JP2005213645A - Continuous heat treatment furnace, and steel tube and heat treating method using the same - Google Patents

Continuous heat treatment furnace, and steel tube and heat treating method using the same Download PDF

Info

Publication number
JP2005213645A
JP2005213645A JP2004026135A JP2004026135A JP2005213645A JP 2005213645 A JP2005213645 A JP 2005213645A JP 2004026135 A JP2004026135 A JP 2004026135A JP 2004026135 A JP2004026135 A JP 2004026135A JP 2005213645 A JP2005213645 A JP 2005213645A
Authority
JP
Japan
Prior art keywords
heat treatment
furnace
steel pipe
chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004026135A
Other languages
Japanese (ja)
Other versions
JP4403815B2 (en
Inventor
Mikio Tatsuoka
幹雄 辰岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004026135A priority Critical patent/JP4403815B2/en
Publication of JP2005213645A publication Critical patent/JP2005213645A/en
Application granted granted Critical
Publication of JP4403815B2 publication Critical patent/JP4403815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous heat treatment furnace and a heat treatment method capable of easily removing deposits on inner and outer surface of a steel pipe before the heat treatment even when a cleaning step after the cold working includes only alkali decreasing and cleaning. <P>SOLUTION: In the continuous heat treatment furnace in which atmospheric gas is introduced in a heating chamber 1 having a heating zone 1a, a steel tube is continuously charged from a furnace inlet 2a along the axial direction, and the heat-treated steel tube is carried out of a furnace outlet 2b, the continuous heat treatment furnace has a front chamber 4 having a preheating zone 3 provided on the input side of the heating chamber, and seal curtains 5a and 5b on the inlet side and the outlet side of the front chamber. The heat treatment method is performed by using the heat treatment furnace. A rear chamber 6 is preferably provided on the outlet side of the heating chamber, and a seal curtain 7a is preferably mounted on the inlet side of the rear chamber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷間加工された鋼管の連続熱処理に関し、さらに詳しくは、炭化水素系の成分を含む圧延油または潤滑剤を使用して冷間加工されるステンレス鋼管等の鋼管において、鋼管の内面付着物からの発生ガスによる汚染を生じさせることがない連続熱処理炉、並びにこれを用いて熱処理された鋼管および熱処理方法に関するものである。   The present invention relates to a continuous heat treatment of a cold-worked steel pipe, and more particularly, to a steel pipe such as a stainless steel pipe that is cold-worked using a rolling oil or a lubricant containing a hydrocarbon-based component. The present invention relates to a continuous heat treatment furnace that does not cause contamination by generated gas from deposits, a steel pipe heat treated using the furnace, and a heat treatment method.

冷間仕上げ鋼管に冷間加工を行う場合には、例えば、冷間圧延時には圧延油を塗布し、冷間抽伸時には潤滑剤(金属石鹸)を被覆するなど、鋼管の内外表面に適切な表面処理を施し、所定寸法に加工する。   Appropriate surface treatment on the inner and outer surfaces of the steel pipe, such as applying rolling oil during cold rolling and coating with lubricant (metal soap) during cold drawing when cold working steel pipes are cold worked Is processed into a predetermined dimension.

冷間加工された鋼管を熱処理する場合には、熱処理前に圧延油や潤滑剤を洗浄(脱脂)し、鋼管の内外表面の付着物を除去する必要がある。鋼管表面に付着物を残留させたままで熱処理を施すと、圧延油や潤滑剤は炭化水素系の成分を含み、さらに塩素等を含有するものもあるため、熱処理中にこれらの成分が蒸発して塩素その他の汚染ガスが発生し、これらのガスが特に滞留しやすい鋼管内面に汚染が発生することがある。   When heat-treating a cold-worked steel pipe, it is necessary to remove (degrease) the rolling oil and lubricant before the heat treatment to remove deposits on the inner and outer surfaces of the steel pipe. If heat treatment is performed with deposits remaining on the surface of the steel pipe, the rolling oil and lubricant contain hydrocarbon-based components, and some contain chlorine, etc., so these components evaporate during the heat treatment. Chlorine and other polluted gases are generated, and contamination may occur on the inner surface of the steel pipe where these gases are particularly likely to stay.

また、前記蒸発ガス中に塩素その他の汚染ガスが含まれていない場合でも、炭素(カーボン)源を含んだ高温気体に鋼管の内外表面が曝されることになるため、温度条件によって浸炭が発生することがある。表面に浸炭が発生した鋼管は、高温高圧で使用を繰り返すと、浸炭部が起点となりSCC(応力腐食割れ)を発生させるおそれがある。このため、冷間加工された鋼管を熱処理する場合には、鋼管の内外表面に浸炭を発生させないことが必要である。   Moreover, even when chlorine and other pollutant gases are not included in the evaporative gas, the inner and outer surfaces of the steel pipe are exposed to a high-temperature gas containing a carbon source, so carburization occurs depending on the temperature conditions. There are things to do. When a steel pipe in which carburization has occurred on its surface is repeatedly used at a high temperature and high pressure, the carburized portion may be the starting point and may cause SCC (stress corrosion cracking). For this reason, when heat-treating a cold-worked steel pipe, it is necessary not to cause carburization on the inner and outer surfaces of the steel pipe.

鋼管内面の汚染や浸炭を防止するためには、管内のガスを雰囲気ガスで置換する方法が有効であり、従来から、そのための種々の対策が提案されている。   In order to prevent contamination and carburization of the inner surface of the steel pipe, a method of replacing the gas in the pipe with an atmospheric gas is effective, and various countermeasures have been proposed for this purpose.

特許文献1では、弾性パッドが対向部に設けられた一対の開閉扉をパージ室の入口部の上下に夫々上下動するように設け、搬入される直管を入口部にて一時停止させ、上下から開閉扉により挟んでパージ室の雰囲気ガスの圧力を高くすることにより、直管内を雰囲気ガスに置換するようにした管内ガスパージ装置が提案されている。   In Patent Document 1, a pair of open / close doors provided with elastic pads at opposing portions are provided so as to move up and down, respectively, above and below the inlet portion of the purge chamber. An in-pipe gas purging device has been proposed in which the pressure in the purge chamber is increased by sandwiching it from the open / close door to replace the straight pipe with the atmospheric gas.

しかしながら、特許文献1で提案された装置では、パージ室の入口部でその都度直管の装入を停止させる必要があるため、熱処理能率が著しく低下する。それと同時に、加熱雰囲気での弾性パッドの品質劣化が激しく、要求性能が得られない場合や、頻繁に交換を要するという問題がある。   However, in the apparatus proposed in Patent Document 1, it is necessary to stop charging the straight pipe each time at the inlet of the purge chamber, so the heat treatment efficiency is significantly reduced. At the same time, there is a problem that the quality of the elastic pad is severely deteriorated in a heated atmosphere, and the required performance cannot be obtained, or frequent replacement is required.

一方、特許文献2に開示される熱処理装置は、直状管を雰囲気ガス中で熱処理するための熱処理炉の側方には、直状管の入口に向けて直状管を送り込む為の装入テーブルを配設し、この装入テーブルには、直状管の先端が上記熱処理炉内に入った状態において、その直状管の後端が位置する場所を負圧にする為の負圧手段を設けている。これにより、直状管内のパージ作業を極めて簡易に行えるとしている。   On the other hand, the heat treatment apparatus disclosed in Patent Document 2 is charged to the side of a heat treatment furnace for heat-treating a straight tube in an atmospheric gas so as to feed the straight tube toward the inlet of the straight tube. A negative pressure means is provided for placing a negative pressure at a position where the rear end of the straight pipe is located in a state where the front end of the straight pipe is in the heat treatment furnace. Is provided. As a result, the purging operation in the straight pipe can be performed very easily.

しかしながら、特許文献2が開示する装置は、大容量の負圧手段を必要とするため、大がかりな設備投資を要し、鋼管製造費が高コストになるという問題がある。   However, since the apparatus disclosed in Patent Document 2 requires a large-capacity negative pressure means, there is a problem that a large capital investment is required, and the cost for manufacturing the steel pipe is high.

特開平5−320745号公報、[特許請求の範囲]JP-A-5-320745, [Claims]

特開平6−128645号公報、[特許請求の範囲]JP-A-6-128645, [Claims]

前述の通り、特許文献1、2で提案された対策では、その都度、直管の装入を停止させることから熱処理能率が低下したり、大規模な設備投資が必要となるので製造費が高騰するという問題があり、万全の対策とは言えない。   As described above, in the measures proposed in Patent Documents 1 and 2, since the straight pipe is stopped each time, the heat treatment efficiency is lowered, and a large-scale capital investment is required, so that the manufacturing cost increases. This is not a perfect countermeasure.

一方、熱処理にともなって鋼管表面に汚染や浸炭を発生させることがないように、熱処理前に鋼管の内外表面に残留した付着物を除去しようとすると、冷間加工後のアルカリ脱脂、洗浄のみでは除去できず、それに加えて、サンドブラスト等の内面清浄化の工程が必要になる。また、酸洗を適用すると、そのための工数が増大し、いずれにしても、冷間加工による鋼管製造費が増大することになる。   On the other hand, in order to prevent contamination and carburization on the surface of the steel pipe due to the heat treatment, when trying to remove the deposits remaining on the inner and outer surfaces of the steel pipe before the heat treatment, only alkaline degreasing and washing after cold working In addition to this, an inner surface cleaning process such as sandblasting is required. Moreover, if pickling is applied, the man-hour for that will increase, and in any case, the steel pipe manufacturing cost by cold work will increase.

本発明は、このような冷間加工された鋼管の内外表面に残留した付着物の問題に鑑みてなされたものであり、冷間加工後の洗浄工程をアルカリ脱脂、洗浄のみとした場合であっても、熱処理前に、残留した付着物を簡易に除去することができ、しかも熱処理能率を低下させることがない連続熱処理炉、並びにこれを用いて熱処理された鋼管および熱処理方法を提供することを目的としている。   The present invention has been made in view of the problem of deposits remaining on the inner and outer surfaces of such a cold-worked steel pipe, and is a case where the cleaning process after cold working is only alkaline degreasing and washing. However, it is possible to provide a continuous heat treatment furnace that can easily remove residual deposits before heat treatment and that does not reduce heat treatment efficiency, and a steel pipe heat treated using the same and a heat treatment method. It is aimed.

本発明者は、上記の課題を解決するため、冷間加工された鋼管を洗浄した後に表面に残留した付着物を除去するための熱処理方法について種々の検討を加えた。その結果、冷間加工後の洗浄工程をアルカリ脱脂、洗浄のみとした場合であっても、鋼管を熱処理炉に装入する際に、内外表面に残留した付着物を簡易に分解、気化させ、除去できることを知見した。   In order to solve the above-mentioned problems, the present inventor has made various studies on a heat treatment method for removing deposits remaining on the surface after washing a cold-worked steel pipe. As a result, even when the cleaning process after cold working is only alkaline degreasing and cleaning, when the steel pipe is inserted into the heat treatment furnace, the deposits remaining on the inner and outer surfaces are easily decomposed and vaporized, It was found that it can be removed.

アルカリ脱脂、洗浄後に鋼管表面に残留した付着物(冷間加工時の圧延油、抽伸用潤滑剤(金属石鹸)等)のほとんどは、熱処理時に200〜600℃に加熱されると、分解して炭化水素系ガス(さらには、塩素その他の汚染ガス)を発生させる。特に、400℃で炭化水素系ガス等の発生が最も顕著になる。そのため、残留した付着物を効果的に分解するには、鋼管表面を400℃以上に加熱するのが望ましい。   Almost all deposits (rolling oil during cold working, lubricant for drawing (metal soap), etc.) remaining on the surface of the steel pipe after alkali degreasing and washing are decomposed when heated to 200-600 ° C during heat treatment. Generate hydrocarbon gases (and chlorine and other polluting gases). In particular, the generation of hydrocarbon gas and the like becomes most noticeable at 400 ° C. Therefore, in order to effectively decompose the remaining deposits, it is desirable to heat the steel pipe surface to 400 ° C. or higher.

通常、熱処理炉内に装入された鋼管では、外面付着物の分解ガスは炉内のガス流れによって容易に拡散されるが、内面付着物の分解ガスは鋼管内部に滞留し易くなる。付着物の分解ガスは塩素その他の汚染物質を含む場合があり、また、炭化水素系で浸炭性を有することから、鋼管が800℃以上に加熱されると、鋼管表面に汚染や浸炭が発生する場合がある。   Usually, in the steel pipe charged in the heat treatment furnace, the decomposition gas of the outer surface deposit is easily diffused by the gas flow in the furnace, but the decomposition gas of the inner surface deposit tends to stay inside the steel pipe. Decomposition gas of deposits may contain chlorine and other pollutants, and since it is hydrocarbon-based and carburizing, when the steel pipe is heated to 800 ° C or higher, contamination and carburization occur on the steel pipe surface. There is a case.

したがって、汚染や浸炭の発生を効果的に防止するには、鋼管表面の温度を800℃未満で管理する必要がある。実際の操炉においては、連続熱処理炉内の管理精度を考慮して、750℃以下に管理するのが望ましい。   Therefore, in order to effectively prevent the occurrence of contamination and carburization, it is necessary to manage the temperature of the steel pipe surface below 800 ° C. In an actual furnace, it is desirable to manage at 750 ° C. or lower in consideration of the management accuracy in the continuous heat treatment furnace.

被熱処理材である鋼管を炉内に装入する際、先に装入された鋼管の先端側が昇温し、表面温度が200〜600℃になると、残留付着物が分解して炭化水素系ガス等を発生する。そこで、炉内の雰囲気ガスを炉外に比べて陽圧にすると、鋼管の先端から後端に向かうガス流れを形成することができる。   When the steel pipe, which is the material to be heat treated, is charged into the furnace, the temperature of the tip of the steel pipe previously charged rises, and when the surface temperature reaches 200 to 600 ° C., the residual deposits decompose and the hydrocarbon gas Etc. Therefore, when the atmospheric gas in the furnace is set to a positive pressure compared to the outside of the furnace, a gas flow from the front end to the rear end of the steel pipe can be formed.

前述の通り、鋼管内面の付着物が発生する分解ガス(汚染ガス)は鋼管内部に滞留し易いことから、鋼管内部におけるガス流れを顕著にするには、連続熱処理炉の炉入口を覆ってシールし、望ましくは炉入口および炉出口部の両端を覆うことによって、炉内の陽圧を維持して、雰囲気ガスを鋼管の先端から内部に侵入させるようにするのが有効である。このような考え方の下に、本出願人は、先に、「炉入口にその全面を覆うように吊着された耐熱性カーテンを設け、この耐熱性カーテンを通して前記鋼管を装入することを特徴とする連続熱処理炉」を出願した(特願2003−28616号)。   As mentioned above, the cracked gas (contaminated gas) that generates deposits on the inner surface of the steel pipe is likely to stay inside the steel pipe. To make the gas flow inside the steel pipe noticeable, cover the furnace inlet of the continuous heat treatment furnace and seal it. However, it is effective to maintain the positive pressure in the furnace by covering both ends of the furnace inlet and the furnace outlet, and to allow the atmospheric gas to enter from the tip of the steel pipe. Under such a way of thinking, the present applicant has previously stated that "a heat-resistant curtain suspended so as to cover the entire surface is provided at the furnace inlet, and the steel pipe is inserted through the heat-resistant curtain. (Application No. 2003-28616).

これによれば、鋼管を熱処理炉内に装入する際に、内表面に残留した付着物を分解、除去するとともに、鋼管内部には先端から後端に向かう雰囲気ガスの流れが生じるので、管内部を雰囲気ガスに容易に置換することができ、熱処理能率を低下させることなく、付着物の分解ガスに起因する汚染や浸炭を防止することができる。   According to this, when the steel pipe is inserted into the heat treatment furnace, the deposits remaining on the inner surface are decomposed and removed, and the atmosphere gas flows from the front end to the rear end inside the steel pipe. The inside can be easily replaced with atmospheric gas, and contamination and carburization due to the decomposition gas of the deposit can be prevented without lowering the heat treatment efficiency.

本発明は、この技術をさらに改善したものである。すなわち、先の出願に係る連続熱処理炉では、被熱処理材である鋼管の後端が炉内(正確には、前記耐熱性カーテンよりも内側)に入ってしまうと、鋼管の前端と後端の圧力差がなくなり、鋼管内のガス流れがなくなるので、後端付近に炭化水素系ガスや汚染ガスが滞留しやすくなる。そのため、鋼管の後端が耐熱性カーテンよりも内側に入る前に鋼管内面の付着物を分解できる温度になるように、炉の入口の温度を常時管理することが必要になる。そこで、加熱室の入側に予熱帯を備えた前室を設けるとともに、前室の出側(すなわち、加熱室の入側)にシールカーテンを取り付け、前室での内圧を「炉外圧以上で加熱室の圧力以下」とすること、すなわち、熱処理炉内に階段状の圧力差を設けることにより、炉入口の温度を常時管理する必要がなく、管内面付着物の分解、除去を容易に、かつ確実に行えることを確認した。   The present invention further improves this technology. That is, in the continuous heat treatment furnace according to the previous application, if the rear end of the steel pipe, which is a material to be heat-treated, enters the furnace (more precisely, inside the heat-resistant curtain), the front end and the rear end of the steel pipe Since there is no pressure difference and there is no gas flow in the steel pipe, hydrocarbon gas and polluted gas are likely to stay near the rear end. For this reason, it is necessary to always manage the temperature at the furnace inlet so that the deposit on the inner surface of the steel pipe can be decomposed before the rear end of the steel pipe enters the inside of the heat-resistant curtain. Therefore, a front chamber with a pre-tropical zone is provided on the entrance side of the heating chamber, and a seal curtain is attached to the exit side of the front chamber (that is, the entrance side of the heating chamber). By setting a step-like pressure difference in the heat treatment furnace, it is not necessary to always manage the temperature at the furnace inlet, and it is easy to disassemble and remove deposits on the inner surface of the pipe. It was confirmed that it could be done reliably.

本発明は、上述の知見に基づいてなされたものであり、下記(1)の連続熱処理炉、(2)の鋼管および(3)の熱処理方法を要旨としている。   The present invention has been made on the basis of the above-mentioned knowledge, and has the gist of the following (1) continuous heat treatment furnace, (2) steel pipe, and (3) heat treatment method.

(1)加熱帯を有する加熱室に雰囲気ガスを導入し、炉入口から連続的に鋼管を軸方向に沿って装入して熱処理を施した鋼管を炉出口から搬出する連続熱処理炉であって、加熱室の入側に予熱帯を備えた前室を有し、前室の入側および出側にシールカーテンを有する連続熱処理炉。   (1) A continuous heat treatment furnace in which an atmospheric gas is introduced into a heating chamber having a heating zone, a steel pipe is continuously inserted from the furnace inlet along the axial direction, and the heat treated steel pipe is carried out from the furnace outlet. A continuous heat treatment furnace having a front chamber with a pre-tropical zone on the entry side of the heating chamber and having seal curtains on the entry side and the exit side of the front chamber.

前記熱処理炉においては、加熱室の出側に後室を有し、後室の入側にシールカーテンを有することが望ましい。   In the heat treatment furnace, it is desirable to have a rear chamber on the exit side of the heating chamber and a seal curtain on the entrance side of the rear chamber.

(2)前記(1)に記載の連続熱処理炉で製造した鋼管。   (2) A steel pipe manufactured in the continuous heat treatment furnace as described in (1) above.

(3)加熱帯を有する加熱室に雰囲気ガスを導入し、炉入口から連続的に鋼管を軸方向に沿って装入して熱処理を施した鋼管を炉出口から搬出する熱処理方法であって、加熱室の入側に予熱帯を備えた前室の内圧が、炉外圧以上で加熱室の圧力以下となるように設定し、前室で鋼管の内外表面に残留した付着物を気化できる温度まで鋼管を加熱して、熱処理する熱処理方法。   (3) A heat treatment method for introducing an atmospheric gas into a heating chamber having a heating zone, continuously loading the steel pipe along the axial direction from the furnace inlet, and carrying out the heat treatment to carry out the steel pipe from the furnace outlet, Set the internal pressure of the front chamber with the pre-tropical zone on the inlet side of the heating chamber to be higher than the pressure outside the furnace and lower than the pressure of the heating chamber, to a temperature at which the deposits remaining on the inner and outer surfaces of the steel pipe can be vaporized in the front chamber A heat treatment method in which a steel pipe is heated and heat treated.

ここで、「付着物の気化」とは、付着物を分解して炭化水素系ガス等を発生させることをいう。   Here, “vaporization of the deposit” means that the deposit is decomposed to generate a hydrocarbon gas or the like.

本発明の連続熱処理炉によれば、冷間加工後の洗浄工程をアルカリ脱脂、洗浄のみとした場合であっても、熱処理前に鋼管内外表面の付着物を簡易に除去することができる。したがって、この連続熱処理炉を用いる熱処理方法を採用することによって、熱処理能率を低下させることなく、汚染や浸炭(ここでは、特に汚染に注目して、以下「汚染」という)の発生がない冷間仕上げ鋼管を得ることができる。   According to the continuous heat treatment furnace of the present invention, even if the cleaning step after the cold working is only alkaline degreasing and cleaning, deposits on the inner and outer surfaces of the steel pipe can be easily removed before the heat treatment. Therefore, by adopting this heat treatment method using a continuous heat treatment furnace, there is no occurrence of contamination and carburization (herein, focusing on contamination, hereinafter referred to as “contamination”) without reducing the heat treatment efficiency. Finished steel pipe can be obtained.

前述の通り、本発明では、加熱室の入側に予熱帯を備えた前室を設けるとともに、これにシールカーテンを取り付けるのであるが、このような方法で熱処理炉内に階段状の圧力を付与することに問題があるか否かを調査した。   As described above, in the present invention, a front chamber having a pre-tropical zone is provided on the entrance side of the heating chamber, and a seal curtain is attached to the front chamber. In this way, stepwise pressure is applied to the heat treatment furnace. Investigated whether there was a problem with doing.

この調査には、図1に示したシール性能テスト装置を用いた。この装置は、中央部にシールカーテン取付け部9を備えるダクト10(断面形状:高さ160mm×幅800mm)を有しており、これにシールカーテン11を取り付け、ダクト10内に、供給量を30〜90Nm3/hとしてガス(空気(エア)を使用)を供給し、ダクト10内圧力を測定した(以下、圧力は「ゲージ圧」で記す)。 For this investigation, the seal performance test apparatus shown in FIG. 1 was used. This apparatus has a duct 10 (cross-sectional shape: height 160 mm × width 800 mm) having a seal curtain mounting portion 9 in the center, and a seal curtain 11 is attached to the duct 10 to supply a supply amount of 30 in the duct 10. Gas (using air) was supplied as ˜90 Nm 3 / h, and the pressure in the duct 10 was measured (hereinafter, the pressure is described as “gauge pressure”).

(a)シールカーテンの構造(枚数)とシール性能
シール性能テスト装置にシールカーテン11を取り付け、シールカーテン前部の断面A(図中に破線を付した部分)におけるダクト内圧力を測定した。シールカーテンの取り付けは、図2(イ)に示したカーテンが8枚(4枚×2セット)、および図2(ロ)に示した16枚(4枚×4セット)とした。なお、シールカーテン前部(断面A)での測定でシール性能の評価が可能なことは、後述する試験(c)で確認した。
(A) Seal curtain structure (number of sheets) and seal performance The seal curtain 11 was attached to a seal performance test apparatus, and the pressure in the duct in the cross section A (the portion indicated by the broken line in the figure) of the front portion of the seal curtain was measured. The installation of the seal curtain was 8 curtains (4 sheets × 2 sets) shown in FIG. 2 (a) and 16 curtains (4 sheets × 4 sets) shown in FIG. 2 (b). In addition, it was confirmed by the test (c) mentioned later that the sealing performance can be evaluated by measurement at the front part (cross section A) of the seal curtain.

試験結果を図3に示す。この結果から明らかなように、エア供給量が増すとともにダクト内圧力が向上(すなわち、シール性能が向上)し、シールカーテンが16枚の場合、シールカーテン8枚に比べて約2倍の性能を示す。   The test results are shown in FIG. As is clear from this result, the air supply amount increases and the duct internal pressure is improved (that is, the sealing performance is improved). When the number of sealing curtains is 16, the performance is about twice that of 8 sealing curtains. Show.

(b)シールカーテンの長手方向の圧力分布
シール性能テスト装置において、シールカーテンの取り付けを、図2(イ)に示したカーテンが8枚、および図2(ロ)に示した16枚とした場合のそれぞれについて、シールカーテン前部、後部、およびシールカーテンの各セット間におけるダクト内圧力を測定した。
(B) Pressure distribution in the longitudinal direction of the seal curtain When the seal curtain is installed in the seal performance test apparatus with 8 curtains shown in FIG. 2 (a) and 16 curtains shown in FIG. 2 (b). For each of these, the pressure in the duct between the front and rear portions of the seal curtain and each set of the seal curtain was measured.

測定結果を図4および図5に示す。これらの図においては、シールカーテンの取り付け位置も併せて図示し、それに対応させて測定結果を示した。これらの結果から、シールカーテンが8枚、16枚のいずれの場合も、ダクト内圧力はシールカーテン後部から前部にかけて直線的に上昇しており、エア供給量60Nm3/hのとき、シールカーテン1セットで、約3Paのシール性能が確保できることが確認できた。 The measurement results are shown in FIGS. In these figures, the attachment position of the seal curtain is also shown, and the measurement results are shown correspondingly. From these results, the pressure in the duct increases linearly from the rear part of the seal curtain to the front part when the number of seal curtains is 8 or 16, and when the air supply amount is 60 Nm 3 / h, the seal curtain It was confirmed that the sealing performance of about 3 Pa could be secured with one set.

(c)ダクト内の圧力の均一性
ダクト内の幅方向:100mmピッチ、高さ方向:50mmピッチ(図6参照)、長手方向:250mmピッチで、エア供給量60Nm3/h、シールカーテンが16枚(4枚×4セット)のときの圧力測定を実施した。
(C) Uniformity of pressure in the duct Width direction in the duct: 100 mm pitch, height direction: 50 mm pitch (see FIG. 6), longitudinal direction: 250 mm pitch, air supply amount 60 Nm 3 / h, seal curtain 16 Pressure measurement was performed when the number of sheets (4 sheets x 4 sets) was used.

表1にシールカーテン前部(断面A)での測定結果を、表2にシールカーテン後部(断面B)での測定結果を示す。   Table 1 shows the measurement results at the front part of the seal curtain (cross section A), and Table 2 shows the measurement results at the rear part of the seal curtain (cross section B).

Figure 2005213645
Figure 2005213645

Figure 2005213645
Figure 2005213645

表1および表2の結果から、シールカーテンの前部および後部とも、ダクト断面で均一な圧力分布となっており、表示していないが、長手方向でも±0.1Pa以内で、均一であることが判明した。また、シールカーテン後部の圧力がほぼ0Paであることから、シール性能の評価は、シールカーテン前部(例えば、断面A)における圧力を測定することにより行えることが確認できた。   From the results of Table 1 and Table 2, the pressure distribution is uniform in the duct cross section at both the front and rear of the seal curtain, and is not shown, but is uniform within ± 0.1 Pa in the longitudinal direction. There was found. Further, since the pressure at the rear part of the seal curtain was approximately 0 Pa, it was confirmed that the seal performance could be evaluated by measuring the pressure at the front part of the seal curtain (for example, the cross section A).

前記シール性能テスト装置による試験の結果、複数のシールカーテンを重ねてセットとし、さらに複数セットを配設したとしても、炉内の任意の断面での圧力の均一性は保たれ、シールカーテンの枚数に比例して圧力は低下することがわかる。これにより、熱処理炉の内圧を容易に二段階に設定できることが確認できた。   As a result of the test by the sealing performance test apparatus, even if a plurality of seal curtains are stacked and set, and even if a plurality of sets are arranged, the pressure uniformity in any cross section in the furnace is maintained, and the number of seal curtains It can be seen that the pressure decreases in proportion to. This confirmed that the internal pressure of the heat treatment furnace can be easily set in two stages.

そこで、二段階内圧にするための手段として、シールカーテンを採用した。   Therefore, a seal curtain was adopted as a means for achieving a two-stage internal pressure.

図7は、本発明の連続熱処理炉の断面構成例(図7(イ))、材料温度パターン(同(ロ))、炉内圧力分布(同(ハ))および残留汚染ガスの放出効果(同(ニ))を模式的に示す図である。図7において、(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 7 shows a cross-sectional configuration example of the continuous heat treatment furnace of the present invention (FIG. 7 (a)), material temperature pattern (same (b)), furnace pressure distribution (same (c)), and residual pollutant gas release effect ( It is a figure which shows the same (d)) typically. In FIG. 7, the horizontal lengths in (B) to (D) all correspond to those in (A).

図7(イ)に示す熱処理炉では、加熱帯1aを有する加熱室1に雰囲気ガスを導入し、炉入口2aから連続的に鋼管を軸方向に沿って装入し、所定の熱処理を施した後、炉出口2bから搬出する構造になっている。なお、炉入口2aから炉出口2bに亘って送管用ローラ(図示せず)が炉床に配置されている。   In the heat treatment furnace shown in FIG. 7 (a), an atmospheric gas is introduced into the heating chamber 1 having the heating zone 1a, and a steel pipe is continuously charged along the axial direction from the furnace inlet 2a to perform a predetermined heat treatment. After that, it is structured to be carried out from the furnace outlet 2b. A pipe feeding roller (not shown) is disposed on the hearth from the furnace inlet 2a to the furnace outlet 2b.

図示するように、加熱室1の入側に予熱帯3を有する前室4が設けられ、前室4の入側と、出側(すなわち、加熱室1の入側)にそれぞれ本発明で規定するシールカーテン5aおよび5bが取り付けられている。これにより、送管用ローラ上を流れる鋼管が一定の距離以上進むと、予熱帯3を設置した位置において、鋼管内面の付着物が気化する一方、シールカーテン5aを挟んで前室4と連続熱処理炉外とで圧力差が生じているため、鋼管の先端から後端に向かう雰囲気ガスの流れが形成され、気化により発生した汚染ガスが雰囲気ガスとともに鋼管の後端を通して連続熱処理炉外へ排出される。また、鋼管の先端が加熱室1に入った場合には、シールカーテン5bを挟んで加熱室1と前室4とで圧力差(または、加熱室1と連続熱処理炉外とで圧力差)が生じているため、同様に汚染ガスが鋼管の後端を通して前室4(または、連続熱処理炉外)へ排出される。   As shown in the figure, a front chamber 4 having a pre-tropical zone 3 is provided on the entrance side of the heating chamber 1, and is defined by the present invention on the entrance side of the front chamber 4 and the exit side (that is, the entrance side of the heating chamber 1). Seal curtains 5a and 5b are attached. As a result, when the steel pipe flowing on the pipe feeding roller travels a certain distance or more, the deposit on the inner surface of the steel pipe is vaporized at the position where the pre-tropical zone 3 is installed, while the front chamber 4 and the continuous heat treatment furnace sandwiching the seal curtain 5a. Since there is a pressure difference between the outside and the atmosphere, a flow of atmospheric gas from the front end to the rear end of the steel pipe is formed, and the polluted gas generated by vaporization is exhausted out of the continuous heat treatment furnace through the rear end of the steel pipe together with the atmospheric gas. . When the tip of the steel pipe enters the heating chamber 1, there is a pressure difference between the heating chamber 1 and the front chamber 4 (or a pressure difference between the heating chamber 1 and the outside of the continuous heat treatment furnace) across the seal curtain 5b. Since this occurs, the contaminated gas is similarly discharged through the rear end of the steel pipe to the front chamber 4 (or outside the continuous heat treatment furnace).

さらにこの例では、加熱室1の出側に、冷却帯を挟んで、本発明で望ましいとされる後室6が設けられ、その入側にシールカーテン7aが取り付けられている。こうすることにより、前室4に雰囲気ガスの流れる量が多くなり、汚染を生じさせずに送管速度を早くすることができる。   Further, in this example, a rear chamber 6 that is desirable in the present invention is provided on the exit side of the heating chamber 1 with a cooling zone interposed therebetween, and a seal curtain 7a is attached to the entrance side thereof. By doing so, the amount of atmospheric gas flowing into the front chamber 4 increases, and the pipe feeding speed can be increased without causing contamination.

なお、この例では、後室6の出側にもシールカーテン7bが取り付けられている。このシールカーテン7bは、従来も取り付けられており、雰囲気ガスが後室6の出側(炉出口2b)から一方的に流出しないようにするためのものである。すなわち、従来は、雰囲気ガスの流出を防止するためのシールカーテン7bを取り付けてはいたものの、本発明の連続熱処理炉で実現されるような雰囲気ガスの急激な内圧勾配(換言すると、炉内圧を高め、かつ二段階に設定すること)を考慮したものではなかった。   In this example, a seal curtain 7 b is also attached to the exit side of the rear chamber 6. This seal curtain 7b is also attached conventionally, and is intended to prevent the atmospheric gas from unilaterally flowing out from the outlet side (furnace outlet 2b) of the rear chamber 6. That is, in the past, although the seal curtain 7b for preventing the outflow of the atmospheric gas was attached, the steep internal pressure gradient of the atmospheric gas (in other words, the internal pressure of the furnace is reduced as realized in the continuous heat treatment furnace of the present invention. It was not a consideration for setting it in two steps.

以下に、図7(ロ)〜(ニ)を用いて詳述する。   Details will be described below with reference to FIGS.

図7(ロ)は、材料温度パターンで、実線(図中には、「現状」と表記)は予熱帯3を設けていない場合、破線は、本発明の熱処理炉の構成要件である予熱帯3を備えた前室4を加熱室1の入側に設けた場合である。予熱帯3を設けることによって、鋼管の温度を、先に述べた、管内の残留付着物を気化して炭化水素系ガスや塩素その他の汚染ガス(ここでは、特に汚染に注目して、「汚染ガス」という)を発生させるに際しての望ましい温度範囲内の450℃まで、急速に高めることができる。   FIG. 7 (b) is a material temperature pattern, where the solid line (indicated as “current state” in the figure) is not provided with the pre-tropical zone 3, and the broken line indicates the pre-tropical zone that is a constituent requirement of the heat treatment furnace of the present invention. This is a case where the front chamber 4 provided with 3 is provided on the entrance side of the heating chamber 1. By providing the pre-tropical zone 3, the temperature of the steel pipe is changed to vaporize the residual deposits in the pipe, as described above, and hydrocarbon gases, chlorine and other pollutant gases (here, paying special attention to pollution, It can be rapidly raised to 450 ° C., which is within the desired temperature range for generating “gas”.

図7(ハ)は、炉内の圧力分布(一部実測値を含む推定圧力分布)で、実線(図中には、「現状(推定)」と表記)は、前室4に本発明で規定するシールカーテン5aおよび5bのうちシールカーテン5bを取り付けておらず、かつ、後室6に本発明で望ましいとされるシールカーテン7aを設けていない場合である。破線は本発明例で、前室4の出側(すなわち、加熱室1の入側)にシールカーテン5bと、後室6の入側にシールカーテン7aを設けた場合である。これにより、シールカーテン5bとシールカーテン7aの間で炉内圧力が高くなり、炉内圧を前室4の部分と加熱室1の部分とで二段階に設定して、前室の内圧を炉外圧以上で加熱室の圧力以下とすることができる。   FIG. 7 (c) is a pressure distribution in the furnace (estimated pressure distribution including some actually measured values), and a solid line (indicated as “current state (estimated)” in the figure) is the front chamber 4 in the present invention. This is a case where the seal curtain 5b is not attached among the seal curtains 5a and 5b to be defined, and the rear curtain 6 is not provided with the seal curtain 7a which is desirable in the present invention. A broken line is an example of the present invention, and shows a case where a seal curtain 5 b is provided on the exit side of the front chamber 4 (that is, the entrance side of the heating chamber 1) and a seal curtain 7 a is provided on the entrance side of the rear chamber 6. As a result, the furnace pressure is increased between the seal curtain 5b and the seal curtain 7a, the furnace pressure is set in two stages for the front chamber 4 portion and the heating chamber 1 portion, and the inner pressure of the front chamber is set to the outside pressure of the furnace. The pressure in the heating chamber can be reduced to the above.

図7(ニ)は、鋼管内に残留する汚染ガスの放出効果を説明するための図である。この図(ニ)における「現状」は、鋼管8の後端8bが前室4の入側部分にあり、鋼管8の先端8aが加熱室1の中央付近にある場合で、未加熱長さが13mとなっている。ここでいう「未加熱長さ」とは、材料温度が残留付着物の分解に望ましい温度(この例では、450℃)まで達していないため、付着物が残留(または、一部のみが気化)している部分の長さをいう。図7(ハ)の炉内圧力分布と対比すると、この時点では、先端8aにおける圧力が後端8bにおけるそれよりも高いので、管内ガス流れがあるが、鋼管8が搬送されて後端8bが図7(ハ)のA点に達すると、管の先端8a、後端8bで圧力差がなくなるため管内ガス流れは停止し、汚染ガスが管内に滞留する。   FIG. 7 (d) is a view for explaining the effect of releasing the pollutant gas remaining in the steel pipe. The “current state” in this figure (D) is the case where the rear end 8b of the steel pipe 8 is in the entrance side portion of the front chamber 4 and the front end 8a of the steel pipe 8 is near the center of the heating chamber 1, and the unheated length is It is 13m. The “unheated length” here means that the material temperature does not reach the desired temperature for decomposition of the residual deposit (in this example, 450 ° C.), so the deposit remains (or only partially vaporized). This is the length of the part. Compared with the pressure distribution in the furnace of FIG. 7 (c), at this time, the pressure at the tip 8a is higher than that at the rear end 8b, so there is a gas flow in the pipe, but the steel pipe 8 is conveyed and the rear end 8b When the point A in FIG. 7C is reached, the pressure difference disappears between the front end 8a and the rear end 8b of the tube, so that the gas flow in the tube stops and the polluted gas stays in the tube.

図7(ニ)の「予熱帯設置時」では、図7(ロ)の材料温度パターンとの対比から明らかなように、材料温度が450℃に達する炉入口2aからの距離が短いので、未加熱長さは5mに減少する。しかし、前記と同様、後端8bが図7(ハ)のA点に達すると、管内ガス流れは停止し、後端8b近傍の管内に汚染ガスが滞留する。   In the “pre-tropical installation” of FIG. 7 (d), as is clear from the comparison with the material temperature pattern of FIG. 7 (b), the distance from the furnace inlet 2a where the material temperature reaches 450 ° C. is short. The heating length is reduced to 5 m. However, as described above, when the rear end 8b reaches the point A in FIG. 7C, the gas flow in the pipe stops, and the contaminated gas stays in the pipe near the rear end 8b.

図7(ニ)の「予熱帯+シールカーテン設置時」の(1)は、鋼管8の後端8bが図7(ハ)のA点に達し、先端8aが加熱室1の中央付近にある場合で、未加熱長さは前記の「予熱帯設置時」に比べてさらに短くなっている。前室4の出側(すなわち、加熱室1の入側)にシールカーテン5bを設けているので、図7(ハ)に示すように、熱処理炉の内圧が二段階に設定され、その結果、管後端8bが図7(ハ)のA点に達しても、管の先端8aと後端8bで圧力差があり、管内ガス流れが生じるので、気化した汚染ガスが管内に滞留することはない。鋼管8が搬送されて(2)の状態になると、管後端8bも450℃に達し、未加熱長さは0mとなり、管内の残留付着物は全て分解、気化する。しかも、図7(ハ)の炉内圧力分布との対比から明らかなように、気化した汚染ガスは管内ガス流れによって管後端から排出される。   In (1) of “pre-tropical + seal curtain installation” in FIG. 7 (d), the rear end 8 b of the steel pipe 8 reaches point A in FIG. 7 (C), and the front end 8 a is near the center of the heating chamber 1. In some cases, the unheated length is even shorter than that of the “pre-tropical installation”. Since the seal curtain 5b is provided on the exit side of the front chamber 4 (that is, on the entrance side of the heating chamber 1), as shown in FIG. 7C, the internal pressure of the heat treatment furnace is set in two stages. Even if the rear end 8b of the pipe reaches the point A in FIG. 7 (c), there is a pressure difference between the front end 8a and the rear end 8b of the pipe, and a gas flow in the pipe is generated. Absent. When the steel pipe 8 is transferred to the state (2), the pipe rear end 8b also reaches 450 ° C., the unheated length becomes 0 m, and all residual deposits in the pipe are decomposed and vaporized. Moreover, as is clear from the comparison with the in-furnace pressure distribution in FIG. 7C, the vaporized polluted gas is discharged from the rear end of the pipe by the in-pipe gas flow.

シールカーテンの材質、形状等について特に限定はない。従来使用されている耐熱性のカーテンが使用でき、先の実験結果で示したように、複数枚を重ね、更にそれを複数セットで使用すれば、シールカーテンの前後における圧力差の維持に効果的である。   There are no particular limitations on the material, shape, etc. of the seal curtain. Conventional heat-resistant curtains can be used, and as shown in the previous experimental results, if multiple sheets are stacked and then used in multiple sets, it is effective for maintaining the pressure difference before and after the seal curtain. It is.

このように、本発明の連続熱処理炉によれば、冷間加工後の洗浄工程をアルカリ脱脂、洗浄のみとした場合であっても、熱処理前に鋼管内外表面の付着物を容易に除去することができ、しかも必要とする設備投資も比較的低廉なものとなる。   Thus, according to the continuous heat treatment furnace of the present invention, even if the cleaning process after cold working is only alkaline degreasing and cleaning, the deposits on the inner and outer surfaces of the steel pipe can be easily removed before the heat treatment. In addition, the required capital investment is relatively low.

前記(2)に記載の鋼管は、前述の本発明の熱処理炉で製造した鋼管である。冷間加工後の洗浄工程をアルカリ脱脂、洗浄のみとした場合であっても、熱処理で高温(前記図7に示した例では、1100℃)に加熱される前に、予熱帯で管の内外表面の残留付着物が除去されるので、鋼管表面(特に、内面)が汚染されることはない。   The steel pipe described in (2) is a steel pipe manufactured in the heat treatment furnace of the present invention described above. Even if the cleaning process after cold working is only alkaline degreasing and cleaning, before and after heating to a high temperature (1100 ° C. in the example shown in FIG. Since the residual deposits on the surface are removed, the steel pipe surface (in particular, the inner surface) is not contaminated.

前記(3)に記載の熱処理方法は、『加熱帯を有する加熱室に雰囲気ガスを導入し、炉入口から連続的に鋼管を軸方向に沿って装入して熱処理を施した鋼管を炉出口から搬出する熱処理方法であって、加熱室の入側に予熱帯を備えた前室の内圧が、炉外圧以上で加熱室の圧力以下となるように設定し、前室で鋼管の内外表面に残留した付着物を気化できる温度まで鋼管を加熱して、熱処理する方法』である。   The heat treatment method according to (3) described above is as follows: “Atmosphere gas is introduced into a heating chamber having a heating zone, a steel pipe is continuously charged along the axial direction from the furnace inlet, and the heat treated steel pipe is subjected to heat treatment. The heat treatment method is carried out from the heating chamber, and is set so that the internal pressure of the front chamber provided with a pre-tropical zone on the inlet side of the heating chamber is higher than the furnace external pressure and lower than the pressure of the heating chamber. This is a method in which the steel pipe is heated to a temperature at which the remaining deposits can be vaporized and heat treated.

前記の「付着物を気化できる温度まで鋼管を加熱」する際の温度は、鋼管の内表面温度が400℃以上で、かつ750℃以下にするのが望ましい。残留した付着物を効果的に分解、気化するには、表面温度を400℃以上に加熱するのが適しており、汚染ガスの作用を緩和し、また浸炭の発生を防止するには、管理精度を考慮して750℃以下にするのが有効であることによる。   The temperature at the time of “heating the steel pipe to a temperature at which deposits can be vaporized” is preferably such that the inner surface temperature of the steel pipe is 400 ° C. or higher and 750 ° C. or lower. In order to effectively decompose and vaporize the remaining deposits, it is appropriate to heat the surface temperature to 400 ° C or higher. To reduce the action of polluting gases and to prevent carburization, control accuracy is required. This is because it is effective to set the temperature to 750 ° C. or less in consideration of the above.

「前室の内圧が、炉外圧以上で加熱室の圧力以下となるように設定」するには、雰囲気ガスを適切な供給量で加熱室内に導入するだけでよい。前室の出側に設けたシールカーテン5b、入り側に設けたシールカーテン5aが有効に作用して、前室の内圧が、炉外圧以上で加熱室の圧力以下となる。   In order to “set so that the internal pressure of the front chamber is not less than the pressure outside the furnace and not more than the pressure of the heating chamber”, it is only necessary to introduce the atmospheric gas into the heating chamber with an appropriate supply amount. The seal curtain 5b provided on the exit side of the front chamber and the seal curtain 5a provided on the entrance side effectively act, so that the internal pressure of the front chamber is higher than the furnace external pressure and lower than the pressure of the heating chamber.

この熱処理方法は、前述した本発明の熱処理炉を用いて実施することができる。すなわち、炉内圧を前室の部分と加熱室の部分の二段階に設定できるので、前室の内圧を、炉外圧以上で加熱室の圧力以下とすることが可能となり、これによって、鋼管内部に先端から後端に向かう雰囲気ガスの流れを無理なく生じさせることができるので、管内部の残留付着物を気化し、雰囲気ガスにより置換、除去することができる。その後引き続き所定の温度で熱処理が施されるので、熱処理能率を低下させることもない。   This heat treatment method can be carried out using the heat treatment furnace of the present invention described above. That is, since the furnace internal pressure can be set in two stages, that is, the front chamber part and the heating chamber part, the internal pressure in the front chamber can be made higher than the furnace external pressure and lower than the pressure in the heating chamber. Since the flow of the atmospheric gas from the front end to the rear end can be generated without difficulty, the residual deposits inside the tube can be vaporized and replaced or removed with the atmospheric gas. Since heat treatment is subsequently performed at a predetermined temperature, the heat treatment efficiency is not reduced.

両端にΔPP[Pa]の差圧が生じている管内のガス流れを表す「等温流れモデル式」を使用し、予熱帯およびシールカーテンの設置条件等を変えて、内径6mm、長さ20mの鋼管を送管したときの管内ガスの排出の可否を検討し、さらに、実炉で塩素を含む付着物による管内面の汚染の有無を調査した。なお、前記管内ガスの排出可否の検討において必要になる炉内圧分布は後述する炉内圧力分布推定式で推定した。 Using an “isothermal flow model” that represents the gas flow in the pipe where a differential pressure of ΔP P [Pa] is generated at both ends, the pre-tropical zone and the installation conditions of the seal curtain are changed, and the inner diameter is 6 mm and the length is 20 m. We examined whether or not the gas in the pipe could be discharged when the steel pipe was sent, and further investigated whether the inner surface of the pipe was contaminated with deposits containing chlorine in an actual furnace. In addition, the furnace pressure distribution required in the examination of whether or not to discharge the in-pipe gas was estimated by the furnace pressure distribution estimation formula described later.

「等温流れモデル式」の導出:
管両端に生じている差圧ΔPP[Pa]と管内に発生するガス流速νP[m/s]は下記(1)式の関係を有する。
Derivation of “isothermal flow model formula”:
The differential pressure ΔP P [Pa] generated at both ends of the tube and the gas flow velocity ν P [m / s] generated in the tube have the relationship of the following equation (1).

Figure 2005213645
Figure 2005213645

層流の場合、   For laminar flow,

Figure 2005213645
Figure 2005213645

であるから、ΔPP[Pa]は Therefore, ΔP P [Pa] is

Figure 2005213645
Figure 2005213645

となる。 It becomes.

一方、前室の入口をL=0、前室の入側に設置したシールカーテンの後端をL1、前室の出側に設置したシールカーテンの前端および後端をそれぞれL2、L3(L3=L2+「シールカーテン5bの厚み」)とし(図7(イ)参照)、シールカーテン前後で静圧が直線的に増加し、シールカーテン間では等圧と近似すれば、炉内圧力分布は下記(4)式で表される。 On the other hand, the entrance of the front chamber is L = 0, the rear end of the seal curtain installed on the entrance side of the front chamber is L 1 , and the front and rear ends of the seal curtain installed on the exit side of the front chamber are L 2 and L 3 , respectively. (L 3 = L 2 + “thickness of the seal curtain 5b”) (see FIG. 7A), the static pressure increases linearly before and after the seal curtain and approximates to an equal pressure between the seal curtains. The internal pressure distribution is expressed by the following equation (4).

Figure 2005213645
Figure 2005213645

ここで、鋼管が450℃になったとき、汚染ガスが発生する(管内面に付着している汚染物質が気化する)と仮定し、鋼管が450℃に達する炉内位置をL450、鋼管の先端(送管方向端部)がL450に到達する時刻をt450、鋼管の両端の差圧がなくなる位置L4(L4=L3+LP、LPは管の全長)に到達する時刻をt4とすると、時間(t4−t450)の間に鋼管の先端位置にある雰囲気ガスが管内を移動する距離Ldrain(0)は下記(5)式で表される。 Here, when the steel pipe reaches 450 ° C., it is assumed that pollutant gas is generated (contaminant adhering to the inner surface of the pipe is vaporized), and the position in the furnace where the steel pipe reaches 450 ° C. is L 450 . The time at which the tip (end in the pipe feeding direction) reaches L 450 is t 450 , and the time at which the pressure reaches the position L 4 (L 4 = L 3 + L P , L P is the total length of the pipe) where the differential pressure across the steel pipe is eliminated When the the t 4, the distance L Drain (0) in which the atmosphere gas is moved through the tube at the tip position of the steel pipe during the time (t 4 -t 450) is expressed by the following equation (5).

Figure 2005213645
Figure 2005213645

送管速度をνtとすれば、L=t・νtから、 If the pipe feeding speed is ν t , from L = t · ν t ,

Figure 2005213645
Figure 2005213645

となり、鋼管の先端からの管内位置x[m]にあるガスが450℃に達してから鋼管両端の差圧がなくなる位置L4まで送管される間に鋼管内を移動する距離Ldrain(x)は、 The distance L drain (x) that moves in the steel pipe while the gas at the pipe internal position x [m] from the tip of the steel pipe reaches 450 ° C. and is sent to the position L 4 where the differential pressure at both ends of the steel pipe disappears. )

Figure 2005213645
Figure 2005213645

で表される。したがって、未加熱長さLresは、 It is represented by Therefore, the unheated length L res is

Figure 2005213645
Figure 2005213645

で表され、Lres≦0であれば、「未加熱長さなし」、すなわち雰囲気ガスの管内からの排出が可能で、それに伴われ汚染ガスも管内から排出される。 If L res ≦ 0, “no heating length”, that is, the atmospheric gas can be discharged from the inside of the pipe, and the contaminated gas is also discharged from the pipe.

炉内圧力分布推定式:
j枚目のシールカーテンから流出するガス質量流量G[kg/s]および静圧変化ΔPj[Pa]はそれぞれ下記(9)式および(10)式で表される。
Furnace pressure distribution estimation formula:
The gas mass flow rate G [kg / s] and the static pressure change ΔP j [Pa] flowing out from the j-th seal curtain are expressed by the following equations (9) and (10), respectively.

Figure 2005213645
Figure 2005213645

ガスがシールカーテンn枚を通過する際に生じる差圧ΔPtotal[Pa]は、下記(11)式となる。 The differential pressure ΔP total [Pa] generated when the gas passes through n seal curtains is expressed by the following equation (11).

Figure 2005213645
Figure 2005213645

前室入側、前室出側、および後室内に設置されたシールカーテンセット数(1セット=4枚)をそれぞれNen-in、Nen-out、Nex[セット]、前室側および後室側から流出する水素ガス量をそれぞれGen、Gex[kg/s]とすれば、加熱帯静圧ΔPH_Zone=冷却帯静圧から、(12)式が得られる。 N en-in , N en-out , N ex [set], the number of seal curtain sets (1 set = 4) installed in the front room entrance, front room exit, and rear room, respectively, each G en the amount of hydrogen gas that flows out from the rear chamber side, if G ex [kg / s], the heating zone static pressure ΔP H_Zone = cooling zone static pressure is obtained (12).

Figure 2005213645
Figure 2005213645

ここで、Gtotal=Gen+Gex とおけば、(13)式および(14)式が得られる。 Here, if G total = G en + G ex , the equations (13) and (14) are obtained.

Figure 2005213645
Figure 2005213645

前記(12)〜(14)式から、シールカーテンセット数と総水素供給量Gtotalを与えると、加熱帯静圧(すなわち、加熱室圧力)ΔPH_Zoneが求まる。また前室の圧力ΔP前室も、 From the formulas (12) to (14), when the number of seal curtain sets and the total hydrogen supply amount G total are given, the heating zone static pressure (that is, the heating chamber pressure) ΔP H_Zone is obtained. The front chamber pressure ΔP front chamber is

Figure 2005213645
Figure 2005213645

により求めることができる。 It can ask for.

シミュレーションの結果(管内ガスの排出可否の検討結果):
前述した「等温流れモデル式」を用い、内径6mm、長さ20mの鋼管を熱処理することを仮定して、未加熱長さLresを計算した。前述したように、未加熱長さLres≦0であれば、管内の汚染ガスは管の後端から排出される。ここで、管内温度としては、熱処理炉内の温度450〜1100℃の平均温度775℃を採用した。
Simulation result (examination result of whether or not the gas in the pipe can be discharged):
Using the above-mentioned “isothermal flow model formula”, the unheated length L res was calculated on the assumption that a steel pipe having an inner diameter of 6 mm and a length of 20 m was heat-treated. As described above, if the unheated length L res ≦ 0, the contaminated gas in the pipe is discharged from the rear end of the pipe. Here, as the temperature inside the tube, an average temperature of 775 ° C. of 450 to 1100 ° C. in the heat treatment furnace was adopted.

シミュレーションでは、前室に予熱帯および出側シールカーテンがなく、後室に入側シールカーテンがない場合(シミュレーション1)、前室に予熱帯のみ有する場合(シミュレーション2)、前室に出側シールカーテンのみ有する場合(シミュレーション3)、前室に予熱帯および出側シールカーテンを有する場合(シミュレーション4)、並びに前室に予熱帯および出側シールカーテンを有し、かつ後室に入側シールカーテンを有する場合(シミュレーション5)の計5ケースについて、それぞれ送管速度を1450mm/minまたは950mm/minとして計算を行った。   In the simulation, when there is no pre-tropical and outlet seal curtain in the front chamber and no inlet seal curtain in the rear chamber (simulation 1), when there is only the pre-tropical zone in the front chamber (simulation 2), the outlet seal in the front chamber When having only a curtain (simulation 3), having a pretropical and outlet seal curtain in the front chamber (simulation 4), and having a pretropical and outlet seal curtain in the front chamber and an inlet seal curtain in the rear chamber For a total of 5 cases (Simulation 5), the calculation was performed at a tube feeding speed of 1450 mm / min or 950 mm / min, respectively.

表3に、シミュレーション結果を示す。なお、表3には、未加熱長さLresに加えて、予熱帯やシールカーテンの有無等、連続熱処理炉における設備上の設定条件、並びに前室および加熱室の圧力も併せて示した。熱処理炉の「前室」および「後室」の欄の○印は予熱帯やシールカーテンを備えていることを、また、「未加熱長さLres」の欄の○印は管内面における汚染を計算上防止できることを、×印は防止できないことを表す。 Table 3 shows the simulation results. In addition to the unheated length L res , Table 3 also shows the setting conditions on the equipment in the continuous heat treatment furnace, such as the presence of a pre-tropical zone and the presence of a seal curtain, and the pressures in the front chamber and the heating chamber. The circles in the “front chamber” and “rear chamber” columns of the heat treatment furnace indicate that there is a pre-tropical zone or a seal curtain, and the circle in the “unheated length L res ” column indicates contamination on the inner surface of the pipe. X indicates that it cannot be prevented from calculation, and x indicates that it cannot be prevented.

Figure 2005213645
Figure 2005213645

表3に示した結果から明らかなように、前室に予熱帯および出側シールカーテンを有するシミュレーション4では、送管速度が遅い(950mm/min)場合、未加熱長さが0以下(Lres≦0)となった。すなわち、汚染ガスを管内から排出できると予想される。さらに、前室に予熱帯および出側シールカーテンを有し、かつ後室に入側シールカーテンを有するシミュレーション5では、送管速度が速くても(1450mm/min)、未加熱長さが0以下となり、より効率的な熱処理が行えるものと予想される。 As is clear from the results shown in Table 3, in the simulation 4 having the pre-tropical zone and the exit-side seal curtain in the front chamber, when the pipe feeding speed is slow (950 mm / min), the unheated length is 0 or less (L res ≦ 0). That is, it is expected that the pollutant gas can be discharged from the inside of the pipe. Further, in simulation 5 having the pre-tropical and outlet seal curtains in the front chamber and the entrance seal curtain in the rear chamber, the unheated length is 0 or less even when the pipe feeding speed is high (1450 mm / min). Therefore, it is expected that more efficient heat treatment can be performed.

実炉での管内面汚染の有無の調査:
前記シミュレーションに続き、実炉で、内外表面に塩素を含有する潤滑剤が付着した鋼管(内径6mm、長さ20m)の熱処理を行い、塩素による汚染の有無を調査した。熱処理炉内の雰囲気ガスには水素ガスを使用し、供給量を95.00Nm3/hとして、加熱室へ送通した。送管速度は950m/minまたは1450m/minとした。
Investigation of tube internal contamination in actual furnace:
Following the simulation, heat treatment was performed on a steel pipe (inner diameter 6 mm, length 20 m) with a lubricant containing chlorine on the inner and outer surfaces in an actual furnace, and the presence or absence of contamination by chlorine was investigated. Hydrogen gas was used as the atmospheric gas in the heat treatment furnace, and the supply amount was 95.00 Nm 3 / h, and the gas was sent to the heating chamber. The tube feeding speed was 950 m / min or 1450 m / min.

表4に調査結果を示す。表4において、前室入側のシールカーテンは、通常使用されているカーテンを用い、比較例および実施例のいずれにも設置されているので、表示していない。また、「汚染の有無」については、熱処理後の鋼管から特に塩素が残留しやすい後端部(鋼管の進行方向に対して後端になる部分)を切り出し、その内面に付着している塩素を純水で抽出し、この抽出水についてイオンクロマトグラフ分析を行って、管内面における残留塩素量を調査した。   Table 4 shows the survey results. In Table 4, the seal curtain on the entrance side of the anterior chamber is not shown because it uses a commonly used curtain and is installed in both the comparative example and the example. In addition, regarding “presence or absence of contamination”, the rear end portion (part which becomes the rear end with respect to the traveling direction of the steel pipe) is cut out from the steel pipe after the heat treatment, and the chlorine adhering to the inner surface is removed. Extraction was performed with pure water, and ion chromatographic analysis was performed on the extracted water to investigate the amount of residual chlorine on the inner surface of the tube.

Figure 2005213645
Figure 2005213645

表4に示した結果から明らかなように、本発明で規定する条件から外れる比較例1〜3では、いずれも「汚染有り」と判定されたが、実施例1〜3では「汚染なし」、または「僅少」(実施例2)であった。   As is clear from the results shown in Table 4, in Comparative Examples 1 to 3 that deviate from the conditions defined in the present invention, all were determined to be “contaminated”, but in Examples 1 to 3, “no contamination”, Or “Slight” (Example 2).

実施例2で若干の汚染が認められたのは、同じ条件の実施例1に比べて送管速度が速く、管内汚染ガスの雰囲気ガスによる置換に遅れが生じ、汚染ガスが管の後端付近に残留したことによるものと考えられる。実施例3で送管速度が速いにもかかわらず汚染が認められなかったのは、後室入側にもシールカーテンを設置した結果、加熱室内の圧力が8.73Paから11.93Paへと高くなり、前室に流れる雰囲気ガス量が多くなって管内のガスの置換が促進され、汚染ガスが除去されたことによるものである。   Some contamination was observed in Example 2 because the pipe feeding speed was faster than that in Example 1 under the same conditions, the replacement of the pollutant gas in the pipe with the atmospheric gas was delayed, and the pollutant gas was near the rear end of the pipe. This is thought to be due to the remaining in In Example 3, although the pipe feeding speed was high, no contamination was observed. As a result of installing a seal curtain on the entrance side of the rear chamber, the pressure in the heating chamber increased from 8.73 Pa to 11.93 Pa. This is because the amount of atmospheric gas flowing into the front chamber is increased, the replacement of the gas in the pipe is promoted, and the polluted gas is removed.

本発明の連続熱処理炉および熱処理方法によれば、冷間加工後の洗浄工程をアルカリ脱脂、洗浄のみとした場合であっても、熱処理前に鋼管内外表面の付着物を簡易に除去することができる。したがって、炭化水素系の成分を含む圧延油または潤滑剤が使用され冷間加工されるステンレス鋼管をはじめとする鋼管の製造に好適に利用することができる。   According to the continuous heat treatment furnace and the heat treatment method of the present invention, even when the cleaning process after cold working is only alkaline degreasing and cleaning, deposits on the inner and outer surfaces of the steel pipe can be easily removed before the heat treatment. it can. Therefore, the present invention can be suitably used for manufacturing steel pipes including stainless steel pipes that are cold-worked using rolling oil or lubricant containing hydrocarbon-based components.

シール性能テスト装置の要部の概略構成を示す図である。It is a figure which shows schematic structure of the principal part of a sealing performance test apparatus. 性能評価に用いたシールカーテンの構造を示す図で、(イ)はシールカーテンが8枚(4枚×2セット)の場合、(ロ)は16枚(4枚×4セット)の場合である。It is a figure which shows the structure of the seal curtain used for performance evaluation, (A) is the case where the seal curtain is 8 sheets (4 sheets x 2 sets), and (B) is the case of 16 sheets (4 sheets x 4 sets). . エア供給量とダクト内圧力(シール性能)との関係をシールカーテンの枚数をパラメータとして示す図である。It is a figure which shows the relationship between the air supply amount and duct internal pressure (seal performance) by using the number of seal curtains as a parameter. シールカーテンが8枚(4枚×2セット)の場合のシールカーテンの長手方向のダクト内圧力分布を示す図である。It is a figure which shows the pressure distribution in the duct of the longitudinal direction of a seal curtain in case the number of seal curtains is 8 sheets (4 sheets x 2 sets). シールカーテンが16枚(4枚×4セット)の場合のシールカーテンの長手方向のダクト内圧力分布を示す図である。It is a figure which shows the pressure distribution in the duct of the longitudinal direction of a seal curtain in case a seal curtain is 16 sheets (4 sheets x 4 sets). ダクト内圧力の均一性評価試験におけるダクト断面での測定位置を示す図である。It is a figure which shows the measurement position in the duct cross section in the uniformity evaluation test of the pressure in a duct. 本発明の連続熱処理炉の断面構成例(図7(イ))、材料温度パターン(同(ロ))、炉内圧力分布(同(ハ))および残留汚染ガスの放出効果(同(ニ))を模式的に示す図である。Cross-sectional configuration example (FIG. 7 (a)), material temperature pattern (same (b)), furnace pressure distribution (same (c)), and residual pollutant gas release effect (d) (d) ) Is a diagram schematically showing.

符号の説明Explanation of symbols

1:加熱室
1a:加熱帯
2a:炉入口
2b:炉出口
3:予熱帯
4:前室
5a、5b:シールカーテン
6:後室
7a、7b:シールカーテン
8:鋼管
8a:先端
8b:後端
9:シールカーテン取付け部
10:ダクト
11:シールカーテン
1: Heating chamber 1a: Heating zone 2a: Furnace inlet 2b: Furnace outlet 3: Pre-tropical 4: Front chamber 5a, 5b: Seal curtain 6: Rear chamber 7a, 7b: Seal curtain 8: Steel pipe 8a: Tip 8b: Rear end 9: Seal curtain mounting part 10: Duct 11: Seal curtain

Claims (4)

加熱帯を有する加熱室に雰囲気ガスを導入し、炉入口から連続的に鋼管を軸方向に沿って装入して熱処理を施した鋼管を炉出口から搬出する連続熱処理炉であって、加熱室の入側に予熱帯を備えた前室を有し、前室の入側および出側にシールカーテンを有することを特徴とする連続熱処理炉。   A continuous heat treatment furnace for introducing an atmosphere gas into a heating chamber having a heating zone, continuously charging the steel pipe from the furnace inlet along the axial direction, and carrying out the heat treatment from the furnace outlet. A continuous heat treatment furnace having a front chamber provided with a pre-tropical zone on the entrance side of the interior, and seal curtains on the entrance side and the exit side of the front chamber. 加熱室の出側に後室を有し、後室の入側にシールカーテンを有することを特徴とする請求項1に記載の連続熱処理炉。   The continuous heat treatment furnace according to claim 1, further comprising a rear chamber on the exit side of the heating chamber and a seal curtain on the entrance side of the rear chamber. 請求項1または2に記載の連続熱処理炉で製造した鋼管。   A steel pipe manufactured by the continuous heat treatment furnace according to claim 1 or 2. 加熱帯を有する加熱室に雰囲気ガスを導入し、炉入口から連続的に鋼管を軸方向に沿って装入して熱処理を施した鋼管を炉出口から搬出する熱処理方法であって、加熱室の入側に予熱帯を備えた前室の内圧が、炉外圧以上で加熱室の圧力以下となるように設定し、前室で鋼管の内外表面に残留した付着物を気化できる温度まで鋼管を加熱して、熱処理することを特徴とする熱処理方法。
An atmosphere gas is introduced into a heating chamber having a heating zone, a steel pipe is continuously charged from the furnace inlet along the axial direction, and the heat-treated steel pipe is carried out from the furnace outlet. The internal pressure of the front chamber with pre-tropical zone on the inlet side is set to be higher than the pressure outside the furnace and lower than the pressure of the heating chamber, and the steel tube is heated to a temperature at which the deposits remaining on the inner and outer surfaces of the steel pipe can be vaporized in the front chamber. Then, a heat treatment method characterized by heat treatment.
JP2004026135A 2004-02-02 2004-02-02 Continuous heat treatment furnace, steel pipe using the same, and heat treatment method Expired - Lifetime JP4403815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026135A JP4403815B2 (en) 2004-02-02 2004-02-02 Continuous heat treatment furnace, steel pipe using the same, and heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026135A JP4403815B2 (en) 2004-02-02 2004-02-02 Continuous heat treatment furnace, steel pipe using the same, and heat treatment method

Publications (2)

Publication Number Publication Date
JP2005213645A true JP2005213645A (en) 2005-08-11
JP4403815B2 JP4403815B2 (en) 2010-01-27

Family

ID=34908290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026135A Expired - Lifetime JP4403815B2 (en) 2004-02-02 2004-02-02 Continuous heat treatment furnace, steel pipe using the same, and heat treatment method

Country Status (1)

Country Link
JP (1) JP4403815B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013126A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Industries, Ltd. Continuous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
WO2007083718A1 (en) * 2006-01-19 2007-07-26 Asahi Glass Co., Ltd. Molding device and method for conveying article to be conveyed
JP2010111901A (en) * 2008-11-05 2010-05-20 Sumitomo Metal Ind Ltd Method of controlling flowing-amount of atmospheric gas, continuous heat-treatment furnace using the same, and tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017964A (en) * 2014-06-12 2014-09-03 鞍钢股份有限公司 Silicon steel heat treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013126A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Industries, Ltd. Continuous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
US8641841B2 (en) 2005-07-25 2014-02-04 Nippon Steel & Sumitomo Metal Corporation Continuous heat treatment furnace and utilizing the same, metal tube and heat treatment method
WO2007083718A1 (en) * 2006-01-19 2007-07-26 Asahi Glass Co., Ltd. Molding device and method for conveying article to be conveyed
JP2010111901A (en) * 2008-11-05 2010-05-20 Sumitomo Metal Ind Ltd Method of controlling flowing-amount of atmospheric gas, continuous heat-treatment furnace using the same, and tube

Also Published As

Publication number Publication date
JP4403815B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
CA2615962C (en) Continuous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
JP5752046B2 (en) Apparatus for rolling metal foil or strip and method for controlling the shape of a metal strip or foil during rolling
EP2671035B1 (en) Method for controlling a protective gas atmosphere in a protective gas chamber for the treatment of a metal strip
JP4403815B2 (en) Continuous heat treatment furnace, steel pipe using the same, and heat treatment method
EP1567457B1 (en) Method and apparatus for making optical fibres
US4242154A (en) Preheat and cleaning system
JP2004239505A (en) Continuous heating treatment furnace, steel pipe and heat treating method using the same
JP2007146242A (en) Method for producing high strength hot dip galvanized steel sheet and production equipment for hot dip galvanized steel sheet
MX2007004849A (en) Method and arrangement for heating extended steel products.
JP4100371B2 (en) Metal tube manufacturing method
JP5212025B2 (en) Atmospheric gas flow rate control method, continuous heat treatment furnace and tube using the same
KR20080028454A (en) Continous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JP4175285B2 (en) Film formation method
JP2008202105A (en) Method for carbonitriding metallic member
JPS63759Y2 (en)
JPS6033188B2 (en) Metal heat treatment equipment
JP2006283109A (en) Method for manufacturing hot-dip galvanized steel sheet
US11401575B2 (en) Sealing device
JPH0617119A (en) Method and equipment for heat treatment for hot extruded steel tube
KR20160071598A (en) soot removing equipment for heat treatment furnace
JP2016079421A (en) Continuous molten metal plating device and manufacturing method for molten metal plating steel band
JP6007870B2 (en) Atmospheric heat treatment furnace
GB1604153A (en) Apparatus and process for continuously annealing metal strip
JP2019214768A (en) Vacuum carburization apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350