JP2005212049A - Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition - Google Patents

Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition Download PDF

Info

Publication number
JP2005212049A
JP2005212049A JP2004022360A JP2004022360A JP2005212049A JP 2005212049 A JP2005212049 A JP 2005212049A JP 2004022360 A JP2004022360 A JP 2004022360A JP 2004022360 A JP2004022360 A JP 2004022360A JP 2005212049 A JP2005212049 A JP 2005212049A
Authority
JP
Japan
Prior art keywords
content point
cermet
highest
hard coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004022360A
Other languages
Japanese (ja)
Inventor
Koichi Maeda
浩一 前田
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004022360A priority Critical patent/JP2005212049A/en
Publication of JP2005212049A publication Critical patent/JP2005212049A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cermet cutting tool having a hard coating layer exhibiting superior abrasion resistance under a high speed heavy cutting condition. <P>SOLUTION: This cutting tool is constituted by physically depositing the hard coating layer, having a structure of dispersively distributing an aluminum oxide phase at a rate of 1 to 15 area% on a basis material composed of composite nitride of Al, Ti and B (boron), allowing an Al maximum inclusion point and a Ti maximum inclusion point to alternately and repeatedly exist at a predetermined interval in the layer thickness direction in the basis material, satisfying a specific composition formula : (Al<SB>1-(E+Z)</SB>Ti<SB>E</SB>B<SB>Z</SB>)N on the Al maximum inclusion point and a specific composition formula : (Ti<SB>1-(X+Z)</SB>Al<SB>X</SB>B<SB>Z</SB>)N on the Ti maximum inclusion point, and being 0.01 to 0.1 μm in an interval between the adjacent Al maximum inclusion point and Ti maximum inclusion point, in the average layer thickness of 1 to 15 μm, on a surface of a cermet base body composed of tungsten carbide group cemented carbide or tungsten carbonitride-based cermet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、硬質被覆層がすぐれた高温硬さと耐熱性を有し、さらに高温強度にもすぐれ、したがって各種の鋼や鋳鉄などの切削加工を、特に高熱発生を伴う高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を長期に亘って発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention has excellent high temperature hardness and heat resistance with a hard coating layer, and also excellent high temperature strength. Therefore, cutting of various steels and cast irons, especially at high speed with high heat generation and high mechanical strength. Made of surface-coated cermet that provides excellent wear resistance over a long period of time, even when heavy cutting conditions such as high cutting with impact and high feed are performed, and the hard coating layer does not cause chipping (microchips). The present invention relates to a cutting tool (hereinafter referred to as a coated cermet tool).

技術背景Technical background

一般に、被覆サーメット工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated cermet tools, drills used for slow-away inserts that are detachably attached to the tip of a bite for turning and planing of various steel and cast iron, drills for drilling, etc. And miniature drills, as well as solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and the throw is performed in the same manner as the solid type endmill. Way end mill tools are known.

また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体の表面に、組成式:(Ti1-(M+Z)AlZ)N(ただし、原子比で、Mは0.40〜0.60、Zは0.01〜0.10を示す)を満足するTiとAlとB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆サーメット工具が知られており、かつ前記被覆サーメット工具の硬質被覆層である(Ti,Al,B)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Bによる一段の高温硬さ向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。 Further, as a coated cermet tool, a composition formula: (Ti 1− ) is formed on the surface of a cermet base composed of a tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. (M + Z) Al M B Z) N ( provided that an atomic ratio, M is 0.40 to 0.60, Z is Ti, Al and B to satisfy the showing the 0.01-0.10) (boron And a coated cermet tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride [hereinafter referred to as (Ti, Al, B) N] layer with an average layer thickness of 1 to 15 μm, and The (Ti, Al, B) N layer, which is a hard coating layer of a coated cermet tool, has high-temperature hardness and heat resistance due to Al as a constituent component, high-temperature strength due to the Ti, and one-step high-temperature hardness due to the same B. Combined with the improvement effect, this It is also known to exhibit excellent cutting performance when used in continuous cutting or interrupted cutting of cast iron.

さらに、上記の被覆サーメット工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記のサーメット基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記サーメット基体には、例えば−100Vのバイアス電圧を印加した条件で、前記サーメット基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。   Further, the above-described coated cermet tool is used, for example, in which the above cermet substrate is loaded into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. An arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) in which a Ti—Al—B alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the cermet substrate is subjected to the above (Ti) on the surface of the cermet substrate under the condition that a bias voltage of, for example, −100 V is applied. , Al, B) It is also known to be produced by vapor-depositing a hard coating layer consisting of an N layer.

特許第2793696号明細書Japanese Patent No. 2793696

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向を深め、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆サーメット工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、硬質被覆層の高温硬さおよび耐熱性が不足し、かつ高温強度も不十分であるために、硬質被覆層の摩耗進行が一段と促進し、かつチッピングも発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a remarkable increase in performance of cutting devices. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. Although there is a tendency to require cutting under heavy cutting conditions such as high feed, there is no problem with the above-mentioned conventional coated cermet tool when it is used under normal cutting conditions. Is performed under heavy cutting conditions such as high cutting and high feed with high mechanical impact at high speed, the high temperature hardness and heat resistance of the hard coating layer is insufficient, and the high temperature strength is also insufficient. Therefore, since the progress of wear of the hard coating layer is further promoted and chipping is likely to occur, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速重切削加工条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)例えば原料粉末として、相対的にAl含有量の高いAl−Ti−B合金粉末および相対的にTi含有量の高いTi−Al−B合金粉末、さらに酸化アルミニウム(以下、Al23で示す)粉末を用い、これら原料粉末を所定の配合割合に配合し、混合した後、圧粉体にプレス成形し、この圧粉体を、通常の条件、例えば真空雰囲気中、500〜600℃の範囲内の所定の温度に所定時間保持の条件で焼結して、相対的にAl含有量の高いAl−Ti−B合金の素地にAl23相が分散含有した組織を有するAl系合金焼結体と、相対的にTi含有量の高いTi−Al−B合金の素地にAl23相が分散含有した組織を有するTi系合金焼結体を形成し、さらに、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造、すなわち装置中央部にサーメット基体装着用回転テーブルを設けた構造のアークイオンプレーティング装置を用い、前記回転テーブルを挟んで、一方側に上記のAl系合金焼結体、他方側に上記のTi系合金焼結体をカソード電極(蒸発源)として対向配置し、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブル外周部に沿って複数のサーメット基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的でサーメット基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記サーメット基体の表面に硬質被覆層を形成すると、この結果の硬質被覆層は、AlとTiとBの複合窒化物[以下、(Al/Ti,B)Nで示す]からなる素地にAl23相が分散分布した組織を有し、かつ、上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆サーメット工具の硬質被覆層を構成する(Ti,Al,B)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、さらに均質な高温強度を有するが、前記(Al/Ti,B)Nの素地においては、回転テーブル上にリング状に配置された前記サーメット基体が上記の一方側の上記Al系合金焼結体のカソード電極(蒸発源)に最も接近した時点で素地中にAl最高含有点が形成され、また前記サーメット基体が上記の他方側の上記Ti系合金焼結体のカソード電極に最も接近した時点で素地中にTi最高含有点が形成され、上記回転テーブルの回転によって素地中には層厚方向にそって前記Al最高含有点とTi最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造をもつようになること。
In view of the above, the present inventors configured the above-described conventional coated cermet tool in order to develop a coated cermet tool exhibiting excellent wear resistance with a hard coating layer particularly under high-speed heavy cutting conditions. As a result of conducting research, focusing on the hard coating layer
(A) For example, as a raw material powder, an Al—Ti—B alloy powder having a relatively high Al content, a Ti—Al—B alloy powder having a relatively high Ti content, and aluminum oxide (hereinafter referred to as Al 2 O 3) These raw material powders are blended at a predetermined blending ratio using a powder, mixed and then press-molded into a green compact. The green compact is subjected to normal conditions such as 500 to 600 ° C. in a vacuum atmosphere. Sintered at a predetermined temperature within the range of the above-mentioned conditions for a predetermined time, and an Al system having a structure in which an Al 2 O 3 phase is dispersed and contained in a base material of an Al—Ti—B alloy having a relatively high Al content An alloy sintered body and a Ti-based alloy sintered body having a structure in which an Al 2 O 3 phase is dispersed and contained in a base material of a Ti—Al—B alloy having a relatively high Ti content are formed. (A) is a schematic plan view and (b) is a schematic front view. In other words, using an arc ion plating apparatus having a structure in which a cermet substrate mounting rotary table is provided at the center of the apparatus, the Al-based alloy sintered body on one side and the above-mentioned Al-based alloy sintered body on the other side Ti-based alloy sintered body is placed opposite to each other as a cathode electrode (evaporation source), and a plurality of cermet substrates are ringed along the outer periphery of the table at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the cermet substrate itself is rotated for the purpose of uniformizing the thickness of the hard coating layer formed by vapor deposition. When an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode to form a hard coating layer on the surface of the cermet substrate, this Hard layer of fruits, complex nitrides of Al, Ti, and B [hereinafter, (Al / Ti, B) indicated by N] has a tissue Al 2 O 3 phase is dispersed distribution matrix consisting of, and, The (Ti, Al, B) N layer constituting the hard coating layer of the conventional coated cermet tool formed using the arc ion plating apparatus shown in FIG. 2 is substantially uniform over the entire layer thickness. In the (Al / Ti, B) N substrate, the cermet arranged in a ring shape on the rotary table has a uniform composition, and therefore has a uniform high temperature hardness and heat resistance, and a uniform high temperature strength. When the substrate is closest to the cathode electrode (evaporation source) of the Al alloy sintered body on one side, the highest Al content point is formed in the substrate, and the cermet substrate is the Ti on the other side. Cathode electrode of sintered alloy At the point of closest approach, the highest Ti content point is formed in the substrate, and the rotation of the rotary table causes the Al highest content point and the highest Ti content point to appear alternately and repeatedly along the layer thickness direction in the substrate. At the same time, it has a component concentration distribution structure in which the Al and Ti contents continuously change from the highest Al content point to the highest Ti content point and from the highest Ti content point to the highest Al content point.

(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Al/Ti,B)Nからなる素地において、対向配置の一方側のカソード電極(蒸発源)であるAl系合金焼結体の原料粉末であるAl−Ti−B合金のAl含有量を上記の従来(Ti,Al,B)N層形成にカソード電極(蒸発源)として用いたTi−Al−B合金のAl含有量に比して相対的に高いものとし、かつ同他方側のカソード電極(蒸発源)であるTi系合金焼結体の原料粉末であるTi−Al−B合金のAl含有量を前記従来(Ti,Al,B)N層形成用カソード電極(蒸発源)であるTi−Al−B合金のAl含有量に比して相対的に低いものとする共に、サーメット基体が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、組成式:(Al1-(E+Z) TiZ)N(ただし、原子比で、Eは0.05〜0.25、Zは0.01〜0.10を示す)、
上記Ti最高含有点が、組成式:(Ti1-(X+Z)AlZ)N(ただし、原子比で、Xは0.05〜0.25、Zは0.01〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の厚さ方向の間隔を0.01〜0.1μmとすると共に、
前記素地に分散分布するAl23相の割合をオージェ分光分析装置による断面観察で1〜15面積%とすると、この結果の硬質被覆層の前記素地における上記Al最高含有点部分では、上記の従来(Ti,Al,B)N層に比してAl含有量が相対的に高くなることから、より一段とすぐれた高温硬さと耐熱性を示し、一方同じく上記Ti最高含有点部分では、前記従来(Ti,Al,B)N層に比してTi含有量が相対的に高くなることから、一段と高い高温強度を具備し、かつ、これらAl最高含有点とTi最高含有点の間隔をきわめて小さくしたことから、素地全体の特性として高い高温強度を保持した状態ですぐれた高温硬さと耐熱性を具備するようになると共に、前記素地に分散分布するAl23相によってさらに一段と高い高温硬さとすぐれた熱的安定性が確保されることから、かかる構成の硬質被覆層を物理蒸着してなる被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、特に高熱発生および高い機械的衝撃を伴う、高速重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
(B) In the base made of (Al / Ti, B) N having the repeated continuous change component concentration distribution structure of (a) above, the Al-based alloy sintered body that is the cathode electrode (evaporation source) on one side of the opposing arrangement The Al content of the Al—Ti—B alloy as the raw material powder is compared with the Al content of the Ti—Al—B alloy used as the cathode electrode (evaporation source) in the conventional (Ti, Al, B) N layer formation. Therefore, the Al content of the Ti—Al—B alloy, which is the raw material powder of the Ti-based alloy sintered body, which is the cathode electrode (evaporation source) on the other side, is set to the above-described conventional (Ti, Al , B) The rotational speed of the rotary table on which the cermet substrate is mounted while being relatively lower than the Al content of the Ti-Al-B alloy which is the cathode electrode (evaporation source) for forming the N layer. Control
The Al highest content point is the composition formula: (Al 1- (E + Z) Ti E B Z ) N (wherein E is 0.05 to 0.25, Z is 0.01 to 0.00 in terms of atomic ratio). 10),
The Ti maximum content point, composition formula: (Ti 1- (X + Z ) Al X B Z) N ( provided that an atomic ratio, X is 0.05 to 0.25, Z is from 0.01 to 0. 10),
And the distance in the thickness direction between the adjacent Al highest content point and Ti highest content point adjacent to each other is set to 0.01 to 0.1 μm,
When the ratio of the Al 2 O 3 phase dispersed and distributed in the substrate is 1 to 15 area% by cross-sectional observation with an Auger spectroscopic analyzer, the Al highest content point portion in the substrate of the resulting hard coating layer Since the Al content is relatively higher than that of the conventional (Ti, Al, B) N layer, the high temperature hardness and heat resistance are further improved. Since the Ti content is relatively higher than that of the (Ti, Al, B) N layer, it has higher high-temperature strength and the distance between the Al highest content point and the Ti highest content point is extremely small. As a result, the entire substrate has excellent high-temperature hardness and heat resistance while maintaining high high-temperature strength, and the Al 2 O 3 phase dispersed and distributed in the substrate further increases the Since the thermal hardness and excellent thermal stability are ensured, the coated cermet tool formed by physical vapor deposition of such a hard coating layer is used for cutting various steels and cast iron, especially for high heat generation and high machinery. Even when performed under high-speed heavy cutting conditions with mechanical impact, the hard coating layer should exhibit excellent wear resistance without chipping.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、サーメット基体の表面に、(Al/Ti,B)Nからなる素地に、Al23相がオージェ分光分析装置による断面観察で1〜15面積%の割合で分散分布した組織を有する硬質被覆層を1〜15μmの平均層厚で物理蒸着してなり、
さらに、上記(Al/Ti,B)Nからなる素地が、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
上記Al最高含有点が、組成式:(Al1-(E+Z) TiZ)N(ただし、原子比で、Eは0.05〜0.25、Zは0.01〜0.10を示す)、
上記Ti最高含有点が、組成式:(Ti1-(X+Z)AlZ)N(ただし、原子比で、Xは0.05〜0.25、Zは0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.1μmである、
高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made on the basis of the above research results. The surface of the cermet substrate, the base made of (Al / Ti, B) N, and the Al 2 O 3 phase observed by an Auger spectrometer. The hard coating layer having a structure distributed and distributed at a rate of 1 to 15 area% is physically vapor-deposited with an average layer thickness of 1 to 15 μm,
Further, in the substrate composed of (Al / Ti, B) N, the Al highest content point and the Ti highest content point are alternately present at predetermined intervals along the layer thickness direction, and the Al highest content From the point, the Ti highest content point, from the Ti highest content point to the Al highest content point has a component concentration distribution structure in which Al and Ti content each continuously change,
The Al highest content point is the composition formula: (Al 1- (E + Z) Ti E B Z ) N (wherein E is 0.05 to 0.25, Z is 0.01 to 0.00 in terms of atomic ratio). 10),
The Ti maximum content point, composition formula: (Ti 1- (X + Z ) Al X B Z) N ( provided that an atomic ratio, X is 0.05 to 0.25, Z is from 0.01 to 0. 10),
And the interval between the Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.1 μm.
This is characterized by a coated cermet tool that exhibits excellent wear resistance under a high-speed heavy cutting condition.

つぎに、この発明の被覆サーメット工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)素地のAl最高含有点の組成
硬質被覆層の素地である(Al/Ti,B)NにおけるAl最高含有点のAl成分は、高温硬さと耐熱性を向上させ、同Ti成分は高温強度を向上させ、さらに同B成分は一段と高温硬さを向上させる作用があり、したがってAl成分およびB成分の含有割合が高くなればなるほど高温硬さと耐熱性は向上し、高熱発生を伴う高速切削に適合したものになるが、Tiの割合を示すE値がAlとBの合量に占める割合(原子比)で0.05未満になると、相対的にAlの割合が多くなり過ぎて、高い高温強度を有するTi最高含有点が隣接して存在しても素地自体の高温強度低下は避けられず、この結果チッピングなどが発生し易くなり、一方Ti成分の割合を示すE値が同0.25を越えると、相対的にAlの割合が少なくなることから、高温硬さと耐熱性の低下は避けられず、これが摩耗促進の原因となり、またB成分の割合を示すZ値がAlとTiの合量に占める割合(原子比)で0.01未満では所望の高温硬さ向上効果が得られず、さらに同Z値が0.10を超えると、チッピングなどの発生原因となる高温強度低下が起るようになることから、E値を0.05〜0.25、Z値を0.01〜0.10とそれぞれ定めた。
Next, in the coated cermet tool of the present invention, the reason why the configuration of the hard coating layer constituting the tool is limited as described above will be described.
(A) Composition of the highest Al content point of the substrate The Al component of the highest Al content point in (Al / Ti, B) N, which is the substrate of the hard coating layer, improves the high temperature hardness and heat resistance, and the Ti component has a high temperature. The B component has the effect of further improving the high temperature hardness, and therefore, the higher the content ratio of the Al component and the B component, the higher the high temperature hardness and heat resistance, and high speed cutting with high heat generation. However, when the E value indicating the proportion of Ti is less than 0.05 in the proportion of the total amount of Al and B (atomic ratio), the proportion of Al is relatively large and high. Even if the highest Ti content point having high temperature strength is present adjacently, a decrease in the high temperature strength of the substrate itself is unavoidable. If it exceeds 25, A Since the ratio of l decreases, a decrease in high temperature hardness and heat resistance is inevitable, which causes the acceleration of wear, and the ratio of the Z value indicating the ratio of the B component to the total amount of Al and Ti (atomic ratio) ) Less than 0.01, the desired high-temperature hardness improvement effect cannot be obtained, and when the Z value exceeds 0.10, the high-temperature strength decreases, which causes chipping and the like. The E value was set to 0.05 to 0.25, and the Z value was set to 0.01 to 0.10.

(b)素地のTi最高含有点の組成
上記の通りAl最高含有点は高温硬さと耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Ti含有割合が高く、これによって高い高温強度を有するようになるTi最高含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合を示すX値がTiとBの合量に占める割合(原子比)で0.25を越えると、相対的にAlの割合が多くなり過ぎて、所望のすぐれた高温強度を確保することができず、一方同X値が同じく0.05未満になると、相対的にTiの割合が多くなり過ぎて、Ti最高含有点における高温硬さと耐熱性が急激に低下し、これが摩耗促進の原因となることから、X値を0.05〜0.25と定めたものであり、またB成分の割合を示すZ値は上記のAl最高含有点におけると同じ理由で0.01〜0.10と定めた。
(B) Composition of the highest Ti content point of the substrate As described above, the highest Al content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to make up for the shortage, the Ti content is high, and thus the highest Ti content point that has high high-temperature strength is alternately interposed in the thickness direction. Therefore, the X value indicating the proportion of Al is Ti and If the ratio (atomic ratio) in the total amount of B exceeds 0.25, the ratio of Al becomes relatively large, and the desired excellent high-temperature strength cannot be secured, while the X value is the same. Similarly, if it is less than 0.05, the proportion of Ti is relatively increased, and the high temperature hardness and heat resistance at the highest Ti content point are drastically reduced, which causes wear promotion. .05-0.25 In addition, the Z value indicating the ratio of the B component was determined to be 0.01 to 0.10 for the same reason as in the above Al maximum content point.

(c)素地のAl最高含有点とTi最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果硬質被覆層に所望の高温強度、さらに高温硬さと耐熱性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Ti最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
(C) Interval between the highest Al content point and the highest Ti content point of the substrate If the distance is less than 0.01 μm, it is difficult to form each point clearly with the above composition. High temperature strength, high temperature hardness and heat resistance can not be ensured, and if the distance exceeds 0.1 μm, each point has defects, that is, if Al is the highest content point, high temperature strength is insufficient, Ti is the highest content If it is a point, high-temperature hardness and insufficient heat resistance will appear locally in the layer, which may cause chipping on the cutting edge and promote wear progress. .01 to 0.1 μm.

(d)素地に分散分布するAl23相の割合
Al23相は、上記の通り硬質被覆層に一段と高い高温硬さとすぐれた熱的安定性を付与し、もって高い発熱を伴なう、高速切削でも硬質被覆層がすぐれた耐摩耗性を発揮するようにする作用をもつが、硬質被覆層におけるAl23相の割合が、オージェ分光分析装置による断面観察で1面積%未満では前記作用に所望の効果が得られず、一方同割合が15面積%を超えると素地によってもたらされるすぐれた高温強度が急激に低下するようになることから、Al23相の硬質被覆層における割合を1〜15面積%と定めた。
(D) Al 2 O 3 phase ratio Al 2 O 3 phase dispersed distribution matrix imparts a much higher hot hardness and good thermal stability as a hard coating layer of the above, a companion to have with high fever The hard coating layer has an effect of exhibiting excellent wear resistance even at high speed cutting, but the Al 2 O 3 phase ratio in the hard coating layer is less than 1 area% by cross-sectional observation with an Auger spectrometer. In this case, the desired effect cannot be obtained in the above-mentioned operation. On the other hand, if the same ratio exceeds 15 area%, the excellent high-temperature strength provided by the base material suddenly decreases, so the hard coating layer of the Al 2 O 3 phase The ratio was determined as 1 to 15 area%.

(e)硬質被覆層の平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(E) Average layer thickness of hard coating layer If the layer thickness is less than 1 μm, desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. The average layer thickness was determined to be 1 to 15 μm.

硬質被覆層の素地が、層厚方向に、すぐれた高温硬さと耐熱性を有するAl最高含有点と、すぐれた高温強度を有するTi最高含有点とが交互に所定間隔をおいて繰り返し存在すると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ、前記素地に高温硬さと熱的安定性にすぐれたAl23相が分散分布した組織を有する本発明被覆サーメット工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高温発生を伴う高速条件で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するものである。 The base material of the hard coating layer is repeatedly present in the layer thickness direction with the Al highest content point having excellent high temperature hardness and heat resistance and the Ti highest content point having excellent high temperature strength alternately at predetermined intervals. The Al concentration content has a component concentration distribution structure in which the Al and Ti contents continuously change from the highest Al content point to the highest Ti content point, from the highest Ti content point to the highest Al content point, and in the base. The coated cermet tool of the present invention having a structure in which Al 2 O 3 phase with excellent high-temperature hardness and thermal stability is dispersed and distributed is used for cutting various steels and cast iron under high-speed conditions accompanied by high-temperature generation. In addition, even when performed under heavy cutting conditions such as high cutting and high feed with high mechanical impact, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製のサーメット基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, and after sintering, the cutting edge portion was subjected to honing of R: 0.03, and the cermet substrate A-1 made of WC-based cemented carbide having a chip shape of ISO standard CNMG120408 A-10 was formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製のサーメット基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The cermet bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.

さらに、原料粉末として、いずれも0.5〜3μmの範囲内の所定の平均粒径を有する、相対的にAl含有量の高い各種組成のAl−Ti−B合金粉末および相対的にTi含有量の高い各種組成のTi−Al−B合金粉末、さらにAl23粉末を用い、これら原料粉末を所定の配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、500〜600℃の範囲内の所定の温度に1時間保持の条件で焼結して、相対的にAl含有量の高い各種組成のAl−Ti−B合金の素地にAl23相が所定の割合で分散含有した組織を有するAl系合金焼結体と、同じく相対的にTi含有量の高い各種組成のTi−Al−B合金の素地にAl23相が所定の割合で分散含有した組織を有するTi系合金焼結体(本発明硬質被覆層形成用)を形成した。
また、別途従来硬質被覆層形成用カソード電極として、TiとAlとBの含有割合が異なる各種のTi−Al−B合金も用意した。
Furthermore, as raw material powders, all of Al-Ti-B alloy powders of various compositions having a relatively high Al content and a relatively high Ti content, both having a predetermined average particle size in the range of 0.5 to 3 µm. Ti-Al-B alloy powders of various compositions with high composition, and further Al 2 O 3 powder, these raw material powders are blended into a predetermined composition, wet mixed for 72 hours with a ball mill, dried, and then at a pressure of 100 MPa. Press compacted into green compacts, and the green compacts were sintered in a 6 Pa vacuum at a predetermined temperature in the range of 500-600 ° C. for 1 hour, with various relatively high Al contents. An Al-based alloy sintered body having a structure in which an Al 2 O 3 phase is dispersed and contained at a predetermined ratio on an Al-Ti-B alloy substrate of composition, and Ti-Al of various compositions having a relatively high Ti content the ratio Al 2 O 3 phase is given into a green body of -B alloy Ti-based alloy sintered body having a dispersion containing tissue was formed (present invention for hard layer formation).
In addition, various Ti—Al—B alloys having different content ratios of Ti, Al, and B were also prepared as separate cathode electrodes for forming a conventional hard coating layer.

ついで、上記のサーメット基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブル外周部にそってリング状に装着し、一方側のカソード電極(蒸発源)として、上記のTi最高含有点形成用Ti系合金焼結体、他方側のカソード電極(蒸発源)として、Al最高含有点形成用Al系合金焼結体を前記回転テーブルを挟んで対向配置し、またボンバード洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転するサーメット基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もってサーメット基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するサーメット基体に−100Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Ti最高含有点形成用Ti系合金焼結体およびAl最高含有点形成用Al系合金焼結体)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記サーメット基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在すると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有する素地に、同じく表3,4に示される目標割合でAl23相が分散含有した組織を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。 Next, each of the cermet substrates A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. Ti-based alloy for forming the highest Ti content point as a cathode electrode (evaporation source) mounted on the outer periphery of the table at a predetermined distance in the radial direction from the central axis on the rotary table, as a cathode electrode (evaporation source) on one side As the sintered body, the cathode electrode (evaporation source) on the other side, the Al-based alloy sintered body for forming the highest Al content point is disposed opposite to the rotary table, and the metal Ti for bombard cleaning is also mounted. While the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then is directly applied to a cermet substrate that rotates while rotating on the rotary table. A bias voltage is applied and a current of 100 A is passed between the metal Ti and the anode electrode of the cathode electrode to generate an arc discharge, thereby cleaning the surface of the cermet substrate by Ti bombardment, and then nitrogen as a reactive gas in the apparatus. A gas is introduced to form a reaction atmosphere of 2 Pa, a DC bias voltage of −100 V is applied to the cermet substrate that rotates while rotating on the rotary table, and each cathode electrode (Ti for forming the highest Ti content point) is applied. An arc discharge is generated by passing a current of 100 A between the sintered alloy and the Al-based alloy sintered body for forming the highest Al content point) and the anode electrode, so that the surface of the cermet substrate is formed in the layer thickness direction. Along with the target intervals shown in Tables 3 and 4, the highest Al content points and the highest Ti content points of the target compositions shown in Tables 3 and 4 are alternately shown. To the substrate having a component concentration distribution structure in which the Al and Ti contents continuously change from the Al highest content point to the Ti highest content point, from the Ti highest content point to the Al highest content point, respectively, while being repeatedly present. By coating a hard coating layer having a structure in which Al 2 O 3 phases are dispersed and contained at the target ratios shown in Tables 3 and 4 and also having the target layer thicknesses shown in Tables 3 and 4, the coating of the present invention is performed. The surface-covered cermet throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 as cermet tools were produced, respectively.

また、比較の目的で、これらサーメット基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定の組成をもったTi−Al−B合金を装着し、さらにボンバード洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記サーメット基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もってサーメット基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、サーメット基体に−100Vの直流バイアス電圧を印加し、前記カソード電極のTi−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記サーメット基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these cermet substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and each of the normal arc ions shown in FIG. It is inserted into the plating apparatus, a Ti—Al—B alloy having a predetermined composition is mounted as a cathode electrode (evaporation source), and further a bombard cleaning metal Ti is mounted. The inside of the apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of .5 Pa or less, and then a −1000 V DC bias voltage was applied to the cermet substrate, and the cathode Ti between the metal Ti and the anode electrode An arc discharge is generated by supplying a current of 100 A, so that the surface of the cermet substrate is cleaned by Ti bombardment, and then nitrogen gas is introduced into the apparatus as a reaction gas so as to have a reaction atmosphere of 2 Pa. At the same time, a DC bias voltage of −100 V is applied to the cermet substrate, and a current of 100 A is caused to flow between the Ti—Al—B alloy of the cathode electrode and the anode electrode, thereby generating an arc discharge. Each surface of the substrates A-1 to A-10 and B-1 to B-6 has the target composition and target layer thickness shown in Table 5, and substantially changes in composition along the layer thickness direction. By depositing a hard coating layer consisting of no (Ti, Al, B) N layers, conventional surface coated cermet throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 as conventional coated cermet tools are manufactured. did.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および従来被覆チップ1〜10については、
被削材:JIS・FC250の丸棒、
切削速度:240m/min.、
切り込み:3.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは、120m/min.および2.5mm)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:220m/min.、
切り込み:3mm、
送り:0.4mm/rev.、
切削時間:3分、
の条件での炭素鋼の乾式断続高速高切り込み切削加工試験(通常の切削速度および切り込みは、150m/min.および2mm)、
被削材:JIS・SKD61の丸棒、
切削速度:150m/min.、
切り込み:1mm、
送り:0.5mm/rev.、
切削時間:8分、
の条件での工具鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、100m/min.および0.3mm/rev.)を行なった。
Next, in the state where all the above-mentioned various coated chips are screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the conventional coated chips 1 to 10 are as follows.
Work material: JIS / FC250 round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 3.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
A dry continuous high-speed high-cut cutting test of cast iron under the conditions (normal cutting speed and cutting are 120 m / min. And 2.5 mm),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 220 m / min. ,
Incision: 3mm,
Feed: 0.4 mm / rev. ,
Cutting time: 3 minutes
A carbon steel dry interrupted high-speed high-cut cutting test (normal cutting speed and cutting are 150 m / min. And 2 mm),
Work material: JIS / SKD61 round bar,
Cutting speed: 150 m / min. ,
Cutting depth: 1mm,
Feed: 0.5 mm / rev. ,
Cutting time: 8 minutes
The dry continuous high-speed, high-feed cutting test of the tool steel under the conditions (normal cutting speed and feed were 100 m / min. And 0.3 mm / rev.).

さらに、本発明被覆チップ11〜16および従来被覆チップ11〜16については、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:2.5mm、
送り:0.5mm/rev.、
切削時間:3分、
の条件での合金鋼の乾式断続高速高送り切削加工試験(通常の切削速度および送りは、150m/min.および0.2mm/rev.)、
被削材:JIS・SCM435の丸棒、
切削速度:300m/min.、
切り込み:3mm、
送り:0.4mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは、250m/min.および1.5mm)、
被削材:JIS・SS400の丸棒、
切削速度:400m/min.、
切り込み:2mm、
送り:0.45mm/rev.、
切削時間:15分、
の条件での構造用鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、300m/min.および0.3mm/rev.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Furthermore, for the present coated chips 11-16 and the conventional coated chips 11-16,
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 280 m / min. ,
Incision: 2.5mm,
Feed: 0.5 mm / rev. ,
Cutting time: 3 minutes
Dry interrupted high-speed high-feed cutting test of alloy steel under the conditions (normal cutting speed and feed are 150 m / min. And 0.2 mm / rev.),
Work material: JIS / SCM435 round bar,
Cutting speed: 300 m / min. ,
Incision: 3mm,
Feed: 0.4 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-cut cutting test of alloy steel under the conditions of (normal cutting speed and cutting is 250 m / min. And 1.5 mm),
Work material: JIS / SS400 round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 2mm,
Feed: 0.45 mm / rev. ,
Cutting time: 15 minutes,
A continuous continuous high-speed, high-feed cutting test for structural steel under normal conditions (normal cutting speeds and feeds are 300 m / min. And 0.3 mm / rev.). The surface wear width was measured. The measurement results are shown in Table 6.

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種のサーメット基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもったサーメット基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Prepare a powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder. Each was blended in the blending composition shown in Table 7, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, then pressed into various compacts of a predetermined shape at a pressure of 100 MPa. The green compact is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then fired under furnace cooling conditions. Finally, the diameters are 8mm, 13mm, and 26 m, the three cermet substrate-forming round bar sintered bodies, and the above three kinds of round bar sintered bodies by grinding, in the combinations shown in Table 7, Cermet substrates (end mills) C-1 to C-8 each having a length of 6 mm × 13 mm, a size of 10 mm × 22 mm, and a size of 20 mm × 45 mm, and a four-blade square each having a twist angle of 30 degrees, respectively. Manufactured.

ついで、これらのサーメット基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表8に示される目標間隔で繰り返し存在すると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有する素地に、同じく表8に示される目標割合でAl23相が分散含有した組織を有し、かつ、同じく表8に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, these cermet substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1, the highest Al content point and the highest Ti content point of the target composition shown in Table 8 along the layer thickness direction are alternately present at the target interval shown in Table 8, and the Al The bases having the component concentration distribution structure in which the Al and Ti contents continuously change from the highest content point to the highest Ti content point and from the highest Ti content point to the highest Al content point are also shown in Table 8 have a tissue that Al 2 O 3 phase contained dispersed at a ratio, and also by depositing a hard coating layer of the target layer thicknesses shown in Table 8, the present invention the surface of the present invention coated cermet tool Covered cermet end mill (hereinafter, the present invention refers to the coating end mill) 1-8 were prepared, respectively.

また、比較の目的で、上記のサーメット基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the above cermet substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the same is applied to the ordinary arc ion plating apparatus shown in FIG. And having the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1, and substantially no composition change along the layer thickness direction (Ti, Al, B) By vapor-depositing a hard coating layer composed of an N layer, conventional surface-coated cermet end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as conventional coated cermet tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、
切削速度:150m/min.、
溝深さ(切り込み):2mm、
テーブル送り:900mm/分、
の条件での炭素鋼の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、100m/min.および500mm/分)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:90m/min.、
溝深さ(切り込み):5mm、
テーブル送り:200mm/分、
の条件での工具鋼の乾式高速高切り込み溝切削加工試験(通常の切削速度および溝深さは、60m/min.および3.5mm)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:180m/min.、
溝深さ(切り込み):3mm、
テーブル送り:550mm/分、
の条件での合金鋼の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、100m/min.および240mm/分)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 150 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 900 mm / min,
Carbon steel dry high-speed, high-feed groove cutting test under normal conditions (normal cutting speed and table feed are 100 m / min. And 500 mm / min), the coated end mills 4 to 6 and the conventional coated end mills 4 to 6 Is
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 90 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 200 mm / min,
The tool steel dry dry high-speed, high-groove grooving test (normal cutting speed and groove depth is 60 m / min. And 3.5 mm), the present invention coated end mills 7 and 8 and the conventional coated end mills 7 and 8 about,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 550 mm / min,
A dry high-speed, high-feed groove cutting test (normal cutting speed and table feed is 100 m / min. And 240 mm / min) is performed for each of the above conditions. The cutting groove length was measured until the flank wear width of the blade reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 8 and 9, respectively.

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

上記の実施例2で製造した直径が8mm(サーメット基体C−1〜C−3形成用)、13mm(サーメット基体C−4〜C−6形成用)、および26mm(サーメット基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(サーメット基体D−1〜D−3)、8mm×22mm(サーメット基体D−4〜D−6)、および16mm×45mm(サーメット基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったサーメット基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming cermet substrates C-1 to C-3), 13 mm (for forming cermet substrates C-4 to C-6), and 26 mm (cermet substrates C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (cermet substrate D) by grinding. −1 to D-3), 8 mm × 22 mm (cermet bases D-4 to D-6), and 16 mm × 45 mm (cermet bases D-7 and D-8), and 2 with a twist angle of 30 degrees. Cermet substrates (drills) D-1 to D-8 having a single blade shape were produced.

ついで、これらのサーメット基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在すると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有する素地に、同じく表10に示される目標割合でAl23相が分散含有した組織を有し、かつ、同じく表10に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting blades of these cermet substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. In the same conditions as in Example 1 above, the highest Al content point and the highest Ti content point of the target composition shown in Table 10 along the layer thickness direction alternately at the target interval shown in Table 10 To the substrate having a component concentration distribution structure in which the Al and Ti contents continuously change from the Al highest content point to the Ti highest content point, from the Ti highest content point to the Al highest content point, respectively, while being repeatedly present. also has a tissue Al 2 O 3 phase contained dispersed at the target the proportions shown in Table 10, and also by depositing a hard coating layer of the target layer thicknesses shown in Table 10, the present invention coated Sir Tsu Applications This invention surface coating cermet drill as the tool (hereinafter, the present invention refers to the coating drills) 1-8 were prepared, respectively.

また、比較の目的で、上記のサーメット基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   In addition, for comparison purposes, the cutting blades of the cermet substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried. And having the target composition and target layer thickness shown in Table 11 and substantially no composition change along the layer thickness direction under the same conditions as in Example 1 above. By vapor-depositing a hard coating layer composed of a (Ti, Al, B) N layer, conventional surface-coated cermet drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated cermet tools were produced.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD450の板材、
切削速度:125m/min.、
送り:0.2mm/rev、
穴深さ:8mm、
の条件でのダクタイル鋳鉄の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、75m/min.および0.14mm/rev.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SS400の板材、
切削速度:200m/min.、
送り:0.32mm/rev、
穴深さ:16mm、
の条件での構造用鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、100m/min.および0.23mm/rev.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:150m/min.、
送り:0.35mm/rev、
穴深さ:32mm、
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、80m/min.および0.27mm/rev.)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10,11にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FCD450 plate material,
Cutting speed: 125 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm,
Wet high-speed high-feed drilling test of ductile cast iron under the following conditions (normal cutting speed and feed are 75 m / min. And 0.14 mm / rev.), The present invention coated drills 4 to 6 and the conventional coated drill 4 to For 6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 200 m / min. ,
Feed: 0.32mm / rev,
Hole depth: 16mm,
Wet high-speed high-feed drilling test of structural steel under normal conditions (normal cutting speed and feed are 100 m / min. And 0.23 mm / rev.), Inventive coated drills 7 and 8 and conventional coated drill 7 , 8
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S45C plate,
Cutting speed: 150 m / min. ,
Feed: 0.35mm / rev,
Hole depth: 32mm,
The carbon steel was subjected to a wet high-speed high-feed drilling test (normal cutting speed and feed were 80 m / min. And 0.27 mm / rev.), Respectively. The number of holes drilled until the flank wear width of the tip cutting edge surface reached 0.3 mm was also measured. The measurement results are shown in Tables 10 and 11, respectively.

Figure 2005212049
Figure 2005212049

Figure 2005212049
Figure 2005212049

この結果得られた本発明被覆サーメット工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8を構成する硬質被覆層、並びに従来被覆サーメット工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層について、厚さ方向に沿ってAl、Ti、およびB、さらに酸素(O)の含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆サーメット工具の硬質被覆層では、素地が、Al最高含有点とTi最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在すると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi成分含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、さらにAl23相が目標値と実質的に同じ割合で前記素地に分散分布することが確認され、また硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。
一方前記従来被覆サーメット工具の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すことが確認された。
As a result, the coated chips 1 to 16 of the present invention as the coated cermet tool of the present invention, the hard coated layers constituting the coated end mills 1 to 8 and the coated drills 1 to 8 of the present invention, and the conventional coated cermet tool For hard coating layers of conventional coated chips 1 to 16, conventional coated end mills 1 to 8, and conventional coated drills 1 to 8, the contents of Al, Ti, and B, and oxygen (O) are Auger along the thickness direction. As measured using a spectroscopic analyzer, in the hard coating layer of the coated cermet tool of the present invention, the base material is alternately repeated with the composition and interval between the highest Al content point and the highest Ti content point substantially the same as the target value. Al and Ti content from the highest Al content point to the highest Ti content point and from the highest Ti content point to the highest Al content point. Is a continuously varying component concentration distribution structure, it was confirmed that further Al 2 O 3 phase dispersed distribution on the matrix at substantially the same rate and the target value, and the average layer thickness of the hard coating layer The value was substantially the same as the target layer thickness.
On the other hand, it is confirmed that the hard coating layer of the conventional coated cermet tool shows no composition change along the thickness direction, and shows a composition substantially the same as the target composition and an average layer thickness substantially the same as the target layer thickness. It was done.

表3〜11に示される結果から、層厚方向に、すぐれた高温硬さと耐熱性を有するAl最高含有点と、すぐれた高温強度を有するTi最高含有点とが交互に所定間隔をおいて繰り返し存在すると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有する素地に、Al23相が分散分布した組織を有する硬質被覆層を物理蒸着してなる本発明被覆サーメット工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高温発生を伴う高速条件で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる従来被覆サーメット工具においては、前記の高速重切削条件では、前記硬質被覆層の高温硬さおよび耐熱性不足、並びに高温強度不足が原因で、摩耗進行が速く、かつチッピングも発生し易いことから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高熱発生および高い機械的衝撃を伴う高速重切削条件で行なった場合にも、チッピングの発生なく、すぐれた耐摩耗性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 3 to 11, the highest Al content point having excellent high temperature hardness and heat resistance and the highest Ti content point having excellent high temperature strength are repeatedly repeated at predetermined intervals in the layer thickness direction. In addition to the Al highest content point, the Ti highest content point, the Ti highest content point to the Al highest content point, and a substrate having a component concentration distribution structure in which the Al and Ti contents continuously change, respectively, The coated cermet tool of the present invention formed by physical vapor deposition of a hard coating layer having a structure in which the 2 O 3 phase is distributed and distributed is high in high-speed conditions accompanied by high-temperature generation and high cutting performance of various steels and cast irons. Even when performed under heavy cutting conditions such as high cutting and high feed with mechanical impact, the hard coating layer exhibits excellent wear resistance without occurrence of chipping, whereas the hard coating layer is a layer. In a conventional coated cermet tool composed of a (Ti, Al, B) N layer that does not substantially change in composition along the direction, the high temperature hardness and insufficient heat resistance of the hard coating layer under the high-speed heavy cutting conditions, In addition, due to insufficient high-temperature strength, wear progresses quickly and chipping easily occurs, so that it is clear that the service life is reached in a relatively short time.
As described above, the coated cermet tool according to the present invention can be used not only for cutting under normal conditions, but also for cutting various steels and cast irons under high-speed heavy cutting conditions with high heat generation and high mechanical impact. In this case, since chipping does not occur and excellent wear resistance is exhibited, it is possible to satisfactorily cope with labor saving and energy saving of cutting and cost reduction.

この発明の被覆サーメット工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the covering cermet tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来被覆サーメット工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used in forming the hard coating layer which comprises a conventional coated cermet tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットで構成されたサーメット基体の表面に、AlとTiとB(ボロン)の複合窒化物からなる素地に、酸化アルミニウム相がオージェ分光分析装置による断面観察で1〜15面積%の割合で分散分布した組織を有する硬質被覆層を1〜15μmの平均層厚で物理蒸着してなり、
さらに、上記AlとTiとBの複合窒化物からなる素地が、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有すると共に、
上記Al最高含有点が、組成式:(Al1-(E+Z) TiZ)N(ただし、原子比で、Eは0.05〜0.25、Zは0.01〜0.10を示す)、
上記Ti最高含有点が、組成式:(Ti1-(X+Z)AlZ)N(ただし、原子比で、Xは0.05〜0.25、Zは0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具。
Cross-section observation of aluminum oxide phase on Auger spectrophotometer on substrate made of composite nitride of Al, Ti and B (boron) on the surface of cermet substrate composed of tungsten carbide base cemented carbide or titanium carbonitride cermet The hard coating layer having a structure distributed and distributed at a rate of 1 to 15 area% is physically vapor-deposited with an average layer thickness of 1 to 15 μm,
Furthermore, the base composed of the composite nitride of Al, Ti, and B has an Al highest content point and a Ti highest content point alternately and repeatedly at predetermined intervals along the layer thickness direction. From the content point to the Ti highest content point, from the Ti highest content point to the Al highest content point and having a component concentration distribution structure in which the Al and Ti content continuously change, respectively,
The Al highest content point is the composition formula: (Al 1- (E + Z) Ti E B Z ) N (wherein E is 0.05 to 0.25, Z is 0.01 to 0.00 in terms of atomic ratio). 10),
The Ti maximum content point, composition formula: (Ti 1- (X + Z ) Al X B Z) N ( provided that an atomic ratio, X is 0.05 to 0.25, Z is from 0.01 to 0. 10),
And the interval between the Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.1 μm,
A surface-coated cermet cutting tool that exhibits excellent wear resistance with a hard coating layer under high-speed heavy cutting conditions.
JP2004022360A 2004-01-30 2004-01-30 Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition Pending JP2005212049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022360A JP2005212049A (en) 2004-01-30 2004-01-30 Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022360A JP2005212049A (en) 2004-01-30 2004-01-30 Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition

Publications (1)

Publication Number Publication Date
JP2005212049A true JP2005212049A (en) 2005-08-11

Family

ID=34905736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022360A Pending JP2005212049A (en) 2004-01-30 2004-01-30 Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition

Country Status (1)

Country Link
JP (1) JP2005212049A (en)

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP5035527B2 (en) Surface coated cutting tool
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP3978723B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP2005230926A (en) Surface-coated cermet-made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed deep cutting condition
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4048365B2 (en) Surface coated cermet cutting tool with excellent wear resistance with hard coating layer under high speed heavy cutting conditions
JP4029329B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP3928498B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2005224868A (en) Surface coated cermet made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed heavy cutting condition
JP3972293B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3972294B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2005212049A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed heavy cutting condition
JP3969282B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A711 Notification of change in applicant

Effective date: 20071226

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100122