JP2005218571A - Carbonated water manufacturing method and apparatus - Google Patents

Carbonated water manufacturing method and apparatus Download PDF

Info

Publication number
JP2005218571A
JP2005218571A JP2004028435A JP2004028435A JP2005218571A JP 2005218571 A JP2005218571 A JP 2005218571A JP 2004028435 A JP2004028435 A JP 2004028435A JP 2004028435 A JP2004028435 A JP 2004028435A JP 2005218571 A JP2005218571 A JP 2005218571A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
water
container
carbonated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004028435A
Other languages
Japanese (ja)
Inventor
Hiroshi Tasaka
広 田阪
Masanori Itakura
正則 板倉
Masanori Sakakibara
巨規 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004028435A priority Critical patent/JP2005218571A/en
Publication of JP2005218571A publication Critical patent/JP2005218571A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonated water manufacturing method stably emitting carbon dioxide gas without being converted into frozen carbon dioxide in a carbon dioxide gas container and a carbon dioxide channel and to provide a carbonated water manufacturing apparatus efficiently providing carbonated water. <P>SOLUTION: This manufacturing method dissolves carbon dioxide gas in water in a water tank using a carbon dioxide gas dissolving vessel having the carbon dioxide gas container, a carbon dioxide gas flow rate adjuster and a diffusion part. Carbon dioxide gas is diffused from the diffusion part into water in the water tank with a part or the whole body of at least one of the carbon dioxide gas container or the carbon dioxide gas flow rate adjuster dipped in water in the water tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、短時間で水槽内の水を炭酸水化する炭酸水製造方法、及び低コストで簡便に水槽内の温水を炭酸水化することのできる炭酸水製造装置に関する。   The present invention relates to a carbonated water production method for carbonated water in a water tank in a short time, and a carbonated water production apparatus capable of carbonated warm water in a water tank easily at low cost.

炭酸泉等、炭酸ガスを含んだ温水に入浴した場合の、血管拡張効果や湯冷めしにくい等の温浴効果は一般によく知られ、浴用炭酸水を得ることができる薬剤や装置が市販されている。   When bathing in warm water containing carbon dioxide gas such as carbonated springs, the bathing effect such as vasodilation and difficulty in cooling hot water is generally well known, and drugs and devices that can obtain bath carbonated water are commercially available.

炭酸ガスを含んだ炭酸温水を得るための方法としては、化学反応により炭酸ガスを発生する酸と炭酸塩を錠剤に成型し、錠剤を温水中に投入することによって炭酸温水が得る方法が知られている(特許文献1)。   As a method for obtaining hot carbonated water containing carbon dioxide, a method is known in which carbonated acid and carbonate that generate carbon dioxide by a chemical reaction are formed into tablets, and the tablets are poured into warm water to obtain hot carbonated water. (Patent Document 1).

また、水槽中の水を、水中ポンプで炭酸ガス添加部に通水することにより、炭酸ガスを溶解させる炭酸水製造装置が知られている(特許文献2)。   Moreover, the carbonated water manufacturing apparatus which dissolves a carbon dioxide gas by passing the water in a water tank to a carbon dioxide addition part with a submersible pump is known (patent document 2).

また、容器内に貯留水と発泡薬剤を投入してガスを発生させ、該ガスを貯留水中に溶解させた後、貯留水を容器の吐出口から人体に向けて吐出させ、水の圧力が低下する際に生じるガスの溶解度の変化を利用して、浴槽水中に微細気泡を発生させる装置が知られている(特許文献3)。   In addition, the stored water and foaming chemicals are introduced into the container to generate gas, and after the gas is dissolved in the stored water, the stored water is discharged from the discharge port of the container toward the human body, and the water pressure decreases. An apparatus for generating fine bubbles in bath water using a change in solubility of a gas generated when performing the process is known (Patent Document 3).

しかしながら、特許文献1の方法は、錠剤を投入するだけの簡単な操作で炭酸水を得ることができるものの、水中に薬剤を直接投入するため、炭酸ガス以外の反応副生成物や、錠剤化するための成型助剤等の不純物が水中に残存してしまう欠点があった。   However, although the method of Patent Document 1 can obtain carbonated water by a simple operation of simply inserting a tablet, since a drug is directly introduced into water, a reaction by-product other than carbon dioxide gas or tableting is performed. For this reason, there is a drawback that impurities such as molding aids remain in water.

また特許文献2の方法は、水中ポンプとガス溶解器が直結され、更に2kg〜5kgのガスボンベが提案されており、装置の小型化に配慮された構成となっているが、水中ポンプの電源が必要であったり、ガスボンベを浴室内に設置するか、又は浴室外に設置するための工事が必要であったりと、使用者の利便性をさらに改良させるべき余地もあった。   In the method of Patent Document 2, a submersible pump and a gas dissolver are directly connected, and a gas cylinder of 2 kg to 5 kg is proposed, and the apparatus is designed to reduce the size of the apparatus. There is room for further improving the convenience of the user, such as being necessary, or installing gas cylinders in the bathroom, or work for installing outside the bathroom.

また、特許文献3の方法は、装置構成が簡便で使用者の利便性が考慮された構成となっているが、薬剤の残留した液体が人体に向けて吐出される面で好ましくなかった。また、ガスのみを吐出するようにした構成も提案されているが、容器内に残る薬剤の残留した薬液の廃棄の際に身体に接触してしまう可能性があった。   Moreover, although the method of patent document 3 becomes a structure in which the apparatus structure was simple and the user's convenience was considered, it was not preferable at the surface by which the liquid with which the chemical | medical agent remained was discharged toward the human body. Moreover, although the structure which discharges only gas is proposed, there exists a possibility of contacting a body in the case of discarding the chemical | medical solution with which the chemical | medical agent which remains in a container remains.

また、炭酸ガス源として、内部に液化炭酸ガスを充填した高圧液化炭酸ガスボンベを使用する場合には、炭酸ガス流量が多くなると温度が低下し、炭酸ガス流路内で炭酸ガスがドライアイス化するなどガス流量が不安定になることがあった。
この炭酸ガスがドライアイス化による流量不安定を解消するためには、ヒーター付きガス流量調節器や、フィン付きガス流量調節器等の特殊なガス流量調節器を用いることが必要であった。
特開平8−333236号公報 特開平8−215271号公報 特開2003−235926号公報
Further, when a high-pressure liquefied carbon dioxide cylinder filled with liquefied carbon dioxide is used as a carbon dioxide gas source, the temperature decreases as the carbon dioxide gas flow rate increases, and the carbon dioxide gas becomes dry ice in the carbon dioxide gas flow path. The gas flow rate sometimes became unstable.
In order to eliminate the flow rate instability due to the dry formation of carbon dioxide, it was necessary to use a special gas flow controller such as a gas flow controller with a heater or a gas flow controller with a fin.
JP-A-8-333236 JP-A-8-215271 JP 2003-235926 A

本発明は、炭酸ガス容器内及び炭酸ガス流路内でドライアイス化することなく、炭酸ガスを安定して放出することができる炭酸水製造方法、及び炭酸水を効率的に得ることができる炭酸水製造装置を提供することを目的とする。 The present invention relates to a method for producing carbonated water that can stably release carbon dioxide gas without forming dry ice in a carbon dioxide gas container and a carbon dioxide gas flow path, and carbon dioxide that can efficiently obtain carbonated water. An object is to provide a water production apparatus.

すなわち本発明の第一の要旨は、炭酸ガス容器と、炭酸ガス流量調節器と、散気部とを有する炭酸ガス溶解器を用いて、水槽内の水に炭酸ガスを溶解させる炭酸水製造方法であって、該炭酸ガス容器、該炭酸ガス流量調節器の少なくとも一つが、その一部又は全部が該水槽内の水に浸漬された状態で、該散気部から水槽内の水に炭酸ガスを散気させる炭酸水製造方法である。   That is, the first gist of the present invention is a method for producing carbonated water in which carbon dioxide gas is dissolved in water in a water tank using a carbon dioxide gas dissolver having a carbon dioxide gas container, a carbon dioxide gas flow controller, and an air diffuser. And at least one of the carbon dioxide gas container and the carbon dioxide gas flow controller is partly or wholly immersed in the water in the water tank, and the carbon dioxide gas is supplied from the diffuser to the water in the water tank. This is a method for producing carbonated water that diffuses water.

本発明の第二の要旨は、炭酸ガス容器と、炭酸ガス流量調節器と、炭酸ガスにより回転する回転体が配された散気部とを有する炭酸水製造装置である。   The second gist of the present invention is an apparatus for producing carbonated water having a carbon dioxide container, a carbon dioxide flow rate regulator, and an air diffuser provided with a rotating body rotated by carbon dioxide.

本発明の炭酸泉製造方法は、炭酸ガス容器と、炭酸ガス流量調節器と、散気部とを有する炭酸ガス溶解器を用いて、水槽内の水に炭酸ガスを溶解させるにあたって、炭酸ガス容器、ガス流量調節器の少なくとも一つが、その一部又は全部を水槽内の水に浸漬された状態で、散気部から炭酸ガスを水槽内の水に散気させるものである。このような構成にすることにより、非常に簡便な構成且つ単純な操作でありながら、炭酸ガス容器内及び炭酸ガス流路内で炭酸ガスをドライアイス化させることなく、炭酸ガスを水中に放出することができ、炭酸水を効率的に得ることができる。   The carbon dioxide spring manufacturing method of the present invention uses a carbon dioxide gas container, a carbon dioxide gas flow controller, and a carbon dioxide gas dissolver having an air diffuser to dissolve carbon dioxide in water in a water tank. At least one of the gas flow rate regulators diffuses carbon dioxide gas from the air diffuser into the water in the water tank while a part or all of the gas flow regulator is immersed in the water in the water tank. By adopting such a configuration, the carbon dioxide gas is released into the water without making the carbon dioxide gas into dry ice in the carbon dioxide gas container and the carbon dioxide gas flow path while being a very simple configuration and simple operation. And carbonated water can be obtained efficiently.

また、本発明の炭酸泉製造装置は、炭酸ガス容器と、炭酸ガス流量調節器と、炭酸ガスにより回転する回転体が配された散気部とを有するため、回転体の回転によって効率的に炭酸ガスを水中に溶解させることができる。   Further, the carbonated spring production apparatus of the present invention has a carbon dioxide gas container, a carbon dioxide gas flow controller, and an air diffuser provided with a rotating body that rotates by carbon dioxide gas. Gas can be dissolved in water.

以下、本発明の実施の形態を説明する。
図1は本発明の炭酸水製造装置を模式的に表す図である。
Embodiments of the present invention will be described below.
FIG. 1 is a diagram schematically showing an apparatus for producing carbonated water according to the present invention.

図1中、1は炭酸ガス容器、2はガス流量調節器、3は散気部である。炭酸ガス容器1内の炭酸ガスは、ガス流量調整器2により吐出流量が調節され、散気部3から散気される。ガス流量調整器2は、具体的には、一般に減圧弁と呼ばれる調圧器を使用することが好ましい。   In FIG. 1, 1 is a carbon dioxide gas container, 2 is a gas flow controller, and 3 is an air diffuser. The carbon dioxide gas in the carbon dioxide container 1 is diffused from the air diffuser 3 by adjusting the discharge flow rate by the gas flow rate regulator 2. Specifically, it is preferable that the gas flow rate regulator 2 uses a pressure regulator generally called a pressure reducing valve.

また、一定のガス圧力に減圧するように固定された調圧器を使用することが、誤ってガス圧力を変更してしまいガスが過剰に流れることや、必要量のガスが流れないこと等の不都合を避けることができるため、より好ましい。
また、圧力により開度が変化する定流量弁を用いることも可能である。更に、減圧弁と定流量弁を併用することも可能である。
In addition, using a pressure regulator that is fixed so as to reduce the gas pressure to a certain level may cause inconveniences such as an excessive change in gas pressure due to an accidental change in gas pressure, or a loss of the required amount of gas. Is more preferable.
It is also possible to use a constant flow valve whose opening degree changes with pressure. Furthermore, a pressure reducing valve and a constant flow valve can be used in combination.

散気部3は、水中に炭酸ガスを散気できるものであれば特に限定はされない。例えば、一般にエアストーンと呼ばれる金属や樹脂等の焼結体や、多孔質の平膜や中空糸膜、また側面に穴のあいた筒上にスリットを設けたゴムを巻きつけた散気管等があげられる。   The diffuser 3 is not particularly limited as long as it can diffuse carbon dioxide in water. For example, metal or resin sintered bodies generally called air stones, porous flat membranes and hollow fiber membranes, and diffuser tubes wrapped with rubber with slits on cylinders with holes on the sides It is done.

図2は本発明に使用する散気部の一例を示す模式図である。
図2中Aは、焼結体4を散気部として用いた例、図2中Bは、多孔質の平膜5を散気部として用いた例、図2中Cは、多孔質の中空糸膜6を散気部として用いた例、図2中D及びD’は、側面に穴のあいた筒7上にスリットを設けたゴム8を巻きつけた散気管9を散気部として用いた例(Dは部材組み立て前を、D’は部材組み立て後を示す)をそれぞれ示す。
図中A、B、C、D、D’共通の10は、図示しないガス流量調整器との接続部で、接続部10を通った炭酸ガスは、それぞれの散気部の表面体から水中に散気される。
FIG. 2 is a schematic diagram showing an example of an air diffuser used in the present invention.
2A is an example in which the sintered body 4 is used as an air diffuser, B in FIG. 2 is an example in which a porous flat membrane 5 is used as an air diffuser, and C in FIG. 2 is a porous hollow An example in which the thread film 6 is used as an air diffuser, D and D ′ in FIG. 2 use an air diffuser 9 in which a rubber 8 provided with a slit is wound on a cylinder 7 having a hole in the side as an air diffuser. Examples (D shows before assembly of members, D ′ shows after assembly of members) are shown.
In the figure, 10 common to A, B, C, D, and D ′ is a connection part with a gas flow rate regulator (not shown), and carbon dioxide gas that has passed through the connection part 10 enters the water from the surface body of each diffuser part. Aerated.

ここで、散気部3に、炭酸ガスにより回転する回転体を配すると、炭酸ガスの溶解効率が向上するため好ましい。
回転体は、例えば図3に示すように、気泡の浮力により回転する回転体を散気部の上部に取り付けたものが挙げられる。
Here, it is preferable to arrange a rotating body that rotates by carbon dioxide gas in the air diffuser 3 because the dissolution efficiency of carbon dioxide gas is improved.
For example, as shown in FIG. 3, the rotating body includes a rotating body that rotates due to the buoyancy of bubbles and is attached to the upper part of the air diffuser.

図3中2及び3は、図1に示すガス流量調整器2及び散気部3と同様のものを示す。図3中点線で示した部分は、回転可能に取り付けられたプロペラ11を支持する枠組み12であり、格子状の部材や、棒状の部材により構成されており、散気部3及びプロペラ11周辺の気泡や水の分散拡散に滞りがおきることを防止する。
散気部3から散気された炭酸ガスは、気泡となって上昇しプロペラに接触し、プロペラを回転させる。プロペラの回転により、散気部3周辺の水は撹拌され、水中での炭酸ガス濃度の分布が平均化される。
In FIG. 3, 2 and 3 show the same thing as the gas flow regulator 2 and the aeration part 3 shown in FIG. A portion indicated by a dotted line in FIG. 3 is a frame 12 that supports a propeller 11 that is rotatably mounted. The frame 12 is configured by a lattice-like member or a rod-like member, and is arranged around the air diffuser 3 and the propeller 11. Prevents stagnation in the dispersion and diffusion of bubbles and water.
The carbon dioxide gas diffused from the air diffuser 3 rises in the form of bubbles, contacts the propeller, and rotates the propeller. Due to the rotation of the propeller, the water around the air diffuser 3 is agitated, and the distribution of the carbon dioxide concentration in the water is averaged.

図4は炭酸ガスにより回転する回転体の別の一例を示す模式図であり、散気部3そのものが回転するように構成されている。図4中Eは棒状の散気部3を用いた例、図4中Fは円盤状の散気部3を用いた例をそれぞれ示す。図中E、F共通の10は、図示しないガス流量調整器との接続部である。
ここで、散気部3は、図中の矢印の方向に回転可能にされており、回転方向に向けて噴出口13が設けられている。接続部を通った炭酸ガスは、散気部3に設けられた噴出口13から噴出され、散気部3全体が噴出力により回転する。この様にすることにより、炭酸ガスは水平方向に噴出されるため、気泡が水面に達するまでの時間と水中での気泡の移動距離を長くすることができ、水中に炭酸ガスが溶解しやすくなる。
さらに、図4中Fに示したように、回転により水を撹拌することができるフィン14を設けることにより、散気部3周辺の水は撹拌され、水中での炭酸ガス濃度の分布が平均化される。
FIG. 4 is a schematic view showing another example of a rotating body rotated by carbon dioxide gas, and the aeration unit 3 itself is configured to rotate. E in FIG. 4 shows an example using a rod-like air diffuser 3, and F in FIG. 4 shows an example using a disk-like air diffuser 3. In the figure, 10 common to E and F is a connecting portion with a gas flow rate regulator (not shown).
Here, the air diffuser 3 is rotatable in the direction of the arrow in the figure, and a jet port 13 is provided in the rotational direction. The carbon dioxide gas that has passed through the connecting portion is ejected from the ejection port 13 provided in the diffuser 3, and the entire diffuser 3 is rotated by the jet power. By doing so, since carbon dioxide gas is ejected in the horizontal direction, it is possible to lengthen the time until the bubbles reach the water surface and the movement distance of the bubbles in the water, and the carbon dioxide gas easily dissolves in the water. .
Further, as shown in FIG. 4F, by providing the fins 14 that can stir the water by rotation, the water around the air diffuser 3 is stirred, and the distribution of carbon dioxide concentration in the water is averaged. Is done.

本発明の炭酸水製造方法では、炭酸ガス容器1、炭酸ガス流量調節器2の少なくとも一つが、その一部又は全部が水槽内の水に浸漬された状態で、散気部3から水槽内の水に炭酸ガスを散気させる。
水に浸漬させるのは、炭酸ガス容器1の一部あるいは全部とすることもできるし、炭酸ガス流量調節器2の一部あるいは全部とすることもできる。また、炭酸ガス容器1及び炭酸ガス流量調節器2の両方とも、一部を水に浸漬させることもできる。
In the carbonated water production method of the present invention, at least one of the carbon dioxide gas container 1 and the carbon dioxide gas flow rate regulator 2 is immersed in the water in the aquarium, and at least one of the carbon dioxide gas flow rate regulators 2 from the air diffuser 3 into the aquarium. Aeration of carbon dioxide in water.
What is immersed in water can be a part or all of the carbon dioxide container 1 or part or all of the carbon dioxide flow rate regulator 2. In addition, both the carbon dioxide container 1 and the carbon dioxide flow rate controller 2 can be partially immersed in water.

炭酸ガス容器1及び炭酸ガス流量調節器2の両方について、全部を水に浸漬させることが、炭酸ガスのドライアイス化をより効果的に防止できるため、より好ましい。さらに、散気部3やその他接続部等も含め、炭酸ガス溶解器全体を水に浸漬させることがより好ましい。炭酸ガス溶解器全体を水に浸漬させることにより、外部の水との間で熱交換が起こり、炭酸ガス流路内で、温度低下によって炭酸ガスがドライアイス化することを防ぐことができ、従って特殊なガス流量調節器を必要とすることなく好適に炭酸ガスを水中に放出することができる。   It is more preferable to immerse all of the carbon dioxide container 1 and the carbon dioxide flow rate regulator 2 in water because it can more effectively prevent the carbon dioxide gas from becoming dry ice. Furthermore, it is more preferable to immerse the entire carbon dioxide dissolver in water, including the diffuser 3 and other connecting parts. By immersing the entire carbon dioxide gas dissolver in water, heat exchange occurs with external water, and carbon dioxide gas can be prevented from becoming dry ice due to a decrease in temperature in the carbon dioxide gas flow path. Carbon dioxide can be suitably discharged into water without the need for a special gas flow controller.

図6は、74g入り液化炭酸ガスボンベからなる炭酸ガス容器1から、5L/minの流量で炭酸ガスを放出したときの、炭酸ガス流量の変化を示すものである。このとき炭酸ガス容器1の周囲温度は20℃及び35℃とした。また、液化炭酸ガス74gは、気化した場合大凡38Lとなり、5L/minの流量で炭酸ガスを放出したとき7分から8分で全ての炭酸ガスが放出されることになる。   FIG. 6 shows changes in the carbon dioxide gas flow rate when carbon dioxide gas is released at a flow rate of 5 L / min from the carbon dioxide gas container 1 composed of a 74 g liquefied carbon dioxide gas cylinder. At this time, the ambient temperature of the carbon dioxide container 1 was set to 20 ° C. and 35 ° C. The liquefied carbon dioxide gas 74g is about 38 L when vaporized, and all carbon dioxide gas is released in 7 to 8 minutes when the carbon dioxide gas is released at a flow rate of 5 L / min.

図6から明らかなように、35℃で炭酸ガスを放出した場合には、8分ほどで炭酸ガス流量は0L/minとなり、炭酸ガスは滞りなく気化し速やかに放出されていることがわかる。一方、20℃の場合では、約6分後から炭酸ガス流量は不安定に低下し、以降更に10分ほどかけて1L/min以下の流量で炭酸ガスが放出されている。即ち、ボンベ温度が20℃では、液化炭酸ガスが気化する際の温度低下により、ボンベ内で炭酸ガスがドライアイス化し、ドライアイスの気化速度でしか炭酸ガスを放出することができなくなってしまうが、炭酸ガスボンベ温度を高くすることにより、速やかに炭酸ガスを放出することができる。   As can be seen from FIG. 6, when carbon dioxide is released at 35 ° C., the flow rate of carbon dioxide is 0 L / min in about 8 minutes, and the carbon dioxide is vaporized without stagnation and quickly released. On the other hand, in the case of 20 ° C., the carbon dioxide flow rate is unstablely reduced after about 6 minutes, and then carbon dioxide is released at a flow rate of 1 L / min or less over a further 10 minutes. That is, when the cylinder temperature is 20 ° C., the carbon dioxide gas becomes dry ice in the cylinder due to the temperature drop when the liquefied carbon dioxide vaporizes, and the carbon dioxide gas can be released only at the vaporization rate of the dry ice. The carbon dioxide gas can be quickly released by increasing the carbon dioxide gas cylinder temperature.

したがって水の温度は、炭酸ガスのドライアイス化を防止するためには25℃以上が好ましく、35℃以上がより好ましい。一方、温度の上限は、足浴あるいは入浴時に好適となる温度であり、45℃以下が好ましく、42℃以下がより好ましい。   Therefore, the temperature of water is preferably 25 ° C. or higher and more preferably 35 ° C. or higher in order to prevent carbon dioxide gas from becoming dry ice. On the other hand, the upper limit of the temperature is a temperature suitable for foot bathing or bathing, preferably 45 ° C. or lower, more preferably 42 ° C. or lower.

使用する水槽は、全身浴、半身浴、足浴等の入浴のできる浴槽を用いることができ、浴槽の湯を簡単に炭酸温水化することによって、炭酸温水浴を手軽に楽しむことができる。大きさ等は特に限定されるものではない。   As a water tank to be used, a bathtub capable of bathing such as full body bathing, half body bathing, foot bathing and the like can be used. By simply converting the bath water into carbonated warm water, the carbonated warm water bath can be enjoyed easily. The size and the like are not particularly limited.

炭酸ガス容器1としては、高圧液化炭酸ガスボンベを使用することが好ましい。これは、高圧液化炭酸ガスボンベは小容量で大量の炭酸ガスを使用することができ、更に高密度であることから装置全体の密度を上げることができ、水槽内に炭酸ガス溶解器を浸漬する際に、確実に炭酸水化する水の水底に沈んだ状態で、炭酸ガスを水中に散気することができるためである。
炭酸水製造装置全体の密度は、炭酸ガス放出前も、炭酸ガスを全て放出した後も、水槽内の水よりも重いことが好ましい。
As the carbon dioxide gas container 1, it is preferable to use a high-pressure liquefied carbon dioxide gas cylinder. This is because the high-pressure liquefied carbon dioxide gas cylinder can use a large amount of carbon dioxide gas with a small volume, and since it has a high density, the density of the entire apparatus can be increased, and when the carbon dioxide gas dissolver is immersed in the water tank, In addition, the carbon dioxide gas can be diffused into the water in a state where the carbon dioxide is surely submerged in the bottom of the water.
It is preferable that the density of the entire carbonated water production apparatus is heavier than the water in the water tank before and after the release of carbon dioxide.

炭酸ガス容器1は、発泡性素材で覆われていると、水槽に投入した際に水槽の底への衝撃をやわらげることができ好ましい。
また、炭酸ガス噴出中の炭酸水製造装置は、炭酸ガス容器1の吐出口に液化炭酸ガスが接触すると好ましくないので、正立するようにハカマ様の台にのせて使用することが好ましい。
When the carbon dioxide gas container 1 is covered with a foamable material, it is preferable that the impact on the bottom of the water tank can be reduced when it is put into the water tank.
Moreover, since the liquefied carbon dioxide gas is not preferable when the liquefied carbon dioxide gas is in contact with the discharge port of the carbon dioxide gas container 1, it is preferable to use the carbonated water producing apparatus that is injecting carbon dioxide gas.

炭酸ガス容器1の容量は、一つの炭酸ガス容器1を複数回使用する場合、炭酸ガス容器1が大きくなること、また使用時以外にガス流路を塞ぐ開閉コックや、炭酸ガス容器1内の炭酸ガス量を確認するための圧力計等の必要部材が増えるため、構造が複雑で価格も高くなる傾向にある。
一方、複数個の炭酸ガス容器を使用するように設定した場合には、使用する炭酸ガス容器の数によって、水中の炭酸ガス濃度を上げることができ、使用者に任意の炭酸ガス濃度の炭酸水を提供できる点で好ましいが、炭酸ガス容器の交換の手間がかかる傾向にある。
従って炭酸ガス容器1の容量は、一回の炭酸水製造操作で使い切る容量であることが好ましい。
The capacity of the carbon dioxide container 1 is such that when one carbon dioxide container 1 is used a plurality of times, the carbon dioxide container 1 becomes large, and an open / close cock that closes the gas flow path other than when it is used, Since necessary members such as a pressure gauge for confirming the amount of carbon dioxide increase, the structure tends to be complicated and the price tends to increase.
On the other hand, when it is set to use a plurality of carbon dioxide containers, the concentration of carbon dioxide in water can be increased depending on the number of carbon dioxide containers to be used. However, the carbon dioxide container tends to be troublesome to replace.
Accordingly, the capacity of the carbon dioxide gas container 1 is preferably a capacity that can be used up in one carbonated water production operation.

以下、本発明による炭酸水製造方法を実施例により詳細に説明する。   Hereinafter, the method for producing carbonated water according to the present invention will be described in detail with reference to examples.

散気部として図2Aに示す焼結体を用い、図1に示す炭酸水製造装置を作製した。このとき炭酸ガス容器1は、74g入り高圧液化炭酸ガス容器を用いた。ついで、内寸で奥行き50cm、巾50cmの水槽に、38℃の水を100L入れて水深40cmとした。水を入れた水槽内に、前記炭酸水製造装置全体を浸漬した状態で、炭酸ガスを5L/minで噴出させた。   The sintered body shown in FIG. 2A was used as the air diffuser to produce the carbonated water production apparatus shown in FIG. At this time, as the carbon dioxide gas container 1, a 74 g high-pressure liquefied carbon dioxide gas container was used. Next, 100 L of 38 ° C. water was put into a water tank having an internal size of 50 cm in depth and 50 cm in width to a depth of 40 cm. Carbon dioxide gas was spouted at 5 L / min in a state where the entire carbonated water production apparatus was immersed in a water tank containing water.

図5はこのときの様子を模式的に示す図である。15は水を入れた水槽であり、水中に浸漬した炭酸水製造装置16の散気部3からは、炭酸ガス気泡18が水中に分散している。また、17は炭酸水製造装置が正立するように炭酸ガス容器に取り付けられたハカマ様の台である。   FIG. 5 is a diagram schematically showing the state at this time. A water tank 15 is filled with water, and carbon dioxide bubbles 18 are dispersed in water from the air diffuser 3 of the carbonated water production apparatus 16 immersed in water. Reference numeral 17 denotes a hakama-like stand attached to the carbon dioxide gas container so that the carbonated water production apparatus stands upright.

このようにして約8分後、炭酸ガス容器内の炭酸ガスが無くなり炭酸ガスの噴出は停止した。炭酸ガスの噴出停止後、水槽内の水の炭酸ガス濃度を測定したところ、340ppmであった。このとき、炭酸水製造装置全体の重量は580gで体積は250cmであり、密度は2.320g/cmであった。また、炭酸ガス容器のガスがすべて放出されたときの炭酸水製造装置全体の重量は506gで、体積は250cmであり、密度は2.024g/cmであった。38℃の水の密度は0.992g/cmであり、炭酸水製造装置全体の密度は、炭酸ガス放出前も、炭酸ガスを全て放出した後も、水槽内の水よりも重かった。 Thus, after about 8 minutes, the carbon dioxide in the carbon dioxide container was exhausted and the ejection of carbon dioxide was stopped. After the carbon dioxide gas jetting stopped, the carbon dioxide gas concentration in the water tank was measured and found to be 340 ppm. At this time, the total weight of the carbonated water production apparatus was 580 g, the volume was 250 cm 3 , and the density was 2.320 g / cm 3 . The weight of the entire carbonated water manufacturing apparatus when the gas carbon dioxide container is all released at 506 g, the volume is 250 cm 3, the density was 2.024g / cm 3. The density of water at 38 ° C. was 0.992 g / cm 3 , and the density of the carbonated water production apparatus was heavier than the water in the water tank before and after releasing all the carbon dioxide.

<実施例2>
散気部として図4Fに示す回転円盤を用い、水槽として、内寸で奥行き30cm、巾45cmの浴槽に38℃の水を54L入れ、水深40cmとした以外は実施例1と同様の操作を行った。
<Example 2>
The rotating disk shown in FIG. 4F is used as the air diffuser, and the same operation as in Example 1 is performed except that 54 L of 38 ° C. water is placed in a 30 cm deep and 45 cm wide bathtub as the water tank and the water depth is 40 cm. It was.

炭酸ガスの噴出停止後、浴槽内の水の炭酸ガス濃度を測定したところ、550ppmであった。このとき、炭酸水製造装置全体の重量は610gで、体積は270cmであり、密度は2.259g/cmであった。また、炭酸ガス容器のガスがすべて放出されたときの炭酸水製造装置全体の重量は536gで、体積は270cmであり、密度は1.985g/cmであった。38℃の水の密度は0.992g/cmであり、炭酸水製造装置全体の密度は、炭酸ガス放出前も、炭酸ガスを全て放出した後も、水槽内の水よりも重かった。 When the carbon dioxide gas concentration in the bathtub was measured after the carbon dioxide gas jetting stopped, it was 550 ppm. At this time, the total weight of the carbonated water production apparatus was 610 g, the volume was 270 cm 3 , and the density was 2.259 g / cm 3 . Further, when all the gas in the carbon dioxide container was released, the total weight of the carbonated water production apparatus was 536 g, the volume was 270 cm 3 , and the density was 1.985 g / cm 3 . The density of water at 38 ° C. was 0.992 g / cm 3 , and the density of the carbonated water production apparatus was heavier than the water in the water tank before and after releasing all the carbon dioxide.

本発明の炭酸水製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the carbonated water manufacturing apparatus of this invention. 本発明の炭酸水製造装置に使用する散気部の一例を示す模式図である。It is a schematic diagram which shows an example of the aeration part used for the carbonated water manufacturing apparatus of this invention. 本発明の炭酸水製造装置に使用する回転体を取り付けた散気部の一例を示す模式図である。It is a schematic diagram which shows an example of the diffuser to which the rotary body used for the carbonated water manufacturing apparatus of this invention was attached. 本発明の炭酸水製造装置に使用する回転する散気部の一例を示す模式図である。It is a schematic diagram which shows an example of the rotating diffuser used for the carbonated water manufacturing apparatus of this invention. 本発明による炭酸水製造方法の実施の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of implementation of the carbonated water manufacturing method by this invention. 炭酸ガス容器から炭酸ガスが放出される際の温度の影響を示すグラフである。It is a graph which shows the influence of the temperature at the time of discharging | emitting carbon dioxide from a carbon dioxide container.

符号の説明Explanation of symbols

1 炭酸ガス容器
2 ガス流量調節器
3 散気部
4 焼結体
5 多孔質の平膜
6 多孔質の中空糸膜
7 側面に穴のあいた筒
8 スリットを設けたゴム
9 散気管
10 接続部
11 プロペラ
12 枠組み
13 噴出口
14 フィン
15 水槽
16 炭酸水製造装置
17 台
18 炭酸ガス気泡
DESCRIPTION OF SYMBOLS 1 Carbon dioxide container 2 Gas flow controller 3 Air diffuser 4 Sintered body 5 Porous flat membrane 6 Porous hollow fiber membrane 7 Tube with a hole in the side surface 8 Rubber with slit 9 Air diffuser tube 10 Connection portion 11 Propeller 12 Frame 13 Spout 14 Fin 15 Water tank 16 Carbonated water production equipment 17 units 18 Carbon dioxide bubbles

Claims (3)

炭酸ガス容器と、炭酸ガス流量調節器と、散気部とを有する炭酸ガス溶解器を用いて、水槽内の水に炭酸ガスを溶解させる炭酸水製造方法であって、該炭酸ガス容器、該炭酸ガス流量調節器の少なくとも一つが、その一部又は全部が該水槽内の水に浸漬された状態で、該散気部から水槽内の水に炭酸ガスを散気させる炭酸水製造方法。   A method for producing carbonated water in which carbon dioxide gas is dissolved in water in a water tank using a carbon dioxide gas dissolver having a carbon dioxide gas container, a carbon dioxide gas flow controller, and an air diffuser, the carbon dioxide gas container, A method for producing carbonated water, wherein at least one of the carbon dioxide gas flow controllers is partly or wholly immersed in water in the water tank, and carbon dioxide gas is diffused from the air diffuser into the water in the water tank. 前記散気部は、炭酸ガスにより回転する回転体を有する請求項1に記載の炭酸水製造方法。   The carbonated water manufacturing method according to claim 1, wherein the air diffuser includes a rotating body that rotates by carbon dioxide gas. 炭酸ガス容器と、炭酸ガス流量調節器と、炭酸ガスにより回転する回転体が配された散気部とを有する炭酸水製造装置。   An apparatus for producing carbonated water having a carbon dioxide gas container, a carbon dioxide gas flow controller, and an air diffuser provided with a rotating body rotated by carbon dioxide gas.
JP2004028435A 2004-02-04 2004-02-04 Carbonated water manufacturing method and apparatus Pending JP2005218571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028435A JP2005218571A (en) 2004-02-04 2004-02-04 Carbonated water manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028435A JP2005218571A (en) 2004-02-04 2004-02-04 Carbonated water manufacturing method and apparatus

Publications (1)

Publication Number Publication Date
JP2005218571A true JP2005218571A (en) 2005-08-18

Family

ID=34994682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028435A Pending JP2005218571A (en) 2004-02-04 2004-02-04 Carbonated water manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP2005218571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180094560A1 (en) * 2016-09-21 2018-04-05 Donald Williams Carbon capture system, apparatus, and method
JP2018519988A (en) * 2015-04-16 2018-07-26 ビーエスエヌ メディカル ゲーエムベーハー Nitric oxide (NO) storage device
CN113830874A (en) * 2021-09-27 2021-12-24 哈维(上海)环境科技有限公司 Method for adding carbonic acid by adopting carbonic acid solution adding system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519988A (en) * 2015-04-16 2018-07-26 ビーエスエヌ メディカル ゲーエムベーハー Nitric oxide (NO) storage device
US10792624B2 (en) 2015-04-16 2020-10-06 Bsn Medical Gmbh Nitric oxide (NO) accumulation apparatus
US20180094560A1 (en) * 2016-09-21 2018-04-05 Donald Williams Carbon capture system, apparatus, and method
US11041420B2 (en) * 2016-09-21 2021-06-22 M-Trigen, Inc. Carbon capture system, apparatus, and method
US11680504B2 (en) 2016-09-21 2023-06-20 Gridiron Llc Carbon capture system, apparatus, and method
CN113830874A (en) * 2021-09-27 2021-12-24 哈维(上海)环境科技有限公司 Method for adding carbonic acid by adopting carbonic acid solution adding system
CN113830874B (en) * 2021-09-27 2024-01-09 哈维(上海)环境科技有限公司 Method for adding carbonic acid by adopting carbonic acid solution adding system

Similar Documents

Publication Publication Date Title
JP2020116575A (en) Gas dissolving device and gas dissolving method
US6955341B2 (en) Apparatus for dissolving gas into liquid
JP6859573B2 (en) Water supply pumpless hydrogen water production equipment and hydrogen water production method
KR101161257B1 (en) H2C03 saturated aqueous solution Manufacturing Method and System
JP2012119491A (en) Photoresist removing method
JP2005218571A (en) Carbonated water manufacturing method and apparatus
JP2009112979A (en) Apparatus and method for producing ozone water
JP4798887B2 (en) Gas-liquid counter-flow type gas hydrate manufacturing apparatus and manufacturing method
JP5412135B2 (en) Ozone water supply device
JP2003088736A (en) Apparatus and method for increasing concentration of dissolved gas
JP6837351B2 (en) Mixing aqueous solution manufacturing equipment and manufacturing method
JP4637329B2 (en) Hydrogen dissolver
JP2005262031A (en) Circulation type gas-dissolved water feed device and operation method for the device
JP5985838B2 (en) Gas dissolving method and gas dissolving apparatus
JP2008168178A (en) Dental gargle water feed device
JP2008133534A (en) Composition control device and composition control method for copper plating liquid
JP2017131822A (en) Hydrogen water generator and hydrogen water generation method
JP2008178780A (en) Microbubble generating apparatus
JP6236614B2 (en) Nitrogen-substituted ice cube production system and production method
JP2003146605A (en) Method and device for generating hydrogen
JP2018023928A (en) Soda water manufacturing device
KR101196995B1 (en) Water-Circulating Apparatus of Water Supply Utility using Draft Tube
JP2012106189A (en) Device of generating bubble-containing liquid
JP2007190463A (en) Gas dissolver and circulation type bathtub apparatus using the same
KR100819875B1 (en) A carbonated water making device which has a carbonated water making module which uses spg membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Effective date: 20090928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091008

A02 Decision of refusal

Effective date: 20100225

Free format text: JAPANESE INTERMEDIATE CODE: A02