JP2005216612A - Accurate axis adjustment method of transmission electron microscope and its device - Google Patents

Accurate axis adjustment method of transmission electron microscope and its device Download PDF

Info

Publication number
JP2005216612A
JP2005216612A JP2004020121A JP2004020121A JP2005216612A JP 2005216612 A JP2005216612 A JP 2005216612A JP 2004020121 A JP2004020121 A JP 2004020121A JP 2004020121 A JP2004020121 A JP 2004020121A JP 2005216612 A JP2005216612 A JP 2005216612A
Authority
JP
Japan
Prior art keywords
electron microscope
sample
image
axis
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004020121A
Other languages
Japanese (ja)
Inventor
Kazuo Ishizuka
和夫 石塚
Koji Kimoto
浩司 木本
Yoshio Matsui
良夫 松井
Yoshio Bando
義雄 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004020121A priority Critical patent/JP2005216612A/en
Publication of JP2005216612A publication Critical patent/JP2005216612A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To adjust the axis of a transmission electron microscope by using a crystalline sample. <P>SOLUTION: The crystalline sample 4 with a minute region irradiated with incident electrons 1 is set by shifting it from a regular focus sample position 3, and a TEM image 7 is observed on a conjugate surface at the regular focus sample position 3. A Bragg diffraction image 8 of the crystalline sample is shifted from a Gaussian image due to aberration. This application comprises a technique and its device for adjusting the axis by estimating an aberration coefficient from the shift. Since the axis can be adjusted by the crystalline sample, the axis can be adjusted on the scene as compared with a conventional technique. As a result, this method has excellent instancy, and can adjust the axis in a condition for observing a high-resolution image. The method speeds up and facilitates adjustment of a multipolar spherical aberration corrector and is considered to be essential for dissemination of spherical aberration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透過型電子顕微鏡用の軸調整方法及びそれを行う装置に関する。   The present invention relates to an axis adjusting method for a transmission electron microscope and an apparatus for performing the same.

透過電子顕微鏡(Transmission Electron Microscope; 以下TEM)は、微小領域の材料評価手法として、近年盛んに用いられている。TEMによって高い空間分解能で像観察するためには、適切な軸調整を行うことが不可欠である。当該軸調整とは、試料を観察するために用いる対物レンズについて、非点、焦点及び入射電子の入射方向などを適切に設定することである。特に入射電子の方向と非点は、得られるTEM像の空間分解能に大きく影響することから、これを迅速かつ正確に調整することが望まれている。   2. Description of the Related Art In recent years, a transmission electron microscope (hereinafter referred to as TEM) has been actively used as a material evaluation method for a minute region. In order to observe an image with high spatial resolution by TEM, it is essential to perform appropriate axis adjustment. The axis adjustment is to appropriately set the astigmatism, the focal point, the incident direction of incident electrons, and the like for the objective lens used for observing the sample. In particular, since the direction and astigmatism of the incident electrons greatly affect the spatial resolution of the obtained TEM image, it is desired to adjust this quickly and accurately.

さらに、近年は6極子、8極子などの多極子により構成される球面収差補正子を用いた対物レンズの球面収差補正が実用化された。この多極子を用いて収差補正を行うためには、残存する収差を迅速かつ正確に計測し、多極子補正子を調整する必要がある。   Furthermore, in recent years, spherical aberration correction of an objective lens using a spherical aberration corrector composed of multipole elements such as hexapoles and octupoles has been put into practical use. In order to perform aberration correction using this multipole element, it is necessary to quickly and accurately measure the remaining aberration and adjust the multipole corrector.

従来TEMの軸調整には、電圧軸調整法と呼ばれる方法が用いられてきた(例えば、特許文献1)。これはTEMの加速電圧をわずかに(例えば200kVの加速電圧に対し1kV程度)変調させながら、電圧変調によるTEM像の位置の変化を観察し、TEM像の位置変動が最小になるように入射電子の方向を調整するものである。   Conventionally, a method called a voltage axis adjustment method has been used for axis adjustment of a TEM (for example, Patent Document 1). This is because the TEM acceleration voltage is slightly modulated (for example, about 1 kV with respect to an acceleration voltage of 200 kV), the change in the position of the TEM image due to the voltage modulation is observed, and the incident electrons are minimized so that the position variation of the TEM image is minimized The direction is adjusted.

そのほかには、TEMの対物レンズの電流を変調させ、TEM像の位置変動が最小になるように入射電子の方向を調整する、電流軸調整法も用いられている。電圧軸調整法や電流軸調整法は、特別な装置を必要とせず、蛍光板上で行えることから、現在広く一般に用いられている。   In addition, a current axis adjustment method is also used in which the current of the TEM objective lens is modulated to adjust the direction of incident electrons so that the positional fluctuation of the TEM image is minimized. The voltage axis adjustment method and the current axis adjustment method are currently widely used because they can be performed on a fluorescent screen without requiring a special device.

一方、近年のTEMの高精度化、高分解能化にともない、電圧軸調整や電流軸調整に代わる新たな軸調整方法の必要性が指摘された(非特許文献1)。これは、コマ収差が無い方向に入射電子の方向を調整するもので、コマフリー軸調整法と呼ばれる。コマフリー軸調整法にはいくつかの方法が提案されている(例えば、非特許文献2)。   On the other hand, the need for a new axis adjustment method in place of voltage axis adjustment and current axis adjustment has been pointed out with the recent increase in accuracy and resolution of TEM (Non-patent Document 1). This is to adjust the direction of incident electrons in a direction where there is no coma aberration, and is called a coma-free axis adjustment method. Several methods have been proposed for the frame-free axis adjustment method (for example, Non-Patent Document 2).

これまで提案されている方法はいずれの方法も、入射電子の方向を変化させて複数枚のTEM像を観察し、入射電子の方向の変化にともなうTEM像の焦点、非点及び位置の変化を検出して、適切な電子線の入射方向を求めるものである(例えば、類似の方法としては、特許文献2,3)。   All of the methods proposed so far observe multiple TEM images by changing the direction of the incident electrons, and change the focus, astigmatism and position of the TEM image as the direction of the incident electrons changes. By detecting it, an appropriate incident direction of the electron beam is obtained (for example, Patent Documents 2 and 3 as similar methods).

さらに、前記多極子球面収差補正子の調整のための、残存する収差の計測にはコマフリー軸調整法を拡張した方法が用いられている。   Further, a method in which the coma-free axis adjustment method is extended is used to measure the remaining aberration for adjusting the multipole spherical aberration corrector.

これらのコマフリー軸調整法や、多極子球面収差補正子調整法を行うためには、入射電子の方向を高精度に調整する特別な装置や、TEM像をフーリエ変換してその非点量や焦点を計算する装置が必要である。   In order to perform these coma-free axis adjustment methods and multipole spherical aberration corrector adjustment methods, a special device that adjusts the direction of incident electrons with high accuracy, astigmatism and the TEM image by Fourier transform A device for calculating the focus is needed.

一方、このような特別な装置を必要としない簡便かつ容易なコマフリー軸調整法として高角に散乱された電子を用いる方法が提案されたが(特許文献4)、その精度には限界がある。
特開昭60-167248号(特公平03-39378号、特許1672379号)公報 特開昭60-91540号公報 特公平03-78738号公報 特開2003-197142号公報 F.Zemlin, et al., Ultramicroscopy,vol.3, (1978), p49 K. Ishizuka, Ultramicroscopy, vol. 55(1994) p. 407
On the other hand, a method using electrons scattered at a high angle has been proposed as a simple and easy frame-free axis adjustment method that does not require such a special device (Patent Document 4), but its accuracy is limited.
Japanese Unexamined Patent Publication No. 60-167248 (Japanese Patent Publication No. 03-39378, Japanese Patent No. 1672379) JP 60-91540 A Japanese Patent Publication No. 03-78738 JP 2003-197142 A F. Zemlin, et al., Ultramicroscopy, vol. 3, (1978), p49 K. Ishizuka, Ultramicroscopy, vol. 55 (1994) p. 407

TEMで試料を高空間分解能で観察するためには、コマフリー軸調整が必要である。しかし、これまで提案されているコマフリー軸調整法は、非晶質試料を必要とし、結晶性試料には用いることができなかった。また、高角に散乱された電子を用いる方法は簡便ではあるが、精度の点に問題があった。   In order to observe a sample with high spatial resolution by TEM, it is necessary to adjust the frame-free axis. However, the coma-free axis adjustment method proposed so far requires an amorphous sample and cannot be used for a crystalline sample. Moreover, although the method using electrons scattered at a high angle is simple, there is a problem in accuracy.

さらに、TEMで試料を高空間分解能で観察するためには、対物レンズの球面収差補正が必要である。しかし、これまで提案されている多極子球面収差補正子調整法は、コマフリー軸調整法と同様に、非晶質試料を必要とし、結晶性試料には用いることが出来ない。   Furthermore, in order to observe a sample with high spatial resolution by TEM, it is necessary to correct spherical aberration of the objective lens. However, the proposed multipole spherical aberration corrector adjustment method, like the coma-free axis adjustment method, requires an amorphous sample and cannot be used for a crystalline sample.

本発明は、従来とは異なる原理及び手段により、結晶性試料に適用可能な、迅速かつ正確なコマフリー軸調整法及び多極子球面収差補正子調整法を提供するものである。   The present invention provides a quick and accurate coma-free axis adjustment method and multipole spherical aberration corrector adjustment method that can be applied to a crystalline sample by a principle and means different from conventional ones.

上記の課題を解決するための方法として、本発明では、新たな収差計測法に基づく軸調整法が提供される。 As a method for solving the above problems, the present invention provides an axis adjustment method based on a new aberration measurement method.

すなわち、本発明は、回折像の位置情報を使ったコマフリー軸調整方法に関し、試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、対物レンズのコマフリー軸調整することを特徴とする、透過電子顕微鏡の軸調整方法である。   That is, the present invention relates to a frame-free axis adjustment method using position information of a diffraction image, and in a transmission electron microscope that focuses an incident electron on a minute region of a sample and observes an electron microscope image, the sample is a crystalline sample. The incident direction of the incident electrons is set as the crystal zone axis of the sample, and the coma-free axis of the objective lens is adjusted based on the position information of the Bragg diffraction image observed in the electron microscope image. This is a method for adjusting the axis of a microscope.

また、本発明は、回折像の位置情報を使った非点補正法に関し、試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、対物レンズの非点補正量を調整することを特徴とする、透過電子顕微鏡の軸調整方法である。   The present invention also relates to an astigmatism correction method using position information of a diffraction image. In a transmission electron microscope that focuses an incident electron on a minute region of a sample and observes an electron microscope image, the sample is a crystalline sample. The astigmatism correction amount of the objective lens is adjusted from the positional information of the Bragg diffraction image observed in the electron microscope image, with the incident direction of the incident electrons being substantially the zone axis of the sample. This is an axis adjustment method for an electron microscope.

また、本発明は、回折像の位置情報を使った軸調整方法に関し、試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、対物レンズのコマフリー軸調整と、非点補正量を調整することを特徴とする、透過電子顕微鏡の軸調整方法である。   Further, the present invention relates to an axis adjustment method using position information of a diffraction image, and in a transmission electron microscope that focuses an incident electron on a minute region of the sample and observes an electron microscope image, the sample is a crystalline sample, Using the incident direction of the incident electrons as the crystal zone axis of the sample, and adjusting the coma-free axis adjustment of the objective lens and the astigmatism correction amount from the positional information of the Bragg diffraction image observed in the electron microscope image. This is a method for adjusting the axis of a transmission electron microscope.

また、本発明は、回折像の位置情報を使った球面収差補正子の調整方法に関し、試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、球面収差補正子を有する透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、前記球面収差補正子を調整することを特徴とする、透過電子顕微鏡の軸調整方法である。   The present invention also relates to a method for adjusting a spherical aberration corrector using positional information of a diffraction image, and relates to a transmission electron microscope having a spherical aberration corrector that focuses incident electrons on a minute region of a sample and observes an electron microscope image. The spherical aberration corrector is adjusted based on the position information of the Bragg diffraction image observed in the electron microscope image, with the sample being a crystalline sample and the incident direction of the incident electrons being substantially the crystal axis of the sample. This is a method for adjusting the axis of a transmission electron microscope.

また、本発明は、回折像の位置情報を使った3回非点補正子の調整方法に関し、試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、3回非点補正子を有する透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほ
ぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、前記3回非点補正子を調整することを特徴とする、透過電子顕微鏡の軸調整方法である。
The present invention also relates to a method for adjusting a three-fold astigmatism using position information of a diffraction image. A three-fold astigmatism corrector for converging incident electrons in a minute region of a sample and observing an electron microscope image is provided. In the transmission electron microscope, the sample is a crystalline sample, the incident direction of the incident electrons is a substantially crystal zone axis of the sample, and from the position information of the Bragg diffraction image observed in the electron microscope image, the three times A method for adjusting an axis of a transmission electron microscope, comprising adjusting a point corrector.

また、本発明は、回折像の位置情報を使った多極子収差補正子の調整方法に関し、試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、多極子収差補正子を有する透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、前記多極子収差補正子を調整することを特徴とする、透過電子顕微鏡の軸調整方法である。   The present invention also relates to a method of adjusting a multipole aberration corrector using position information of a diffraction image, and a transmission having a multipole aberration corrector that focuses incident electrons on a minute region of a sample and observes an electron microscope image. In the electron microscope, the sample is a crystalline sample, the incident direction of the incident electrons is a substantially crystal axis of the sample, and the position information of the Bragg diffraction image observed in the electron microscope image is used to calculate the multipole aberration corrector. This is a method for adjusting the axis of a transmission electron microscope.

また、本発明は、回折像の位置情報の取り扱いに関し、上記の各方法において、透過電子斑点からブラッグ回折斑点へのベクトルの和及び差を利用することを特徴とする、透過電子顕微鏡の軸調整方法である。   Further, the present invention relates to handling of positional information of diffraction images, and in each of the above methods, the axis adjustment of a transmission electron microscope is characterized by using the sum and difference of vectors from transmission electron spots to Bragg diffraction spots. Is the method.

また、本発明は、軸調整法を組み込んだ装置に関し、電子顕微鏡像を検出するための画像取得装置と前記電子顕微鏡像の解析装置を備えた透過電子顕微鏡において、上記の各軸調整法を行うために、ブラッグ回折像の位置を検出する機能を有することを特徴とする、透過電子顕微鏡である。   In addition, the present invention relates to an apparatus incorporating an axis adjustment method, and performs each of the axis adjustment methods described above in a transmission electron microscope including an image acquisition device for detecting an electron microscope image and an analysis device for the electron microscope image. Therefore, the transmission electron microscope has a function of detecting the position of the Bragg diffraction image.

本発明で提供される軸調整法では、ブラッグ回折像の位置情報をもとに、軸調整に必要な調整量は電子計算機により自動的に高精度に計算される。透過電子顕微鏡が電子計算機により外部制御可能であれば、その軸調整に必要な調整量は自動的に透過電子顕微鏡に設定することも可能である。   In the axis adjustment method provided by the present invention, the amount of adjustment necessary for axis adjustment is automatically calculated with high accuracy by an electronic computer based on the positional information of the Bragg diffraction image. If the transmission electron microscope can be externally controlled by an electronic computer, the adjustment amount necessary for the axis adjustment can be automatically set in the transmission electron microscope.

従来、電子顕微鏡の軸調整には、電子線を傾斜させて複数枚の画像を観察しそれを比較していたが、本発明では、1枚の画像から軸調整に必要な情報が得られる。また、本発明は、一般に電子顕微鏡観察に用いる結晶性試料を用い、さらに、試料面上に電子線を収束している点で、従来全く行われていなかった方法である。この条件で観察されたブラッグ回折像の位置の解析から、対物レンズの軸調整ができるという報告例は全くなく、検討された報告例もなかった。  Conventionally, for axis adjustment of an electron microscope, an electron beam is tilted and a plurality of images are observed and compared. In the present invention, information necessary for axis adjustment can be obtained from one image. In addition, the present invention is a method that has not been performed at all in terms of using a crystalline sample generally used for electron microscope observation and further converging an electron beam on the sample surface. From the analysis of the position of the Bragg diffraction image observed under this condition, there has been no report example that the axis of the objective lens can be adjusted, and there has been no report example examined.

結晶性の試料で軸調整できることから、従来手法と比べ、その場での軸調整が可能である。その結果、即時性に優れているとともに、高分解能像を観察する条件での軸調整が行える。また、本方法は多極子球面収差補正子の調整を迅速かつ容易にし、球面収差の普及に必須であると考えられる。   Since the axis can be adjusted with a crystalline sample, the axis can be adjusted on the spot as compared with the conventional method. As a result, it is excellent in immediacy, and the axis can be adjusted under conditions for observing a high resolution image. In addition, this method is considered to be essential for the widespread use of spherical aberration by making the adjustment of the multipole spherical aberration corrector quick and easy.

以下図面を参照して本発明の実施の形態をコマフリー軸調整を例にとって説明する。図1は、本発明による、透過電子顕微鏡(Transmission Electron Microscope: TEM)の軸調整の実施の形態の一例である。本発明では、試料4の光軸2近傍の微少領域に入射電子1を照射するとともに、TEMで通常用いられる場合よりも大きく焦点をはずしたTEM像7を観察する。大きく焦点をはずしたTEM像を観察するため、本実施の形態では結晶性試料4を正焦点試料位置3(焦点が合う位置)よりも対物レンズ6側に近づけている。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, taking frame free axis adjustment as an example. FIG. 1 is an example of an embodiment of axis adjustment of a transmission electron microscope (TEM) according to the present invention. In the present invention, a minute region in the vicinity of the optical axis 2 of the sample 4 is irradiated with the incident electrons 1, and a TEM image 7 that is largely out of focus than that normally used in TEM is observed. In order to observe a greatly defocused TEM image, in this embodiment, the crystalline sample 4 is brought closer to the objective lens 6 side than the positive focus sample position 3 (position where the focus is achieved).

例えば、本発明の方法及び装置の場合には、照射される微少領域の大きさは、数nmである。また、焦点はずれ量は、数μm程度である。この値は一般にTEMで高分解能観察で用いられる焦点はずれ量よりも大きな値である。試料4を対物レンズ6側に動かしたことで、観察されるTEM像7は、不足焦点像となる。   For example, in the case of the method and apparatus of the present invention, the size of the minute region to be irradiated is several nm. Further, the defocus amount is about several μm. This value is generally larger than the defocus amount used for high-resolution observation with TEM. By moving the sample 4 to the objective lens 6 side, the observed TEM image 7 becomes an underfocus image.

試料を透過した電子5aは、TEM像7中では、透過電子斑点8aとして観察される。結晶性試
料によって散乱された散乱電子5b, 5c, 5d, 5eはTEM像7中ではブラッグ回折像8b, 8c, 8d, 8eとして観察される。このとき、ブラッグ回折斑点が強く現れるように、入射電子線に対して試料をほぼ晶帯軸とする。
The electrons 5a transmitted through the sample are observed as transmitted electron spots 8a in the TEM image 7. The scattered electrons 5b, 5c, 5d, and 5e scattered by the crystalline sample are observed as Bragg diffraction images 8b, 8c, 8d, and 8e in the TEM image 7. At this time, the sample is made to have a substantially zone axis with respect to the incident electron beam so that the Bragg diffraction spots appear strongly.

これらのブラッグ回折像の位置は、前記入射電子の入射方向及び対物レンズの収差により理想的な位置からずれて現れる。軸対称な対物レンズであれば、ブラッグ回折像が透過電子斑点に対して対称的に現れるように電子線の対物レンズに対する入射方向を調整すれば、コマフリー軸調整となる。   The positions of these Bragg diffraction images appear out of the ideal position due to the incident direction of the incident electrons and the aberration of the objective lens. In the case of an axially symmetric objective lens, if the incident direction of the electron beam to the objective lens is adjusted so that the Bragg diffraction image appears symmetrically with respect to the transmission electron spot, the frame-free axis adjustment is performed.

コマ収差を有する対物レンズの場合には、レンズの収差の複素数表現(K. Ishizuka,Ultramicroscopy, vol. 55(1994) p. 407)を用いると、光軸2からw=αexp(iφ)の方向に散乱されたブラッグ回折像の位置dは、3次の収差まで考慮して、次のように示される。   In the case of an objective lens having coma aberration, using a complex expression of lens aberration (K. Ishizuka, Ultramicroscopy, vol. 55 (1994) p. 407), the direction of w = αexp (iφ) from the optical axis 2 The position d of the Bragg diffraction image scattered by is shown as follows in consideration of the third-order aberration.

Figure 2005216612
Figure 2005216612

ここで、Csは球面収差、zは焦点はずれ量、a2及びa3は2回及び3回の非点収差、bはレンズ自身が持つコマ収差、dは一定のずれである。記号上のバーは、その数の複素共役を示している。 Here, Cs is a spherical aberration, z is a defocus amount, a 2 and a 3 are astigmatisms 2 and 3, b is a coma aberration of the lens itself, and d is a constant shift. The bar above the symbol indicates the complex conjugate of that number.

次に、透過電子斑点を基準にした表現に置き換える。透過電子斑点が光軸からwmにあるとし、透過電子斑点から計ったブラッグ回折像の方向をwtとするとw = wm + wt となる。さらに、ブラッグ回折像の位置を透過電子斑点の位置から相対的に計った距離をdとすると次のようになる。 Next, the expression based on the transmission electron spot is replaced. If the transmission electron spot is at w m from the optical axis, and the direction of the Bragg diffraction image measured from the transmission electron spot is w t , then w = w m + w t . Further, when the distance obtained by relatively measuring the position of the Bragg diffraction image from the position of the transmission electron spot is d, the following is obtained.

Figure 2005216612
Figure 2005216612

ここで、複数のブラッグ回折像に対して式(2)を求め、連立方程式を解けば、各収差係数を決定することが出来る。   Here, by obtaining Equation (2) for a plurality of Bragg diffraction images and solving the simultaneous equations, each aberration coefficient can be determined.

さらに、透過電子斑点から向かい合ったブラッグ回折斑点へのベクトルの和と差をそれぞれΔδt=(δ(wt)+δ(−w))/2と< δt >=(δ(w)-δ(−w))/2と定義すると、ブラッグ回折像のベクトルの和Δδtは次のようになる。 Further, the sum and difference of vectors from the transmission electron spot to the Bragg diffraction spot facing each other are expressed as Δδ t = (δ (w t ) + δ (−w t )) / 2 and <δ t > = (δ (w t ), respectively. When defined as −δ (−w t )) / 2, the vector sum Δδ t of the Bragg diffraction image is as follows.

Figure 2005216612
Figure 2005216612

ここで、B=b+2Cswmは見かけのコマ収差に相当する。複数のブラッグ回折像に対して式(3)を求め、見かけのコマ収差B、3回の非点収差a3を求めることが出来る。次に、ブラッグ回折像のベクトルの差< δt >に着目すると次のようになる。 Here, B = b + 2Csw m corresponds to the apparent coma aberration. Expression (3) is obtained for a plurality of Bragg diffraction images, and apparent coma aberration B and three astigmatisms a 3 can be obtained. Next, attention is paid to the vector difference <δ t > of the Bragg diffraction image as follows.

Figure 2005216612
Figure 2005216612

複数のブラッグ回折像に対して式(4)を求め、球面収差Cs、焦点はずれ量z、非点収差a2を求めることが出来る。式(3)及び(4)では、入射電子の入射方向のミスアライメントwmはwtに対して、十分小さいと近似している。 Expression (4) is obtained for a plurality of Bragg diffraction images, and spherical aberration Cs, defocus amount z, and astigmatism a 2 can be obtained. In the equations (3) and (4), it is approximated that the misalignment w m in the incident direction of the incident electrons is sufficiently small with respect to w t .

図2は、本発明による実施の形態を示したものである。コマ収差が残存している状態では(a)のようにブラッグ回折像は透過電子斑点に対して対称には現れない。このずれを計測し、式(3)により、見かけのコマ収差を求め、入射電子をB/2Csだけ現在の入射方向から傾斜させることにより、コマ収差は相殺され、(b)に示すように対称的な分布となる。   FIG. 2 shows an embodiment according to the present invention. In the state where the coma remains, the Bragg diffraction image does not appear symmetrically with respect to the transmission electron spot as shown in (a). This deviation is measured, and the apparent coma is calculated by equation (3). By tilting the incident electrons from the current incident direction by B / 2Cs, the coma is canceled and symmetrical as shown in (b). Distribution.

なお、以上の実施の形態では、TEM像の焦点をはずすために、試料の位置を変化させたが、これに限ることはなく、中間レンズの焦点を変化させる、加速電圧を変化させる、対物レンズの焦点距離を変化させる、などの方法を用いてもよい。   In the above embodiment, the sample position is changed in order to remove the focus of the TEM image. However, the present invention is not limited to this, but the focus of the intermediate lens is changed, the acceleration voltage is changed, and the objective lens is changed. A method such as changing the focal length of the lens may be used.

上述の実施の形態(図2)では、TEM像は過焦点で観察したが、不足焦点で観察し散乱された電子のブラッグ回折像の位置を解析することによっても同じ効果が得られる。   In the above-described embodiment (FIG. 2), the TEM image is observed with a hyperfocal point, but the same effect can be obtained by analyzing the position of the Bragg diffraction image of the scattered electron observed with the underfocal point.

図3は、他の実施の形態を示したものである。TEM19に加え、画像取得装置32、画像解析装置33を備えている。画像取得装置32では、TEM像29を取得し、当該TEM像29を画像解析装置33に転送する。画像解析装置33では、TEM像29中のブラッグ回折像の位置を検出する。さらに、画像解析装置33では、そのずれ量から式(2)に基づき球面収差係数、焦点はずれ量、コマ収差、2回及び3回の非点収差を計算する。   FIG. 3 shows another embodiment. In addition to the TEM 19, an image acquisition device 32 and an image analysis device 33 are provided. The image acquisition device 32 acquires the TEM image 29 and transfers the TEM image 29 to the image analysis device 33. The image analyzer 33 detects the position of the Bragg diffraction image in the TEM image 29. Further, the image analysis device 33 calculates a spherical aberration coefficient, an out-of-focus amount, a coma aberration, two times and three times astigmatism from the deviation amount based on the equation (2).

計算結果に基づき、画像解析装置33は偏向手段制御装置22へと必要な偏向量を指示し、それにより偏向手段21が駆動され電子銃20による入射電子23の方向が設定され、コマフリー軸調整が行われる。さらに、画像解析装置33は非点補正手段制御装置31へと必要な変更量を指示し、それにより非点補正手段30が駆動され非点補正が行われる。画像取得装置32を用いることにより、オペレーターが目視でやるよりも高精度にコマフリー軸調整、非点補正が可能になる。   Based on the calculation result, the image analysis device 33 instructs the deflection means control device 22 about the necessary deflection amount, whereby the deflection means 21 is driven, the direction of the incident electrons 23 by the electron gun 20 is set, and the frame-free axis adjustment is performed. Is done. Further, the image analysis device 33 instructs the astigmatism correction means control device 31 to change the necessary amount, whereby the astigmatism correction means 30 is driven to perform astigmatism correction. By using the image acquisition device 32, the frame-free axis adjustment and astigmatism correction can be performed with higher accuracy than the operator can visually observe.

次に、多極子球面収差補正子の調整に必要な収差係数の計測法について説明する。多極子は非回転対称であるので、多極子を用いることにより非回転対称の収差が発生する。このため、多極子球面収差補正子では、球面収差を補正すると共に、非回転対称の収差を最小にするように複数の多極子を調整する必要がある。この高次の非回転対称の収差を含んだ波面収差は、次のように表される。   Next, a method for measuring an aberration coefficient necessary for adjusting the multipole spherical aberration corrector will be described. Since the multipole is non-rotationally symmetric, non-rotationally symmetric aberration is generated by using the multipole. Therefore, in the multipole spherical aberration corrector, it is necessary to correct the spherical aberration and adjust the plurality of multipoles so as to minimize the non-rotationally symmetric aberration. The wavefront aberration including this higher-order non-rotationally symmetric aberration is expressed as follows.

Figure 2005216612
Figure 2005216612

ここで、cnmは収差係数で、αは散乱角、φは回転角を表す。また、nは収差の次数(order)、mは対称の軸回転数(fold)を表している。ここで、複素数表現 Here, c nm is an aberration coefficient, α is a scattering angle, and φ is a rotation angle. Further, n represents the order of aberration (order), and m represents the symmetric shaft rotation number (fold). Where complex number representation

Figure 2005216612
Figure 2005216612

を用いると、波面収差は以下のように表される。 Is used, the wavefront aberration is expressed as follows.

Figure 2005216612
Figure 2005216612

これより、容易に光軸からwの方向に散乱されたブラッグ回折像の位置dは、次のように示される。   From this, the position d of the Bragg diffraction image easily scattered in the direction of w from the optical axis is shown as follows.

Figure 2005216612
Figure 2005216612

このように、各収差によるブラッグ回折像の位置dへの寄与のwに関する関数形がすべてお互いに異なる。このため、前述のコマフリー軸調整の時のように、複数のブラッグ回折像に対して式(8)を求め、連立方程式を解けば、各収差係数を決定することが出来る。   As described above, the function forms related to w of the contribution to the position d of the Bragg diffraction image by each aberration are all different from each other. For this reason, as in the above-described frame-free axis adjustment, each aberration coefficient can be determined by obtaining Equation (8) for a plurality of Bragg diffraction images and solving the simultaneous equations.

図1は、本発明による軸調整法の実施の形態を示す概念図である。FIG. 1 is a conceptual diagram showing an embodiment of an axis adjustment method according to the present invention. 図2は、本発明による軸調整法の実施の形態における、(a)は軸調整前、(b)は軸調整が完了したときのTEM像を示す図面代用写真である。FIG. 2 is a drawing-substituting photograph showing a TEM image when (a) is before the axis adjustment and (b) is completed in the embodiment of the axis adjustment method according to the present invention. 図3は、本発明による他の実施の形態を示す概念図である。FIG. 3 is a conceptual diagram showing another embodiment according to the present invention.

符号の説明Explanation of symbols

1… 入射電子
2…光軸
3…正焦点試料位置
4…結晶性試料
5a…透過電子
5b〜5e…散乱電子(ブラッグ回折波)
6…対物レンズ
7…TEM像
8a…透過電子斑点
8b〜8e…ブラッグ回折像
19…透過電子顕微鏡
20…電子銃
21…偏向手段
22…偏向手段制御装置
23…入射電子
24…透過電子
25…散乱電子
26…試料
27…対物レンズ
28…結像レンズ系
29…TEM像
30…非点補正手段
31…非点補正手段制御装置
32…画像取得装置
33…画像解析装置
1 ... Incident electrons
2 ... Optical axis
3 ... Focus sample position
4 ... Crystalline sample
5a ... Transmission electron
5b-5e ... Scattered electrons (Bragg diffraction wave)
6 ... Objective lens
7 ... TEM image
8a ... Transmission electron spots
8b-8e ... Bragg diffraction image
19 ... Transmission electron microscope
20 ... electron gun
21: Deflection means
22 ... Deflection means control device
23 ... Incident electrons
24 ... Transmission electron
25 ... scattered electrons
26 ... Sample
27… Objective lens
28 ... imaging lens system
29 ... TEM image
30 ... Astigmatism correction means
31 ... Astigmatism correction means control device
32 ... Image acquisition device
33 ... Image analysis device

Claims (8)

試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、対物レンズのコマフリー軸調整することを特徴とする、透過電子顕微鏡の軸調整方法。 In a transmission electron microscope, which converges incident electrons on a very small region of the sample and observes an electron microscope image, the sample is a crystalline sample, the incident direction of the incident electrons is substantially the zone axis of the sample, and the electron microscope A method for adjusting an axis of a transmission electron microscope, comprising: adjusting a coma-free axis of an objective lens based on position information of a Bragg diffraction image observed in an image. 試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、対物レンズの非点補正量を調整することを特徴とする、透過電子顕微鏡の軸調整方法。 In a transmission electron microscope that focuses an incident electron on a minute region of the sample and observes an electron microscope image, the sample is a crystalline sample, the incident direction of the incident electron is a substantially crystal zone axis of the sample, and the electron microscope A method for adjusting an axis of a transmission electron microscope, comprising adjusting an astigmatism correction amount of an objective lens based on position information of a Bragg diffraction image observed in an image. 試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、対物レンズのコマフリー軸と、非点補正量を調整することを特徴とする、透過電子顕微鏡の軸調整方法。 In a transmission electron microscope that focuses an incident electron on a minute region of the sample and observes an electron microscope image, the sample is a crystalline sample, the incident direction of the incident electron is a substantially crystal zone axis of the sample, and the electron microscope A method for adjusting an axis of a transmission electron microscope, comprising adjusting a coma-free axis of an objective lens and an astigmatism correction amount based on position information of a Bragg diffraction image observed in the image. 試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、球面収差補正子を有する透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、前記球面収差補正子を調整することを特徴とする、透過電子顕微鏡の軸調整方法。 In a transmission electron microscope having a spherical aberration corrector that converges incident electrons on a minute region of the sample and observes an electron microscope image, the sample is a crystalline sample, and the incident direction of the incident electron is substantially the crystal zone of the sample. A method for adjusting an axis of a transmission electron microscope, characterized in that the spherical aberration corrector is adjusted based on positional information of a Bragg diffraction image observed in the electron microscope image. 試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、3回非点補正子を有する透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、前記3回非点補正子を調整することを特徴とする、透過電子顕微鏡の軸調整方法。 In a transmission electron microscope having a three-fold astigmatism to focus incident electrons on a very small region of the sample and observe an electron microscope image, the sample is a crystalline sample, and the incident direction of the incident electron is substantially the same as that of the sample. A method for adjusting the axis of a transmission electron microscope, comprising adjusting the three-fold astigmatism as a zone axis and adjusting positional information of a Bragg diffraction image observed in the electron microscope image. 試料の微少領域に入射電子を収束し、電子顕微鏡像を観察する、多極子収差補正子を有する透過電子顕微鏡において、前記試料を結晶性試料とし、前記入射電子の入射方向を前記試料のほぼ晶帯軸とし、前記電子顕微鏡像に観察されるブラッグ回折像の位置情報より、前記多極子収差補正子を調整することを特徴とする、透過電子顕微鏡の軸調整方法。 In a transmission electron microscope having a multipole aberration corrector for converging incident electrons in a minute region of the sample and observing an electron microscope image, the sample is a crystalline sample, and the incident direction of the incident electron is substantially a crystal of the sample. An axis adjustment method for a transmission electron microscope, characterized in that the multipole aberration corrector is adjusted based on position information of a Bragg diffraction image observed in the electron microscope image as a band axis. 請求項1ないし6のいずれかに記載の方法において、透過電子斑点からブラッグ回折斑点へのベクトルの和および差を利用することを特徴とする、透過電子顕微鏡の軸調整方法。 7. The method according to claim 1, wherein a vector sum and a difference from a transmission electron spot to a Bragg diffraction spot are used. 電子顕微鏡像を検出するための画像取得装置と前記電子顕微鏡像の解析装置を備えた透過電子顕微鏡において、請求項1ないし7のいずれかに記載の軸調整法を行うために、ブラッグ回折像の位置を検出する機能を有することを特徴とする、透過電子顕微鏡。

In a transmission electron microscope provided with an image acquisition device for detecting an electron microscope image and an analysis device for the electron microscope image, in order to perform the axis adjustment method according to any one of claims 1 to 7, A transmission electron microscope having a function of detecting a position.

JP2004020121A 2004-01-28 2004-01-28 Accurate axis adjustment method of transmission electron microscope and its device Withdrawn JP2005216612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020121A JP2005216612A (en) 2004-01-28 2004-01-28 Accurate axis adjustment method of transmission electron microscope and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020121A JP2005216612A (en) 2004-01-28 2004-01-28 Accurate axis adjustment method of transmission electron microscope and its device

Publications (1)

Publication Number Publication Date
JP2005216612A true JP2005216612A (en) 2005-08-11

Family

ID=34904134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020121A Withdrawn JP2005216612A (en) 2004-01-28 2004-01-28 Accurate axis adjustment method of transmission electron microscope and its device

Country Status (1)

Country Link
JP (1) JP2005216612A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134229A (en) * 2005-11-11 2007-05-31 National Institute For Materials Science Transmission electron microscope
JP2007242514A (en) * 2006-03-10 2007-09-20 Univ Of Tokyo Transmission electron microscope, and its control method
KR100834213B1 (en) 2006-12-28 2008-05-30 동부일렉트로닉스 주식회사 Tem sample analysis method
JP2013089599A (en) * 2011-10-19 2013-05-13 Fei Co Adjustment method of stem including aberration corrector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134229A (en) * 2005-11-11 2007-05-31 National Institute For Materials Science Transmission electron microscope
JP2007242514A (en) * 2006-03-10 2007-09-20 Univ Of Tokyo Transmission electron microscope, and its control method
KR100834213B1 (en) 2006-12-28 2008-05-30 동부일렉트로닉스 주식회사 Tem sample analysis method
JP2013089599A (en) * 2011-10-19 2013-05-13 Fei Co Adjustment method of stem including aberration corrector

Similar Documents

Publication Publication Date Title
JP5103532B2 (en) Charged particle beam device with aberration corrector
JP5735262B2 (en) Charged particle optical apparatus and lens aberration measuring method
US7633063B2 (en) Charged particle beam apparatus
JP2007299604A (en) Transmission type electron microscope
US20150108351A1 (en) Scanning Electron Microscope
JP2007180013A (en) Aberration measuring method using ronchigram and aberration correction method, and electron microscope
JP2009218079A (en) Aberration correction device and aberration correction method of scanning transmission electron microscope
JP5423612B2 (en) Confocal scanning transmission electron microscope apparatus and three-dimensional tomographic image observation method
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
JP5663591B2 (en) Scanning electron microscope
US9484182B2 (en) Charged-particle-beam device and method for correcting aberration
JP2005216612A (en) Accurate axis adjustment method of transmission electron microscope and its device
JP2009054575A (en) Scanning electron microscope alignment method and scanning electron microscope
JP5315906B2 (en) Electron beam apparatus, correction method thereof, and correction substrate
WO2015037313A1 (en) Scanning transmission electron microscope and aberration measurement method therefor
JP4942000B2 (en) Measuring method of aberration characteristics of electron microscope and objective lens system
WO2018037474A1 (en) Charged particle beam device and aberration correction method for charged particle beam device
JP3762982B2 (en) Method and apparatus for adjusting the axis of a transmission electron microscope
JP2006012863A (en) Axis adjustment method for transmission electron microscope and its device
US11626266B2 (en) Charged particle beam device
JP5228463B2 (en) Electron beam apparatus, electron beam shape measuring method and image processing method
JP3717202B2 (en) Electron microscope and alignment method thereof
JP2008282826A (en) Charged particle beam adjustment method, and charged particle beam device
JP2008091125A (en) Astigmatism measuring method for electromagnetic lens, astigmatism measuring apparatus, astigmatism correcting method, and electron beam apparatus
JP2021176143A (en) Scanning transmission electron microscope and adjustment method of optical system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070410