JP2005217098A - Photo-semiconductor device - Google Patents

Photo-semiconductor device Download PDF

Info

Publication number
JP2005217098A
JP2005217098A JP2004020777A JP2004020777A JP2005217098A JP 2005217098 A JP2005217098 A JP 2005217098A JP 2004020777 A JP2004020777 A JP 2004020777A JP 2004020777 A JP2004020777 A JP 2004020777A JP 2005217098 A JP2005217098 A JP 2005217098A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
wiring board
base
electrode pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020777A
Other languages
Japanese (ja)
Inventor
Taizo Suemitsu
泰三 末光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004020777A priority Critical patent/JP2005217098A/en
Publication of JP2005217098A publication Critical patent/JP2005217098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated and multi-function photo-semiconductor device by accommodating therein a larger number of components such as IC or the like which can transmit more effectively high-frequency signals and can also improve reliability in air-tightness of internal structure. <P>SOLUTION: The photo-semiconductor device comprises a base material 1 in which a convex 1b is formed to the entire part of the circumferential edge of the aperture of a through-hole 1a, a cover body 3 joined with the upper principal surface of the base material 1, a light transmitting member 4 joined with the cover body 3, a circuit board 5 joined with the upper surface of the convex 1b, and a photo-semiconductor element 2 mounted on the upper surface of the circuit board 5. The circuit board 5 includes a first electrode pad 6a and a second electrode pad 7a, and electrically connects the first electrode pad 6a and the second electrode pad 7a via internal wires 8a, 8b of the insulated circuit board. The second electrode pad 7a is joined with a pin 10 for external connection, and the base material 1 includes a portion in which the convex 1b is formed. Thickness of this concave is doubled or more than that of the remaining portion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信等の分野に用いられる光半導体素子を収納した光半導体装置に関する。   The present invention relates to an optical semiconductor device containing an optical semiconductor element used in fields such as optical communication.

従来の光通信等の分野において高い周波数で作動する半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子を気密封止して収納した光半導体装置の例を図9に示す。同図において、21は基体、22は光半導体素子、23は金属製の蓋体、24は透光性部材、26は光ファイバである。   FIG. 9 shows an example of an optical semiconductor device in which optical semiconductor elements such as a semiconductor laser (LD) and a photodiode (PD) that operate at a high frequency in the field of conventional optical communication and the like are hermetically sealed. In the figure, 21 is a base, 22 is an optical semiconductor element, 23 is a metal lid, 24 is a translucent member, and 26 is an optical fiber.

基体21は鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)等の金属から成り、その上側主面の中央部には、光半導体素子22が、アルミナ(Al)質セラミックス等のセラミックスから成る直方体状の基台28を介して基体21の上側主面に搭載固定される。また、基体21には、Fe−Ni合金やFe−Ni−Co合金等の金属からなる外部接続用ピン25を挿通させるために上下主面間を貫通する貫通孔21aが形成されており、貫通孔21aに光半導体装置内外を導通する端子としての外部接続用ピン25を挿通させるとともに、外部接続用ピン25と貫通孔21aとの隙間にガラス等の誘電体から成る接合材を充填し、基体21と外部接続用ピン25とを気密に接合する。これにより、外部接続用ピン25が光半導体装置内外を導通する端子として機能する。 The base 21 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or copper (Cu) -tungsten (W), and an optical semiconductor element 22 is provided at the center of the upper main surface. It is mounted and fixed on the upper main surface of the base 21 through a rectangular parallelepiped base 28 made of ceramics such as alumina (Al 2 O 3 ) ceramics. Further, the base 21 is formed with a through hole 21a penetrating between the upper and lower main surfaces for inserting an external connection pin 25 made of a metal such as Fe-Ni alloy or Fe-Ni-Co alloy. An external connection pin 25 serving as a terminal for conducting the inside and outside of the optical semiconductor device is inserted into the hole 21a, and a gap between the external connection pin 25 and the through hole 21a is filled with a bonding material made of a dielectric material such as glass, 21 and the external connection pin 25 are joined in an airtight manner. Thereby, the external connection pin 25 functions as a terminal for conducting inside and outside of the optical semiconductor device.

なお、基台28に搭載された光半導体素子22は、その電極が外部接続用ピン25の光半導体素子22側の先端とボンディングワイヤ29等を介して電気的に接続されている。   The electrode of the optical semiconductor element 22 mounted on the base 28 is electrically connected to the tip of the external connection pin 25 on the optical semiconductor element 22 side via a bonding wire 29 or the like.

また、基体21の上側主面の外周部に接合され、上端が閉じられ下端23cが開かれた筒状であり上端面23aの中央部に貫通孔23bが形成された、Fe−Ni−Co合金等の金属から成る蓋体23が設けられる。蓋体23の下端23cは、例えば図9のような鍔状となっており、これにより基体21と蓋体23との接合面積が大きくなり、基体21と蓋体23とで構成される容器内部の気密信頼性が向上する。   Also, an Fe—Ni—Co alloy that is joined to the outer peripheral portion of the upper main surface of the base 21 and has a cylindrical shape with the upper end closed and the lower end 23c open, and a through hole 23b formed in the center of the upper end surface 23a. A lid 23 made of a metal such as is provided. The lower end 23c of the lid body 23 has, for example, a bowl shape as shown in FIG. 9, thereby increasing the bonding area between the base body 21 and the lid body 23, and the inside of the container constituted by the base body 21 and the lid body 23. Improves airtight reliability.

さらに、貫通孔23bを塞ぐように、貫通孔23bの上端面23a側開口の周囲に透光性部材24が接合される。透光性部材24はガラスやサファイア等から成る円板状,レンズ状,球状または半球状等のものであり、ガラスによる接合や半田付け等により蓋体23に気密に接合される。   Furthermore, the translucent member 24 is joined around the opening on the upper end surface 23a side of the through hole 23b so as to close the through hole 23b. The translucent member 24 has a disk shape, a lens shape, a spherical shape, a hemispherical shape, or the like made of glass, sapphire, or the like, and is airtightly bonded to the lid body 23 by bonding or soldering with glass.

このような基体21、蓋体23および透光性部材24から主に構成される容器内部に光半導体素子22を収容し気密に封止する。   The optical semiconductor element 22 is accommodated in a container mainly composed of the base 21, the lid 23, and the translucent member 24, and hermetically sealed.

最後に、光ファイバ26固定用の筒状の金属製固定部材27が、蓋体23の外周面に溶接され、光ファイバ26が金属製固定部材27の上面の貫通孔に外部から挿通固定されて透光性部材24の上方に固定され、外部接続用ピン25の外側の先端部が外部電気回路(図示せず)に電気的に接続されることによって、光半導体装置となる(例えば、下記の特許文献1参照)。   Finally, a cylindrical metal fixing member 27 for fixing the optical fiber 26 is welded to the outer peripheral surface of the lid 23, and the optical fiber 26 is inserted and fixed from the outside into the through hole on the upper surface of the metal fixing member 27. An optical semiconductor device is formed by being fixed above the translucent member 24 and electrically connected to the external electrical circuit (not shown) at the outer end of the external connection pin 25 (for example, the following) Patent Document 1).

この光半導体装置は、外部電気回路から供給される電気信号によって光半導体素子22にレーザ光等の光を励起させ、この光を透光性部材24、光ファイバ26の順に透過させ、光ファイバ26を介して外部に伝送させることによって、高速光通信等に使用される光半導体装置として機能する。この場合、光半導体素子22から光信号が正常に発光しているか確認するためのモニタ用PD(図示せず)が搭載されていてもよい。または、外部から光ファイバ26を介して伝送してくる光信号を、透光性部材24を透過させ光半導体素子22に受光させて、光信号を電気信号に変換することによって、高速光通信等に使用される光半導体装置として機能する。
特開2000−183369号公報
This optical semiconductor device excites light, such as laser light, into the optical semiconductor element 22 by an electrical signal supplied from an external electrical circuit, and transmits this light in the order of the translucent member 24 and the optical fiber 26. By transmitting to the outside through the optical device, it functions as an optical semiconductor device used for high-speed optical communication or the like. In this case, a monitoring PD (not shown) for confirming whether the optical signal is normally emitted from the optical semiconductor element 22 may be mounted. Alternatively, an optical signal transmitted from the outside via the optical fiber 26 is transmitted through the translucent member 24 and received by the optical semiconductor element 22, and the optical signal is converted into an electrical signal, thereby enabling high-speed optical communication or the like. It functions as an optical semiconductor device used in the above.
JP 2000-183369 A

しかしながら、上記従来の光半導体装置において、外部接続用ピン25が基体21の貫通孔21aに挿通されガラス等を介して気密に接合される構成であるため、外部接続用ピン25の直径寸法の最小加工限界、貫通孔21aの孔寸法、隣接する貫通孔21a間の間隔の最小加工限界等の制約があり、そのため、外部接続用ピン25を挿入する位置が制約され、光半導体素子22と外部接続用ピン25とを接続するためのボンディングワイヤ29が長くなりやすく、ボンディングワイヤ29部ではインピーダンスを整合できないことから高周波信号の伝送損失が大きくなるという問題点があった。その結果、ボンディングワイヤ29で高周波信号を効率よく伝送するのが困難であるという問題点を有していた。   However, in the above conventional optical semiconductor device, since the external connection pin 25 is inserted through the through hole 21a of the base 21 and hermetically bonded through glass or the like, the diameter of the external connection pin 25 is the smallest in dimension. There are restrictions such as the processing limit, the hole size of the through hole 21a, and the minimum processing limit of the interval between the adjacent through holes 21a. Therefore, the position where the external connection pin 25 is inserted is limited, and the optical semiconductor element 22 and the external connection The bonding wire 29 for connecting to the connecting pin 25 tends to be long, and the impedance of the bonding wire 29 cannot be matched, so that the transmission loss of the high-frequency signal increases. As a result, there is a problem that it is difficult to efficiently transmit a high-frequency signal with the bonding wire 29.

また、基体21に外部接続用ピン25を1本挿入するために大きな面積が必要とされ、基体21に取り付けられる外部接続用ピン25の本数が数本に限られるという問題点があった。   In addition, a large area is required to insert one external connection pin 25 into the base 21, and there is a problem that the number of external connection pins 25 attached to the base 21 is limited to a few.

さらに、光半導体装置内にはLD,PD等の光半導体素子22とモニタ用PDのみが収容され、光半導体素子22を駆動するためのドライバICやPD出力信号増幅用のプリアンプは別の半導体素子収納用パッケージ内に収納され、外部電気回路を介してドライバICやプリアンプと光半導体装置とを電気的に接続する必要があり、光半導体素子22を機能させるために光半導体装置全体が大型化するという問題点もあった。   Further, only the optical semiconductor element 22 such as LD and PD and the monitor PD are accommodated in the optical semiconductor device, and the driver IC for driving the optical semiconductor element 22 and the preamplifier for amplifying the PD output signal are different semiconductor elements. It is necessary to electrically connect the driver IC or preamplifier and the optical semiconductor device via the external electric circuit, and the entire optical semiconductor device is enlarged to make the optical semiconductor element 22 function. There was also a problem.

また、外部接続用ピン25をガラス等の接合材を介して基体21に接合しただけの端子構造であるため、外部接続用ピン25に外部から応力が加わった場合に接合材にクラック等の破損が生じ、光半導体装置内部の気密が損なわれるという問題点があった。   In addition, since the terminal structure is such that the external connection pin 25 is simply bonded to the base 21 through a bonding material such as glass, the external connection pin 25 is damaged by cracks or the like when stress is applied from the outside. As a result, airtightness inside the optical semiconductor device is impaired.

さらに、外部接続用ピン25の貫通孔21aに挿入されていない部位を特性インピーダンスに整合させた信号線路とするのが困難であり、外部接続用ピン25を伝送する高周波信号が外部接続用ピン25で反射等して伝送損失が生じ、高周波信号を効率よく伝送できなくなるという問題点もあった。特に、2GHz以上の高周波になると伝送効率が著しく劣化しやすいという傾向があった。   Furthermore, it is difficult to use a signal line in which the portion of the external connection pin 25 that is not inserted into the through hole 21a is matched to the characteristic impedance, and the high-frequency signal transmitted through the external connection pin 25 is the external connection pin 25. In other words, transmission loss occurs due to reflection and the like, and high-frequency signals cannot be transmitted efficiently. In particular, there was a tendency that the transmission efficiency was remarkably deteriorated at a high frequency of 2 GHz or more.

従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、光半導体素子と外部接続用ピンとを接続するためのボンディングワイヤを短線化して高周波信号の伝送特性を向上させるとともに、光半導体装置に取り付けられる端子数を増やして内部に収容する集積回路素子(IC)等の部品を増加させて光半導体装置を集積化および多機能化させることである。また、内部の気密信頼性を向上させるとともに、外部接続用ピンで高周波信号が反射等するのを防いで高周波信号の伝送効率を向上させて、光半導体素子を長期にわたり正常かつ安定に作動させ得る高信頼性のものとすることにある。   Therefore, the present invention has been completed in view of the above problems, and its purpose is to shorten the bonding wire for connecting the optical semiconductor element and the external connection pin to improve the high-frequency signal transmission characteristics. To increase the number of terminals attached to the optical semiconductor device and increase the number of components such as integrated circuit elements (ICs) accommodated therein, thereby integrating the optical semiconductor device and increasing its functionality. In addition, the internal airtight reliability can be improved and the high-frequency signal transmission efficiency can be improved by preventing reflection of the high-frequency signal by the external connection pin, so that the optical semiconductor element can be operated normally and stably over a long period of time. It is to make it highly reliable.

本発明の光半導体装置は、上下主面間を貫通する貫通穴が形成されるとともに上側主面の前記貫通穴の開口の周縁部に全周にわたって凸部が形成された平板状の金属製の基体と、上端面の中央部に貫通孔が形成されているとともに下端が開かれた筒状であり、前記基体の上側主面の外周部に下端が接合された金属製の蓋体と、該蓋体の前記貫通孔の開口の周囲に接合された透光性部材と、前記貫通穴を覆って前記凸部の上面に接合された配線基板と、該配線基板の上面に載置された光半導体素子とを具備しており、前記配線基板は、複数の絶縁層が積層されて成る絶縁基板の上面に形成された複数の第1の電極パッドと前記絶縁基板の下面に配設された複数の第2の電極パッドとを有するとともに、前記第1の電極パッドとそれに対応する前記第2の電極パッドとが前記絶縁基板の内部配線を介して電気的に接続され、前記複数の第2の電極パッドのそれぞれに外部接続用ピンが接合されており、前記基体は、前記凸部が形成された部位の厚さが残部の厚さの2倍以上であることを特徴とする。   The optical semiconductor device of the present invention is made of a plate-like metal in which a through-hole penetrating between the upper and lower main surfaces is formed and a convex portion is formed on the entire periphery of the opening of the through-hole on the upper main surface. A base having a cylindrical shape in which a through-hole is formed at the center of the upper end surface and the lower end is opened, and a metal lid having a lower end joined to the outer peripheral portion of the upper main surface of the base; A translucent member bonded around the opening of the through hole of the lid, a wiring board that covers the through hole and is bonded to the upper surface of the convex part, and light placed on the upper surface of the wiring board A plurality of first electrode pads formed on the upper surface of the insulating substrate formed by laminating a plurality of insulating layers, and a plurality of wiring electrodes disposed on the lower surface of the insulating substrate. A second electrode pad, and the first electrode pad and a corresponding one before A second electrode pad is electrically connected via an internal wiring of the insulating substrate, an external connection pin is joined to each of the plurality of second electrode pads, and the base is formed of the convex portion The thickness of the portion where the is formed is twice or more the thickness of the remaining portion.

本発明の光半導体装置において、好ましくは、前記配線基板の厚さをA、前記基体の厚さをBとしたときに、1≦A/B≦10であることを特徴とする。   The optical semiconductor device of the present invention is preferably characterized in that 1 ≦ A / B ≦ 10, where A is the thickness of the wiring board and B is the thickness of the substrate.

本発明の光半導体装置は、上下主面間を貫通する貫通穴が形成されるとともに上側主面の前記貫通穴の開口の周縁部に全周にわたって凸部が形成された平板状の金属製の基体と、上端面の中央部に貫通孔が形成されているとともに下端が開かれた筒状であり、基体の上側主面の外周部に下端が接合された金属製の蓋体と、蓋体の貫通孔の開口の周囲に接合された透光性部材と、貫通穴を覆って凸部の上面に接合された配線基板と、配線基板の上面に載置された光半導体素子とを具備しており、配線基板は、複数の絶縁層が積層されて成る絶縁基板の上面に形成された複数の第1の電極パッドと絶縁基板の下面に配設された複数の第2の電極パッドとを有するとともに、第1の電極パッドとそれに対応する第2の電極パッドとが絶縁基板の内部配線を介して電気的に接続され、複数の第2の電極パッドのそれぞれに外部接続用ピンが接合されており、基体は、凸部が形成された部位の厚さが残部の厚さの2倍以上であることにより、配線基板の上下面および内部に微細な間隔をもって電極パッド,内層導体層および貫通導体を多数形成することができ、その結果、光半導体素子,モニタ用PDだけでなく、光半導体素子を駆動するためのドライバICやPD出力信号増幅用のプリアンプ等の信号入出力をこの配線基板で行なうことができ、光半導体装置内にドライバICやプリアンプ等も実装することができる。従って、外部電気回路を介して光半導体装置に電気的に接続する必要があったドライバIC等を光半導体装置内に実装し集積化することができることから、光半導体素子を駆動させるための装置全体を小型化できる。   The optical semiconductor device of the present invention is made of a plate-like metal in which a through-hole penetrating between the upper and lower main surfaces is formed and a convex portion is formed on the entire periphery of the opening of the through-hole on the upper main surface. A base, a cylindrical lid having a through hole formed in the central portion of the upper end surface and having a lower end opened, and a lower end joined to the outer peripheral portion of the upper main surface of the base; and a lid A translucent member joined around the opening of the through hole, a wiring board covering the through hole and joined to the upper surface of the convex part, and an optical semiconductor element placed on the upper surface of the wiring board. The wiring board includes a plurality of first electrode pads formed on the upper surface of the insulating substrate formed by laminating a plurality of insulating layers and a plurality of second electrode pads disposed on the lower surface of the insulating substrate. A first electrode pad and a second electrode pad corresponding to the first electrode pad inside the insulating substrate. The external connection pins are joined to each of the plurality of second electrode pads, and the base has a thickness of the remaining portion of 2 where the convex portions are formed. By being more than twice, a large number of electrode pads, inner layer conductor layers and through conductors can be formed at fine intervals on the upper and lower surfaces and inside of the wiring board. As a result, not only optical semiconductor elements and monitor PDs, Signal input / output such as a driver IC for driving an optical semiconductor element and a preamplifier for amplifying a PD output signal can be performed by this wiring board, and a driver IC, a preamplifier, and the like can be mounted in the optical semiconductor device. Accordingly, since a driver IC or the like that needs to be electrically connected to the optical semiconductor device via an external electric circuit can be mounted and integrated in the optical semiconductor device, the entire device for driving the optical semiconductor element Can be miniaturized.

また、配線基板上面の第1の電極パッドを光半導体素子の近傍に形成できることから、第1の電極パッドと光半導体素子とをきわめて短線化されたボンディングワイヤにより電気的に接続でき、ボンディングワイヤでの高周波信号の伝送損失を最小限に抑えることができる。   In addition, since the first electrode pad on the upper surface of the wiring board can be formed in the vicinity of the optical semiconductor element, the first electrode pad and the optical semiconductor element can be electrically connected by a very short bonding wire. The transmission loss of the high frequency signal can be minimized.

また、光半導体装置内外を導通する端子(外部接続用ピン)をロウ材等で接合した配線基板を用いるため、外部接続用ピンに外部から応力が加わった場合、従来のガラス接合された端子に比較して、端子の接合部にクラック等の破損が生じて光半導体装置内部の気密が破れるのを有効に防止できる。従って、外部接続用ピンをガラス等の接合材を介して基体の貫通孔に接合した従来の端子構造に比べ気密信頼性が大幅に向上する。   In addition, since a wiring board in which terminals (external connection pins) conducting inside and outside of the optical semiconductor device are joined with a brazing material or the like is used, when external stress is applied to the external connection pins, In comparison, it is possible to effectively prevent the occurrence of breakage such as cracks in the joint portion of the terminal and break the airtightness inside the optical semiconductor device. Therefore, the airtight reliability is greatly improved as compared with the conventional terminal structure in which the external connection pin is joined to the through hole of the base body through a joining material such as glass.

さらに、絶縁基板の下面に2列に配設された複数の第2の電極パッドを有するとともに、複数の第2の電極パッドのそれぞれに外部接続用ピンが接合されていることにより、外部接続用ピンの列の間に外部電気回路基板を挟み込むことができ、例えば外部接続用ピンと外部電気回路基板の配線導体とをそれらの位置を一致させて接続することができる。その結果、光半導体装置の外部電気回路基板への実装の作業がきわめて容易になるとともに、外部接続用ピンと外部電気回路基板の配線導体との接続を外部接続用ピンの配線基板に近い部分で行なうことができ、高周波信号が外部接続用ピンを伝送する長さを最小限に抑えて、外部接続用ピンでの反射等の伝送損失が生じるのを最小限に抑えることができる。   Furthermore, it has a plurality of second electrode pads arranged in two rows on the lower surface of the insulating substrate, and an external connection pin is joined to each of the plurality of second electrode pads, so that the external connection The external electric circuit board can be sandwiched between the rows of pins. For example, the external connection pin and the wiring conductor of the external electric circuit board can be connected with their positions being matched. As a result, the operation of mounting the optical semiconductor device on the external electric circuit board becomes extremely easy, and the connection between the external connection pin and the wiring conductor of the external electric circuit board is performed at a portion close to the wiring board of the external connection pin. Therefore, it is possible to minimize the length of transmission of the high-frequency signal through the external connection pin, and to minimize the occurrence of transmission loss such as reflection at the external connection pin.

また、基体は凸部が形成された部位の厚さが残部の厚さの2倍以上であることにより、基体の凸部が形成された部位と残部との境界が変形し易くなり、蓋体の下端と基体の上側主面の外周部とを抵抗溶接法等の溶接法によって接合する際に、熱応力が生じたとしても、この基体の凸部が形成された部位と残部との境界を適度に変形させることによって応力を有効に緩和することができ、基体の配線基板との接合部に歪みが伝わり難くなる。   Further, since the thickness of the portion where the convex portion is formed on the base is more than twice the thickness of the remaining portion, the boundary between the portion where the convex portion of the base is formed and the remaining portion is easily deformed, and the lid Even if thermal stress occurs when joining the lower end of the base and the outer peripheral portion of the upper main surface of the base body by a welding method such as resistance welding, the boundary between the portion where the convex portion of the base body is formed and the remaining portion is defined. By appropriately deforming, the stress can be effectively relieved, and strain is hardly transmitted to the joint portion of the base body with the wiring board.

また、凸部を形成することにより、蓋体と基体との接合部から配線基板と基体との接合部までの距離を長くすることができ、基体と蓋体とを抵抗溶接法等の溶接法によって接合する際の熱が配線基板と基体との接合部に伝わるのを抑制することができる。その結果、配線基板と基体との接合部において生じる応力を低減できる。   Further, by forming the convex portion, the distance from the joint between the lid and the base to the joint between the wiring board and the base can be increased, and the base and the lid are welded together by a resistance welding method or the like. Therefore, it is possible to suppress the heat at the time of bonding from being transmitted to the bonding portion between the wiring board and the base body. As a result, the stress generated at the junction between the wiring board and the substrate can be reduced.

本発明の光半導体装置において、好ましくは、配線基板の厚さをA、基体の厚さをBとしたとき、1≦A/B≦10であることにより、絶縁基体から成る配線基板と金属製の基体とを接合しても、配線基板と基体との熱膨張差により配線基板にクラック等の破損が生ずるのを有効に抑制することができる。また、蓋体を基体に接合する際に発生する応力によって配線基板にクラック等の破損が生ずるのを有効に抑制することもできる。その結果、光半導体装置内部の気密性を損なうことなく、光半導体素子を長期にわたり正常かつ安定に作動させ得る高信頼性のものとすることができる。   In the optical semiconductor device of the present invention, it is preferable that when the thickness of the wiring board is A and the thickness of the base body is B, 1 ≦ A / B ≦ 10. Even if the base is bonded, it is possible to effectively suppress the occurrence of breakage such as cracks in the wiring board due to the difference in thermal expansion between the wiring board and the base. Further, it is possible to effectively suppress the occurrence of breakage such as cracks in the wiring board due to the stress generated when the lid is joined to the base. As a result, the optical semiconductor element can be made highly reliable so that it can operate normally and stably over a long period of time without impairing the airtightness inside the optical semiconductor device.

本発明の光半導体装置について以下に詳細に説明する。図1は本発明の光半導体装置について実施の形態の一例を示す断面図であり、1は基体、2は光半導体素子、4は透光性部材、5は配線基板、12は光ファイバ、3は金属製の蓋体である。これら基体1および配線基板5で光半導体装置が基本的に構成される。   The optical semiconductor device of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an embodiment of an optical semiconductor device according to the present invention. 1 is a substrate, 2 is an optical semiconductor element, 4 is a translucent member, 5 is a wiring board, 12 is an optical fiber, 3 Is a metal lid. The base 1 and the wiring substrate 5 basically constitute an optical semiconductor device.

本発明の光半導体装置は、上下主面間を貫通する貫通穴1aが形成されるとともに上側主面の貫通穴1aの開口の周縁部に全周にわたって凸部1bが形成された平板状の金属製の基体1と、上端面の中央部に貫通孔3bが形成されているとともに下端3cが開かれた筒状であり、基体1の上側主面の外周部に下端3cが接合された金属製の蓋体3と、蓋体3の貫通孔3bの開口の周囲に接合された透光性部材4と、貫通穴1aを覆って凸部1bの上面に接合された配線基板5と、配線基板5の上面に載置された光半導体素子2とを具備しており、配線基板5は、複数の絶縁層が積層されて成る絶縁基板の上面に形成された複数の第1の電極パッド6aと絶縁基板の下面に配設された複数の第2の電極パッド7aとを有するとともに、第1の電極パッド6aとそれに対応する第2の電極パッド7aとが絶縁基板の内部配線8a,8bを介して電気的に接続され、複数の第2の電極パッド7aのそれぞれに外部接続用ピン10が接合されており、基体1は、凸部1bが形成された部位の厚さが残部の厚さの2倍以上である。   The optical semiconductor device of the present invention is a flat metal in which a through hole 1a penetrating between upper and lower main surfaces is formed, and a convex portion 1b is formed on the entire periphery of the peripheral portion of the opening of the through hole 1a on the upper main surface. A base 1 made of metal, a cylindrical shape in which a through hole 3b is formed in the center of the upper end surface and the lower end 3c is opened, and a lower end 3c is joined to the outer peripheral portion of the upper main surface of the base 1 A lid 3, a translucent member 4 joined around the opening of the through hole 3b of the lid 3, a wiring board 5 covering the through hole 1a and joined to the upper surface of the convex portion 1b, and a wiring board The wiring substrate 5 includes a plurality of first electrode pads 6a formed on a top surface of an insulating substrate formed by laminating a plurality of insulating layers. And a plurality of second electrode pads 7a disposed on the lower surface of the insulating substrate. The pad 6a and the corresponding second electrode pad 7a are electrically connected via the internal wirings 8a and 8b of the insulating substrate, and the external connection pin 10 is joined to each of the plurality of second electrode pads 7a. In the substrate 1, the thickness of the portion where the convex portion 1b is formed is twice or more the thickness of the remaining portion.

本発明の基体1は、円板状、長方形状等の平板状であり、Fe−Ni−Co合金やFe−Ni合金、Cu−W合金等の金属から成り、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって所定形状に製作される。この基体1には、外部接続用ピン10を挿通するために、基体1の上下主面間を貫通する貫通穴1aが設けられている。この貫通穴1aには、配線基板5がその下面の外周部に設けられた第2の同一面導体層7bを介して、貫通穴1aを覆うようにして銀(Ag)ろう等のろう材によって気密に接合される。ここで基体1は、貫通穴1aの開口の周縁部に全周にわたって凸部1bが形成されており、この凸部1b上に配線基板5が接合される。そして、基体1の凸部1bが形成された部位の厚さが残部の厚さの2倍以上である。   The substrate 1 of the present invention has a flat plate shape such as a disk shape or a rectangular shape, and is made of a metal such as an Fe—Ni—Co alloy, an Fe—Ni alloy, or a Cu—W alloy, and the ingot is rolled or punched. It is manufactured in a predetermined shape by applying a conventionally well-known metal processing method. The base body 1 is provided with a through hole 1a that penetrates between the upper and lower main surfaces of the base body 1 in order to insert the external connection pin 10 therethrough. In this through hole 1a, the wiring board 5 is covered with a brazing material such as silver (Ag) brazing so as to cover the through hole 1a through the second coplanar conductor layer 7b provided on the outer peripheral portion of the lower surface thereof. Airtightly joined. Here, the base body 1 is formed with a convex portion 1b around the entire periphery of the opening of the through hole 1a, and the wiring board 5 is bonded onto the convex portion 1b. And the thickness of the site | part in which the convex part 1b of the base | substrate 1 was formed is 2 times or more of the thickness of a remainder.

この構成により、基体1の凸部1bが形成された部位と残部との境界が変形し易くなり、蓋体3の下端3cと基体1の上側主面の外周部とを抵抗溶接法等の溶接法によって接合する際に、熱応力が生じたとしても、この基体1の凸部1bが形成された部位と残部との境界を適度に変形させることによって応力を有効に緩和することができ、基体1の配線基板5との接合部に歪みが伝わり難くなる。   With this configuration, the boundary between the portion where the convex portion 1b of the base 1 is formed and the remaining portion is easily deformed, and the lower end 3c of the lid 3 and the outer peripheral portion of the upper main surface of the base 1 are welded by resistance welding or the like. Even when thermal stress is generated when joining by the method, the stress can be effectively relieved by appropriately deforming the boundary between the portion where the convex portion 1b of the base body 1 is formed and the remaining portion. The strain is difficult to be transmitted to the joint portion with the one wiring board 5.

また、凸部1bを形成することにより、蓋体3と基体1との接合部から配線基板5と基体1との接合部までの距離を長くすることができ、基体1と蓋体3とを抵抗溶接法等の溶接法によって接合する際の熱が配線基板5と基体1との接合部に伝わるのを抑制することができる。その結果、配線基板5と基体1との接合部において生じる応力を低減できる。   Further, by forming the convex portion 1b, the distance from the junction between the lid 3 and the base 1 to the junction between the wiring board 5 and the base 1 can be increased, and the base 1 and the lid 3 can be connected to each other. The heat at the time of joining by a welding method such as resistance welding can be prevented from being transmitted to the joint portion between the wiring board 5 and the base 1. As a result, the stress generated at the joint between the wiring substrate 5 and the base body 1 can be reduced.

基体1の凸部1bが形成された部位の厚さが残部の厚さの2倍未満である場合、基体1と蓋体3を抵抗溶接法等の溶接法によって接合する際に、基体1の残部が変形し難くなり、基体1と蓋体3とを溶接する際に基体1に加わる歪みが残部で十分吸収されずに基体1の配線基板5との接合部に伝わり易くなる。その結果、配線基板5に応力が加わってクラック等の破損が生じ易くなり、容器内部を気密に保持するのが困難になる。   When the thickness of the portion of the base 1 where the convex portion 1b is formed is less than twice the thickness of the remaining portion, when the base 1 and the lid 3 are joined by a welding method such as a resistance welding method, The remaining portion is not easily deformed, and the strain applied to the base body 1 when the base body 1 and the lid 3 are welded is not sufficiently absorbed by the remaining portion, and is easily transmitted to the joint portion of the base body 1 with the wiring board 5. As a result, stress is applied to the wiring board 5 and breakage such as cracks is likely to occur, making it difficult to keep the inside of the container airtight.

配線基板5は以下のようにして作製される。例えば、Al質セラミックスから成る場合、先ず酸化アルミニウム、酸化珪素(SiO)、酸化マグネシウム(MgO)および酸化カルシウム(CaO)等の原料粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して泥漿状と成す。これを従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術により複数のセラミックグリーンシートを得る。次に、このセラミックグリーンシートに、Wやモリブデン(Mo)等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを、スクリーン印刷法等の厚膜形成技術により印刷塗布して、第1の電極パッド6a,第2の電極パッド7a,第2の同一面導体層7b,内部配線の一部である内層導体層8bとなるメタライズ層を所定パターンに形成する。また、金型等によって打ち抜き加工することによって、各セラミックグリーンシートの所望の位置に内部配線の一部である貫通導体8aとなる貫通孔を形成し、この貫通孔にWやMo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを充填する。その後、セラミックグリーンシートを複数枚積層し、これを還元雰囲気中、約1600℃の温度で焼成することにより製作される。 The wiring board 5 is produced as follows. For example, in the case of Al 2 O 3 ceramics, first, an appropriate organic binder, plasticizer, solvent, etc. are added to the raw material powders such as aluminum oxide, silicon oxide (SiO 2 ), magnesium oxide (MgO) and calcium oxide (CaO). Add and mix to form a slurry. A plurality of ceramic green sheets are obtained from this by a tape forming technique such as a doctor blade method or a calender roll method. Next, a metal paste obtained by adding an appropriate organic binder, plasticizer, solvent, etc. to a high melting point metal powder such as W or molybdenum (Mo) to the ceramic green sheet is mixed with a thick film such as a screen printing method. The metallized layer which becomes the inner layer conductor layer 8b which is the first electrode pad 6a, the second electrode pad 7a, the second coplanar conductor layer 7b, and a part of the internal wiring is formed into a predetermined pattern by printing and coating by a forming technique. Form. Further, by punching with a mold or the like, a through hole to be a through conductor 8a which is a part of the internal wiring is formed at a desired position of each ceramic green sheet, and a high melting point such as W or Mo is formed in the through hole. A metal paste obtained by adding and mixing an appropriate organic binder, plasticizer, solvent, etc. to the metal powder is filled. Thereafter, a plurality of ceramic green sheets are laminated and fired at a temperature of about 1600 ° C. in a reducing atmosphere.

また、配線基板5の厚さをA、基体1の厚さをBとしたとき、1≦A/B≦10とすることが好ましい。これにより、絶縁基体から成る配線基板5に金属製の基体1を接合しても、配線基板5と基体1との熱膨張差により配線基板5にクラック等の破損が生ずるのを有効に抑制することができる。その結果、光半導体装置内部の気密性を損なうことなく、光半導体素子2を長期にわたり正常かつ安定に作動させることができる。   Further, when the thickness of the wiring board 5 is A and the thickness of the substrate 1 is B, it is preferable that 1 ≦ A / B ≦ 10. Thereby, even if the metal substrate 1 is bonded to the wiring substrate 5 made of an insulating substrate, it is possible to effectively suppress the occurrence of breakage such as cracks in the wiring substrate 5 due to the difference in thermal expansion between the wiring substrate 5 and the substrate 1. be able to. As a result, the optical semiconductor element 2 can be operated normally and stably for a long time without impairing the airtightness inside the optical semiconductor device.

A/B<1の場合、基体1に対して配線基板5が薄くなりすぎて強度が弱くなり、基体1との熱膨張差で配線基板5にクラック等の破損が生じ易くなる。また、A/B>10の場合、配線基板5が厚くなり、基体1,蓋体3,透光性部材4,配線基板5から構成される容器内部の容積を確保するために蓋体3を高くしなければならず、その結果、半導体装置が大型化し近時の光半導体装置の小型化への要求に適さなくなる。また、配線基板5が厚くなると、外部接続用ピン10から光半導体素子2までの線路として機能する貫通導体8aが長くなって、貫通導体8aを伝送する高周波信号に発生する反射損失や透過損失が大きくなり光半導体素子2の作動性が劣化し易くなる。   In the case of A / B <1, the wiring board 5 becomes too thin with respect to the base body 1 to weaken the strength, and the wiring board 5 is likely to be damaged due to a difference in thermal expansion from the base body 1. When A / B> 10, the wiring board 5 becomes thick, and the lid 3 is secured to secure a volume inside the container composed of the base body 1, the lid body 3, the translucent member 4, and the wiring board 5. As a result, the size of the semiconductor device is increased, and it is not suitable for the recent demand for downsizing of the optical semiconductor device. Further, when the wiring board 5 becomes thicker, the through conductor 8a functioning as a line from the external connection pin 10 to the optical semiconductor element 2 becomes longer, and reflection loss and transmission loss generated in the high-frequency signal transmitted through the through conductor 8a. It becomes large and the operativity of the optical semiconductor element 2 tends to deteriorate.

さらに、基体1と配線基板5との接合部の幅を0.3mm以上とするのがよい。これにより、基体1と配線基板5との接合強度を大きくして、基体1,蓋体3,透光性部材4,配線基板5から構成される容器内部を気密に保持することができる。   Furthermore, it is preferable that the width of the joint portion between the base body 1 and the wiring substrate 5 is 0.3 mm or more. As a result, the bonding strength between the base 1 and the wiring board 5 can be increased, and the inside of the container composed of the base 1, the lid 3, the translucent member 4, and the wiring board 5 can be kept airtight.

配線基板5の下面には、例えば、図2に示すように複数個の第2の電極パッド7aが2列に配設されており、それぞれの第2の電極パッド7aに外部接続用ピン10が、Agろう等のろう材によって接続される。好ましくは、外部接続用ピン10は、図3に示すように第2の電極パッド7aとの接合部(上端)に鍔部10aが設けられているのがよく、外部接続用ピン10を電極パッド7aに強固に接合できる。   For example, as shown in FIG. 2, a plurality of second electrode pads 7a are arranged in two rows on the lower surface of the wiring board 5, and external connection pins 10 are provided on the respective second electrode pads 7a. Are connected by a brazing material such as Ag brazing. Preferably, as shown in FIG. 3, the external connection pin 10 is provided with a flange 10a at the joint (upper end) with the second electrode pad 7a, and the external connection pin 10 is connected to the electrode pad. 7a can be firmly joined.

このようにして、配線基板5の下面に外部接続用ピン10を2列に配列して、外部接続用ピン10の列の間に外部電気回路基板を挟み込むことができ、例えば外部接続用ピン10と外部電気回路基板の配線導体との位置を一致させることができる。その結果、光半導体装置の外部電気回路基板への実装作業が容易になるとともに、外部接続用ピン10と外部電気回路基板の配線導体との接続を外部接続用ピン10の配線基板5に近い部分で行なうことができ、高周波信号が外部接続用ピン10を伝送する長さを最小限に抑えて、外部接続用ピン10での反射等の伝送損失が生じるのを最小限に抑えることができる。   In this way, the external connection pins 10 can be arranged in two rows on the lower surface of the wiring board 5 so that the external electric circuit board can be sandwiched between the rows of the external connection pins 10. And the position of the wiring conductor of the external electric circuit board can be matched. As a result, the optical semiconductor device can be easily mounted on the external electric circuit board, and the connection between the external connection pin 10 and the wiring conductor of the external electric circuit board is close to the wiring board 5 of the external connection pin 10. The length of transmission of the high-frequency signal through the external connection pin 10 can be minimized, and transmission loss such as reflection at the external connection pin 10 can be minimized.

好ましくは、図4に示すように、第1の電極パッド6aの周囲に一定間隔をもって配線基板5の上面の全面に第1の同一面導体層6bを形成し、また第2の電極パッド7aの周囲に一定間隔をもって配線基板5の下面の全面に第2の同一面導体層7bを形成するのがよい。この構成により、配線基板5の上下面においてシールド効果(電磁遮蔽効果)が得られ、高周波信号が第1の電極パッド6aと第2の電極パッド7aを介して配線基板5を入出力する際、高周波信号がノイズ等の影響により正常に入出力できなくなるのを防止するとともに、配線基板5の上下面での高周波信号の放射による損失を防止する。   Preferably, as shown in FIG. 4, a first coplanar conductor layer 6b is formed on the entire upper surface of the wiring board 5 around the first electrode pad 6a at a constant interval, and the second electrode pad 7a The second coplanar conductor layer 7b is preferably formed on the entire lower surface of the wiring board 5 with a constant interval around the periphery. With this configuration, a shielding effect (electromagnetic shielding effect) is obtained on the upper and lower surfaces of the wiring board 5, and when a high-frequency signal inputs and outputs the wiring board 5 through the first electrode pad 6 a and the second electrode pad 7 a, The high frequency signal is prevented from being normally input / output due to the influence of noise or the like, and loss due to the radiation of the high frequency signal on the upper and lower surfaces of the wiring board 5 is prevented.

さらに好ましくは、図5に示すように、第2の電極パッド7aを第1の電極パッド6aと対向する位置に設け、第1の電極パッド6aと第2の電極パッド7aとを電気的に接続する貫通導体8aの周りに、貫通導体8aを中心とする円周上に一定間隔で複数の接地貫通導体9aを設けるのがよい。この場合、図6(a)に図5のA−A’線断面図を示すように、セラミックグリーンシートの層間には貫通導体8aの周りに貫通導体8aの中心C1を中心とする円形状の内層導体層8bを設けるとともに、中心C1を中心とする直径Dの円周上に接地貫通導体9aの中心C2が載るようにして、一定間隔で複数の接地貫通導体9aを設ける。接地貫通導体9aの周りには中心C2を中心とする円形の内層接地導体層9bを設ける。   More preferably, as shown in FIG. 5, the second electrode pad 7a is provided at a position facing the first electrode pad 6a, and the first electrode pad 6a and the second electrode pad 7a are electrically connected. It is preferable to provide a plurality of grounding through conductors 9a at regular intervals around the circumference of the through conductor 8a. In this case, as shown in the cross-sectional view along line AA ′ of FIG. 5 in FIG. 6A, a circular shape centering on the center C1 of the through conductor 8a is provided between the ceramic green sheets and around the through conductor 8a. The inner conductor layer 8b is provided, and a plurality of ground through conductors 9a are provided at regular intervals so that the center C2 of the ground through conductor 9a is placed on the circumference of the diameter D centered on the center C1. A circular inner ground conductor layer 9b centering on the center C2 is provided around the ground through conductor 9a.

なお、内層導体層8bと内層接地導体層9bは、それぞれ上下のセラミックグリーンシートにおける貫通導体8a、接地貫通導体9a同士を確実に電気的に接続させるためのものである。   The inner layer conductor layer 8b and the inner layer ground conductor layer 9b are for reliably connecting the through conductor 8a and the ground through conductor 9a in the upper and lower ceramic green sheets, respectively.

上記の構成により、貫通導体8aを伝送する高周波信号を同軸線路のモードで伝送させることができ、反射等の伝送損失を抑えて無駄なく伝送できる。さらに、図6(b)に示すように、内層接地導体層9bを内層導体層8bの周囲に、一定間隔をもって貫通導体8aを中心とする円周より外側の全体に設けてもよく、貫通導体8aを伝送する高周波信号をより同軸線路のモードに近似させることができ、より伝送損失を抑えることが可能となる。   With the above configuration, a high-frequency signal transmitted through the through conductor 8a can be transmitted in the coaxial line mode, and transmission loss such as reflection can be suppressed and transmitted without waste. Further, as shown in FIG. 6B, the inner ground conductor layer 9b may be provided around the inner conductor layer 8b around the inner conductor layer 8b at regular intervals and outside the circumference around the through conductor 8a. The high-frequency signal transmitted through 8a can be more approximated to the mode of the coaxial line, and transmission loss can be further suppressed.

また、この光半導体装置は光半導体素子2の誤作動等を防止するため、内部を気密にするのがよい。内部を気密にすると、蓋体3の外面に内外の気圧差による圧力が加わり、蓋体3が変形を起こす可能性がある。従って、気圧差により光半導体装置の外面に加わる圧力を略均一に分布させ、圧力集中を防止するため、蓋体3は断面形状(横断面形状)を円筒形とするのがよい。   The optical semiconductor device is preferably hermetically sealed in order to prevent malfunction of the optical semiconductor element 2 and the like. If the inside is hermetically sealed, a pressure due to a pressure difference between the inside and outside is applied to the outer surface of the lid 3 and the lid 3 may be deformed. Therefore, in order to distribute the pressure applied to the outer surface of the optical semiconductor device substantially uniformly due to the pressure difference and prevent pressure concentration, the lid 3 is preferably cylindrical in cross-sectional shape (transverse cross-sectional shape).

また、基体1と配線基板5とは互いに位置合わせを行なえるのがよく、図7に基体1と配線基板5の平面図を示すように、基体1および配線基板5の外周の対向する2箇所にそれぞれ直線部1bおよび直線部5bを設けるのがよい。このような直線部5bを有することによって、配線基板5は図8に示すように、セラミックグリーンシート5aで斜線部を打ち抜き加工し、多層積層し焼成した後に、点線部をスライス加工することで形成できる。配線基板5が円形である場合、焼成体を切削加工して円形にすることが困難であるため、セラミックグリーンシート5aを打ち抜き加工して円形の個片にした後に焼成することになるが、その場合円形の各個片を焼成炉内に設置しなければならないため、焼成時の作業効率が低下する。一方、配線基板5が直線部5bを有する場合、配線基板5領域を多数有する母基板の状態で焼成でき、作業効率が著しく向上する。   The base 1 and the wiring board 5 can be aligned with each other. As shown in the plan view of the base 1 and the wiring board 5 in FIG. It is preferable to provide a straight portion 1b and a straight portion 5b respectively. By having such a straight line portion 5b, the wiring board 5 is formed by punching the hatched portion with the ceramic green sheet 5a, multilayering and firing, and then slicing the dotted portion as shown in FIG. it can. When the wiring board 5 is circular, it is difficult to cut the fired body into a circular shape, so that the ceramic green sheet 5a is punched into circular pieces and fired. In this case, since each circular piece must be installed in the firing furnace, the working efficiency during firing is reduced. On the other hand, when the wiring board 5 has the straight portion 5b, it can be fired in the state of a mother board having a large number of wiring board 5 regions, and the working efficiency is remarkably improved.

また、基体1に直線部1bを設ける場合、蓋体3を基体1に取り付けるための下端3cにも上記のように2箇所の直線部を形成するのがよい。この場合、基体1と下端3cの外周同士を一致させ、蓋体3を基体1の上側主面に位置ずれすることなく接合し、内部を確実に気密に保持できるとともに、接合し易くできるという利点がある。   Moreover, when providing the linear part 1b in the base | substrate 1, it is good to form two linear parts in the lower end 3c for attaching the cover body 3 to the base | substrate 1 as mentioned above. In this case, the outer peripheries of the base body 1 and the lower end 3c are made to coincide with each other, and the lid body 3 is joined to the upper main surface of the base body 1 without being displaced so that the inside can be surely kept airtight and can be joined easily. There is.

蓋体3は、Fe−Ni−Co合金等の金属のインゴットに圧延加工や打ち抜き加工、絞り加工等の従来周知の金属加工法を施すことによって所定形状に製作される。この蓋体3は、筒状部と上端面3aが個々に製作され、それらをろう付け、半田付け、溶接等によって接合したものであってもよい。   The lid 3 is manufactured in a predetermined shape by subjecting a metal ingot such as an Fe—Ni—Co alloy to a conventionally known metal processing method such as rolling, punching, or drawing. The lid 3 may be formed by individually manufacturing a cylindrical portion and an upper end surface 3a and joining them by brazing, soldering, welding, or the like.

蓋体3には、貫通孔3bを塞ぐように貫通孔3bの上端面3a側開口の周囲に、透光性部材4がガラス接合や半田付け等により気密に接合される。透光性部材4は、ガラスやサファイア等から成る円板状,レンズ状,球状または半球状等のものであり、球状の場合周縁部で、円板状やレンズ状の場合一主面の外周部で、半球状の場合平面部の外周部で蓋体3に接合される。   The translucent member 4 is airtightly bonded to the lid 3 by glass bonding or soldering around the upper end surface 3a side opening of the through hole 3b so as to close the through hole 3b. The translucent member 4 has a disk shape, a lens shape, a spherical shape, a hemispherical shape, or the like made of glass, sapphire, or the like. In the case of a hemispherical part, it is joined to the lid 3 at the outer peripheral part of the flat part.

また、光ファイバ12は、ジルコニア等にて構成される筒状の保持部品と接着等されることによって保持され、その保持部品はSUS等の金属から成る略円筒状の金属製固定部材13の上端面に固定されており、金属製固定部材13の下端面が蓋体3の外周面にレーザ溶接法等の溶接によって接合される。光ファイバ12が金属製固定部材13を介して透光性部材4の上方に固定されることによって、製品としての光半導体装置となる。これにより、光ファイバ12を介して内部に収容する光半導体素子2と外部との光信号の授受が可能となる。   The optical fiber 12 is held by being bonded to a cylindrical holding part made of zirconia or the like, and the holding part is placed on a substantially cylindrical metal fixing member 13 made of a metal such as SUS. The lower end surface of the metal fixing member 13 is joined to the outer peripheral surface of the lid 3 by welding such as a laser welding method. The optical fiber 12 is fixed above the translucent member 4 through the metal fixing member 13, so that an optical semiconductor device as a product is obtained. As a result, it is possible to exchange optical signals between the optical semiconductor element 2 housed inside and the outside via the optical fiber 12.

本発明において、透光性部材4は貫通孔3bの上端面3a側開口の周囲に接合されるのが好ましく、この場合以下の点で有利である。即ち、蓋体3の外周部に金属製固定部材13を溶接する際の熱が蓋体3に局所的に加わり、蓋体3の透光性部材4との接合面に熱膨張による引っ張り応力が加わると、透光性部材4が蓋体3から剥がれ易くなるが、光半導体装置は内部を気密にするため外側から内側に気圧が加わるため、気圧によって透光性部材4が蓋体3に押し付けられて剥がれにくくなる。一方、透光性部材4が貫通孔3bの上端面3aの裏面側開口の周囲に接合されていると、熱膨張による応力によって透光性部材4を剥がそうとする引っ張り応力と気圧による圧力とが、透光性部材4が蓋体3から容易に外れてしまうこととなる。   In the present invention, the translucent member 4 is preferably joined around the opening on the upper end surface 3a side of the through-hole 3b. In this case, the following points are advantageous. That is, heat when the metal fixing member 13 is welded to the outer periphery of the lid 3 is locally applied to the lid 3, and tensile stress due to thermal expansion is applied to the joint surface of the lid 3 with the translucent member 4. If applied, the translucent member 4 is easily peeled off from the lid 3. However, since the optical semiconductor device is airtight from the outside to make the inside airtight, the translucent member 4 is pressed against the lid 3 by the atmospheric pressure. It becomes difficult to peel off. On the other hand, when the translucent member 4 is joined to the periphery of the opening on the back surface side of the upper end surface 3a of the through hole 3b, a tensile stress that causes the translucent member 4 to be peeled off by a stress due to thermal expansion and a pressure due to atmospheric pressure. However, the translucent member 4 is easily detached from the lid 3.

本発明の光半導体装置は、光半導体素子2の電極を外部電気回路に電気的に接続し、製品としての光半導体装置となる。この光半導体装置は、例えば外部電気回路から供給される電気信号によって光半導体素子2にレーザ光等の光を励起させ、この光を透光性部材4、光ファイバ12の順に透過させ、光ファイバ12を介して外部に伝送することによって、高速光通信等に使用される光半導体装置として機能する。   The optical semiconductor device of the present invention is an optical semiconductor device as a product by electrically connecting the electrodes of the optical semiconductor element 2 to an external electric circuit. In this optical semiconductor device, for example, an optical signal supplied from an external electric circuit excites the optical semiconductor element 2 with light such as laser light, and transmits this light in the order of the translucent member 4 and the optical fiber 12, and the optical fiber. By transmitting to the outside via 12, it functions as an optical semiconductor device used for high-speed optical communication or the like.

本発明の光半導体装置の実施例を以下に説明する。   Examples of the optical semiconductor device of the present invention will be described below.

図1の光半導体装置を以下のようにして製作した。まず、直径7.7mmの円板状で、中央に直径4.2mmの円形の貫通穴1aが設けられているとともに、上面の貫通穴1aの周囲に全周にわたって幅が0.8mmの凸部1bが形成されたFe−Ni−Co合金から成る基体1を容易した。   The optical semiconductor device of FIG. 1 was manufactured as follows. First, a circular through hole 1a having a disk shape of 7.7 mm in diameter and having a diameter of 4.2 mm is provided at the center, and a convex portion 1b having a width of 0.8 mm is formed around the through hole 1a on the upper surface. The substrate 1 made of the Fe-Ni-Co alloy thus prepared was facilitated.

そして、基体1の凸部1aの上面に、外形寸法が直径5mmの円板状で、Al質焼結体から成る配線基板5を、Agロウ材を介して接合した。 Then, a wiring board 5 made of an Al 2 O 3 sintered body and having a disk shape with an outer diameter of 5 mm was joined to the upper surface of the convex portion 1a of the base 1 via an Ag brazing material.

次に、基体1の上面の外周部に、円筒部の内径が5.7mm,下端3cの外径が7.7mm,下端3cから上端面3aまでの高さが3mm,厚さが0.3mmであり、上端面3aに設けられた直径2.4mmの円形の貫通孔3bの周囲に直径3.2mm×厚さ0.3mmの円板状のサファイアからなる透光性部材4がAgロウを介してロウ付けされたFe−Ni−Co合金から成る蓋体3をシーム溶接法によって接合した。   Next, on the outer periphery of the upper surface of the base body 1, the inner diameter of the cylindrical portion is 5.7 mm, the outer diameter of the lower end 3c is 7.7 mm, the height from the lower end 3c to the upper end surface 3a is 3 mm, and the thickness is 0.3 mm. A translucent member 4 made of disc-shaped sapphire having a diameter of 3.2 mm and a thickness of 0.3 mm was brazed via Ag brazing around a circular through hole 3b having a diameter of 2.4 mm provided on the upper end surface 3a. The lid 3 made of Fe—Ni—Co alloy was joined by a seam welding method.

ここで、基体1の凸部1aが形成された部位の厚さBを0.4mmまたは0.6mmとし、配線基板5の厚さAを0.5mmとし、基体1の残部の厚さを表1または表2に示す種々の値となるようにして、光半導体装置の試料を各20個作製した。   Here, the thickness B of the portion of the substrate 1 where the convex portions 1a are formed is 0.4 mm or 0.6 mm, the thickness A of the wiring board 5 is 0.5 mm, and the thickness of the remaining portion of the substrate 1 is shown in Table 1 or Table 1. Twenty samples of each optical semiconductor device were produced so as to obtain various values shown in FIG.

各試料について気密性の評価を以下の手順で行なった。まず、各試料をフロリナート系の揮発性の高い液体中に浸漬してグロスリーク試験を行ない、液体中への気泡の発生の有無を評価し、気泡の生じない試料を良品とし、気泡の生じた試料を不良品とした。さらに、グロスリーク試験で良品であった試料について、4900Pa(パスカル)で2時間He加圧を行なった後にHeリーク試験、即ち光半導体装置の内部にHeを加圧侵入させ、その後光半導体装置の外部へ漏れ出てくるHeを検出する試験を実施し、Heの検出量が5.0×10−9Pa・m/sec以下の試料を良品とし、検出量が5.0×10−9Pa・m/secを超える試料を不良品とした。その評価結果を表1,2に示す。

Figure 2005217098
The airtightness of each sample was evaluated according to the following procedure. First, each sample was immersed in a highly volatile liquid of a fluorinate system, and a gross leak test was conducted to evaluate the presence or absence of bubbles in the liquid. The sample was defective. Further, for a sample that was a non-defective product in the gross leak test, He was pressurized at 4900 Pa (Pascal) for 2 hours and then He leak test, that is, He was pressed into the inside of the optical semiconductor device. A test for detecting He leaking to the outside is conducted, and a sample having a He detection amount of 5.0 × 10 −9 Pa · m 3 / sec or less is regarded as a non-defective product, and the detection amount is 5.0 × 10 −9 Pa · m 3 A sample exceeding / sec was regarded as a defective product. The evaluation results are shown in Tables 1 and 2.
Figure 2005217098

Figure 2005217098
Figure 2005217098

表1,2より、基体1の凸部1bが形成された部位の厚さが残部の厚さの2倍未満では気密性不良が発生した。   From Tables 1 and 2, when the thickness of the portion of the substrate 1 where the convex portion 1b is formed is less than twice the thickness of the remaining portion, poor airtightness occurred.

以上より、基体1の凸部1bが形成された部位の厚さが残部の厚さの2倍以上である場合、光半導体装置内部の気密を良好に保持できることが判った。   From the above, it has been found that when the thickness of the portion of the substrate 1 where the convex portion 1b is formed is twice or more the thickness of the remaining portion, the inside of the optical semiconductor device can be kept airtight.

図1の光半導体装置を以下のようにして製作した。まず、直径7.7mmの円板状で、中央に直径4.2mmの円形の貫通穴1aが設けられているとともに、上面の貫通穴1aの周囲に全周にわたって幅が0.8mmの凸部1bが形成されたFe−Ni−Co合金から成る基体1を容易した。   The optical semiconductor device of FIG. 1 was manufactured as follows. First, a circular through hole 1a having a disk shape of 7.7 mm in diameter and having a diameter of 4.2 mm is provided at the center, and a convex portion 1b having a width of 0.8 mm is formed around the through hole 1a on the upper surface. The substrate 1 made of the Fe-Ni-Co alloy thus prepared was facilitated.

そして、基体1の凸部1aの上面に、外形寸法が直径5mmの円板状で、Al質焼結体から成る配線基板5を、Agロウ材を介して接合した。 Then, a wiring board 5 made of an Al 2 O 3 sintered body and having a disk shape with an outer diameter of 5 mm was joined to the upper surface of the convex portion 1a of the base 1 via an Ag brazing material.

次に、基体1の上面の外周部に、円筒部の内径が5.7mm,下端3cの外径が7.7mm,下端3cから上端面3aまでの高さが3mm,厚さが0.3mmであり、上端面3aに設けられた直径2.4mmの円形の貫通孔3bの周囲に直径3.2mm×厚さ0.3mmの円板状のサファイアからなる透光性部材4がAgロウを介してロウ付けされたFe−Ni−Co合金から成る蓋体3をシーム溶接法によって接合した。   Next, on the outer periphery of the upper surface of the base body 1, the inner diameter of the cylindrical portion is 5.7 mm, the outer diameter of the lower end 3c is 7.7 mm, the height from the lower end 3c to the upper end surface 3a is 3 mm, and the thickness is 0.3 mm. A translucent member 4 made of disc-shaped sapphire having a diameter of 3.2 mm and a thickness of 0.3 mm was brazed via Ag brazing around a circular through hole 3b having a diameter of 2.4 mm provided on the upper end surface 3a. The lid 3 made of Fe—Ni—Co alloy was joined by a seam welding method.

ここで、基体1の凸部1aが形成された部位の厚さBを0.4mmまたは0.6mmとし、基体1の残部の厚さAを基体1の凸部1aが形成された部位の厚さBの1/2とし、配線基板5の厚さを表3に示す種々の値となるようにして、光半導体装置の試料を各20個作製した。   Here, the thickness B of the portion of the base 1 where the convex portion 1a is formed is 0.4 mm or 0.6 mm, and the thickness A of the remaining portion of the base 1 is the thickness B of the portion of the base 1 where the convex portion 1a is formed. 20 samples each of the optical semiconductor device were manufactured so that the thickness of the wiring substrate 5 would be various values shown in Table 3.

各試料について気密性の評価を以下の手順で行なった。まず、各試料をフロリナート系の揮発性の高い液体中に浸漬してグロスリーク試験を行ない、液体中への気泡の発生の有無を評価し、気泡の生じない試料を良品とし、気泡の生じた試料を不良品とした。さらに、グロスリーク試験で良品であった試料について、4900Pa(パスカル)で2時間He加圧を行なった後にHeリーク試験、即ち光半導体装置の内部にHeを加圧侵入させ、その後光半導体装置の外部へ漏れ出てくるHeを検出する試験を実施し、Heの検出量が5.0×10−9Pa・m/sec以下の試料を良品とし、検出量が5.0×10−9Pa・m/secを超える試料を不良品とした。その評価結果を表3に示す。

Figure 2005217098
The airtightness of each sample was evaluated according to the following procedure. First, each sample was immersed in a highly volatile liquid of a fluorinate system, and a gross leak test was performed to evaluate the presence or absence of bubbles in the liquid. The sample was defective. Furthermore, for a sample that was a non-defective product in the gross leak test, He was pressurized at 4900 Pa (Pascal) for 2 hours, and then He leak test, that is, He was pressed into the inside of the optical semiconductor device. A test for detecting He leaking to the outside is conducted, and a sample having a He detection amount of 5.0 × 10 −9 Pa · m 3 / sec or less is regarded as a non-defective product, and the detection amount is 5.0 × 10 −9 Pa · m 3 A sample exceeding / sec was regarded as a defective product. The evaluation results are shown in Table 3.
Figure 2005217098

表3より、配線基板5の厚さAが基体1の厚さの1倍未満では気密性不良が発生した。   From Table 3, when the thickness A of the wiring board 5 is less than 1 times the thickness of the base body 1, an airtight defect occurred.

以上より、配線基板5の厚さが基体1の凸部1aが形成された部位の厚さBの1倍以上である場合、光半導体装置内部の気密を良好に保持できることが判った。ただし、配線基板5の厚さAが基体1の凸部1aが形成された部位の厚さBの10倍よりも厚くなると、光半導体装置が大型化するので実用に適さないものとなる。   From the above, it has been found that when the thickness of the wiring substrate 5 is one or more times the thickness B of the portion where the convex portion 1a of the base body 1 is formed, the airtightness inside the optical semiconductor device can be satisfactorily maintained. However, if the thickness A of the wiring substrate 5 is larger than 10 times the thickness B of the portion of the base body 1 where the protrusions 1a are formed, the optical semiconductor device becomes large and unsuitable for practical use.

なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。   In addition, this invention is not limited to the said embodiment and Example, A various change may be performed in the range which does not deviate from the summary of this invention.

本発明の光半導体装置について実施の形態の例を示す断面図である。It is sectional drawing which shows the example of embodiment about the optical semiconductor device of this invention. 本発明の光半導体装置における配線基板の第2の電極パッドの拡大平面図である。It is an enlarged plan view of the 2nd electrode pad of the wiring board in the optical semiconductor device of the present invention. 本発明の光半導体装置における外部接続用ピンの実施の形態の他の例を示す拡大断面図である。It is an expanded sectional view which shows the other example of embodiment of the pin for external connection in the optical semiconductor device of this invention. (a)は本発明の光半導体装置における配線基板の第1の電極パッドの実施の形態の他の例を示す拡大平面図、(b)は本発明の光半導体装置における配線基板の第2の電極パッドの実施の形態の他の例を示す拡大平面図である。(A) is an enlarged plan view showing another example of the embodiment of the first electrode pad of the wiring board in the optical semiconductor device of the present invention, and (b) is the second wiring board in the optical semiconductor device of the present invention. It is an enlarged plan view which shows the other example of embodiment of an electrode pad. 本発明の光半導体装置における配線基板の実施の形態の他の例を示す拡大断面図である。It is an expanded sectional view which shows the other example of embodiment of the wiring board in the optical semiconductor device of this invention. (a),(b)は、本発明の光半導体装置における配線基板の実施の形態の他の例をそれぞれ示し、図5のA−A’面における拡大断面図である。(A), (b) is the expanded sectional view in the A-A 'surface of FIG. 5, which shows the other example of embodiment of the wiring board in the optical semiconductor device of this invention, respectively. 本発明の光半導体装置における基体と配線基板について実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment about the base | substrate and wiring board in the optical semiconductor device of this invention. 本発明の光半導体装置における配線基板について実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment about the wiring board in the optical semiconductor device of this invention. 従来の光半導体装置の断面図である。It is sectional drawing of the conventional optical semiconductor device.

符号の説明Explanation of symbols

1:基体
1a:貫通穴
1b:凸部
2:光半導体素子
3:蓋体
3a:上端面
3b:貫通孔
4:透光性部材
5:配線基板
6a:第1の電極パッド
7a:第2の電極パッド
8a,8b:内部配線
10:外部接続用ピン
1: Base 1a: Through hole 1b: Protruding part 2: Optical semiconductor element 3: Cover 3a: Upper end surface 3b: Through hole 4: Translucent member 5: Wiring substrate 6a: First electrode pad 7a: Second Electrode pads 8a and 8b: internal wiring
10: Pin for external connection

Claims (2)

上下主面間を貫通する貫通穴が形成されるとともに上側主面の前記貫通穴の開口の周縁部に全周にわたって凸部が形成された平板状の金属製の基体と、上端面の中央部に貫通孔が形成されているとともに下端が開かれた筒状であり、前記基体の上側主面の外周部に下端が接合された金属製の蓋体と、該蓋体の前記貫通孔の開口の周囲に接合された透光性部材と、前記貫通穴を覆って前記凸部の上面に接合された配線基板と、該配線基板の上面に載置された光半導体素子とを具備しており、前記配線基板は、複数の絶縁層が積層されて成る絶縁基板の上面に形成された複数の第1の電極パッドと前記絶縁基板の下面に配設された複数の第2の電極パッドとを有するとともに、前記第1の電極パッドとそれに対応する前記第2の電極パッドとが前記絶縁基板の内部配線を介して電気的に接続され、前記複数の第2の電極パッドのそれぞれに外部接続用ピンが接合されており、前記基体は、前記凸部が形成された部位の厚さが残部の厚さの2倍以上であることを特徴とする光半導体装置。 A flat plate-like metal base body having a through hole penetrating between the upper and lower main surfaces and having a convex portion formed on the entire periphery of the opening of the through hole on the upper main surface, and a center portion of the upper end surface A metal lid having a lower end joined to the outer peripheral portion of the upper main surface of the base body, and an opening of the through hole of the lid A translucent member bonded to the periphery of the substrate, a wiring substrate that covers the through hole and is bonded to the upper surface of the convex portion, and an optical semiconductor element mounted on the upper surface of the wiring substrate. The wiring board includes a plurality of first electrode pads formed on an upper surface of an insulating substrate formed by laminating a plurality of insulating layers, and a plurality of second electrode pads disposed on the lower surface of the insulating substrate. And the first electrode pad and the second electrode pad corresponding to the first electrode pad It is electrically connected via an internal wiring of an insulating substrate, and an external connection pin is bonded to each of the plurality of second electrode pads, and the base has a thickness at a portion where the convex portion is formed. Is at least twice the thickness of the remaining portion. 前記配線基板の厚さをA、前記基体の前記凸部が形成された部位の厚さをBとしたときに、1≦A/B≦10であることを特徴とする請求項1記載の光半導体装置。 2. The light according to claim 1, wherein 1 ≦ A / B ≦ 10, wherein A is a thickness of the wiring board and B is a thickness of a portion of the base on which the convex portion is formed. Semiconductor device.
JP2004020777A 2004-01-29 2004-01-29 Photo-semiconductor device Pending JP2005217098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020777A JP2005217098A (en) 2004-01-29 2004-01-29 Photo-semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020777A JP2005217098A (en) 2004-01-29 2004-01-29 Photo-semiconductor device

Publications (1)

Publication Number Publication Date
JP2005217098A true JP2005217098A (en) 2005-08-11

Family

ID=34904611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020777A Pending JP2005217098A (en) 2004-01-29 2004-01-29 Photo-semiconductor device

Country Status (1)

Country Link
JP (1) JP2005217098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135696A (en) * 2006-10-27 2008-06-12 Kyocera Corp Electronic component housing package, electronic apparatus, and optical semiconductor apparatus
JP2009260126A (en) * 2008-04-18 2009-11-05 Hitachi Cable Ltd Optical communication device
EP2003689B1 (en) * 2007-06-15 2019-06-12 Schott AG Header, especially for electronic packages

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135696A (en) * 2006-10-27 2008-06-12 Kyocera Corp Electronic component housing package, electronic apparatus, and optical semiconductor apparatus
EP2003689B1 (en) * 2007-06-15 2019-06-12 Schott AG Header, especially for electronic packages
JP2009260126A (en) * 2008-04-18 2009-11-05 Hitachi Cable Ltd Optical communication device

Similar Documents

Publication Publication Date Title
JP6470428B2 (en) Electronic component mounting package and electronic device
JP4057897B2 (en) Optical semiconductor device
JP4903470B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2006210672A (en) Connecting terminal, package for housing electronic part using it and electronic device
JP2005217098A (en) Photo-semiconductor device
JP2005159277A (en) Package for housing optical semiconductor device and optical semiconductor apparatus
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JP2007201335A (en) Airtight terminal
JP2014146759A (en) Electronic component housing package and electronic device using the same
JP5235612B2 (en) Package and electronic device
JP2004349567A (en) Package for housing semiconductor element and semiconductor device
JP2004349565A (en) Package for housing optical semiconductor element and optical semiconductor device
JP3914764B2 (en) Optical semiconductor device
JP3628238B2 (en) Wiring board and its connection structure with waveguide
JP4349881B2 (en) Semiconductor element storage package and semiconductor device using the same
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP6965060B2 (en) Electronic component storage packages and electronic devices
JP3881606B2 (en) Semiconductor element storage package and semiconductor device
JP2005012032A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP2004179544A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP2004274003A (en) Optical semiconductor device
JP2001342081A (en) Junction structure of ceramic member and metallic member and electrostatic chuck and package for storage of semiconductor device
JP2004296456A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP2004221505A (en) Package for storing optical semiconductor element and optical semiconductor device
JP2004172306A (en) Package for housing optical semiconductor element, and optical semiconductor device