JP2005216992A - Separator for capacitor - Google Patents

Separator for capacitor Download PDF

Info

Publication number
JP2005216992A
JP2005216992A JP2004019365A JP2004019365A JP2005216992A JP 2005216992 A JP2005216992 A JP 2005216992A JP 2004019365 A JP2004019365 A JP 2004019365A JP 2004019365 A JP2004019365 A JP 2004019365A JP 2005216992 A JP2005216992 A JP 2005216992A
Authority
JP
Japan
Prior art keywords
separator
inorganic powder
capacitor
mass
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004019365A
Other languages
Japanese (ja)
Other versions
JP4737936B2 (en
Inventor
Taizo Matsunami
泰三 松波
Haruji Imoto
春二 井本
Takaaki Matsunami
敬明 松波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2004019365A priority Critical patent/JP4737936B2/en
Publication of JP2005216992A publication Critical patent/JP2005216992A/en
Application granted granted Critical
Publication of JP4737936B2 publication Critical patent/JP4737936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a capacitor which has a high porosity and shows less defects, such as the formation of pinholes, even when the separator is thinned. <P>SOLUTION: The separator is made of a fine porous film which is formed by melting by heat a raw material composition mainly composed of a polyolefin resin, inorganic powder, and a plasticizer; extrusion molding the melted composition; then subjecting the molded composition to a thinning process of rolling and drawing; and finally eliminating the plasticizer from the thinned composition. The inorganic powder has a moisture content of 3 mass% or less, and the maximum particle diameter A of the powder and the thickness T of the film has a relation: A/T≥0.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、各種電子機器のバックアップ電源や電気自動車の補助電源、無停電電源装置等に使用される電気二重層キャパシタや電解コンデンサに代表される電解液を使用したコンデンサ用セパレータに関するものである。   The present invention relates to a separator for a capacitor using an electrolytic solution typified by an electric double layer capacitor and an electrolytic capacitor used in a backup power source for various electronic devices, an auxiliary power source for an electric vehicle, an uninterruptible power supply device, and the like.

微多孔質膜は、電解液を使用するコンデンサや蓄電池用のセパレータとして従来から使用されており、近年のポータブル電子機器の急速な普及に伴い、その適用範囲と需要が拡大している。近年では、長寿命、急速充放電が可能、メンテナンスが不要などの優れた特長からコンデンサが注目されており、特に、容量が大きい電気二重層キャパシタの需要が増加している。
電気二重層キャパシタは、主に各種電子機器のバックアップ電源等に使用されており、ポータブル電子機器類の小型化、高性能化に伴い、電気二重層キャパシタも小型化、高性能化が要求されている。そのため、セパレータには、厚さが薄く、高空隙率であり、かつ信頼性の高いことが要求されている。
Microporous membranes have been used in the past as capacitors for electrolytic solutions and separators for storage batteries, and their application range and demand are expanding with the rapid spread of portable electronic devices in recent years. In recent years, capacitors have attracted attention due to their excellent features such as long life, rapid charge / discharge, and no maintenance required. In particular, demand for electric double layer capacitors having a large capacity is increasing.
Electric double layer capacitors are mainly used as backup power sources for various electronic devices. As portable electronic devices become smaller and higher in performance, electric double layer capacitors are also required to be smaller and higher in performance. Yes. Therefore, the separator is required to be thin, have a high porosity, and have high reliability.

電気二重層キャパシタは、水溶液系電解液を使用するタイプと、有機系電解液を使用するタイプの2種類に大別される。水溶液系電解液を使用するタイプの場合、主に電解液に硫酸が使われており、セパレータとして、一般に、耐酸性のあるポリオレフィン系樹脂をベースとした微多孔質膜が使用されている(例えば、特許文献1)。
一方、有機系電解液を使用するタイプの場合は、セパレータに耐酸性が要求されないため、繊維材料からなる不織布が一般に使用されている。繊維材料からなる不織布は、安価であり経済性に優れる特徴を持つ反面、孔径が大きいため、電気二重層キャパシタの信頼性や自己放電の面で劣る欠点がある。これを改善するため、有機系電解液を使用するタイプであっても、前述したような水溶液系電解液を使用するタイプで一般に使用されている、無機粉体を含有させたポリオレフィン系微多孔質膜を適用することが考えられる。有機系電解液は水溶液系電解液に比べ電解液の電気抵抗が高いため、水溶液系電解液を使用するタイプで用いるセパレータよりも、より薄く、より空隙率の高いセパレータとする必要がある。例えば、セパレータの空隙率を高めるには、開孔剤である原料組成物中の可塑剤の配合量を増量することで可能である。また、セパレータを薄くするには、押出成形後のシートを圧延・延伸等の二次加工を行うことで可能である。
特開2002−260961号公報
Electric double layer capacitors are broadly classified into two types: a type using an aqueous electrolyte and a type using an organic electrolyte. In the case of a type using an aqueous electrolyte, sulfuric acid is mainly used as the electrolyte, and a microporous membrane based on an acid-resistant polyolefin resin is generally used as the separator (for example, Patent Document 1).
On the other hand, in the case of a type using an organic electrolytic solution, a non-woven fabric made of a fiber material is generally used because the separator does not require acid resistance. Nonwoven fabric made of a fiber material is inexpensive and excellent in economic efficiency, but has a large pore size, and therefore has a disadvantage that it is inferior in terms of reliability and self-discharge of the electric double layer capacitor. In order to improve this, polyolefin type microporous material containing inorganic powder, which is generally used in the type using aqueous electrolytic solution as described above, even if it is a type using organic electrolytic solution It is conceivable to apply a membrane. Since the organic electrolyte has higher electric resistance than the aqueous electrolyte, it is necessary to make the separator thinner and higher in porosity than the separator used in the type using the aqueous electrolyte. For example, the porosity of the separator can be increased by increasing the blending amount of the plasticizer in the raw material composition which is a pore opening agent. In addition, the separator can be thinned by subjecting the extruded sheet to secondary processing such as rolling and stretching.
JP 2002-260961 A

しかしながら、無機粉体を含有させたポリオレフィン系微多孔質膜からなる薄膜のセパレータを得ようとする場合、押出成形後のシートに対して圧延・延伸等の二次加工(薄肉化処理)を行った際に、該シート中の無機粉体に起因するピンホールのような欠点(欠陥部)が生じ易く、製品歩留りの低下を招き、また、安定した品質を確保することが難しかった。
そこで、本発明は、上記従来の問題点に鑑み、ポリオレフィン系樹脂と無機粉体を主体とした微多孔質膜からなるコンデンサ用セパレータにおいて、高空隙率であり、かつ薄肉化した場合でもピンホールのような欠点の少ないコンデンサ用セパレータを提供することを目的とする。
However, when trying to obtain a thin film separator made of a polyolefin microporous membrane containing inorganic powder, secondary processing (thinning treatment) such as rolling and stretching is performed on the extruded sheet. In such a case, defects (defects) such as pinholes caused by the inorganic powder in the sheet are likely to occur, resulting in a decrease in product yield, and it is difficult to ensure stable quality.
Therefore, in view of the above-described conventional problems, the present invention provides a capacitor separator composed of a microporous film mainly composed of a polyolefin resin and an inorganic powder, and has a high porosity and even a thin pinhole. It aims at providing the separator for capacitors with few such faults.

本発明のコンデンサ用セパレータは、前記目的を達成するべく、請求項1に記載の通り、ポリオレフィン系樹脂、無機粉体および可塑剤を主体とした原料組成物を加熱溶融してシート状に押出成形し、圧延・延伸等の薄肉化処理を行い、前記可塑剤を除去して得られた微多孔質膜からなるコンデンサ用セパレータにおいて、前記無機粉体の含水率が3質量%以下であり、前記無機粉体の最大粒子径Aと膜厚Tの関係A/Tが0.5以下であることを特徴とする。
また、請求項2記載のコンデンサ用セパレータは、請求項1記載のコンデンサ用セパレータにおいて、前記関係A/Tが0.4以下であることを特徴とする。
また、請求項3記載のコンデンサ用セパレータは、請求項1または2に記載のコンデンサ用セパレータにおいて、空隙率が70%以上であり、膜厚が25〜100μmであることを特徴とする。
また、請求項4記載のコンデンサ用セパレータは、請求項1乃至3のいずれかに記載のコンデンサ用セパレータにおいて、前記ポリオレフィン系樹脂の含有量が20〜40質量%、前記無機粉体の含有量が60〜80質量%であることを特徴とする。
また、請求項5記載のコンデンサ用セパレータは、請求項3または4記載のコンデンサ用セパレータにおいて、有機系電解液を使用した電気二重層キャパシタ用セパレータであることを特徴とする。
In order to achieve the above object, the capacitor separator of the present invention, as described in claim 1, heat-melts a raw material composition mainly composed of a polyolefin resin, an inorganic powder and a plasticizer, and extrudes it into a sheet shape. In a capacitor separator comprising a microporous film obtained by performing thinning treatment such as rolling and stretching, and removing the plasticizer, the water content of the inorganic powder is 3% by mass or less, The relation A / T between the maximum particle diameter A and the film thickness T of the inorganic powder is 0.5 or less.
The capacitor separator according to claim 2 is the capacitor separator according to claim 1, wherein the relationship A / T is 0.4 or less.
The capacitor separator according to claim 3 is the capacitor separator according to claim 1 or 2, characterized in that the porosity is 70% or more and the film thickness is 25 to 100 μm.
The capacitor separator according to claim 4 is the capacitor separator according to any one of claims 1 to 3, wherein the content of the polyolefin-based resin is 20 to 40% by mass, and the content of the inorganic powder is 60 to 80% by mass.
The capacitor separator according to claim 5 is the capacitor separator according to claim 3 or 4, wherein the capacitor separator is an electric double layer capacitor separator using an organic electrolyte.

本発明によれば、ポリオレフィン系樹脂、無機粉体および可塑剤を主体とした原料組成物を加熱溶融してシート状に押出成形し、圧延・延伸等の薄肉化処理を行い、前記可塑剤を除去して得られた微多孔質膜からなるコンデンサ用セパレータにおいて、前記無機粉体の含水率を3質量%以下とし、かつ前記無機粉体の最大粒子径Aと膜厚Tの関係A/Tを0.5以下としたことで、押出成形後のシート中に、無機粉体の比較的大きな粒子や凝集塊を混在させないようにすることができるので、より薄膜のセパレータを得ようとする場合であっても、無機粉体に起因するピンホールのような欠点の少ないコンデンサ用セパレータを提供することができ、製品歩留りの向上と安定した品質の確保をもたらすことができるもので、特に、有機系電解液を使用した電気二重層キャパシタ用セパレータとして用いた場合に有用性が高い。   According to the present invention, a raw material composition mainly composed of polyolefin resin, inorganic powder and plasticizer is heated and melted and extruded into a sheet, and subjected to thinning treatment such as rolling and stretching. In the capacitor separator comprising the microporous film obtained by removing, the water content of the inorganic powder is 3% by mass or less, and the relationship between the maximum particle diameter A and the film thickness T of the inorganic powder is A / T. When it is set to 0.5 or less, it is possible to prevent relatively large particles or agglomerates of the inorganic powder from being mixed in the sheet after extrusion molding, so when obtaining a thinner separator Even so, it is possible to provide a capacitor separator with few defects such as pinholes caused by inorganic powder, which can improve the product yield and ensure stable quality. Electrolysis Highly useful when used as an electric double layer separators for capacitors was used.

本発明のコンデンサ用セパレータを得るための原料組成物の主成分は、ポリオレフィン系樹脂と無機粉体および可塑剤である。尚、セパレータの用途、つまり、セパレータを適用するコンデンサの種類によっては、濡れ性を確保するための界面活性剤をさらに配合してもよい。通常、有機系電解液を使用するコンデンサに適用する場合は、有機系電解液に対して元々十分な濡れ性を有しているので界面活性剤の配合は不要であるが、水溶液系電解液を使用するコンデンサに適用する場合は、界面活性剤を配合し水溶液系電解液に対する濡れ性を確保することが好ましい。   The main components of the raw material composition for obtaining the capacitor separator of the present invention are a polyolefin resin, an inorganic powder, and a plasticizer. Depending on the application of the separator, that is, the type of capacitor to which the separator is applied, a surfactant for ensuring wettability may be further blended. Normally, when applied to a capacitor using an organic electrolyte, it does not need a surfactant because it originally has sufficient wettability with respect to the organic electrolyte. When applied to a capacitor to be used, it is preferable to add a surfactant to ensure wettability with respect to an aqueous electrolyte.

前記ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテンおよびこれらの共重合物あるいは混合物が使用できる。特に、重量平均分子量100万以上の高密度ポリエチレンを使用すれば、機械的強度の優れた微多孔質膜を得ることができる。また、重量平均分子量の異なる樹脂を混合使用することも可能であり、例えば、重量平均分子量200万以上の高密度ポリエチレンと重量平均分子量20万未満の低密度ポリエチレンをブレンドして使用することもできる。
前記セパレータ中の前記ポリオレフィン系樹脂の含有量は、20〜40質量%が好ましい。ポリオレフィン系樹脂の含有量が20質量%未満であると、ポリオレフィン系樹脂がセパレータ全体に均一に分散できず機械的強度が著しく低下するため好ましくなく、40質量%を超えると、相対的に無機粉体の含有量が少なくなりセパレータの耐熱性が低下するため好ましくない。
As the polyolefin resin, polyethylene, polypropylene, polybutene and copolymers or mixtures thereof can be used. In particular, if a high density polyethylene having a weight average molecular weight of 1,000,000 or more is used, a microporous film having excellent mechanical strength can be obtained. It is also possible to use a mixture of resins having different weight average molecular weights. For example, a high density polyethylene having a weight average molecular weight of 2 million or more and a low density polyethylene having a weight average molecular weight of less than 200,000 can be blended and used. .
The content of the polyolefin resin in the separator is preferably 20 to 40% by mass. If the polyolefin resin content is less than 20% by mass, the polyolefin resin cannot be uniformly dispersed throughout the separator and the mechanical strength is significantly reduced. This is not preferable because the content of the body is reduced and the heat resistance of the separator is lowered.

前記無機粉体としては、以下の条件を満たす、シリカ、アルミナ、チタニア、炭酸カルシウム等の1種または2種以上が使用できる。
前記無機粉体は、粉体の最大粒子径A(μm)とセパレータの膜厚T(μm)の関係A/Tが0.5以下となるような粒子径を有している必要があり、より好ましくは、0.4以下である。A/Tを0.5以下とすることで、押出成形後のシート中に、無機粉体の比較的大きな粒子や凝集塊を混在させないようにすることができ、圧延・延伸等の薄肉化処理によってより薄膜のセパレータを得ようとする場合であっても、無機粉体に起因するピンホール等の欠点の発生を抑えることができ、A/Tが0.4以下であれば、さらに効果が高い。
前記無機粉体の含水率は3質量%以下である必要がある。含水率が3質量%を超えると、無機粉体が凝集し易くなって大きな凝集体を作り易くなり、押出成形後のシート中に、無機粉体の比較的大きな凝集塊を混在させ易くなり、圧延・延伸等の薄肉化処理によってより薄膜のセパレータを得ようとする場合に、無機粉体に起因するピンホール等の欠点を発生し易くするので好ましくない。
As the inorganic powder, one or more of silica, alumina, titania, calcium carbonate and the like that satisfy the following conditions can be used.
The inorganic powder must have a particle size such that the relationship A / T between the maximum particle size A (μm) of the powder and the film thickness T (μm) of the separator is 0.5 or less, More preferably, it is 0.4 or less. By setting A / T to 0.5 or less, it is possible to prevent relatively large particles or agglomerates of inorganic powder from being mixed in the sheet after extrusion, and thinning treatment such as rolling and stretching. Even if it is a case where it is a case where it is going to obtain a thin film separator by this, generation | occurrence | production of faults, such as a pinhole resulting from inorganic powder, can be suppressed, and if A / T is 0.4 or less, a further effect high.
The water content of the inorganic powder needs to be 3% by mass or less. When the water content exceeds 3% by mass, the inorganic powder easily aggregates to easily form a large aggregate, and it becomes easy to mix relatively large aggregates of the inorganic powder in the sheet after extrusion molding. In the case of obtaining a thin film separator by thinning treatment such as rolling or stretching, it is not preferable because defects such as pinholes due to inorganic powder are easily generated.

前記セパレータ中の前記無機粉体の含有量は、60〜80質量%が好ましい。無機粉体の含有量が60質量%未満であると、セパレータの耐熱性が低下するため好ましくなく、80質量%を超えると、相対的にポリオレフィン系樹脂の含有量が少なくなりポリオレフィン系樹脂がセパレータ全体に均一に分散できず機械的強度が著しく低下するため好ましくない。   The content of the inorganic powder in the separator is preferably 60 to 80% by mass. If the content of the inorganic powder is less than 60% by mass, the heat resistance of the separator is lowered, which is not preferable. If the content exceeds 80% by mass, the content of the polyolefin resin is relatively reduced, and the polyolefin resin becomes a separator. This is not preferable because it cannot be uniformly dispersed throughout and the mechanical strength is significantly reduced.

前記可塑剤としては、パラフィン系、ナフテン系等の工業用潤滑油や、フタル酸ジオクチル等のエステル系可塑剤が使用できる。   As the plasticizer, industrial lubricating oils such as paraffinic and naphthenic esters and ester plasticizers such as dioctyl phthalate can be used.

前記界面活性剤としては、アルキルスルホコハク酸塩やナフタリンスルホン酸塩ホルマリン縮合物等のアニオン系またはポリオキシエチレンアルキルエーテル等のノニオン系の単独または混合物が使用できる。界面活性剤の添加量は、前記したポリオレフィン系樹脂と無機粉体および可塑剤を主成分とする原料組成物に対して、0.5〜10外質量%が好ましい。界面活性剤の添加量が0.5外質量%未満であると、実質的な濡れ性の向上効果が得られないため好ましくなく、10外質量%を超えると、界面活性剤が電解液中に溶け出し電極に付着してコンデンサの寿命性能に悪影響を与えるため好ましくない。   As the surfactant, anionic compounds such as alkylsulfosuccinates and naphthalenesulfonate formalin condensates or nonionic compounds such as polyoxyethylene alkyl ethers can be used alone or in a mixture. The addition amount of the surfactant is preferably 0.5 to 10% by mass with respect to the raw material composition mainly composed of the polyolefin resin, the inorganic powder, and the plasticizer. If the addition amount of the surfactant is less than 0.5% by mass, it is not preferable because a substantial improvement in wettability cannot be obtained. If the amount exceeds 10% by mass, the surfactant is contained in the electrolyte. It is not preferable because it adheres to the melted electrode and adversely affects the life performance of the capacitor.

前記セパレータは、空隙率が70%以上と高空隙率であることが好ましい。これにより、前記セパレータの内部抵抗を低減することができ、特に、電解液の抵抗が比較的高い有機系電解液を使用した電気二重層キャパシタに用いるコンデンサ用セパレータとして好適に用いることが可能となる。   The separator preferably has a high porosity of 70% or more. Thereby, the internal resistance of the separator can be reduced, and in particular, it can be suitably used as a capacitor separator used in an electric double layer capacitor using an organic electrolyte having a relatively high resistance of the electrolyte. .

前記セパレータの厚さ(膜厚)は、25〜100μmが好ましい。厚さが25μm未満であると、セパレータとしての隔離効果が小さくコンデンサの寿命性能に悪影響を与えたり、製造時に欠点を発生し易くなるため好ましくなく、100μmを超えると、電気抵抗が高くなりコンデンサの内部抵抗を高めるため好ましくない。   The thickness (film thickness) of the separator is preferably 25 to 100 μm. If the thickness is less than 25 μm, it is not preferable because the isolation effect as a separator is small and adversely affects the life performance of the capacitor, and defects are likely to occur during manufacturing. This is not preferable because the internal resistance is increased.

本発明のコンデンサ用セパレータは、例えば、次のような方法によって得ることができる。前記ポリオレフィン系樹脂、前記無機粉体、前記可塑剤と、必要に応じて前記界面活性剤をレーディゲミキサ等で混合し、該混合物(原料組成物)を、押出成形機を用いて加熱溶融・混練しながらシート状に押出成形し、圧延・延伸等の二次加工によって薄肉化処理を行い、所定厚さのシートを得る。次いで、該シート中の可塑剤を、適当な抽出溶剤を用いて抽出除去し、乾燥および必要に応じてアニーリングすれば、本発明のコンデンサ用セパレータが得られる。   The capacitor separator of the present invention can be obtained, for example, by the following method. The polyolefin resin, the inorganic powder, the plasticizer and, if necessary, the surfactant are mixed by a Ladige mixer or the like, and the mixture (raw material composition) is heated, melted and kneaded using an extruder. While extruding into a sheet shape, a thinning process is performed by secondary processing such as rolling and stretching to obtain a sheet having a predetermined thickness. Subsequently, the plasticizer in the sheet is extracted and removed using an appropriate extraction solvent, dried and annealed as necessary, so that the capacitor separator of the present invention is obtained.

次に、本発明の実施例について比較例と共に詳細に説明する。
(実施例1)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体70部(質量部、以下同じ)と、重量平均分子量20万の高密度ポリエチレン樹脂粉体30部、無機粉体として最大粒子径15μm、含水率1.1質量%のシリカ粉体190部、可塑剤としてパラフィン系オイル420部をレーディゲミキサで混合し、先端にTダイを取り付けた二軸押出成形機で加熱溶融・混練しながらシート状に押出成形し、次いで成形ロールにて圧延処理(薄肉化処理1)して厚さ130μmのシートを得た。次に、このシートを一軸方向に延伸処理(薄肉化処理2)した後、前記可塑剤を有機溶剤で抽出除去し、加熱乾燥して、ポリエチレン樹脂34質量%とシリカ粉体66質量%で構成される厚さ40μmの微多孔質膜からなるコンデンサ用セパレータを得た。
Next, examples of the present invention will be described in detail together with comparative examples.
(Example 1)
70 parts (parts by mass) of high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin-based resin, 30 parts of high density polyethylene resin powder having a weight average molecular weight of 200,000, and a maximum particle diameter of 15 μm as an inorganic powder , 190 parts of silica powder with a water content of 1.1% by mass, 420 parts of paraffinic oil as a plasticizer are mixed with a Ladige mixer, and heated and melted and kneaded with a twin screw extruder with a T die attached to the tip. And then rolled (thinning treatment 1) with a forming roll to obtain a sheet having a thickness of 130 μm. Next, this sheet was stretched in a uniaxial direction (thinning treatment 2), and then the plasticizer was extracted and removed with an organic solvent and dried by heating to constitute 34% by mass of polyethylene resin and 66% by mass of silica powder. A capacitor separator made of a microporous film having a thickness of 40 μm was obtained.

(実施例2)
実施例1と同様の材料をレーディゲミキサで混合し、先端にTダイを取り付けた二軸押出成形機で加熱溶融・混練しながらシート状に押出成形し、次いで成形ロールにて圧延処理(薄肉化処理1)して厚さ110μmのシートを得た。次に、このシートを一軸方向に延伸処理(薄肉化処理2)した後、前記可塑剤を有機溶剤で抽出除去し、加熱乾燥して、ポリエチレン樹脂34質量%とシリカ粉体66質量%で構成される厚さ30μmの微多孔質膜からなるコンデンサ用セパレータを得た。
(Example 2)
The same materials as in Example 1 were mixed with a Ladige mixer, extruded into a sheet shape while being heated and melted and kneaded with a twin-screw extruder with a T-die attached to the tip, and then rolled with a forming roll (thinning treatment) 1) to obtain a sheet having a thickness of 110 μm. Next, this sheet was stretched in a uniaxial direction (thinning treatment 2), and then the plasticizer was extracted and removed with an organic solvent and dried by heating to constitute 34% by mass of polyethylene resin and 66% by mass of silica powder. A capacitor separator made of a microporous film having a thickness of 30 μm was obtained.

(実施例3)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体70部と、重量平均分子量20万の高密度ポリエチレン樹脂粉体30部、無機粉体として最大粒子径30μm、含水率1.1質量%のシリカ粉体190部、可塑剤としてパラフィン系オイル420部をレーディゲミキサで混合し、先端にTダイを取り付けた二軸押出成形機で加熱溶融・混練しながらシート状に押出成形し、次いで成形ロールにて圧延処理(薄肉化処理)して厚さ100μmのシートを得た。次に、前記可塑剤を有機溶剤で抽出除去し、加熱乾燥して、ポリエチレン樹脂34質量%とシリカ粉体66質量%で構成される厚さ100μmの微多孔質膜からなるコンデンサ用セパレータを得た。
(Example 3)
70 parts of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin, 30 parts of a high density polyethylene resin powder having a weight average molecular weight of 200,000, a maximum particle diameter of 30 μm, and a water content of 1.1 mass as an inorganic powder 190 parts of silica powder and 420 parts of paraffinic oil as a plasticizer are mixed with a Ladige mixer, and extruded and formed into a sheet while heating and melting and kneading with a twin screw extruder equipped with a T-die at the tip, and then molded. A roll having a thickness of 100 μm was obtained by rolling with a roll (thinning treatment). Next, the plasticizer is extracted and removed with an organic solvent and dried by heating to obtain a capacitor separator composed of a microporous film having a thickness of 100 μm and comprising 34% by mass of polyethylene resin and 66% by mass of silica powder. It was.

(実施例4)
ポリオレフィン系樹脂として重量平均分子量300万の高密度ポリエチレン樹脂粉体100部、無機粉体として最大粒子径15μm、含水率1.1質量%のシリカ粉体260部、可塑剤としてパラフィン系オイル570部、界面活性剤としてアルキルスルホコハク酸塩15部をレーディゲミキサで混合し、実施例1と同様にして、ポリエチレン樹脂28質量%とシリカ粉体72質量%とアルキルスルホコハク酸塩2外質量%(固形分)で構成される厚さ40μmの微多孔質膜からなるコンデンサ用セパレータを得た。
Example 4
100 parts of a high density polyethylene resin powder having a weight average molecular weight of 3 million as a polyolefin resin, 260 parts of silica powder having a maximum particle diameter of 15 μm and a water content of 1.1% by mass as an inorganic powder, and 570 parts of paraffinic oil as a plasticizer In addition, 15 parts of alkylsulfosuccinate as a surfactant was mixed with a Laedige mixer, and in the same manner as in Example 1, 28% by mass of polyethylene resin, 72% by mass of silica powder, and 2% by mass of alkylsulfosuccinate (solid content) A capacitor separator made of a microporous film having a thickness of 40 μm constituted by the following was obtained.

(実施例5)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体50部と、重量平均分子量20万の高密度ポリエチレン樹脂粉体50部、無機粉体として最大粒子径15μm、含水率1.1質量%のシリカ粉体100部、可塑剤としてパラフィン系オイル220部をレーディゲミキサで混合し、実施例1と同様にして、ポリエチレン樹脂50質量%とシリカ粉体50質量%で構成される厚さ40μmの微多孔質膜からなるコンデンサ用セパレータを得た。
(Example 5)
50 parts of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin, 50 parts of a high density polyethylene resin powder having a weight average molecular weight of 200,000, a maximum particle diameter of 15 μm, and a water content of 1.1 mass as an inorganic powder. 100 parts by weight of silica powder and 220 parts of paraffinic oil as a plasticizer were mixed with a Ladige mixer, and in the same manner as in Example 1, a 40 μm-thickness composed of 50% by weight of polyethylene resin and 50% by weight of silica powder. A capacitor separator made of a microporous film was obtained.

(比較例1)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体70部と、重量平均分子量20万の高密度ポリエチレン樹脂粉体30部、無機粉体として最大粒子径24μm、含水率1.1質量%のシリカ粉体190部、可塑剤としてパラフィン系オイル420部をレーディゲミキサで混合し、実施例1と同様にして、ポリエチレン樹脂34質量%とシリカ粉体66質量%で構成される厚さ40μmの微多孔質膜からなるコンデンサ用セパレータを得た。
(Comparative Example 1)
70 parts of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin, 30 parts of a high density polyethylene resin powder having a weight average molecular weight of 200,000, a maximum particle diameter of 24 μm, and a moisture content of 1.1 mass as an inorganic powder 190 parts by weight of silica powder and 420 parts of paraffinic oil as a plasticizer were mixed by a Ladige mixer, and in the same manner as in Example 1, a 40 μm-thickness composed of 34% by weight of polyethylene resin and 66% by weight of silica powder. A capacitor separator made of a microporous film was obtained.

(比較例2)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体70部と、重量平均分子量20万の高密度ポリエチレン樹脂粉体30部、無機粉体として最大粒子径15μm、含水率3.5質量%のシリカ粉体190部、可塑剤としてパラフィン系オイル420部をレーディゲミキサで混合し、実施例1と同様にして、ポリエチレン樹脂34質量%とシリカ粉体66質量%で構成される厚さ40μmの微多孔質膜からなるコンデンサ用セパレータを得た。
(Comparative Example 2)
70 parts of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin, 30 parts of a high density polyethylene resin powder having a weight average molecular weight of 200,000, a maximum particle diameter of 15 μm, and a water content of 3.5 mass as an inorganic powder 190 parts by weight of silica powder and 420 parts of paraffinic oil as a plasticizer were mixed by a Ladige mixer, and in the same manner as in Example 1, a 40 μm-thickness composed of 34% by weight of polyethylene resin and 66% by weight of silica powder. A capacitor separator made of a microporous film was obtained.

(比較例3)
ポリオレフィン系樹脂として重量平均分子量200万の高密度ポリエチレン樹脂粉体70部と、重量平均分子量20万の高密度ポリエチレン樹脂粉体30部、無機粉体として最大粒子径15μm、含水率6.1質量%のシリカ粉体190部、可塑剤としてパラフィン系オイル420部をレーディゲミキサで混合し、実施例1と同様にして、ポリエチレン樹脂34質量%とシリカ粉体66質量%で構成される厚さ40μmの微多孔質膜からなるコンデンサ用セパレータを得た。
(Comparative Example 3)
70 parts of a high density polyethylene resin powder having a weight average molecular weight of 2 million as a polyolefin resin, 30 parts of a high density polyethylene resin powder having a weight average molecular weight of 200,000, a maximum particle diameter of 15 μm, and a moisture content of 6.1 mass as an inorganic powder 190 parts by weight of silica powder and 420 parts of paraffinic oil as a plasticizer were mixed by a Ladige mixer, and in the same manner as in Example 1, a 40 μm-thickness composed of 34% by weight of polyethylene resin and 66% by weight of silica powder. A capacitor separator made of a microporous film was obtained.

次に、上記実施例1〜5、比較例1〜3にて得られた各セパレータについて、以下の方法により、各種特性評価を行った。結果を表1に示す。
[無機粉体の最大粒子径,平均粒子径]
レーザー式粒度分布測定器LA−500(堀場製作所製)により測定した。
[無機粉体の含水率]
無機粉体1gを105℃で4時間乾燥させた時の水分含有率(質量%)を測定し、含水率とした。
[空隙率]
セパレータの見掛け密度と構成材料の固形分真密度から次式により計算した。
空隙率=100−(セパレータの見掛け密度/材料固形分真密度)×100
[欠点数]
セパレータを0.1mmの欠点(ピンホール、異物等)を検出する検出器に通し、検出器で検出された欠点を目視で確認し、100m2あたりの欠点の個数を測定し、欠点数とした。尚、欠点数の測定においては、検出器で検出された欠点のうち、無機粉体の粒子に起因する欠点のみをカウントし、他の異物や黒点等の欠点については除外した。
Next, various characteristics evaluation was performed by the following method about each separator obtained in the said Examples 1-5 and Comparative Examples 1-3. The results are shown in Table 1.
[Maximum particle size and average particle size of inorganic powder]
It was measured with a laser type particle size distribution analyzer LA-500 (manufactured by Horiba Seisakusho).
[Moisture content of inorganic powder]
The moisture content (mass%) when 1 g of inorganic powder was dried at 105 ° C. for 4 hours was measured and used as the moisture content.
[Porosity]
It calculated from the following formula from the apparent density of the separator and the solid density of the constituent material.
Porosity = 100− (separator apparent density / material solids true density) × 100
[Number of defects]
The separator is passed through a detector for detecting 0.1 mm defects (pinholes, foreign matters, etc.), the defects detected by the detector are visually confirmed, and the number of defects per 100 m 2 is measured to determine the number of defects. . In the measurement of the number of defects, of the defects detected by the detector, only defects due to inorganic powder particles were counted, and defects such as other foreign matters and black spots were excluded.

Figure 2005216992
Figure 2005216992

表1に示す、本願発明の実施例1〜5の結果から明らかなように、無機質粉体の含水率が3質量%以下であり、前記無機質粉体の最大粒子径Aと膜厚Tの関係A/Tが0.5以下であると、押出成形後のシートを薄膜化処理(圧延処理および/または延伸処理)を行った場合であっても、ピンホール等の欠点数が5個/100m2以下と非常に少なく、製品歩留の良い安定した品質のコンデンサ用セパレータが得られることを確認できた。
さらに、実施例1〜4のコンデンサ用セパレータは、空隙率が70%以上と高く、低(内部)抵抗であり、かつピンホール等の欠点数が少なくて信頼性が高く、小型化、高性能化が要求されている電気二重層キャパシタ用のセパレータ、特に、有機系電解液を用いる電気二重層キャパシタ用のセパレータとして適しているものを得られることが確認できた。尚、実施例5のように、添加する可塑剤の配合量が低くなると、空隙率は低減した。
これに対し、比較例1のように前記A/Tが0.5を超えるような場合、押出成形後のシートに薄膜化処理を行って得られたコンデンサ用セパレータは、ピンホール等の欠点数が120個/100m2と非常に多かった。また、前記無機粉体の含水率が3質量%を超えていると、比較例2および3に示すように、得られたコンデンサ用セパレータの欠点数が7〜20個/100m2と多くなっていた。前記欠点数は、無機粉体の含水率が高くなるほど、増加する傾向にあった。
As is apparent from the results of Examples 1 to 5 of the present invention shown in Table 1, the moisture content of the inorganic powder is 3% by mass or less, and the relationship between the maximum particle diameter A and the film thickness T of the inorganic powder. When A / T is 0.5 or less, the number of defects such as pinholes is 5/100 m even when the extruded sheet is subjected to thinning treatment (rolling treatment and / or stretching treatment). 2 or less and very small, it was confirmed that good stable quality of the separator for capacitors product yield is obtained.
Further, the capacitor separators of Examples 1 to 4 have a high porosity of 70% or more, a low (internal) resistance, a small number of defects such as pinholes, high reliability, miniaturization, and high performance. It has been confirmed that a separator suitable for an electric double layer capacitor that is required to be manufactured, particularly a separator for an electric double layer capacitor that uses an organic electrolyte, can be obtained. As in Example 5, the porosity decreased when the amount of the plasticizer to be added was low.
On the other hand, when the A / T exceeds 0.5 as in Comparative Example 1, the capacitor separator obtained by subjecting the sheet after extrusion molding to thin film processing has a number of defects such as pinholes. Was 120 / 100m 2 . Moreover, when the moisture content of the inorganic powder exceeds 3% by mass, as shown in Comparative Examples 2 and 3, the number of defects of the obtained capacitor separator is 7-20 / 100 m 2. It was. The number of defects tended to increase as the moisture content of the inorganic powder increased.

Claims (5)

ポリオレフィン系樹脂、無機粉体および可塑剤を主体とした原料組成物を加熱溶融してシート状に押出成形し、圧延・延伸等の薄肉化処理を行い、前記可塑剤を除去して得られた微多孔質膜からなるコンデンサ用セパレータにおいて、前記無機粉体の含水率が3質量%以下であり、前記無機粉体の最大粒子径Aと膜厚Tの関係A/Tが0.5以下であることを特徴とするコンデンサ用セパレータ。   Obtained by heating and melting a raw material composition mainly composed of polyolefin resin, inorganic powder and plasticizer, extruding into a sheet, performing thinning treatment such as rolling and stretching, and removing the plasticizer In the capacitor separator made of a microporous membrane, the water content of the inorganic powder is 3% by mass or less, and the relationship A / T between the maximum particle diameter A and the film thickness T of the inorganic powder is 0.5 or less. There is a separator for capacitors. 前記関係A/Tが0.4以下であることを特徴とする請求項1記載のコンデンサ用セパレータ。   2. The capacitor separator according to claim 1, wherein the relationship A / T is 0.4 or less. 空隙率が70%以上であり、膜厚が25〜100μmであることを特徴とする請求項1または2記載のコンデンサ用セパレータ。   The separator for capacitors according to claim 1, wherein the porosity is 70% or more and the film thickness is 25 to 100 μm. 前記ポリオレフィン系樹脂の含有量が20〜40質量%、前記無機粉体の含有量が60〜80質量%であることを特徴とする請求項1乃至3のいずれかに記載のコンデンサ用セパレータ。   4. The capacitor separator according to claim 1, wherein a content of the polyolefin resin is 20 to 40 mass% and a content of the inorganic powder is 60 to 80 mass%. 有機系電解液を使用した電気二重層キャパシタ用セパレータであることを特徴とする請求項3または4に記載のコンデンサ用セパレータ。
5. The capacitor separator according to claim 3, wherein the capacitor separator is an electric double layer capacitor separator using an organic electrolyte.
JP2004019365A 2004-01-28 2004-01-28 Capacitor separator Expired - Fee Related JP4737936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019365A JP4737936B2 (en) 2004-01-28 2004-01-28 Capacitor separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019365A JP4737936B2 (en) 2004-01-28 2004-01-28 Capacitor separator

Publications (2)

Publication Number Publication Date
JP2005216992A true JP2005216992A (en) 2005-08-11
JP4737936B2 JP4737936B2 (en) 2011-08-03

Family

ID=34903596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019365A Expired - Fee Related JP4737936B2 (en) 2004-01-28 2004-01-28 Capacitor separator

Country Status (1)

Country Link
JP (1) JP4737936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065065A (en) * 2005-08-29 2007-03-15 Konica Minolta Opto Inc Optical film and its manufacturing method
WO2007037309A1 (en) * 2005-09-28 2007-04-05 Nippon Sheet Glass Company, Limited Separator for energy-storage device and energy-storage device
JP2014179519A (en) * 2013-03-15 2014-09-25 Nippon Sheet Glass Co Ltd Separator for electricity storage device, and electricity storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137012A (en) * 1989-10-19 1991-06-11 Nitto Chem Ind Co Ltd Production of wear-resistant silica media
JPH0959014A (en) * 1995-08-22 1997-03-04 Ube Nitto Kasei Co Ltd Hygroscopic silica particle and its production
JPH1050287A (en) * 1996-07-31 1998-02-20 Sony Corp Nonaqueous electrolyte battery, separator for it, and manufacture of the separator
JP2002158147A (en) * 2000-11-20 2002-05-31 Tokin Corp Method of manufacturing electric double-layer capacitor
WO2002095846A1 (en) * 2001-05-23 2002-11-28 Entek International Llc Lead acid battery separator with improved electrical and mechanical properties
JP2003003078A (en) * 2000-09-19 2003-01-08 Nisshinbo Ind Inc Ion-conductive composition, gel elecrolyte, and non- aqueous electrolytic cell and electric double layer capacitor
WO2003026043A2 (en) * 2001-09-20 2003-03-27 Daramic, Inc. Reinforced multilayer separator for lead-acid batteries
JP2003297678A (en) * 2002-04-02 2003-10-17 Meidensha Corp Electric double layer capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137012A (en) * 1989-10-19 1991-06-11 Nitto Chem Ind Co Ltd Production of wear-resistant silica media
JPH0959014A (en) * 1995-08-22 1997-03-04 Ube Nitto Kasei Co Ltd Hygroscopic silica particle and its production
JPH1050287A (en) * 1996-07-31 1998-02-20 Sony Corp Nonaqueous electrolyte battery, separator for it, and manufacture of the separator
JP2003003078A (en) * 2000-09-19 2003-01-08 Nisshinbo Ind Inc Ion-conductive composition, gel elecrolyte, and non- aqueous electrolytic cell and electric double layer capacitor
JP2002158147A (en) * 2000-11-20 2002-05-31 Tokin Corp Method of manufacturing electric double-layer capacitor
WO2002095846A1 (en) * 2001-05-23 2002-11-28 Entek International Llc Lead acid battery separator with improved electrical and mechanical properties
WO2003026043A2 (en) * 2001-09-20 2003-03-27 Daramic, Inc. Reinforced multilayer separator for lead-acid batteries
JP2003297678A (en) * 2002-04-02 2003-10-17 Meidensha Corp Electric double layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065065A (en) * 2005-08-29 2007-03-15 Konica Minolta Opto Inc Optical film and its manufacturing method
WO2007037309A1 (en) * 2005-09-28 2007-04-05 Nippon Sheet Glass Company, Limited Separator for energy-storage device and energy-storage device
JP2007095440A (en) * 2005-09-28 2007-04-12 Nippon Sheet Glass Co Ltd Separator for electric storage device, and electric storage device
JP2014179519A (en) * 2013-03-15 2014-09-25 Nippon Sheet Glass Co Ltd Separator for electricity storage device, and electricity storage device

Also Published As

Publication number Publication date
JP4737936B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
US9293752B2 (en) Multilayer porous membrane and production method thereof
JP5984307B2 (en) Method for producing polyolefin microporous stretched film with cellulose nanofibers
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
JP5196780B2 (en) Multilayer porous membrane and method for producing the same
JP4753446B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP5841478B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
JP2012109249A (en) Multilayer porous membrane and method for producing the same
JP2009143060A (en) Multi-layer porous film
JP6030194B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
JP5060034B2 (en) Electric storage device separator and electric storage device
JP5235487B2 (en) Method for producing inorganic particle-containing microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4737936B2 (en) Capacitor separator
JP4979252B2 (en) Polyolefin microporous membrane
JP2012072263A (en) Polyolefin microporous film
JP2006287176A (en) Separator for electricity storage device, and electricity storage device
JP6122941B2 (en) Method for producing extruded product for use in production of polyolefin microporous stretched film containing cellulose nanofiber
JP2006287175A (en) Separator for electricity storage device, its production process and electricity storage device
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP6988880B2 (en) Polyolefin microporous membrane
JP4842445B2 (en) Electric double layer capacitor separator
JP4425596B2 (en) Capacitor separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees