JP2005213323A - Cured film in which dispersed fine particles are localized - Google Patents

Cured film in which dispersed fine particles are localized Download PDF

Info

Publication number
JP2005213323A
JP2005213323A JP2004020031A JP2004020031A JP2005213323A JP 2005213323 A JP2005213323 A JP 2005213323A JP 2004020031 A JP2004020031 A JP 2004020031A JP 2004020031 A JP2004020031 A JP 2004020031A JP 2005213323 A JP2005213323 A JP 2005213323A
Authority
JP
Japan
Prior art keywords
cured film
film
coating
fine particles
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020031A
Other languages
Japanese (ja)
Inventor
Isao Tabayashi
勲 田林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2004020031A priority Critical patent/JP2005213323A/en
Publication of JP2005213323A publication Critical patent/JP2005213323A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cured film which has both good surface hardness and inside flexibility and satisfies optical characteristics, flatness, abrasion resistance (scratch resistance), wear resistance, and adhesiveness to a substrate, when used as a coating film. <P>SOLUTION: This cured film prepared by coating an active energy ray-curable composition containing dispersed fine particles on a substrate and then curing the coating film is characterized in that the dispersed fine particles are localized on the surface of the cured film. It is preferable that an electrophoresis method is used as a means for localizing the dispersed fine particles. It is preferable that UV rays are used as the active energy rays, and it is preferable that the active energy ray-curable composition contains a radical-photopolymerizing component and an ionically photopolymerizing component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は活性エネルギー線硬化性組成物と分散微粒子からなる硬化膜に関し、特に表面硬度が著しく大きい保護膜を、硬化膜として必要とする光学材料分野における硬化膜に関する。   The present invention relates to a cured film comprising an active energy ray-curable composition and dispersed fine particles, and more particularly to a cured film in the field of optical materials that requires a protective film having a remarkably large surface hardness as a cured film.

塗布形成された硬化膜の保護膜としての機械強度向上は様々な産業分野で要求されており、一般的に表面が傷つきやすいポリマー表面の耐摩擦性、耐擦過性、耐摩耗性を向上させるために、硬度の高い保護フィルムのラミネートが、化学的な表面の処理方法としてカップリング剤処理、多層重合処理、ハードコート剤の塗装等が、また物理的な表面の処理としてプラズマ処理、メカノケミカル処理等が知られている。
これらのうち、硬度の高い保護フィルムのラミネートによる方法は基体との接着の問題や、反り、皺等様々な問題を有している。
また化学的処理方法のうちの表面処理で一般的に行われている方法として、シリコーン系、フッ素系、多官能アクリル系(ポリオールアクリレート、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート等)モノマー・オリゴマー・ポリマーなどを含有する塗布液を塗布後、熱又は活性エネルギー線を用いて重合硬化する方法が行われており、耐摩擦性・耐擦過性・耐摩耗性の向上を行えることが知られている。
Improvement of mechanical strength as a protective film of coated cured film is required in various industrial fields, and in order to improve the friction resistance, scratch resistance, and abrasion resistance of polymer surfaces that are generally easily damaged. In addition, laminates of protective films with high hardness are used as chemical surface treatment methods such as coupling agent treatment, multi-layer polymerization treatment, and hard coat agent coating, and physical surface treatments include plasma treatment and mechanochemical treatment. Etc. are known.
Among these, the method of laminating a protective film with high hardness has various problems such as adhesion to the substrate, warpage and wrinkles.
Among the chemical treatment methods that are commonly used for surface treatment, silicone-based, fluorine-based, polyfunctional acrylic-based (polyol acrylate, polyester acrylate, urethane acrylate, epoxy acrylate, etc.) monomers, oligomers, and polymers A method of polymerizing and curing using a heat or active energy ray after coating a coating solution containing the above is known, and it is known that the friction resistance, scratch resistance, and wear resistance can be improved.

特に光ディスクや光学フィルム等の光学材料では、光学特性・平坦性・耐候性等を低下させずに被覆膜表面の耐摩擦性・耐擦過性等の耐久性を向上させる手段として、前述のモノマー・オリゴマー等からなる紫外線硬化性組成物を塗布後、紫外線硬化させる方法が一般的に知られているが、有機材料であるため耐久性に限界があった。一方無機材料の配合によって、耐久性を向上させる手段としては、アルコキシシランを組み合わせた有機無機ハイブリッド膜が知られているが、塗膜全体を硬化したときの収縮による変形の問題が避けられなかった。   In particular, in optical materials such as optical disks and optical films, the above-mentioned monomers are used as means for improving durability such as friction resistance and scratch resistance of the coating film surface without reducing optical characteristics, flatness, weather resistance, etc. A method of UV curing after applying an UV curable composition comprising an oligomer or the like is generally known. However, since it is an organic material, its durability is limited. On the other hand, as a means of improving durability by blending inorganic materials, an organic-inorganic hybrid film combining alkoxysilanes is known, but the problem of deformation due to shrinkage when the entire coating film is cured cannot be avoided. .

また、物理的処理方法のうち、高耐圧・高硬度が得られるシリコンまたはシリコン化合物薄膜を成膜する方法として、CVD法を用いた蒸着方法が広く用いられている。しかし、CVD法では成膜レートが大きいといわゆるフレークという膜の異常成長が生じたり、他の構造膜にダメージを与える等の問題が生じるため量産性に劣っていた。量産性に優れた方法として高密度プラズマガンを用いて材料を蒸発させ、基板上にシリコンまたはシリコン化合物薄膜を成膜するシリコンまたはシリコン化合物薄膜の製造方法が提案されているが、湿式のコーティング法と比較して量産性が劣り、とくに光学材料への応用はフィルムやディスクの反りを考慮した設計・制御が必要であった(特許文献1参照)。   Further, among physical treatment methods, a vapor deposition method using a CVD method is widely used as a method for forming a silicon or silicon compound thin film capable of obtaining a high breakdown voltage and high hardness. However, the CVD method is inferior in mass productivity because problems such as abnormal growth of a so-called flake film or damage to other structural films occur when the film forming rate is high. As a method with excellent mass productivity, a silicon or silicon compound thin film manufacturing method in which a material is evaporated using a high-density plasma gun and a silicon or silicon compound thin film is formed on a substrate has been proposed. Compared to the above, mass productivity is inferior, and in particular, application to optical materials requires design and control in consideration of warping of a film or a disk (see Patent Document 1).

そのような問題を解決する方法として、有機高分子と金属アルコキシドとそれらの共通溶媒からなる均質溶液を、有機高分子または無機の基材上に塗布したものを、水及び/又は金属アルコキシドの重合触媒を空気中に含ませた雰囲気下に保持した後、乾燥、熱処理を行って得られる、有機高分子成分と金属酸化物成分からなる複合体で、複合体の表面から深さ方向に、金属酸化成分の複合体中での含有率が連続的に変化する成分傾斜構造を有する、有機高分子と金酸化物成分との成分傾斜複合体(特許文献2参照)が提案されている。   As a method for solving such a problem, water and / or metal alkoxide is polymerized by applying a homogeneous solution comprising an organic polymer, a metal alkoxide and a common solvent thereof onto an organic polymer or an inorganic substrate. A composite composed of an organic polymer component and a metal oxide component, which is obtained by holding the catalyst in an atmosphere containing air and then drying and heat-treating the metal in the depth direction from the surface of the composite. A component gradient composite of an organic polymer and a gold oxide component (see Patent Document 2) having a component gradient structure in which the content of the oxidized component in the complex continuously changes has been proposed.

また金属アルコキシ基を有する有機重合体からゾル−ゲル法によって作製した湿潤ゲル、又は溶剤に溶解する前記有機重合体と、金属酸化物、金属アルコキシド化合物、又は金属アルコキシド化合物の部分的加水分解及び重縮合物とを接触させ、相互にまたは一方から他方へ拡散させる工程によって、有機重合体成分および/または金属酸化物成分の濃度が、連続的に変化した成分傾斜構造を有する有機−無機成分傾斜複合材料を製造する製造方法(特許文献3参照)が提案されている。   In addition, a wet gel prepared from an organic polymer having a metal alkoxy group by a sol-gel method, or the organic polymer dissolved in a solvent and a partial hydrolysis and polymerization of a metal oxide, a metal alkoxide compound, or a metal alkoxide compound. An organic-inorganic component gradient composite having a component gradient structure in which the concentration of the organic polymer component and / or the metal oxide component is continuously changed by contacting the condensate and diffusing each other or from one to the other. A manufacturing method for manufacturing a material (see Patent Document 3) has been proposed.

さらに、分子中に加水分解により金属酸化物と結合しうる金属含有基を有する有機高分子化合物と、加水分解により金属酸化物を形成しうる金属化合物との混合物からなる塗布液を、有機材からなる基板上に塗布し塗膜を形成して加熱乾燥処理することで製造された、有機高分子化合物と金属系化合物との化学結合を含有する有機−無機複合材料であって、材料中の金属系化合物の含有率が、材料の表面から深さ方向に連続的に変化する成分傾斜構造を有する有機−無機複合傾斜材料(特許文献4参照)が提案されている。   Furthermore, a coating liquid comprising a mixture of an organic polymer compound having a metal-containing group capable of binding to a metal oxide by hydrolysis in the molecule and a metal compound capable of forming a metal oxide by hydrolysis is formed from an organic material. An organic-inorganic composite material containing a chemical bond between an organic polymer compound and a metal compound, which is produced by applying a coating on a substrate to form a coating film and then subjecting the material to heat drying. An organic-inorganic composite gradient material (see Patent Document 4) having a component gradient structure in which the content rate of the system compound continuously changes in the depth direction from the surface of the material has been proposed.

また無機高分子化合物の存在下に、有機高分子鎖を形成し得る官能基をもつ少なくとも1種の有機化合物を重合させてなる有機−無機複合物に、希釈溶媒を加えて得た溶液を基材上に塗工して形成された薄膜からなり、有機高分子成分と無機高分子成分の膜厚方向への層分離により、該薄膜中の無機成分の含有率が、薄膜の表面から深さ方向に連続的に変化する成分傾斜構造を有することを特徴とする有機−無機複合傾斜膜(特許文献5参照)が提案されているが、これらの公知文献で開示されている技術では無機成分の傾斜構造は取りうるものの、塗膜表面への無機成分の局在化が不十分で、特に塗膜の表面硬度をより高くするには限界があり、かつ処理時間が大幅に必要であった。   Further, a solution obtained by adding a diluting solvent to an organic-inorganic composite obtained by polymerizing at least one organic compound having a functional group capable of forming an organic polymer chain in the presence of an inorganic polymer compound is used as a basis. It consists of a thin film formed by coating on the material, and due to the layer separation of the organic polymer component and the inorganic polymer component in the film thickness direction, the content of the inorganic component in the thin film becomes deep from the surface of the thin film. An organic-inorganic composite gradient film (see Patent Document 5) characterized by having a component gradient structure that continuously changes in the direction has been proposed. Although an inclined structure can be taken, the localization of inorganic components on the surface of the coating film is insufficient, and there is a limit to increasing the surface hardness of the coating film, and the processing time is significantly required.

特開平11−6054号公報Japanese Patent Laid-Open No. 11-6054 特開平8−283425号公報JP-A-8-283425 特開2000−248065号公報Japanese Unexamined Patent Publication No. 2000-248065 特開2000−336281号公報JP 2000-336281 A 特開2002−275284号公報JP 2002-275284 A

本発明の目的は、硬化膜表面の平坦性と耐摩擦性、耐擦過性、耐摩耗性に優れ、しかも硬化膜内部の柔軟性を保持しているため基体への接着性に優れ、かつ安価な硬化膜を提供することにある。   The purpose of the present invention is excellent in the flatness, friction resistance, scratch resistance, and abrasion resistance of the surface of the cured film, and also has excellent adhesion to the substrate because it retains the flexibility inside the cured film, and is inexpensive. Is to provide a cured film.

本発明は、分散微粒子を含有する活性エネルギー線硬化性組成物を基体に塗布して塗膜を形成後、該塗膜を硬化してなる硬化膜であって、前記分散微粒子が前記硬化膜表面に局在していることを特徴とする硬化膜を提供する。
さらに本発明は、前記活性エネルギー線硬化性組成物を塗布後に硬化してなる硬化膜は、基体である被塗布物を被覆する保護膜である上記記載の硬化膜を提供する。
さらにまた本発明は、上記記載の保護膜によって少なくとも表面の一部を被覆されたことを特徴とする保護膜付き被覆物を提供する。
The present invention is a cured film obtained by applying an active energy ray-curable composition containing dispersed fine particles to a substrate to form a coated film, and then curing the coated film, wherein the dispersed fine particles are formed on the surface of the cured film. The present invention provides a cured film characterized by being localized in.
Furthermore, the present invention provides the cured film as described above, wherein the cured film obtained by curing the active energy ray-curable composition after coating is a protective film for coating an object to be coated which is a substrate.
Furthermore, the present invention provides a coating with a protective film, wherein at least a part of the surface is coated with the protective film described above.

本発明の硬化膜は、硬化膜中の分散微粒子が硬化膜表面に局在しているので、樹脂を含有する硬化膜としての柔軟性を保持しつつ、表面にのみ高い硬度を有していて、材料全体が脆くなることがない。この結果、該硬化膜を保護膜として使用した場合、表面の平坦性を維持しつつ、高い耐摩擦性、耐摩耗性と基体への良好な接着性を両立することができる。   In the cured film of the present invention, since the dispersed fine particles in the cured film are localized on the surface of the cured film, the surface has high hardness only on the surface while maintaining flexibility as a cured film containing a resin. The whole material does not become brittle. As a result, when the cured film is used as a protective film, it is possible to achieve both high friction resistance and abrasion resistance and good adhesion to the substrate while maintaining the flatness of the surface.

硬化膜中の分散粒子は架橋樹脂粒子、金属、金属酸化物、金属塩等特に制限はないが、塗膜表面に局在化したときの表面硬度及び透明性を考慮すると、シリカ、アルミナ、セリア、ジルコニア、酸化チタン等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、タルク、ケイ酸カルシウム、ガラス等のケイ酸塩、チタン酸カルシウムやチタン酸バリウム等の金属チタン酸塩等が好ましく、特に金属酸化物が好ましい。
金属酸化物を分散させるには、一般的に知られている分散手法、即ち、金属酸化物の種類に応じて分散剤を選択して、塗布液の他の組成と共に公知の分散機を用いて微分散を行えばよい。これらの金属酸化物の分散方法以外に、アルコキシシランのような金属アルコキシドを別の塗布液組成中でゲル化してから混合することにより、有機無機ハイブリッドの硬化膜としてもよい。また、予め特許文献等に示された手段により、無機成分の成分傾斜膜としておいても良い。
分散微粒子を光学材料に用いる場合の分散微粒子の粒子径は、透明性を確保するため利用波長の波長以下、好ましくは二分の一波長以下の平均粒子径である事が望ましい。
The dispersed particles in the cured film are not particularly limited, such as crosslinked resin particles, metals, metal oxides, metal salts, etc., but considering the surface hardness and transparency when localized on the coating film surface, silica, alumina, ceria Metal oxides such as zirconia and titanium oxide, metal carbonates such as calcium carbonate and magnesium carbonate, silicates such as talc, calcium silicate and glass, metal titanates such as calcium titanate and barium titanate, etc. Metal oxide is particularly preferable.
In order to disperse the metal oxide, a generally known dispersion method, that is, a dispersant is selected according to the type of the metal oxide, and a known disperser is used together with other compositions of the coating liquid. Fine dispersion may be performed. In addition to these metal oxide dispersion methods, a metal alkoxide such as alkoxysilane may be gelled in another coating solution composition and then mixed to form a cured organic-inorganic hybrid film. In addition, a component gradient film of an inorganic component may be provided by means shown in advance in the patent literature.
When the dispersed fine particles are used as an optical material, the particle diameter of the dispersed fine particles is desirably an average particle diameter of not more than the wavelength of the use wavelength, preferably not more than a half wavelength, in order to ensure transparency.

硬化膜表面への分散微粒子の局在化手法は、分散微粒子を含む活性エネルギー線硬化性組成物からなる塗布液を基体に塗布し、該塗布液の乾燥もしくは硬化前に分散微粒子を塗膜表面に移動させて、目的とする局在化状態になった時点で乾燥もしくは固化させればよい。局在化の程度については、目的とする硬化膜の特性を満足すればよく、特に限定されるものではない。しかし硬化膜表面のより良好な硬度を得るためには、分散粒子の90質量%以上が硬化膜表面から硬化膜の膜厚の1/5以下の深さ内に存在することが好ましく。硬化膜の膜厚の1/10以下の深さ内に存在することがさらに好ましい。   The method for localizing dispersed fine particles on the surface of a cured film is to apply a coating liquid comprising an active energy ray-curable composition containing the dispersed fine particles to a substrate, and apply the dispersed fine particles to the surface of the coating film before drying or curing the coating liquid. And it may be dried or solidified when it reaches the desired localized state. The degree of localization is not particularly limited as long as the desired properties of the cured film are satisfied. However, in order to obtain better hardness of the cured film surface, 90% by mass or more of the dispersed particles are preferably present within a depth of 1/5 or less of the thickness of the cured film from the cured film surface. More preferably, it exists in the depth of 1/10 or less of the film thickness of a cured film.

分散粒子を局在化させるための移動方法としては、分散微粒子が磁性を有する場合には印加磁場内の磁気泳動によって行うことができる。一方分散微粒子が誘電体あるいは表面電荷を有している場合には電気泳動により行うことができる。特に電気泳動による方法は、磁性を有さない多くの材料も分散微粒子として局在化して用いることが出来るため好ましい。
分散微粒子は塗布液中で分散している場合には、粒子表面は電気二重層を形成し、表面電位を有しているが、より大きい表面電荷を付与するためには電子写真法の液体現像剤で用いられているような電荷制御剤を併用しても良い。分散微粒子が正帯電している場合には、負電極を泳動電極として粒子の泳動を行い、逆に分散粒子が負に帯電している場合には正電極を泳動電極として粒子の泳動を行う。
The moving method for localizing the dispersed particles can be performed by magnetophoresis in an applied magnetic field when the dispersed fine particles have magnetism. On the other hand, when the dispersed fine particles have a dielectric or surface charge, it can be carried out by electrophoresis. In particular, electrophoresis is preferable because many materials that do not have magnetism can be localized and used as dispersed fine particles.
When dispersed fine particles are dispersed in a coating solution, the particle surface forms an electric double layer and has a surface potential, but in order to impart a larger surface charge, electrophotographic liquid development A charge control agent such as that used in the agent may be used in combination. When the dispersed fine particles are positively charged, the particles are migrated using the negative electrode as the migration electrode. Conversely, when the dispersed particles are negatively charged, the particles are migrated using the positive electrode as the migration electrode.

これら電荷制御剤は分散安定剤としても機能するが、これらの助剤としては、通常、電子写真用静電荷現像用液体現像剤に用いられるものから選択して使用可能であり、例えば、ナフテン酸コバルト、ナフテン酸銅、オレイン酸銅、オレイン酸コバルト、オクチル酸ジルコニウム、オクチル酸コバルト、アルミニウムオキサイドアシレートの多量体、ナフテン酸、オクテン酸、オレイン酸、ステアリン酸等の脂肪族の金属塩、スルホコハク酸エステルの金属塩、油溶性スルホン酸金属塩、リン酸エステル金属塩、アビエチン酸もしくは水素添加アビチン酸の金属塩、アルキルベンゼンスルホン酸Ca塩類、芳香族カルボン酸あるいはスルホン酸の金属塩類、ポリオキシエチル化アルキルアミンのような非イオン性界面活性剤、レシチン、アマニ油等の油脂類、ポリビニルピロリドン、多価アルコールの有機酸エステル、リン酸エステル系界面活性剤、スルホン酸樹脂、アミノ酸誘導体、マレイン酸ハーフアミド成分を含む共重合体、4級化アミンポリマーなどが知られている。   These charge control agents also function as dispersion stabilizers. However, these auxiliary agents can be selected from those usually used for liquid developers for electrostatic charge development for electrophotography. For example, naphthenic acid can be used. Cobalt, copper naphthenate, copper oleate, cobalt oleate, zirconium octylate, cobalt octylate, aluminum oxide acylate, aliphatic metal salts such as naphthenic acid, octenoic acid, oleic acid, stearic acid, sulfosuccinate Metal salt of acid ester, metal salt of oil-soluble sulfonic acid, metal salt of phosphate ester, metal salt of abietic acid or hydrogenated abitinic acid, Ca salt of alkylbenzene sulfonic acid, metal salt of aromatic carboxylic acid or sulfonic acid, polyoxyethyl Nonionic surfactants such as alkylamines, lecithin, flax Fats and oils such as oil, polyvinyl pyrrolidone, polyhydric alcohol organic acid ester, phosphate ester surfactant, sulfonic acid resin, amino acid derivative, copolymer containing maleic acid half amide component, quaternized amine polymer, etc. Are known.

電気泳動法を用いて分散微粒子の泳動を行う場合、分散微粒子の移動に必要な塗膜の深さ方向の電界は、塗膜を挟んで両側に電極を対向させて設置し発生させることができる。基体が絶縁体のときは、基体を挟んで塗膜の反対側に基体に近接させて対向電極を設置し、塗膜上に設置される泳動電極とともに、基体を塗膜ごと電極で挟み込むような構成ととして基体ごと電界をかけることができる。一方基体と塗膜との間に導電層、例えばITOのような透明導電層を設けて対向電極としても良く、基体が金属のときは基体そのものを対向電極として用いることもできる。このような電極配置にすると、対向する電極間の間隔を狭く設定出来るので電界強度を高くすることができる。
また塗膜表面側の泳動電極は、ロールコート法の場合は塗工ロールを泳動電極として兼用してもよい。また、塗工液の電気抵抗が高い場合には泳動電極の替わりに塗布液塗工直後、乾燥もしくは固化前に、塗膜表面にコロナ帯電やイオンフロー帯電を行って膜表面に電位を与えて泳動電極とする事が出来る。スピンコーターのようなロールレス塗工や、泳動を行いながら塗布液の硬化を行うために、塗布液の電気抵抗が高い場合には塗工後、前述のコロナ帯電やイオンフロー帯電を行う装置を塗工装置に組み込むことが出来る。
特に、分散微粒子の電気泳動は、電場を取り除くと直ちにブラウン運動によって分散微粒子が拡散することから、泳動直後または泳動を行いながら塗布液の硬化を行う必要がある。このため特に活性エネルギー線が紫外線のときは、電界をかけながら紫外線照射が出来るように電極の少なくとも一方は紫外線透過性の材質で形成されていることが好ましい。例えば基体と塗膜との間にITOのような透明導電層を設けて対向電極としたときは、基体に紫外線透過性の材料を用いれば基体側から紫外線を照射して塗膜を硬化させることが可能となる。
電気泳動においては塗布液の粘度、電気抵抗値は特に制限はなく、泳動条件(電圧・時間・電極間距離他)によって適宜材料の組合せを選択し電気泳動に最適な特性とすればよい。
この時、泳動をより効果的に行うために対抗電極にバイアス電圧を印可して泳動電圧を高めることが望ましい。
When the dispersed fine particles are migrated using the electrophoresis method, the electric field in the depth direction of the coating necessary for the movement of the dispersed fine particles can be generated by placing the electrodes facing each other across the coating. . When the substrate is an insulator, the counter electrode is placed close to the substrate on the opposite side of the coating film across the substrate, and the substrate is sandwiched between the coating film and the electrode together with the migration electrode installed on the coating film. As a configuration, an electric field can be applied to the entire substrate. On the other hand, a conductive layer, for example, a transparent conductive layer such as ITO, may be provided between the substrate and the coating film to form a counter electrode. When the substrate is a metal, the substrate itself can be used as the counter electrode. With such an electrode arrangement, the distance between the opposing electrodes can be set narrow, so that the electric field strength can be increased.
In the case of roll coating, the migration electrode on the coating film surface side may also be used as the migration electrode. Also, if the electrical resistance of the coating solution is high, corona charging or ion flow charging is applied to the coating surface immediately after coating the coating solution instead of the migration electrode, and before drying or solidification, to apply a potential to the membrane surface. It can be used as an electrophoresis electrode. Rollless coating such as a spin coater, and curing of the coating solution while performing electrophoresis.If the coating solution has high electrical resistance, a device that performs the above-mentioned corona charging or ion flow charging after coating is used. Can be incorporated into coating equipment.
In particular, in the electrophoresis of dispersed fine particles, the dispersed fine particles are diffused by Brownian motion as soon as the electric field is removed. Therefore, it is necessary to cure the coating liquid immediately after migration or while performing migration. Therefore, particularly when the active energy ray is ultraviolet light, it is preferable that at least one of the electrodes is formed of an ultraviolet light transmissive material so that ultraviolet light can be irradiated while applying an electric field. For example, when a transparent conductive layer such as ITO is provided between the substrate and the coating film to form a counter electrode, the coating film can be cured by irradiating the substrate with ultraviolet rays if an ultraviolet transparent material is used. Is possible.
In electrophoresis, there are no particular limitations on the viscosity and electrical resistance value of the coating solution, and a combination of materials may be appropriately selected according to the electrophoresis conditions (voltage, time, distance between electrodes, etc.) to obtain optimum characteristics for electrophoresis.
At this time, in order to perform migration more effectively, it is desirable to apply a bias voltage to the counter electrode to increase the migration voltage.

分散微粒子の硬化膜表面への局在化は、泳動速度と泳動時間で制御可能であり、100%表面に移動する必要はなく、硬化膜中での粒子密度は傾斜構造を有していても良い。未硬化の塗膜表面への分散微粒子の局在化進行中に塗膜を硬化することにより、粒子密度の傾斜構造を有する硬化膜を得ることが出来る。この粒子密度の傾斜構造を調整し、分散粒子の局在化の程度を調整することにより、異質の2層構造に伴う機械的・光学的な歪みを低減することが可能となり、硬化膜の分散粒子濃度が低い膜内部での有機物の柔軟性と、分散粒子濃度が高い表面部分での無機物の硬度をより良好な状態で併せ持つ硬化膜を製造することが可能となる。   The localization of the dispersed fine particles on the surface of the cured film can be controlled by the migration speed and the migration time, and it is not necessary to move to the surface 100%, and the particle density in the cured film may have a gradient structure. good. A cured film having a particle density gradient structure can be obtained by curing the coating film while the localization of the dispersed fine particles on the surface of the uncured coating film is in progress. By adjusting the gradient structure of the particle density and adjusting the degree of localization of the dispersed particles, it becomes possible to reduce the mechanical and optical distortions associated with the heterogeneous two-layer structure, and to disperse the cured film. It becomes possible to produce a cured film having both the flexibility of the organic substance inside the film having a low particle concentration and the hardness of the inorganic substance in the surface portion having a high concentration of dispersed particles in a better state.

活性エネルギー線硬化性組成物を基体に塗工し分散微粒子の局在後に塗膜を形成する方法としては、前記組成物が感応する活性エネルギー線を照射して硬化させることにより行うことが出来る。
活性エネルギー線としては、電子線などの粒子線、X線や紫外線等の電磁波が利用可能であるが、紫外線は取扱・コスト等で好適で、本発明の硬化膜の形成には紫外線硬化性組成物が好適に用いられる。
A method of coating the active energy ray-curable composition on the substrate and forming a coating film after the dispersed fine particles are localized can be carried out by irradiating and curing the active energy ray sensitive to the composition.
As active energy rays, particle rays such as electron beams, electromagnetic waves such as X-rays and ultraviolet rays can be used. However, ultraviolet rays are preferable in terms of handling and cost, and an ultraviolet curable composition for forming the cured film of the present invention. A thing is used suitably.

紫外線硬化性組成物の紫外線硬化性を与える構成成分としては目的に応じて、光ラジカル重合性成分や光イオン重合成分適等を宜選択し組み合わせて用いれば良いが、一例として光ラジカル重合成分として多官能アクリル系モノマー・オリゴマーがある。具体的には1分子中に1個以上の(メタ)アクリロイル基を有する多官能オリゴマー、(メタ)アクリロイル基を有する多官能モノマー、(メタ)アクリロイル基を有する1〜2官能モノマーである。
(メタ)アクリロイル基を有する多官能オリゴマーの例としては、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。
As a component for imparting ultraviolet curability of the ultraviolet curable composition, a photo radical polymerizable component or a photo ion polymerization component suitable for the purpose may be appropriately selected and used in combination. There are polyfunctional acrylic monomers and oligomers. Specifically, it is a polyfunctional oligomer having one or more (meth) acryloyl groups in one molecule, a polyfunctional monomer having a (meth) acryloyl group, or a 1-2 functional monomer having a (meth) acryloyl group.
Examples of the polyfunctional oligomer having a (meth) acryloyl group include polyester (meth) acrylate, polyurethane (meth) acrylate, and epoxy (meth) acrylate.

(メタ)アクリロイル基を有する多官能モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌレート、トリス((メタ)アクリロイルオキシプロピル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート等が挙げられる。   Examples of polyfunctional monomers having a (meth) acryloyl group include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerol tri (meth) acrylate, and tris ((meth) acryloyloxyethyl) isocyanate. Nurate, Tris ((meth) acryloyloxypropyl) isocyanurate, Pentaerythritol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, Dipentaerythritol tri (meth) acrylate, Dipentaerythritol tetra (meth) acrylate, Dipenta Erythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tri Pentaerythritol penta (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (meth) acrylate, tripentaerythritol octa (meth) acrylate.

(メタ)アクリロイル基を有する1〜2官能モノマーの例としては、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、イソボニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、等の1官能(メタ)アクリレートモノマー;エチレングリコールジ(メタ)アクリレート、1、6−ヘキサンジオールジ(メタ)アクリレート、1、9−ノナンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、シクロヘキサン−1、4−ジメタノールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、エチレンオキシド変性ビスフェノールAジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ビス−(2−メタアクリロイルオキシエチル)フタレート等の2官能(メタ)アクリレートモノマーが挙げられる。
これら紫外線硬化性成分の多くは、また紫外線以外の活性エネルギー線を用いたときの硬化性成分としても用いることができる。
Examples of 1-2 functional monomers having a (meth) acryloyl group include cyclohexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, di Cyclopentenyloxyethyl (meth) acrylate, tricyclodecanyl (meth) acrylate, isobornyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyethoxyethyl (meth) acrylate, ethoxyethoxyethyl ( Monofunctional (meth) acrylate monomers such as (meth) acrylate, phenoxyethyl (meth) acrylate, and phenoxypropyl (meth) acrylate; ethylene glycol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di (meth) Acrylate, tetraethylene glycol di (meth) acrylate, cyclohexane-1,4-dimethanol di (meth) acrylate, bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, trimethylolpropane di (meth) acrylate , Ethylene oxide modified bisphenol A di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, bis- (2-methacryloyloxyethyl) phthale Difunctional (meth) acrylate monomers of bets, and the like.
Many of these ultraviolet curable components can also be used as a curable component when an active energy ray other than ultraviolet rays is used.

その他、紫外線硬化性組成物の成分として、必要に応じて、フィルム等の厚みが薄い基板の上に保護膜を着ける場合には、該組成物中に、高分子量のオリゴマー成分や希釈用有機溶剤を併用しても良い。また光重合開始剤を併用することが好ましい。   In addition, as a component of the ultraviolet curable composition, if necessary, a protective film can be applied on a thin substrate such as a film, a high molecular weight oligomer component or an organic solvent for dilution is included in the composition. May be used in combination. It is preferable to use a photopolymerization initiator in combination.

光重合開始剤の例としては、ベンゾインモノメチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、2、2−ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2、4、6−トリメチルベンゾイルフェニルホスフィンオキサイド等のアシルホスフィンオキサイド等を挙げることができる。これらの中では、1−ヒドロキシシクロヘキシルフェニルケトン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンが、透明性、硬化性の観点から、特に好ましい。   Examples of photopolymerization initiators include benzoin monomethyl ether, benzoin isopropyl ether, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, methyl phenyl glyoxylate, ethyl phenyl glyoxylate, 2- Examples include acylphosphine oxides such as hydroxy-2-methyl-1-phenylpropan-1-one, 2,4,6-trimethylbenzoylphenylphosphine oxide, and the like. Among these, 1-hydroxycyclohexyl phenyl ketone, methylphenyl glyoxylate, ethylphenyl glyoxylate, and 2-hydroxy-2-methyl-1-phenylpropan-1-one are from the viewpoint of transparency and curability. Is particularly preferred.

また、紫外線硬化性組成物を低エネルギー表面を持つ基体に塗布する場合には、良好な塗布品質の硬化膜を得るために、界面活性剤、塗料添加剤の添加を行う事が出来る。例えば、フッ素系ノニオン界面活性剤、変性シリコーン系界面活性剤、ビニル系またはアクリル系重合体塗料添加剤等を紫外線硬化性組成物に単独或いは混合して添加することにより、基体との濡れや硬化後の表面平滑性を改良する。また帯電防止剤を添加すると、ホコリの吸着を抑制できる。
更に金属との接着性増強剤として、例えば、エチレンオキシド変性コハク酸(メタ)アクリレート、エチレンオキシド変性フタル酸(メタ)アクリレート等のカルボキシル基を有する(メタ)アクリレート、また、エチレンオキシド変性リン酸(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、カプロラクトン変性リン酸基ジ(メタ)アクリレート等のリン酸基を分子内に有する(メタ)アクリレートを添加することも出来る。
更にまた、紫外線吸収剤、光安定剤および酸化防止剤などの各種耐久性向上剤、紫外線硬化性組成物の塗布適性を変えたり、或いは硬化膜表面の凸凹形成等のために無機系又は有機系フィラー類、着色のためには着色剤などを、それぞれ添加することが出来る。
In addition, when an ultraviolet curable composition is applied to a substrate having a low energy surface, a surfactant or a coating additive can be added in order to obtain a cured film having good coating quality. For example, wetting and curing with a substrate by adding a fluorine-based nonionic surfactant, a modified silicone-based surfactant, a vinyl-based or acrylic polymer coating additive, etc., alone or in combination to an ultraviolet curable composition. Improves subsequent surface smoothness. Addition of an antistatic agent can suppress dust adsorption.
Further, as an adhesion enhancer with metal, for example, (meth) acrylate having a carboxyl group such as ethylene oxide modified succinic acid (meth) acrylate, ethylene oxide modified phthalic acid (meth) acrylate, or ethylene oxide modified phosphoric acid (meth) acrylate (Meth) acrylate having a phosphoric acid group in the molecule such as ethylene oxide-modified phosphoric acid di (meth) acrylate and caprolactone-modified phosphoric acid group di (meth) acrylate can also be added.
In addition, various durability improvers such as ultraviolet absorbers, light stabilizers and antioxidants, and coating properties of ultraviolet curable compositions may be changed, or inorganic or organic materials may be used to form irregularities on the surface of the cured film. Fillers and coloring agents can be added for coloring.

本発明の硬化膜は被被覆物の保護面として特に光学材料分野で使用されると優れた機能を発揮するが、そればかりでなく、活性エネルギー線により硬化可能な化合物を用いた印刷版や光ディスク基板等、硬化膜の表面硬度の重要な多岐な応用分野にわたり、硬化膜の表面の耐摩耗性、耐擦過性、硬度を向上させるための手法として用いることができる。   The cured film of the present invention exhibits an excellent function when used in the field of optical materials, particularly as a protective surface of an object to be coated. Not only that, but also a printing plate or optical disk using a compound curable by active energy rays It can be used as a technique for improving the wear resistance, scratch resistance and hardness of the surface of the cured film over a wide variety of application fields where the surface hardness of the cured film is important, such as a substrate.

以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。まず、表1に示す組成からなる無溶剤系紫外線硬化性組成物を作製した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. First, a solventless ultraviolet curable composition having the composition shown in Table 1 was prepared.

Figure 2005213323
Figure 2005213323

M−315:トリス(アクリロイルオキシエチル)イソシアヌレート
TMP3A:トリメチロールプロパントリアクリレート
BP:ベンゾフェノン
DMAEA:N、N−ジメチルアミノエチルアクリルアミド
FZ−2188:日本ユニカー社製ポリエーテル変性シリコーンオイル
疎水性シリカ:日本アエロジル社製アエロジルR972(メタクリルシラン処理シリカ)
M-315: tris (acryloyloxyethyl) isocyanurate TMP3A: trimethylolpropane triacrylate BP: benzophenone DMAEA: N, N-dimethylaminoethylacrylamide FZ-2188: polyether-modified silicone oil hydrophobic silica manufactured by Nihon Unicar Company, Japan Aerosil R972 (methacrylic silane-treated silica) manufactured by Aerosil

(実施例1・比較例1)
表1の実施例1、または比較例1の組成の紫外線硬化性組成物を基体上に膜厚が約5μmとなる様にスピン塗布し(図1参照)、コロナ放電装置に40KVの電圧を印可し塗布膜表面を正帯電させ、疎水性シリカを電気泳動によって塗膜表面方向に電気泳動させた(図2参照)。コンベア式紫外線硬化装置(入力電力120W/cm)にて、1パス0.75J/cmとなる様にコンベアスピードを調節し、塗膜を硬化した(図3参照)。塗膜表面の平坦性、平滑性は良好であった。その後、表面をメタノールで含浸したキムワイプで擦り、表面の白化の有無で、塗膜の硬化を確認した。表中、OKは、硬化膜表面が溶剤に侵されず、白化を生じない場合を表し、NGは、白化が見られた場合を表す。
(Example 1 and Comparative Example 1)
An ultraviolet curable composition having the composition of Example 1 in Table 1 or Comparative Example 1 was spin-coated on a substrate so as to have a film thickness of about 5 μm (see FIG. 1), and a voltage of 40 KV was applied to the corona discharge device. Then, the surface of the coating film was positively charged, and hydrophobic silica was electrophoresed toward the surface of the coating film by electrophoresis (see FIG. 2). The conveyor speed was adjusted by a conveyor type ultraviolet curing device (input power 120 W / cm) so that one pass was 0.75 J / cm 2, and the coating film was cured (see FIG. 3). The flatness and smoothness of the coating surface were good. Thereafter, the surface was rubbed with a Kim wipe impregnated with methanol, and the coating film was confirmed to be cured by the presence or absence of whitening of the surface. In the table, OK represents a case where the surface of the cured film was not affected by the solvent and did not cause whitening, and NG represents a case where whitening was observed.

(実施例2・比較例2)
表1の実施例2、または比較例2の組成の塗料を基板上に膜厚が約10μmとなる様に塗布し、実施例2では塗工ロールに1KVの正電圧を印可しながら、比較例2では塗工ロールに電圧を印可せずに、直後に設置したコンベア式紫外線硬化装置(入力電力120W/cm)にて、1パス0.75J/cm2となる様にコンベアスピードを調節し、塗膜を硬化した(図4参照)。硬化膜表面の平坦性、平滑性は良好であった。その後、表面をメタノールで含浸したキムワイプで擦り、表面の白化の有無で、塗膜の硬化を確認した。表中、OKは、硬化膜表面が溶剤に侵されず、白化を生じない場合を表し、NGは、白化が見られた場合を表す。
(Example 2 and Comparative Example 2)
A coating material having the composition of Example 2 in Table 1 or Comparative Example 2 was applied on the substrate so that the film thickness was about 10 μm. In Example 2, a positive voltage of 1 KV was applied to the coating roll, and a comparative example was applied. In No. 2, no voltage is applied to the coating roll, and the conveyor speed is adjusted so that one pass is 0.75 J / cm 2 with a conveyor type ultraviolet curing device (input power 120 W / cm) installed immediately after the coating roll. The film was cured (see FIG. 4). The flatness and smoothness of the cured film surface were good. Thereafter, the surface was rubbed with a Kim wipe impregnated with methanol, and the coating film was confirmed to be cured by the presence or absence of whitening of the surface. In the table, OK represents a case where the surface of the cured film was not affected by the solvent and did not cause whitening, and NG represents a case where whitening was observed.

(表面硬度の評価)
上記と同様(但し、塗料Fの硬化条件は、1パス1.0J/cm2 )にして、透明ガラス基板上に硬化塗膜を調製し、JIS K−5400の鉛筆硬度の評価に従い、すり傷にて、膜硬度を評価した。
(Evaluation of surface hardness)
In the same manner as above (however, the curing condition of the paint F is 1.0 J / cm @ 2 for one pass), and a cured coating film is prepared on a transparent glass substrate. The film hardness was evaluated.

(環状オレフィンフイルムへの接着性評価)
ジェイエスアール社製「アートン」フイルム(188μm厚み)上に紫外線硬化性組成物を塗布して硬化させ、硬化膜の接着性を評価した。接着性の評価は、JIS K−5400に従い、クロスカット−セロテープ(登録商標)剥離試験方法により行った。表中、OKは、硬化塗膜のフイルムからの剥離が見られなかった場合を表し、NGは剥離が見られた場合を表す。
(Evaluation of adhesion to cyclic olefin film)
The UV curable composition was applied on an “Arton” film (188 μm thick) manufactured by JSR Co., Ltd. and cured, and the adhesion of the cured film was evaluated. Evaluation of adhesiveness was performed by the crosscut-cello tape (registered trademark) peel test method in accordance with JIS K-5400. In the table, OK represents a case where peeling from the film of the cured coating film was not observed, and NG represents a case where peeling was observed.

試験結果を表2に示す。   The test results are shown in Table 2.

Figure 2005213323
Figure 2005213323

表2から明らかなように、実施例1、2はそれぞれ比較例1、2と比較して接着性、硬化性を損なう事なく高い鉛筆硬度を実現している。   As is apparent from Table 2, Examples 1 and 2 achieve higher pencil hardness without impairing adhesiveness and curability as compared with Comparative Examples 1 and 2, respectively.

本発明の硬化膜の製造方法の例(実施例1)を示した説明図であって、紫外線硬化性組成物よりなる塗布液の基体への塗工後の状態を示す図である。It is explanatory drawing which showed the example (Example 1) of the manufacturing method of the cured film of this invention, Comprising: It is a figure which shows the state after the coating to the base | substrate of the coating liquid which consists of an ultraviolet curable composition. 本発明の硬化膜の製造方法の例(実施例1)を示した説明図であって、コロナ帯電を用いた電気泳動による分散微粒子の局在化の工程を示す図である。It is explanatory drawing which showed the example (Example 1) of the manufacturing method of the cured film of this invention, Comprising: It is a figure which shows the process of the dispersion | distribution microparticles | fine-particles by electrophoresis using a corona charge. 本発明の硬化膜の製造方法の例(実施例1)を示した説明図であって、紫外線硬化の工程を示す図である。It is explanatory drawing which showed the example (Example 1) of the manufacturing method of the cured film of this invention, Comprising: It is a figure which shows the process of ultraviolet curing. 本発明の硬化膜の製造方法の例(実施例2)を示した説明図であって、(1)塗布液の基体への塗工、(2)電気泳動、(3)紫外線硬化からなる工程を通して示した図である。It is explanatory drawing which showed the example (Example 2) of the manufacturing method of the cured film of this invention, Comprising: (1) Coating to the base | substrate of a coating liquid, (2) Electrophoresis, (3) Process which consists of ultraviolet curing It is the figure shown through.

符号の説明Explanation of symbols

1 未硬化塗膜
2 基体
3 コロナ帯電電極
4 紫外線
5 塗工ロール兼泳動電極
6 支持ロール兼対向電極
7 分散粒子局在化塗膜(硬化)
8 塗膜進行方向
DESCRIPTION OF SYMBOLS 1 Uncured coating film 2 Substrate 3 Corona charging electrode 4 Ultraviolet ray 5 Coating roll / electrophoresis electrode 6 Support roll / counter electrode 7 Dispersed particle localized coating film (cured)
8 Coating direction

Claims (7)

分散微粒子を含有する活性エネルギー線硬化性組成物を基体に塗布して塗膜を形成後、該塗膜を硬化してなる硬化膜であって、前記分散微粒子が前記硬化膜表面に局在していることを特徴とする硬化膜。 A cured film formed by applying an active energy ray-curable composition containing dispersed fine particles to a substrate to form a coating film, and then curing the coating film, wherein the dispersed fine particles are localized on the surface of the cured film. A cured film characterized by having 前記分散微粒子の局在している硬化膜表面の硬度が、該分散粒子の局在していない硬化膜内部の硬度よりも高い請求項1に記載の硬化膜。 The cured film according to claim 1, wherein the hardness of the surface of the cured film where the dispersed fine particles are localized is higher than the hardness inside the cured film where the dispersed particles are not localized. 前記分散微粒子が金属酸化物である請求項1に記載の硬化膜。 The cured film according to claim 1, wherein the dispersed fine particles are a metal oxide. 前記硬化膜は前記活性エネルギー線硬化性組成物中の前記分散微粒子を、該組成物塗布後の塗膜の表面方向に移動させた後、前記塗膜に該組成物が感応する活性エネルギー線を照射して硬化させ製造したものである請求項1に記載の硬化膜。 The cured film moves the dispersed fine particles in the active energy ray-curable composition in the surface direction of the coating film after application of the composition, and then activates the active energy ray to which the composition is sensitive to the coating film. The cured film according to claim 1, which is produced by irradiation and curing. 前記分散微粒子は電気泳動によって塗膜表面に移動し、局在化したものである請求項1〜4のいずれか1項に記載の硬化膜。 The cured film according to any one of claims 1 to 4, wherein the dispersed fine particles are moved and localized on the surface of the coating film by electrophoresis. 前記活性エネルギー線硬化性組成物を塗布後に硬化してなる硬化膜は、基体である被塗布物を被覆する保護膜である請求項1〜5のいずれか1項に記載の硬化膜。 The cured film according to any one of claims 1 to 5, wherein the cured film obtained by curing the active energy ray-curable composition after coating is a protective film that covers an object to be coated that is a substrate. 請求項6に記載の保護膜によって少なくとも表面の一部を被覆されたことを特徴とする保護膜付き被覆物。

A covering with a protective film, wherein at least a part of the surface is covered with the protective film according to claim 6.

JP2004020031A 2004-01-28 2004-01-28 Cured film in which dispersed fine particles are localized Pending JP2005213323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020031A JP2005213323A (en) 2004-01-28 2004-01-28 Cured film in which dispersed fine particles are localized

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020031A JP2005213323A (en) 2004-01-28 2004-01-28 Cured film in which dispersed fine particles are localized

Publications (1)

Publication Number Publication Date
JP2005213323A true JP2005213323A (en) 2005-08-11

Family

ID=34904074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020031A Pending JP2005213323A (en) 2004-01-28 2004-01-28 Cured film in which dispersed fine particles are localized

Country Status (1)

Country Link
JP (1) JP2005213323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190519A (en) * 2006-01-20 2007-08-02 Fuji Xerox Co Ltd Coating apparatus, coating method, method for producing endless belt, and intermediate transfer belt
JP2009134077A (en) * 2007-11-30 2009-06-18 Nitto Denko Corp Light diffusing member having unevenly distributed light-diffusing particles polymer layer, and optical element
JP2010533088A (en) * 2007-07-11 2010-10-21 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Coating for decorative metals with improved scratch and scratch resistance and method for applying the same
KR101923209B1 (en) 2017-05-16 2018-11-29 토요잉크Sc홀딩스주식회사 Active energy ray-curable composition and laminate using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190519A (en) * 2006-01-20 2007-08-02 Fuji Xerox Co Ltd Coating apparatus, coating method, method for producing endless belt, and intermediate transfer belt
JP2010533088A (en) * 2007-07-11 2010-10-21 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Coating for decorative metals with improved scratch and scratch resistance and method for applying the same
JP2009134077A (en) * 2007-11-30 2009-06-18 Nitto Denko Corp Light diffusing member having unevenly distributed light-diffusing particles polymer layer, and optical element
KR101923209B1 (en) 2017-05-16 2018-11-29 토요잉크Sc홀딩스주식회사 Active energy ray-curable composition and laminate using the same

Similar Documents

Publication Publication Date Title
JP6040936B2 (en) Antireflection film manufacturing method, antireflection film, polarizing plate, and image display device
JP2021073509A (en) Laminated thin film and method for manufacturing laminated thin film
TWI272975B (en) Article with complex hard coat layer and process for forming complex hard coat layer
TW539730B (en) Discharged hard coating composition, discharged hard coating layer, process for preparation thereof and laminated discharged hard coating film
JP2014152281A (en) Method for producing transparent resin laminate film
JP5737573B2 (en) Release film and method for producing resin laminate
TW200307280A (en) Object having composite hardcoat layer and method of forming the composite hardcoat layer
WO2009133784A1 (en) Active energy ray-curable resin composition, cured film, laminate, optical recording medium, and method for producing cured film
JP2005144699A (en) Optical film
JP2013142817A (en) Antireflection film, polarizer and picture display unit
US10954409B2 (en) Hard coating film
JP6934141B2 (en) Release film for transfer film and transfer film
JP2005306992A (en) Functional cured film
JP2005213323A (en) Cured film in which dispersed fine particles are localized
JP3732840B2 (en) Object with composite hard coat layer and method for forming composite hard coat layer
JP2004143201A (en) Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body
JP2005220157A (en) Cured film and functional medium composed of cured film
JP2005185936A (en) Method for producing coating film
JP2009244684A (en) Anti-reflection stack
JP2005288214A (en) Method of producing hardened film
JP2010158898A (en) Resin laminate for surface protection and liquid crystal display
JP2002200722A (en) Release film
JP4153937B2 (en) Object with composite hard coat layer and method for forming composite hard coat layer
JP2016164622A (en) Composition for antireflection layer and manufacturing method of antireflection substrate
JP2004143202A (en) Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050906