KR101130262B1 - Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature - Google Patents

Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature Download PDF

Info

Publication number
KR101130262B1
KR101130262B1 KR1020080129621A KR20080129621A KR101130262B1 KR 101130262 B1 KR101130262 B1 KR 101130262B1 KR 1020080129621 A KR1020080129621 A KR 1020080129621A KR 20080129621 A KR20080129621 A KR 20080129621A KR 101130262 B1 KR101130262 B1 KR 101130262B1
Authority
KR
South Korea
Prior art keywords
pet
poss
nanocomposite
modulus retention
high temperature
Prior art date
Application number
KR1020080129621A
Other languages
Korean (ko)
Other versions
KR20100070885A (en
Inventor
김홍운
최수명
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020080129621A priority Critical patent/KR101130262B1/en
Publication of KR20100070885A publication Critical patent/KR20100070885A/en
Application granted granted Critical
Publication of KR101130262B1 publication Critical patent/KR101130262B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/046Shape recovering or form memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 모듈러스 유지율이 우수하고 유리전이온도가 증가한 폴리(에틸렌 테레프탈레이트) 나노복합 섬유에 관한 것으로서 더욱 상세하게는 유기/무기 혼성 나노화합물인 아민계 폴리헤드럴 올리고머 실세스퀵산(Polyhedral Oligomeric Silsesquixane, POSS)을 1.0 내지 3.0 중량% 로 중합단계에서 첨가하여 에틸렌테레프탈레이트 단위를 85 몰% 이상이고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 상기 복합칩을 용융방사 및 연신시켜 제조한 PET 나노복합 섬유는 고온에서 우수한 모듈러스 유지율과 유리전이온도가 증가하는 것을 나타낸 것이다.The present invention relates to a poly (ethylene terephthalate) nanocomposite fiber having an excellent modulus retention and an increased glass transition temperature, and more particularly, to an amine-based polyhedral oligomeric silsesquixane (organic / inorganic hybrid nanocompound). POSS) was added at 1.0 to 3.0% by weight in the polymerization step to prepare polyethylene terephthalate nanocomposite chip having an ethylene terephthalate unit of 85 mol% or more and an intrinsic viscosity in the range of 0.50 to 1.20, and then melt spinning and PET nanocomposite fiber prepared by stretching shows an excellent modulus retention and glass transition temperature increase at high temperatures.

모듈러스 유지율, PET 나노복합섬유, 폴리헤드럴 올리고머 실세스퀵산, POSS, 분산성, 유리전이온도 Modulus retention, PET nanocomposite fiber, polyhedral oligomer silsesquixane, POSS, dispersibility, glass transition temperature

Description

고온에서 모듈러스 유지율이 우수한 폴리에틸렌테레프탈레이트 나노복합 섬유의 제조방법{Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature}Preparation method of polyethylene terephthalate nanocomposite fiber with excellent modulus retention at high temperature {Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature}

본 발명은 고온에서 모듈러스 유지율이 우수하고 유리전이온도가 상승한 폴리(에틸렌 테레프탈레이트)(Polyethyleneterephthalate, 이하 'PET'라 한다.) 나노복합 섬유에 관한 것으로서, 상세하게는 자체적으로 고온에서 내열성이 우수한 나노 화합물인 아민계 폴리헤드럴 올리고머성 실세스퀵산(Polyhedral Oligomeric Silsesquixane, POSS, 이하 'POSS'라 한다.)인 분자식 C59H127NO12Si8인 화합물을 1.0 내지 3.0 중량%로 중합단계에서 첨가하여 에틸렌테레프탈레이트 단위를 85 몰% 이상 함유하고 고유점도가 0.50dl/g 내지 1.20dl/g 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 상기 복합칩을 용융방사 및 연신시켜 PET 나노복합 섬유를 제조하는 방법에 관한 것이다. The present invention relates to a poly (ethylene terephthalate) (hereinafter referred to as 'PET') nanocomposite fiber having excellent modulus retention at high temperature and an increased glass transition temperature, and specifically, a nano having excellent heat resistance at high temperature. A compound of C 59 H 127 NO 12 Si 8 which is an amine polyhedral oligomeric silsesquixane (POSS, hereinafter referred to as 'POSS'), which is a compound, is added in the polymerization step at 1.0 to 3.0 wt%. To produce a polyethylene terephthalate nanocomposite chip containing at least 85 mol% of ethylene terephthalate units and having an intrinsic viscosity in the range of 0.50 dl / g to 1.20 dl / g, followed by melt spinning and stretching the composite chip to form PET nanocomposite fibers. It relates to a method of manufacturing.

대표적인 폴리에스터인 'PET'는 1949년 ICI가 섬유용으로 처음 공업화한 것으로, 나일론 및 아크릴 섬유와 함께 이른바 3대 합성섬유의 하나로 성장하였으며, 비섬유 분야에서도 고강도, 고내열성, 투명성, 기체 차단성, 연신 가공성 등의 우수한 물성, 가공 특성 및 가격경쟁력을 바탕으로 급격히 성장해 왔다. 특히 타이어코드용으로 사용되는 PET는 경제성과 고강도면에서 유리하나, 내열강력이 약하고 저내수성이라는 단점을 가지고 있으므로 내열성 및 고온에서 모듈러스 유지율의 향상은 필수적으로 요구되고 있는 실정이다.'PET', a representative polyester, was first industrialized by ICI for textiles in 1949. It grew into one of the three synthetic fibers, together with nylon and acrylic fibers, and high strength, high heat resistance, transparency and gas barrier properties in non-fiber fields. It has grown rapidly on the basis of excellent physical properties such as drawing processability, processing characteristics and price competitiveness. In particular, PET used for tire cords is advantageous in terms of economy and high strength, but has a disadvantage in that heat resistance is weak and low water resistance. Therefore, improvement of modulus retention at heat resistance and high temperature is required.

일반적으로 테레프탈산과 에틸렌글리콜의 축중합에 의해 합성되는 PET의 장점으로 첫째, 금속재료?섬유제품 등에 대한 우수한 접착성 및 도막성, 둘째, 뛰어난 내후성, 열안정성, 절연성 및 우수한 외관, 셋째, 인체에 무해한 점, 넷째, 염색성, 항필링성 등이 뛰어나며 기존의 섬유와 동등한 기계적 성질을 갖고 있다는 점을 들 수 있다. 이러한 다양한 장점들에도 불구하고 앞서 언급한 바와 같이 더욱 우수한 성능을 얻기 위한 노력이 계속되고 있는데 몬모릴로나이트(MTT) 등의 점토를 수지 내에 박리?분산시켜 내열성?기체차단성 및 기타 기계적 물성이 엔지니어링 플라스틱 수준으로 우수한 PET/점토 나노복합체를 제조하려는 노력이 그 중의 하나이다.In general, PET is synthesized by condensation polymerization of terephthalic acid and ethylene glycol. First, it has excellent adhesion and coating properties to metal materials and textile products, and second, excellent weather resistance, thermal stability, insulation, and excellent appearance. Harmless point, fourth, it is excellent in dyeing, anti-pilling, etc., and has the same mechanical properties as conventional fibers. In spite of these various advantages, efforts are being made to achieve better performance, as mentioned above. Efforts to produce excellent PET / clay nanocomposites are one of them.

고분자수지/점토 나노복합체를 제조하는 것은 기존의 마이크론(10-6m) 규모의 보강제를 첨가하여 물성을 향상시키는 방법에서 벗어나 무기 충전제/강화제의 입자크기를 나노미터 규모까지 분산시켜 기존 무기물 충전 복합체의 단점을 현저히 극복하는 것을 기본적인 목표로 하고 있으며, 원가대비 성능면에서 매우 유리한 방법으로 차세대 복합재료 시장의 판도에 큰 변화를 가져올 것으로 예측되는 핵심기 술의 하나이다.The preparation of polymer resin / clay nanocomposites is a method of improving the physical properties by adding a micron (10 -6 m) reinforcing agent, and dispersing the particle size of the inorganic filler / reinforcing agent to the nanometer scale. Its basic goal is to overcome the shortcomings of the system, and it is one of the key technologies that is expected to make a big difference in the next generation composite market in a very advantageous way in terms of cost performance.

1987년 일본 토요타 연구진들에 의해 적절한 방법으로 나일론 단량체를 규산염 층 사이에 삽입시키고 이를 층간 중합함으로써 층간 거리가 10 nm 가까이 증가하는 박리현상이 보고된 이래 미국?일본 등에서 연구가 진행되고 있으나 양이온 중합이 가능한 경우에만 이용될 수 있고 기존의 산업설비를 그대로 사용할 수 없다는 문제점이 있었다.In 1987, researchers in Japan and Japan have been reported by Toyota researchers in Japan and Japan since the separation of nylon monomers between silicate layers by an appropriate method and the interlayer polymerization increases the distance between layers by 10 nm. There was a problem that can be used only when possible and that existing industrial equipment cannot be used as it is.

1993년 일본의 야노 등은 유기화제로 처리된 몬모릴로나이트(MMT)를 고분자 용액에 침지시킴으로서 용매가 규산염 층 사이를 침투하여 규산염 층을 분산시키고 이러한 분산을 유지하는 방법으로 폴리이미드/점토 나노복합체를 제조하였으나 제조과정에 다량의 용매가 사용되고 별도의 용매제거 공정이 필요하며, 폴리머가 유기화된 MMT의 층간으로 단순 삽입만 되거나 용매 건조과정 중에 층간거리가 다시 좁아진다는 문제점이 있었다.In 1993, Yano et al. Prepared polyimide / clay nanocomposites by immersing montmorillonite (MMT) treated with an organic agent in a polymer solution to disperse the silicate layer by dispersing the silicate layer and maintaining this dispersion. However, a large amount of solvent is used in the manufacturing process and a separate solvent removal process is required, and there is a problem that the polymer is simply inserted into the organic layer of MMT, or the interlayer distance is narrowed again during the solvent drying process.

기존의 PET 및 다른 고분자에 적용되어 나노복합체에 사용된 나노점토는 점토 층간의 간격을 넓히고 고분자와의 상용성을 위하여 알킬기가 8개 이상을 가진 유기물로 처리하였다. 유기화 처리된 나노점토는 층간 간격은 최대로 약 3 nm로 고분자가 층간삽입(intercalated)되어 반응에 관여하므로 제한을 받게 되었다. 점토 층 간격이 층박리(exfoliated)된 경우에는 어느 정도 고분자 물성에 영향을 줄 수 있다. 하지만, 이들은 길이와 폭이 최소 200 nm 이상이므로 섬유 구조상 이화합물로 존재하게 된다. 다만, 성형품인 경우에는 기체 차단성을 향상시켜 주는 역할을 하므로 많이 사용되었다. 유기화 처리된 나노점토의 가장 본질적인 문제는 고온에 서 유기화 처리된 부분이 대부분 분해되어 고분자와 반응할 수 있는 상태가 되지 못한다. Nanoclay used in nanocomposites applied to existing PET and other polymers was treated with organic material having 8 or more alkyl groups for widening the gap between clay layers and compatibility with polymers. The organically treated nanoclays were limited because the intercalated polymers were involved in the reaction with the interlayer spacing of up to about 3 nm. If the clay layer spacing is exfoliated, it may affect the polymer properties to some extent. However, since they are at least 200 nm in length and width, they exist as foreign compounds in fiber structure. However, in the case of a molded article was used a lot because it serves to improve the gas barrier properties. The most inherent problem of organically treated nanoclays is that at high temperatures, most of the organically treated parts decompose and become unable to react with the polymer.

이러한 나노점토에 비해 본 발명에 사용된 POSS는 유무기 혼성 나노화합물로서 고온에서 유기 부분이 유지되며, 균일한 분포를 이루기 때문에 PET 섬유에 적용될 경우 고온에서 모듈러스 유지율을 향상시키고 모듈러스 비의 값인 tanδ의 피크(peak)값에 의한 유리전이온도를 상당히 향상시킬 수 있다.Compared to these nanoclays, POSS used in the present invention is an organic-inorganic hybrid nano-compound and maintains an organic portion at high temperature, and has a uniform distribution, thereby improving modulus retention at high temperature when applied to PET fibers, and having a modulus ratio of tanδ. The glass transition temperature due to the peak value can be significantly improved.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여 열적 안정성이 우수하고 PET와 상용성이 있는 나노화합물 C59H127NO12Si8 (Aminopropylisooctyl, 이하 AMIO)을 1.0 내지 3.0 중량%로 중합단계에서 첨가하여 에틸렌테레프탈레이트 단위를 85 몰% 이상 포함하고 고유점도가 0.50dl/g 내지 1.20dl/g 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 상기 복합칩을 용융방사 및 연신시켜 제조되는 고온에서 모듈러스 유지율이 우수하고 유리전이온도가 증가한 PET 나노복합 섬유를 제조하는 방법을 제공하는 것이다.An object of the present invention is to solve the above problems in the polymerization step of 1.0 to 3.0% by weight of nano compound C 59 H 127 NO 12 Si 8 (Aminopropylisooctyl, hereinafter AMIO) having excellent thermal stability and compatibility with PET The high temperature produced by adding the ethylene terephthalate unit containing 85 mol% or more and a polyethylene terephthalate nanocomposite chip having an intrinsic viscosity in the range of 0.50 dl / g to 1.20 dl / g, followed by melt spinning and stretching the composite chip. To provide a method for producing a PET nanocomposite fiber with excellent modulus retention and glass transition temperature.

상기 과제를 해결하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 에틸렌글리콜과 테레프탈산을 에스테르화 반응시킨 후 축중합 반응 전에 아민계 폴리헤드럴 올리고머 실세스퀵산인 하기 구조식(Ⅰ)의 C59H127NO12Si8를 첨가하여 축중합시켜 제조된 에틸렌 테레프탈레이트 단위를 85 몰% 이상 포함하고 고유점도가 0.50dl/g 내지 1.20dl/g 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 용융방사 및 연신시켜 제조된 폴리에틸렌 테레프탈레이트 나노복합 섬유의 제조방법을 제공한다.In order to solve the above problems, according to a preferred embodiment of the present invention, C 59 H 127 NO of the following structural formula (I) which is an amine polyhedral oligomeric silsesquixic acid after esterification of ethylene glycol and terephthalic acid and before condensation polymerization Prepared by melt spinning and stretching a polyethylene terephthalate nanocomposite chip containing at least 85 mol% of ethylene terephthalate units prepared by condensation polymerization by adding 12 Si 8 and having an intrinsic viscosity ranging from 0.50 dl / g to 1.20 dl / g. Provided is a method for producing polyethylene terephthalate nanocomposite fiber.

구조식(I)Structural Formula (I)

Figure 112008087188015-pat00001
Figure 112008087188015-pat00001

본 발명의 다른 적절한 실시 형태에 따르면, 에틸렌글리콜과 테레프탈산의 몰비는 1.3:1.0인 것을 특징으로 한다.According to another suitable embodiment of the present invention, the molar ratio of ethylene glycol and terephthalic acid is 1.3: 1.0.

본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 구조식(Ⅰ)의 C59H127NO12Si8 가 전체 폴리머 중량대비 1.0 내지 3.0 중량% 로 첨가되는 것을 특징으로 한다.According to another suitable embodiment of the present invention, C 59 H 127 NO 12 Si 8 of Structural Formula (I) is characterized in that the addition of 1.0 to 3.0% by weight relative to the total polymer weight.

상기한 바와 같이, 본 발명에 사용된 상기 POSS, C59H127NO12Si8 (AMIO)는 폴리에틸렌테레프탈레이트 나노복합섬유로 제조할 경우에 고온에서 모듈러스 유지율을 향상시킬 수 있으며, 유리전이온도는 크게 증가시키는 역할을 한다. 또한, 두 번 측정으로 재현성도 확인되었다.As described above, the POSS, C 59 H 127 NO 12 Si 8 (AMIO) used in the present invention can improve the modulus retention at high temperature when prepared from polyethylene terephthalate nanocomposite fiber, the glass transition temperature is It greatly increases the role. In addition, reproducibility was also confirmed by two measurements.

본 발명은 내열성이 우수한 유무기 혼성 나노화합물인 POSS를 적용한 폴리에틸렌 테레프탈레이트 나노복합 섬유를 제조하는 것이다. PET 나노복합체를 만들기 위해서, 열적 안정성이 우수한 POSS를 1.0 내지 3.0 중량%로 첨가하여 PET 중합을 하였다. 첨가되는 POSS 함량이 1.0 중량% 이하인 경우에는 분산에서 유리하지만, 고온에서 분해되고 남은 것이 PET 내열성에 효과를 나타내지 못한다. POSS 함량이 3.0 중량% 이상인 경우에는 POSS 입자들이 자체적으로 응집체를 형성하여 분산에 있어서 문제가 되며, 물성을 저하시키는 역할을 하게 되므로 POSS의 중량은 1.0 중량% 내지 3.0 중량%가 가장 바람직하다.The present invention is to produce a polyethylene terephthalate nanocomposite fiber to which POSS, which is an organic-inorganic hybrid nanocompound having excellent heat resistance, is applied. In order to make the PET nanocomposite, PET polymerization was performed by adding 1.0 to 3.0 wt% of POSS having excellent thermal stability. If the added POSS content is 1.0% by weight or less, it is advantageous in dispersion, but it remains decomposed at high temperature and does not have an effect on PET heat resistance. When the POSS content is 3.0 wt% or more, the POSS particles form aggregates on their own, which is a problem in dispersion, and serves to lower physical properties, so that the weight of POSS is most preferably 1.0 wt% to 3.0 wt%.

PET는 에틸렌글리콜(Ethylene Gylcol, 이하 'EG'라 한다.)와 디메틸테레프탈레이트(Dimethylene Terephthalate, 이하 'DMT'라 한다.)와의 에스테르 교환 반응(ester interchange)을 통하여 제조되는 DMT법과 EG와 테레프탈 산(terephthalic acid, 이하 'TPA'라 한다.)와의 에스테르 반응을 통하여 제조하는 TPA법이 있다. PET is a DMT method produced by ester interchange of ethylene glycol (hereinafter referred to as 'EG') and dimethyl terephthalate (hereinafter referred to as 'DMT'), and EG and terephthalic acid. There is a TPA method produced by ester reaction with (terephthalic acid, hereinafter referred to as 'TPA').

본 발명의 중합방법은 TPA 및 DMT법이 모두 가능하지만, TPA법으로 in situ 방법으로 중합물을 제조하는 것이 더욱 바람직하다. 에스테르화 반응시 금속(Mn) 초산염을 촉매로 사용하는 DMT법과 달리, TPA법에서는 특별한 촉매 없이 이미 에스테르화 반응에서 얻어진 비스히드록시에틸렌테레프탈레이트(Bishydroxyethylterephthalate, 이하 'BHET'라 한다) 올리고머를 에스테르화 반응조에 일정량 넣어 놓은 상태에서 자촉매에 의한 반응을 하게 되는데, 올리고머나 TPA의 -COOH기의 프로톤(H+)이 촉매 작용을 하기 때문이다. Although the polymerization method of the present invention can be both TPA and DMT method, it is more preferable to prepare the polymer by the in situ method by the TPA method. Unlike the DMT method, which uses a metal (Mn) acetate as a catalyst for the esterification reaction, in the TPA method, a bishydroxyethylterephthalate (hereinafter referred to as 'BHET') oligomer obtained by the esterification reaction without a special catalyst is esterified. The reaction is carried out by autocatalyst in a certain amount in the reaction tank, because the oligomer or the proton (H + ) of the -COOH group of TPA catalyzes.

TPA법으로 EG와 TPA의 몰비는 1.3:1.0인 것이 바람직하다. 이는 에스테르화 반응에서 슬러리(slurry, TPA와 EG 혼합물)를 조금씩 투입하는 세미 배치(semi-batch) 방식이므로 투입되는 슬러리의 점도가 일정 수준 이상이 되어야 조작이 쉽기 때문에 EG와 TPA의 몰비가 높을수록 유리하지만, 과량의 EG가 2분자 반응하여 부산물로 디에틸렌글리콜(diethylene glycol, 이하 'DEG'라 한다.)이 생성된다. 이는 PET의 융점 저하 및 사슬 길이 차에 의한 균일성 저하로 결정화 속도를 감소시키는 문제가 있기 때문에 공정상 EG와 TPA의 몰비는 1.0 내지 1.5:1.0가 바람직하며, 본 공정은 DEG를 1.0wt% 이하로 물성에 영향을 주지 않는 범위에서 몰비를 1.3:1.0으로 택하였다. 에스테르화 반응이 끝나면, 축합반응을 시작하기 전에 용융상태의 올리고머에 분산된 POSS를 첨가하고 이를 축합반응으로 이송시킨 후 반응을 완성한다.It is preferable that the molar ratio of EG and TPA is 1.3: 1.0 by TPA method. Since this is a semi-batch method in which a slurry (slurry, TPA and EG mixture) is added little by little in the esterification reaction, the viscosity of the added slurry should be more than a certain level so that it is easy to operate. Advantageously, however, excess EG reacts with two molecules to produce diethylene glycol (hereinafter referred to as 'DEG') as a byproduct. Since there is a problem of decreasing the crystallization rate due to the lowering of the melting point of PET and the uniformity due to the difference in the chain length, the molar ratio of EG and TPA in the process is preferably 1.0 to 1.5: 1.0, and the present process has a DEG of 1.0wt% or less. The molar ratio was chosen to be 1.3: 1.0 without affecting the physical properties. At the end of the esterification reaction, the POSS dispersed in the molten oligomer is added before the condensation reaction is started and transferred to the condensation reaction to complete the reaction.

이때 POSS는 용매(THF)에 용해시키고 EG에 미리 분산시켜 투입하도록 한다. 즉, 분산을 좋게 하기 위하여 용매와 초음파 분산기를 이용하여 EG에 분산시켰으며, 이렇게 분산된 EG 용액은 나노화합물로 인해 전체가 약간 흐린 불투명 상태가 됨을 확인할 수 있었다.In this case, the POSS is dissolved in a solvent (THF) and dispersed in EG beforehand. That is, in order to improve the dispersion, it was dispersed in EG using a solvent and an ultrasonic disperser, and the dispersed EG solution was confirmed to be slightly opaque due to the nano compound.

POSS의 장점은 열적 안정성이 우수하고 입자 크기가 나노 스케일(100 nm 이하)이며, 유기/무기 작용기를 가지고 있으므로 다양한 반응성을 가질 수 있다는 것이다. 열적 안정성은 열중량 분석기(thermogravimetic analyzer, 이하 'TGA'라 한다.)를 통해 확인되었으며, PET 중축합 온도인 280℃까지 분해되는 C59H127NO12Si8(AMIO)의 양(중량)은 2%가 되므로 중합 과정에서 열적으로 안정하여 PET 내에 반응하여 분산되어 물성에 영향을 주게 된다. 기존의 유기화 처리된 나노점토(nanoclay)는 고온에서 유기화된 부분이 대부분 분해가 되므로 물성에 영향을 끼치지 못한다. 다만, 성형품의 경우 유기화된 부분이 분해되어도 점토는 그대로 남아 있어 기체 차단성에 있어 향상됨을 알 수 있다. POSS는 또한, 입자 크기도 100 nm 이내의 균일한 입자이고 유기/무기 작용기를 동시에 포함하고 고온에도 유기 작용기가 다량 존재하므로 PET 중합물과 반응하여 분산되어 물성에 영향을 주게 된다. 200 nm 이상인 나노점토에 비해 반응성과 분산성에서 상당히 우수함을 알 수 있었다. The advantage of POSS is that it has excellent thermal stability, particle size is nanoscale (100 nm or less), and has organic / inorganic functional groups, thereby having various reactivity. Thermal stability was confirmed by a thermogravimetic analyzer (TGA), and the amount (weight) of C 59 H 127 NO 12 Si 8 (AMIO) decomposed to 280 ° C, the PET polycondensation temperature, Since it becomes 2%, it is thermally stable in the polymerization process and reacts and disperses in PET to affect physical properties. Conventional organically treated nanoclays do not affect physical properties since most of the organicated parts are decomposed at high temperatures. However, in the case of a molded article, even if the organic part is decomposed, the clay remains intact, and it can be seen that the gas barrier property is improved. POSS is also a uniform particle with a particle size of less than 100 nm, and simultaneously contains organic / inorganic functional groups and a large amount of organic functional groups are present at high temperature, thereby reacting and dispersing the PET polymer to affect physical properties. It was found that the reactivity and dispersibility were significantly superior to nanoclays of 200 nm or more.

본 발명에서 사용되는 유무기 혼성 나노 화합물인 POSS의 분자식은 (RSiO1.5)n이고, 알킬기 R의 종류와 n에 따라 다양한 구조를 가지게 되므로 여러 가지 중합체에 응용이 가능하다. The molecular formula of POSS, the organic-inorganic hybrid nano-compound used in the present invention is (RSiO 1.5 ) n , and has a variety of structures depending on the type and n of the alkyl group R is applicable to various polymers.

본 발명에서 사용한 POSS의 R기는 알킬기로서 이소옥틸(isooctyl)이고, 작용기는 PET와 상용성이 좋은 아민기를 가진 C59H127NO12Si8(AMIO)를 선택하여 미국의 하이브리드 플라스틱(Hybrid Plastics)사에서 직접 구매하여 정제하지 않고 사용하였으며, 입체 구조는 상기 구조식 1과 같다. The R group of POSS used in the present invention is isooctyl as an alkyl group, and the functional group is selected from C 59 H 127 NO 12 Si 8 (AMIO) having an amine group having good compatibility with PET. It was purchased directly from the company used without purification, the three-dimensional structure is shown in the formula (1).

C59H127NO12Si8(AMIO) 나노 화합물이 2.0 중량% 첨가된 PET 나노복합체를 중합 제조하고, 이를 결정화 온도 이하인 70℃에서 24시간 진공 건조한 후에 이의 단면을 주사전자 현미경(Scanning Electron Microscopy, 이하 'SEM'이라 한다.)과 원자힘 현미경(Atomic Force Microscopy, 이하 'AFM'이라 한다.)으로 입자의 크기 및 분산성을 분석 평가하였다. C59H127NO12Si8(AMIO)-POSS는 점성이 있는 액체 상태로서 나노 물질 자체들이 서로 응집되므로 크기가 100 nm 이상인 몇몇의 응집체들을 관찰할 수 있지만, 80 nm 내외의 균일한 분포를 이루고 있음을 확인할 수 있었다(도 1). A PET nanocomposite containing 2.0 wt% of C 59 H 127 NO 12 Si 8 (AMIO) nano-compound was polymerized to prepare a cross-section and then vacuum dried at 70 ° C. below the crystallization temperature, and then the cross-section thereof was scanned by Electron Microscopy. The particle size and dispersibility were analyzed and evaluated by SEM and Atomic Force Microscopy. C 59 H 127 NO 12 Si 8 (AMIO) -POSS is a viscous liquid state that the nanomaterials themselves agglomerate with each other, so that some aggregates larger than 100 nm can be observed, but have a uniform distribution around 80 nm. It could be confirmed that (Fig. 1).

PET 나노복합체의 중합물은 70℃에서 24시간 진공 건조시킨 다음, 유량계(Rheometer)를 이용하여 265℃에서 섬유를 제조하였다. 이 섬유를 오일 수조(oil bath)에서 충분히 수동 연신하여 사염화탄소로 세척 후 상온에서 건조하였다. 동역학 분석을 통하여 고온에 따른 저장 모듈러스를 측정하였으며, 이를 표준화(normalized)하여 모듈러스 유지율을 비교하였으며, 120℃에서 AMIO-POSS 2.0 중량%가 첨가된 PET 나노복합섬유는 모듈러스 유지율이 45 내지 47%로서 순수 PET가 30 내지 35%인 것에 비해 10 내지 15% 이상 향상됨을 알 수 있었다. 또한, 두 번씩 측정한 결과 모듈러스 유지율 상승도가 재현성이 있음을 확인할 수 있었다(도 2). 또한, 이 나노복합섬유는 PET에 비해 모듈러스 비로 계산되는 tanδ의 피크(peak)값인 유리전이온도는 오른쪽(고온방향)으로 이동함을 알 수 있으며, PET는 85 내지 86℃인 것에 비해 AMIO-POSS 2.0 중량%가 첨가된 PET 나노복합섬유는 118 내지 120℃로서 약 30℃ 이상 증가됨을 알 수 있다.The polymer of the PET nanocomposite was vacuum dried at 70 ° C. for 24 hours and then fabricated at 265 ° C. using a rheometer. This fiber was sufficiently drawn in an oil bath, washed with carbon tetrachloride, and dried at room temperature. Storage modulus according to high temperature was measured through kinetic analysis and normalized to compare modulus retention, and PET nanocomposite fiber added AMIO-POSS 2.0 wt% at 120 ° C has a modulus retention of 45 to 47%. It was found that pure PET is improved by 10 to 15% or more compared with 30 to 35%. In addition, as a result of measuring twice, it was confirmed that the modulus retention rate was reproducible (FIG. 2). In addition, it can be seen that the glass transition temperature, which is the peak value of tanδ calculated by the modulus ratio compared to PET, moves to the right (high temperature direction), and PET is AMIO-POSS. PET nano composite fiber added 2.0 wt% can be seen that the 118 to 120 ℃ is increased by about 30 ℃ or more.

POSS의 열안정성 평가는 다음과 같은 방법으로 실시하였다.Thermal stability evaluation of POSS was carried out in the following manner.

(1) POSS의 열안정성(1) Thermal Stability of POSS

POSS의 열안정성을 조사하기 위해 열중량분석기(TGA) 분석을 수행하였다. TGA 분석 전에 모든 시료는 진공 오븐(40℃)에서 충분히 건조시켰으며 모든 TGA 분석은 질소가스를 흘려주면서 30 내지 800℃의 온도범위에 대해 10℃/min의 승온 속도로 수행하였다.Thermogravimetric Analysis (TGA) analysis was performed to investigate the thermal stability of the POSS. Prior to TGA analysis, all samples were sufficiently dried in a vacuum oven (40 ° C.) and all TGA analyzes were performed at a temperature rising rate of 10 ° C./min over a temperature range of 30 to 800 ° C. while flowing nitrogen gas.

본 발명에서 POSS의 열적 안정성을 확인한 결과 280℃에서 C59H127NO12Si8 (AMIO)는 2%의 분해가 일어나 중합시 첨가될 경우 PET 중합 온도에서도 각각 98%가 유지됨을 알 수 있었다. As a result of confirming the thermal stability of the POSS in the present invention, it was found that C 59 H 127 NO 12 Si 8 (AMIO) at 280 ° C. was maintained at 98% at the PET polymerization temperature when 2% decomposition occurred and was added during the polymerization.

첨가량은 PET 중합물 대비 2.0 중량%로 선정하였으며, 용매(THF)에 용해시키고 초음파 분산기로 충분히 분산시킨다. 분산이 잘 된 것은 EG 용액 전체의 투명성을 약간 흐리게 하고 있음을 확인할 수 있다.The addition amount was selected to 2.0% by weight relative to the PET polymer, dissolved in a solvent (THF) and sufficiently dispersed by an ultrasonic disperser. Good dispersion can be seen to slightly blur the transparency of the entire EG solution.

<실시예 1> &Lt; Example 1 >

에틸렌글리콜과 테레프탈산의 몰비를 1.3:1.0으로 중합기 안에 넣어 에스테르화 반응을 완성한다. 230℃에서 4시간 에스테르화 반응을 통하여 물을 얻을 수 있다. 이후 축중합 반응을 위해 열안정제로 TMP 촉매를 약간 가하고, 안티몬(Sb) 촉매를 투입한 후 점성이 있는 액체 상태인 C59H127NO12Si8(AMIO)-POSS 2.0 중량%를 첨가하였으며, 진공을 걸어주면서 280℃에서 2시간 진행하여 고유점도가 0.7dl/g인 PET 나노복합칩을 얻었다. 제조된 PET 나노복합칩을 고상중합(solid state polymerization, 이하 'SSP'라 한다.)하여 고유점도가 1.0dl/g으로 증가시켰다. 이 SSP칩을 70℃에서 24시간 진공 건조하여 유량계(Rheometer)를 이용하여 265℃에서 방사 및 연신 후 섬유를 제조하여 동역학 분석을 실시하였다.The molar ratio of ethylene glycol and terephthalic acid is added to the polymerization reactor at 1.3: 1.0 to complete the esterification reaction. Water may be obtained through esterification at 230 ° C. for 4 hours. Subsequently, a little TMP catalyst was added as a thermal stabilizer for the condensation polymerization reaction, an antimony (Sb) catalyst was added thereto, and a viscous liquid C 59 H 127 NO 12 Si 8 (AMIO) -POSS 2.0 wt% was added thereto. While running under vacuum for 2 hours at 280 ℃ to obtain a PET nanocomposite chip having an intrinsic viscosity of 0.7dl / g. The prepared PET nanocomposite chip was subjected to solid state polymerization (hereinafter referred to as 'SSP') to increase the intrinsic viscosity to 1.0 dl / g. The SSP chip was vacuum dried at 70 ° C. for 24 hours, and then spun and stretched at 265 ° C. using a rheometer to prepare fibers for kinetics analysis.

<비교예 1> Comparative Example 1

POSS가 전혀 첨가되지 않은 PET SSP칩 (IV=1.0)를 제조하여 70℃에서 24시간 진공 건조 후 유량계(Rheometer)를 이용하여 265℃에서 방사 및 연신을 거쳐 섬유를 제조하여 동역학 분석을 실시하였다.PET SSP chip (IV = 1.0) without any POSS was prepared, and vacuum dried at 70 ° C. for 24 hours, followed by spinning and stretching at 265 ° C. using a rheometer, and subjected to kinetic analysis.

실시예 1의 경우, 분산성이 그 크기가 80nm 내외로 전체적으로 균일하게 분포하고 있지만, 나노 물질 간의 응집으로 인해 100nm 이상인 응집체가 몇몇 관찰됨을 확인 할 수 있다. 120℃에서 저장 모듈러스 유지율은 AMIO-POSS 2.0 중량% 첨가한 PET 나노복합섬유의 경우 PET 대비 10 내지 15% 증가한 45% 이상으로 모듈러스 유지율은 PET에 비해 상당히 우수함을 확인할 수 있었다. 또한, 재현성을 확인하기 위하여 두 번 측정한 결과 거의 유사한 결과를 나타내고 있음을 확인할 수 있었다. 그리고, 이 AMIO-POSS 2.0 중량%가 첨가된 PET 나노복합섬유 모듈러스 비로 계산되는 tanδ의 피크값인 유리전이온도가 오른쪽(고온방향)으로 이동함을 알 수 있으며, 120℃로서 PET에 비해 약 30℃ 이상 증가됨을 알 수 있다.In the case of Example 1, the dispersibility is uniformly distributed throughout the size of about 80nm, it can be confirmed that some aggregates of 100nm or more due to the aggregation between nanomaterials. Storage modulus retention at 120 ℃ was 45% more than PET increased 10-15% compared to PET in the AMIO-POSS 2.0% by weight added PET was confirmed that the modulus retention is significantly superior to PET. In addition, the results of two measurements to confirm the reproducibility was confirmed to show almost similar results. And, it can be seen that the glass transition temperature, which is the peak value of tanδ, calculated as the PET nanocomposite fiber modulus ratio to which the AMIO-POSS 2.0 wt% is added, moves to the right (high temperature direction), and it is about 30 ° C., which is about 30 It can be seen that the increase over ℃.

도 1은 아민계 POSS가 2.0 중량%가 첨가된 PET 나노복합 섬유의 단면에 대한 SEM(1a), 2-D AFM(2b) 및 3-D AFM(1c) 사진이다. 1 is a SEM (1a), 2-D AFM (2b) and 3-D AFM (1c) photographs of the cross-section of PET nanocomposite fiber added 2.0% by weight of the amine-based POSS.

도 2는 PET와 아민계 POSS 2.0 중량% 첨가된 PET 나노복합 섬유의 온도에 따른 저장 모듈러스를 변화 곡선을 표준화(Normalized)한 것이다.2 shows normalized change curves of storage modulus according to temperature of PET nanocomposite fibers added with PET and amine-based POSS 2.0% by weight.

도 3는 PET와 아민계 POSS 2.0 중량% 첨가된 PET 나노복합 섬유의 온도에 따른 저장 모듈러스와 손실 모듈러스의 비인 tanδ를 나타낸 것이다.Figure 3 shows tanδ, the ratio of storage modulus and loss modulus according to the temperature of PET and amine-based POSS 2.0 wt% added PET nanocomposite fiber.

Claims (3)

아민계 폴리헤드럴 올리고머 실세스퀵산인 하기 구조식(Ⅰ)의 C59H127NO12Si8 가 분산되어 있는 에틸렌글리콜과 테레프탈산의 몰비를 1.3:1.0으로 에스테르화 반응시킨 후 축중합시켜 제조된 에틸렌 테레프탈레이트 단위를 85 몰% 이상 포함하고 고유점도가 0.50dl/g 내지 1.20dl/g 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 용융방사 및 연신시켜 제조된 폴리에틸렌테레프탈레이트 나노복합 섬유의 제조방법.Ethylene tere prepared by esterification of the molar ratio of ethylene glycol and terephthalic acid in which C 59 H 127 NO 12 Si 8 of the structural formula (I), which is an amine polyhedral oligomer silsesquixic acid, is dispersed at 1.3: 1.0 A method for producing polyethylene terephthalate nanocomposite fibers prepared by melt spinning and stretching a polyethylene terephthalate nanocomposite chip containing 85 mol% or more of phthalate units and having an intrinsic viscosity in the range of 0.50 dl / g to 1.20 dl / g. 구조식(I)Structural Formula (I)
Figure 712012000212929-pat00002
Figure 712012000212929-pat00002
삭제delete 제 1 항에 있어서, 상기 구조식(Ⅰ)의 C59H127NO12Si8 가 전체 폴리에틸렌테레프탈레이트 중량대비 1.0 내지 3.0 중량% 로 첨가되는 것을 특징으로 하는 폴리에틸렌테레프탈레이트 나노복합 섬유의 제조방법.The method of claim 1, wherein C 59 H 127 NO 12 Si 8 of Structural Formula (I) is added at 1.0 to 3.0% by weight based on the total weight of polyethylene terephthalate.
KR1020080129621A 2008-12-18 2008-12-18 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature KR101130262B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080129621A KR101130262B1 (en) 2008-12-18 2008-12-18 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080129621A KR101130262B1 (en) 2008-12-18 2008-12-18 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature

Publications (2)

Publication Number Publication Date
KR20100070885A KR20100070885A (en) 2010-06-28
KR101130262B1 true KR101130262B1 (en) 2012-03-26

Family

ID=42368564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080129621A KR101130262B1 (en) 2008-12-18 2008-12-18 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature

Country Status (1)

Country Link
KR (1) KR101130262B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671680B (en) * 2016-04-21 2018-08-28 中国科学院长春应用化学研究所 A kind of preparation method of polyimide fiber
CN106674522B (en) * 2016-12-13 2018-10-26 沈阳化工大学 Isomerism cross-linking method containing L-POSS crosslinking agents is modified recycling PC and preparation method thereof
CN106832929B (en) * 2016-12-28 2018-10-26 沈阳化工大学 A kind of isomerism cross-linking method modification recycling PPS and preparation method thereof containing L-POSS crosslinking agents
CN113861401B (en) * 2021-09-28 2023-06-02 江苏恒力化纤股份有限公司 Method for improving dyeing property of polyethylene terephthalate fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220214A (en) 2004-02-05 2005-08-18 Toray Ind Inc Method for producing polyester composition
KR20070071219A (en) * 2005-12-29 2007-07-04 주식회사 효성 Pet nanocomposite fiber using organic/inorganic nano-compound
KR100789147B1 (en) * 2006-11-03 2007-12-28 주식회사 효성 The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus
KR20080061048A (en) * 2006-12-28 2008-07-02 주식회사 효성 Polyethyleneterephthalate nanocomposites with high thermal stability and process of preparing the nanocomposites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220214A (en) 2004-02-05 2005-08-18 Toray Ind Inc Method for producing polyester composition
KR20070071219A (en) * 2005-12-29 2007-07-04 주식회사 효성 Pet nanocomposite fiber using organic/inorganic nano-compound
KR100789147B1 (en) * 2006-11-03 2007-12-28 주식회사 효성 The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus
KR20080061048A (en) * 2006-12-28 2008-07-02 주식회사 효성 Polyethyleneterephthalate nanocomposites with high thermal stability and process of preparing the nanocomposites

Also Published As

Publication number Publication date
KR20100070885A (en) 2010-06-28

Similar Documents

Publication Publication Date Title
JP6963040B2 (en) Method for manufacturing graphene composite material
Chang et al. Poly (trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology (I)
US12104036B2 (en) Graphene polyethylene terephthalate composite for improving reheat energy consumption
KR101130262B1 (en) Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature
KR100966193B1 (en) Nano-composite comprising poss and method for manufacturing the same
Chang et al. Poly (ethylene terephthalate) nanocomposite fibers by in situ polymerization: the thermomechanical properties and morphology
CN112663167A (en) Flame-retardant polyester fiber and preparation method thereof
JP4523933B2 (en) Method for producing polyethylene terephthalate nanocomposite fiber with improved modulus
KR100789147B1 (en) The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus
Tian et al. A novel ternary composite of polyurethane/polyaniline/nanosilica with antistatic property and excellent mechanical strength: preparation and mechanism
Luo et al. Effects of polylactide‐functionalized multi‐walled carbon nanotubes on the crystallization behavior and thermal stability of poly (L‐lactic acid)
KR20080061048A (en) Polyethyleneterephthalate nanocomposites with high thermal stability and process of preparing the nanocomposites
KR100943388B1 (en) PET Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature and Method of Preparing the same
KR20070071219A (en) Pet nanocomposite fiber using organic/inorganic nano-compound
Lee et al. Preparation and characterization of polyhydroxyamide hybrid nanocomposite films containing MWCNTs and clay as reinforcing materials
KR101204388B1 (en) Preparation of PET nanocomposites with enhanced thermal stability and modulus
KR20110073970A (en) Preparation of polyethylene terephthalate nanocomposites with enhanced modulus
CN110184678A (en) A kind of preparation method of graphene and liquid crystal polyester co-reinforced polymer fiber
KR20070071217A (en) Nanocomposite using organic and inorganic nano-compound
KR100552417B1 (en) Polyester Resin Comprising Nano Inorganic Silica Particles and Preparation Method Thereof
US20070155878A1 (en) Method of preparation of polyethylene terephthalate nanocomposite fiber with enhanced modulus
CN107326474B (en) Graphene and polyester composite fiber for cord and preparation method thereof
KR20120069040A (en) Preparation of polyethylene terephthalate nanocomposite tire cord with high thermal stability
KR20120019136A (en) Preparation of pet nanocomposite fiber with enhanced modulus retention at high temperature
KR100595988B1 (en) Polyethylene terephthalate nano composite fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee