measured using an Ostwald viscometer. The unit is indicated by [dl / g].
(6) Bending properties After drying (140 ° C, 5 hours) the polyester resin composition of the present invention, using an injection molding machine with a clamping pressure of 80 t, at a cylinder temperature of 270 to 300 ° C, a thickness of about 6.4 mm, A test piece having a width of about 12.7 mm and a length of about 127 mm was produced. The bending properties of the resulting specimen were measured according to ASTM D-790.
(7) Warping After drying the polyester resin composition of the present invention (140 ° C., 5 hours), using an injection molding machine with a clamping pressure of 80 t, at a mold temperature of 120 ° C. and a cylinder temperature of 270 to 300 ° C., dimensions A flat test piece of about 120 × 120 × 1 mm was produced. Place the above-mentioned flat test piece on a flat surface, press one of the four corners of the test piece, and measure the maximum distance from the flat surface using the gap gauge or caliper. . Each of the four corners was pressed and the average value of the obtained warp values was determined. The smaller the warp value, the better.

以下実施例により、本発明を具体的かつより詳細に説明する。ただし、本発明は以下の実施例に制限されるものではない。   Hereinafter, the present invention will be described specifically and in detail by way of examples. However, the present invention is not limited to the following examples.

実施例1
高純度テレフタル酸1kgとエチレングリコール0.45kgのスラリーを、予めビス(ヒドロキシエチル)テレフタレート約1.2kgが仕込まれ、温度250℃、圧力1.2×105Paに保持されたエステル化反応槽に3.5時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行い、このエステル化反応生成物の1.07kgを重縮合槽に移送した。引き続いて、エステル化反応生成物が移送された前記重縮合反応槽にPECG−POSS53g(生成ポリマーに対して5.0重量%)を反応系へ添加し、10分間撹拌した後、重縮合触媒として、三酸化アンチモン(生成ポリマーに対して0.028重量%)を添加した。その後、低重合体を48rpmで攪拌しながら、反応系を250℃から290℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし常圧に戻し重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングしてペレットを得た。なお、減圧開始から所定の撹拌トルク到達までの時間(重合時間)は2時間50分であった。得られたポリエステルペレットの極限粘度は0.70、POSS含有量は4.7重量%であった。POSSの分散性は良好であり、平均分散径は24nmであった。
Example 1
An esterification reaction tank in which about 1.2 kg of bis (hydroxyethyl) terephthalate was previously charged in a slurry of 1 kg of high-purity terephthalic acid and 0.45 kg of ethylene glycol, and maintained at a temperature of 250 ° C. and a pressure of 1.2 × 10 5 Pa. The mixture was successively supplied over 3.5 hours, and after the completion of the supply, an esterification reaction was carried out over an additional hour, and 1.07 kg of the esterification reaction product was transferred to a polycondensation tank. Subsequently, 53 g of PECG-POSS (5.0% by weight based on the produced polymer) was added to the polycondensation reaction tank to which the esterification reaction product had been transferred, stirred for 10 minutes, and then used as a polycondensation catalyst. Antimony trioxide (0.028% by weight with respect to the resulting polymer) was added. Thereafter, while stirring the low polymer at 48 rpm, the reaction system was gradually heated from 250 ° C. to 290 ° C. and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes. When the predetermined stirring torque was reached, the reaction system was purged with nitrogen, returned to normal pressure, the polycondensation reaction was stopped, discharged into cold water in a strand form, and immediately cut to obtain pellets. The time from the start of decompression to the arrival of the predetermined stirring torque (polymerization time) was 2 hours 50 minutes. The obtained polyester pellets had an intrinsic viscosity of 0.70 and a POSS content of 4.7% by weight. The dispersibility of POSS was good, and the average dispersion diameter was 24 nm.

このPECG−POSS含有樹脂ペレットを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。ガラス転移温度88℃、融点260℃であり、曲げ弾性率、曲げ強度およびそり特性ともに優れた性能を有していた。   Table 1 shows the results of preparing test pieces using the PECG-POSS-containing resin pellets and evaluating the bending characteristics and warpage. It had a glass transition temperature of 88 ° C. and a melting point of 260 ° C., and had excellent performance in bending elastic modulus, bending strength, and warpage characteristics.

実施例2〜5
PECG−POSSの添加量を変更した以外は実施例1と同様に行った。ポリエステル中でのPOSSの分散は良好であり、平均粒子径は1μm(1000nm)以下であった。
Examples 2-5
It carried out similarly to Example 1 except having changed the addition amount of PECG-POSS. The dispersion of POSS in the polyester was good, and the average particle size was 1 μm (1000 nm) or less.

試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。いずれも熱的特性が向しており、曲げ弾性率、曲げ強度およびそり特性ともに優れた性能を有していた。   Table 1 shows the results of preparing test pieces and evaluating the bending characteristics and warpage. All of them were suitable for thermal characteristics, and had excellent performance in bending elastic modulus, bending strength and warpage characteristics.

実施例6〜8
POSSの種類を変更した以外は実施例1と同様に行ったが、いずれの水準もPOSSの分散性は良好であった。
Examples 6-8
The same procedure as in Example 1 was performed except that the type of POSS was changed, but the dispersibility of POSS was good at any level.

試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。いずれの水準も熱的特性が向上しており、曲げ弾性率、曲げ強度およびそり特性ともに優れた性能を有していた
比較例1および2
本発明で規定する他のPOSSを使用した以外は実施例1と同様に行った。POSSの分散性は不良であり、平均分散径はいずれも1μm(1000nm)以上であった。
Table 1 shows the results of preparing test pieces and evaluating the bending characteristics and warpage. Comparative Examples 1 and 2 in which the thermal characteristics were improved at any level and the bending elastic modulus, bending strength, and warpage characteristics were excellent.
The same procedure as in Example 1 was performed except that another POSS defined in the present invention was used. The dispersibility of POSS was poor, and the average dispersion diameter was 1 μm (1000 nm) or more.

このPOSS含有PET樹脂ペレットを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。ガラス転移温度および融点ともに熱的特性向上はみられず、曲げ弾性率、曲げ強度およびそり特性ともに劣っていた。   Table 1 shows the results of making test pieces using the POSS-containing PET resin pellets and evaluating the bending characteristics and warpage. Neither glass transition temperature nor melting point was improved in thermal properties, and the flexural modulus, flexural strength and warpage properties were inferior.

比較例3
PECG−POSSを添加しない以外は実施例1と同様に行った。
Comparative Example 3
The same procedure as in Example 1 was performed except that PECG-POSS was not added.

このPOSS未含有PET樹脂ペレットを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。曲げ弾性率、曲げ強度およびそり特性ともに劣っていた。   Table 1 shows the results of preparing test pieces using the POSS-free PET resin pellets and evaluating the bending characteristics and warpage. The bending elastic modulus, bending strength and warpage characteristics were inferior.

実施例9
2,6−ナフタレンジカルボン酸ジメチル1kg、エチレングリコール0.55kg、および酢酸マンガン4水和塩0.30g、酢酸コバルト4水和塩0.08gを反応器に仕込み加熱した。メタノールの留出と共に缶内温度を徐々に180〜230℃まで上昇させ、メタノールの留出がほとんどなくなった時点でエステル交換反応を終了し、反応生成物を全量を重縮合槽に移送した。引き続いて、反応生成物が移送された前記重縮合反応槽にPECG−POSS(生成ポリマーに対して5.0重量%)を反応系へ添加し、10分間撹拌した後、重縮合触媒として、三酸化アンチモン(生成ポリマーに対して0.02重量%)を添加した。その後、低重合体を48rpmで攪拌しながら、反応系を230℃から290℃まで徐々に昇温するとともに、圧力を35Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし常圧に戻し重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングしてペレットを得た。得られた2,6−PEN樹脂ペレットの極限粘度は0.65、POSS含有量は4.7重量%であった。POSSの分散性は良好であり、平均分散径は29nmであった。
Example 9
A reactor was charged with 1 kg of dimethyl 2,6-naphthalenedicarboxylate, 0.55 kg of ethylene glycol, 0.30 g of manganese acetate tetrahydrate and 0.08 g of cobalt acetate tetrahydrate, and heated. The temperature inside the can was gradually raised to 180 to 230 ° C. together with the distillation of methanol, and the transesterification reaction was terminated when the distillation of methanol almost disappeared, and the entire reaction product was transferred to a polycondensation tank. Subsequently, PECG-POSS (5.0 wt% with respect to the produced polymer) was added to the reaction system to which the reaction product had been transferred and stirred for 10 minutes. Antimony oxide (0.02% by weight based on the resulting polymer) was added. Thereafter, while stirring the low polymer at 48 rpm, the reaction system was gradually heated from 230 ° C. to 290 ° C. and the pressure was reduced to 35 Pa. The time to reach the final temperature and final pressure was both 60 minutes. When the predetermined stirring torque was reached, the reaction system was purged with nitrogen, returned to normal pressure, the polycondensation reaction was stopped, discharged into cold water in a strand form, and immediately cut to obtain pellets. The obtained 2,6-PEN resin pellets had an intrinsic viscosity of 0.65 and a POSS content of 4.7% by weight. The dispersibility of POSS was good, and the average dispersion diameter was 29 nm.

このPECG−POSS含有2,6−PENペレットを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。ガラス転移温度130℃、融点272℃であり、曲げ弾性率、曲げ強度およびそり特性ともに優れた性能を有していた。   Table 1 shows the results of making test pieces using the PECG-POSS-containing 2,6-PEN pellets and evaluating the bending characteristics and warpage. It had a glass transition temperature of 130 ° C. and a melting point of 272 ° C., and had excellent performance in bending elastic modulus, bending strength, and warpage characteristics.

比較例4
PECG−POSSを添加しない以外は実施例9と同様に行った。
Comparative Example 4
The same procedure as in Example 9 was carried out except that PECG-POSS was not added.

この2,6−PENチップを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。曲げ弾性率、曲げ強度ともに劣っていた。なお、そりは成型品が変形しているため測定不可であった。   Table 1 shows the results of preparing test pieces using the 2,6-PEN chip and evaluating the bending characteristics and warpage. Both bending elastic modulus and bending strength were inferior. It should be noted that the warpage could not be measured because the molded product was deformed.

実施例10
テレフタル酸ジメチル1kg、1,4−ブタンジオール0.92kg、およびテトラブトキシチタン0.90gを反応器に仕込み加熱した。メタノールの留出と共に缶内温度を徐々に135〜235℃まで上昇させ、メタノールの留出がほとんどなくなった時点でエステル交換反応を終了し、反応生成物を全量を重縮合槽に移送した。引き続いて、反応生成物が移送された前記重縮合反応槽にPECG−POSS(生成ポリマーに対して5.0重量%)を反応系へ添加し、10分間撹拌した後、低重合体を48rpmで攪拌しながら、反応系を230℃から245℃まで徐々に昇温するとともに、圧力を35Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし常圧に戻し重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングしてペレットを得た。得られたPBT樹脂ペレットの極限粘度は0.95、POSS含有量は4.7重量%であった。POSSの分散性は良好であり、平均分散径は76nmであった。
Example 10
1 kg of dimethyl terephthalate, 0.92 kg of 1,4-butanediol, and 0.90 g of tetrabutoxytitanium were charged into the reactor and heated. The temperature inside the can was gradually raised to 135 to 235 ° C. together with the distillation of methanol, and when the distillation of methanol was almost complete, the transesterification reaction was completed, and the entire reaction product was transferred to a polycondensation tank. Subsequently, PECG-POSS (5.0% by weight with respect to the produced polymer) was added to the reaction system to which the reaction product had been transferred and stirred for 10 minutes, and then the low polymer was added at 48 rpm. While stirring, the temperature of the reaction system was gradually raised from 230 ° C. to 245 ° C., and the pressure was lowered to 35 Pa. The time to reach the final temperature and final pressure was both 60 minutes. When the predetermined stirring torque was reached, the reaction system was purged with nitrogen, returned to normal pressure, the polycondensation reaction was stopped, discharged into cold water in a strand form, and immediately cut to obtain pellets. The obtained PBT resin pellets had an intrinsic viscosity of 0.95 and a POSS content of 4.7% by weight. The dispersibility of POSS was good, and the average dispersion diameter was 76 nm.

このPECG−POSS含有PBT樹脂ペレットを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。ガラス転移温度44℃、融点237℃であり、曲げ弾性率、曲げ強度およびそり特性ともに優れた性能を有していた。   Table 1 shows the results of making test pieces using the PECG-POSS-containing PBT resin pellets and evaluating the bending characteristics and warpage. It had a glass transition temperature of 44 ° C. and a melting point of 237 ° C., and had excellent performance in terms of flexural modulus, flexural strength and warpage properties.

比較例5
PECG−POSSを添加しない以外は実施例10と同様に行った。
Comparative Example 5
The same procedure as in Example 10 was performed except that PECG-POSS was not added.

このPBTチップを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。曲げ弾性率、曲げ強度ともに劣っていた。なお、そりは成型品が変形しているため測定不可であった。   Table 1 shows the results of making test pieces using this PBT chip and evaluating the bending characteristics and warpage. Both bending elastic modulus and bending strength were inferior. It should be noted that the warpage could not be measured because the molded product was deformed.

実施例11
テレフタル酸ジメチル1kg、1,3−プロパンジオール0.78kg、およびテトラブトキシチタン0.40gを反応器に仕込み加熱した。メタノールの留出と共に缶内温度を徐々に135〜230℃まで上昇させ、メタノールの留出がほとんどなくなった時点でエステル交換反応を終了し、反応生成物を全量を重縮合槽に移送した。引き続いて、反応生成物が移送された前記重縮合反応槽にPECG−POSS(生成ポリマーに対して5.0重量%)を反応系へ添加し、10分間撹拌した後、テトラブトキシチタン0.60gを添加した。その後、低重合体を48rpmで攪拌しながら、反応系を235℃から265℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし常圧に戻し重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングしてペレットを得た。得られたポリエステルペレットの極限粘度は0.92、POSS含有量は4.7重量%であった。POSSの分散性は良好であり、平均分散径は30nmであった。
Example 11
1 kg of dimethyl terephthalate, 0.78 kg of 1,3-propanediol and 0.40 g of tetrabutoxytitanium were charged into the reactor and heated. The temperature inside the can was gradually raised to 135 to 230 ° C. together with the distillation of methanol, and the transesterification reaction was terminated when the distillation of methanol almost disappeared, and the entire reaction product was transferred to a polycondensation tank. Subsequently, PECG-POSS (5.0% by weight with respect to the produced polymer) was added to the reaction system to which the reaction product had been transferred and stirred for 10 minutes, and then 0.60 g of tetrabutoxy titanium. Was added. Thereafter, while stirring the low polymer at 48 rpm, the reaction system was gradually heated from 235 ° C. to 265 ° C., and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes. When the predetermined stirring torque was reached, the reaction system was purged with nitrogen, returned to normal pressure, the polycondensation reaction was stopped, discharged into cold water in a strand form, and immediately cut to obtain pellets. The obtained polyester pellets had an intrinsic viscosity of 0.92 and a POSS content of 4.7% by weight. The dispersibility of POSS was good, and the average dispersion diameter was 30 nm.

このPECG−POSS含有PPT樹脂ペレットを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。ガラス転移温度56℃、融点231℃であり、曲げ弾性率、曲げ強度およびそり特性ともに優れた性能を有していた。   Table 1 shows the results of preparing test pieces using the PECG-POSS-containing PPT resin pellets and evaluating the bending characteristics and warpage. It had a glass transition temperature of 56 ° C. and a melting point of 231 ° C., and had excellent performance in bending elastic modulus, bending strength, and warpage characteristics.

比較例6
PECG−POSSを添加しない以外は実施例11と同様に行った。
Comparative Example 6
The same procedure as in Example 11 was performed except that PECG-POSS was not added.

このPPTチップを用いて試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。曲げ弾性率、曲げ強度ともに劣っていた。なお、そりは成型品が変形しているため測定不可であった。   Table 1 shows the results of making test pieces using this PPT chip and evaluating the bending characteristics and warpage. Both bending elastic modulus and bending strength were inferior. It should be noted that the warpage could not be measured because the molded product was deformed.

実施例12および実施例13
使用するPOSSの添加量を変更した以外は、実施例1と同様に行った。POSSの分散性は良好であり、平均分散径はいずれも1μm(1000nm)以下であった。
Example 12 and Example 13
The same procedure as in Example 1 was performed except that the amount of POSS used was changed. The dispersibility of POSS was good, and the average dispersion diameter was 1 μm (1000 nm) or less.

試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示す。ガラス転移温度の上昇がみられ、曲げ弾性率、曲げ強度およびそり特性ともに良好な性能を有していた。   Table 1 shows the results of preparing test pieces and evaluating the bending characteristics and warpage. The glass transition temperature increased, and the flexural modulus, flexural strength and warpage characteristics were good.

比較例7
四窒化ケイ素粒子(粒子径0.1±0.05μm、濃度5.0wt%EGスラリー)を
用いた以外は、実施例1と同様に行ったが、POSSの分散性は不良であり、5μm以上の粗大粒子が存在した。
Comparative Example 7
The same procedure as in Example 1 was performed except that silicon tetranitride particles (particle diameter 0.1 ± 0.05 μm, concentration 5.0 wt% EG slurry) were used, but the dispersibility of POSS was poor, and 5 μm or more. Coarse particles were present.

試験片を作成し、曲げ特性およびそりについて評価した結果を表1に示したが、ガラス転移温度および融点ともに熱的特性向上はみられず、曲げ弾性率、曲げ強度およびそり特性ともに劣っていた。   Table 1 shows the results of evaluation of the bending properties and warpage of the test pieces, but no improvement in thermal properties was observed for both the glass transition temperature and the melting point, and the flexural modulus, bending strength and warpage properties were inferior. .

Figure 2005220214
Figure 2005220214

Claims (5)

ジカルボン酸を主とする二官能性酸成分と少なくとも一種のグリコール成分よりなるポリエステルを製造するに際し、下記一般式で表され、かつ(1)および(2)を満たすポリヘドラルオリゴメトリックシルセスキオキサン(POSS)を、ポリエステルの重合が完結するまでの任意の段階で添加することを特徴とするポリエステル組成物の製造方法。
(RSiO1.5n (A)
(RSiO1.5l(RXSiO)k (B)
[一般式(A)、(B)において、Rは水素原子、炭素原子数1から20の置換又は非置換の炭化水素基又はケイ素原子数1から10のケイ素原子含有基から選ばれ、Rは全て同一でも複数の基で構成されていても良い。一般式(B)においてXはOR1(R1は水素原子、アルキル基、アリール基、第4級アンモニウムラジカル)、ハロゲン原子及び上記Rの中から選ばれる少なくとも一つの官能基であり、(RXSiO)k中のXは全て同じでも異なっていても良い。又(RXSiO)k中の2個のXが互いに連結して下記一般式(C)で表される連結構造を形成しても良い。
Figure 2005220214
Y及びZは、Xと同じ基の群の中から選ばれ、YとZは同じでも異なっていても良い。nは6から14の整数、lは2から12の整数、kは2又は3である。]
(1)熱重量分析法によるTpでの重量減少率が5重量%以下
(2)融点がTp以下
ただし、Tp=Tm+30℃
Tm=ポリエステルの融点(℃)
A polyhedral oligometric silsesquioxy represented by the following general formula and satisfying (1) and (2) when producing a polyester comprising a difunctional acid component mainly composed of dicarboxylic acid and at least one glycol component. A method for producing a polyester composition, wherein sun (POSS) is added at any stage until the polymerization of the polyester is completed.
(RSiO 1.5 ) n (A)
(RSiO 1.5 ) l (RXSiO) k (B)
[In the general formulas (A) and (B), R is selected from a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a silicon atom-containing group having 1 to 10 silicon atoms; All may be composed of the same or plural groups. In the general formula (B), X is OR 1 (R 1 is a hydrogen atom, an alkyl group, an aryl group, a quaternary ammonium radical), a halogen atom, or at least one functional group selected from R, and (RXSiO ) X in k may be the same or different. Further, two X in (RXSiO) k may be connected to each other to form a connection structure represented by the following general formula (C).
Figure 2005220214
Y and Z are selected from the same group of groups as X, and Y and Z may be the same or different. n is an integer of 6 to 14, l is an integer of 2 to 12, and k is 2 or 3. ]
(1) Weight reduction rate at Tp by thermogravimetric analysis is 5% by weight or less (2) Melting point is Tp or less, provided that Tp = Tm + 30 ° C.
Tm = melting point of polyester (° C)
ポリヘドラルオリゴメトリックシルセスキオキサン(POSS)の一般式(A)又は(B)におけるRの70%以上がペンチル基、ヘキシル基、オクチル基、シクロヘキシル基、シクロペンチル基、フェニル基、トリメチルシロキシ基、ノルボネニルエチル基のうちの1つまたは2つ以上であることを特徴とする請求項1記載のポリエステル組成物の製造方法。   70% or more of R in the general formula (A) or (B) of polyhedral oligometric silsesquioxane (POSS) is pentyl group, hexyl group, octyl group, cyclohexyl group, cyclopentyl group, phenyl group, trimethylsiloxy group The method for producing a polyester composition according to claim 1, wherein one or more of norbornenylethyl groups are present. ポリヘドラルオリゴメトリックシルセスキオキサン(POSS)が、Siの数が異なるPOSS分子の混合体であるケージミクスチャーであることを特徴とする請求項1又は2記載のポリエステル組成物の製造方法。   3. The method for producing a polyester composition according to claim 1, wherein the polyhedral oligometric silsesquioxane (POSS) is a cage mixture which is a mixture of POSS molecules having different numbers of Si. ポリヘドラルオリゴメトリックシルセスキオキサン(POSS)の添加量が20重量%以下であることを特徴とする請求項1〜3のいずれか1項記載のポリエステル組成物の製造方法。   The method for producing a polyester composition according to any one of claims 1 to 3, wherein the amount of polyhedral oligometric silsesquioxane (POSS) added is 20% by weight or less. ポリエステルがポリエチレンテレフタレートであることを特徴とする請求項1〜4のいずれか1項記載のポリエステル組成物の製造方法。   The method for producing a polyester composition according to any one of claims 1 to 4, wherein the polyester is polyethylene terephthalate.
JP2004028986A 2004-02-05 2004-02-05 Method for producing polyester composition Pending JP2005220214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028986A JP2005220214A (en) 2004-02-05 2004-02-05 Method for producing polyester composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028986A JP2005220214A (en) 2004-02-05 2004-02-05 Method for producing polyester composition

Publications (1)

Publication Number Publication Date
JP2005220214A true JP2005220214A (en) 2005-08-18

Family

ID=34996107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028986A Pending JP2005220214A (en) 2004-02-05 2004-02-05 Method for producing polyester composition

Country Status (1)

Country Link
JP (1) JP2005220214A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182665A (en) * 2005-12-29 2007-07-19 Hyosung Corp Method for producing polyethylene terephthalate nano-composite fiber having improved modulus
KR100966193B1 (en) 2007-09-18 2010-06-25 한국세라믹기술원 Nano-composite comprising poss and method for manufacturing the same
KR101039064B1 (en) * 2010-04-30 2011-06-03 한국세라믹기술원 Pet hybrid nano-composite comprising poss
KR101130262B1 (en) 2008-12-18 2012-03-26 주식회사 효성 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature
CN102604063A (en) * 2011-01-24 2012-07-25 比亚迪股份有限公司 Polyester resin, preparation method of the polyester resin, and automobile intermediate paint
KR102065091B1 (en) * 2013-09-30 2020-01-10 코오롱인더스트리 주식회사 Polyester and manufacturing method thereof
CN113696573A (en) * 2021-10-08 2021-11-26 宁波勤邦新材料科技有限公司 Toughened home decoration base film and preparation method thereof
CN113943933A (en) * 2020-07-16 2022-01-18 江苏菲沃泰纳米科技股份有限公司 Composite film with multilayer structure, preparation method and product thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182665A (en) * 2005-12-29 2007-07-19 Hyosung Corp Method for producing polyethylene terephthalate nano-composite fiber having improved modulus
EP1810993A3 (en) * 2005-12-29 2009-04-22 Hyosung Corporation Method of preparation of polyethylenetherephthalate nanocomposite fiber with enhanced modulus
JP4523933B2 (en) * 2005-12-29 2010-08-11 ヒョスング コーポレーション Method for producing polyethylene terephthalate nanocomposite fiber with improved modulus
KR100966193B1 (en) 2007-09-18 2010-06-25 한국세라믹기술원 Nano-composite comprising poss and method for manufacturing the same
KR101130262B1 (en) 2008-12-18 2012-03-26 주식회사 효성 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature
KR101039064B1 (en) * 2010-04-30 2011-06-03 한국세라믹기술원 Pet hybrid nano-composite comprising poss
CN102604063A (en) * 2011-01-24 2012-07-25 比亚迪股份有限公司 Polyester resin, preparation method of the polyester resin, and automobile intermediate paint
CN102604063B (en) * 2011-01-24 2014-05-28 比亚迪股份有限公司 Polyester resin, preparation method of the polyester resin, and automobile intermediate paint
KR102065091B1 (en) * 2013-09-30 2020-01-10 코오롱인더스트리 주식회사 Polyester and manufacturing method thereof
CN113943933A (en) * 2020-07-16 2022-01-18 江苏菲沃泰纳米科技股份有限公司 Composite film with multilayer structure, preparation method and product thereof
CN113943933B (en) * 2020-07-16 2023-09-29 江苏菲沃泰纳米科技股份有限公司 Composite film with multilayer structure, preparation method and product thereof
CN113696573A (en) * 2021-10-08 2021-11-26 宁波勤邦新材料科技有限公司 Toughened home decoration base film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5192815B2 (en) Functional filler and resin composition containing the same
US8198362B2 (en) Damping material and method for production thereof
JP6439027B1 (en) Liquid crystal polyester resin composition and molded body
JP6473796B1 (en) Liquid crystal polyester resin composition and molded body
JP5396690B2 (en) An inorganic reinforced polyester resin composition and a method for improving the surface appearance of a molded article using the same.
JP2010007067A (en) Liquid crystal polymer composition containing nano-structured hollow carbon material, and molded article thereof
JP2007126630A (en) Functional filler and resin composition comprising the same
CN107922717A (en) Thermoplastic polyester resin composition and the light reflector using the resin combination
JP2015501856A (en) Polylactic acid resin and copolyester resin blend and molded product using the same
JP2008523216A (en) Hydrolysis-resistant polyester composition and articles made from the composition
JP2007138018A (en) Flame-retardant polybutylene terephthalate resin composition
JP2005220214A (en) Method for producing polyester composition
KR20000017158A (en) Resin and composites containing them
JP2004143210A (en) Polybutylene terephthalate resin composition and molded product
JP2005220160A (en) Method for producing polyester composition
JP4523933B2 (en) Method for producing polyethylene terephthalate nanocomposite fiber with improved modulus
JP2007262369A (en) Polyester resin composition
JP2004307738A (en) Polyester composition
JP3936914B2 (en) POLYMER MATERIAL, MOLDED ARTICLE, AND METHOD FOR PRODUCING THEM
KR100743130B1 (en) Method of manufacturing copolyester, copolyester binder fiber using copolyester and its use
JP2012233208A (en) Functional filler and resin composition containing same
CN117447687B (en) Low-warpage high-viscosity PETG copolyester and preparation method thereof
JP2549710B2 (en) Polyester resin composition
JP6221486B2 (en) Polybutylene terephthalate and method for producing the same
JP2008239715A (en) Organic-inorganic hybrid biodegradable polyester resin, resin composition comprising the same, and molded item obtained from resin composition