JP2005211352A - Detoxication method for dioxins - Google Patents

Detoxication method for dioxins Download PDF

Info

Publication number
JP2005211352A
JP2005211352A JP2004022252A JP2004022252A JP2005211352A JP 2005211352 A JP2005211352 A JP 2005211352A JP 2004022252 A JP2004022252 A JP 2004022252A JP 2004022252 A JP2004022252 A JP 2004022252A JP 2005211352 A JP2005211352 A JP 2005211352A
Authority
JP
Japan
Prior art keywords
dioxins
substance
degrees
glutathione
week
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004022252A
Other languages
Japanese (ja)
Inventor
Sadayori Hoshina
定頼 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARIUSU KK
Original Assignee
MARIUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARIUSU KK filed Critical MARIUSU KK
Priority to JP2004022252A priority Critical patent/JP2005211352A/en
Publication of JP2005211352A publication Critical patent/JP2005211352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently decompose and detoxicate dioxins, or highly toxic chemicals, at a relatively low temperature at a low cost. <P>SOLUTION: Liquid yeast extract containing water and glutathione is added to a specimen containing the dioxins and stored at 80-100 °C for a week. It is supposed that sulfur atoms possessed by the glutathione are entered in angular positions of a benzene ring of the dioxins, substituted and hydrophilized to decompose the dioxins. Consequently, 99% or more of the dioxins, different according to the isomers, are removed and detoxicated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はダイオキシン類の無毒化方法に関するものである。   The present invention relates to a method for detoxification of dioxins.

従前ダイオキシン類(ダイオキシン、ダイオキシンの変異体、co−PCBなど)を分解する技術としては、対象物を約400度で数時間過熱して分解するものがある。しかしこの方法によれば分解した塩素など化学物質が揮発し、揮発した化学物質が周囲の環境に悪影響を与える可能性があった。またこの方法によれば揮発した塩素を金属ナトリウムで吸着しなければならず、ダイオキシンの分解には1トンあたり15万円から20万円ほどの費用がかかった。特開2003−190917号は廃棄物を600度から1000度ないし500度から1000度に加熱するが、かような高温度状態をつくり維持することはエネルギーが必要である。特開2003−94001号は焼却飛灰の処理につきジチオカルバミン酸基、チオカルバミン酸基など硫黄原子を含む有機硫黄化合物等を焼却飛灰に加えて混成するものである。しかしダイオキシン類の量の減少は多い場合でおよそ半分にしか減少せず約3割もしくは約1割の減少にとどまる場合もある点で問題である。また、この方法によれば有機硫黄化合物が高額で費用がかかる。
特開2003−190917号公報 特開2003−94001号公報 保科定頼ら著 「平成14年度ダイオキシン類汚染水質・土壌の微生物による直接浄化システムに関する調査研究 報告書」財団法人エンジニアリング振興協会発行 2003年
Conventional techniques for decomposing dioxins (dioxins, dioxin mutants, co-PCB, etc.) include decomposing an object by heating it at about 400 degrees for several hours. However, according to this method, chemical substances such as decomposed chlorine are volatilized and the volatilized chemical substances may adversely affect the surrounding environment. Further, according to this method, volatilized chlorine had to be adsorbed with metallic sodium, and the decomposition of dioxin cost from 150,000 to 200,000 yen per ton. Japanese Patent Application Laid-Open No. 2003-190917 heats waste from 600 degrees to 1000 degrees to 500 degrees to 1000 degrees, but creating and maintaining such a high temperature state requires energy. Japanese Patent Application Laid-Open No. 2003-94001 adds an organic sulfur compound containing a sulfur atom such as a dithiocarbamic acid group or a thiocarbamic acid group to the incinerated fly ash for the treatment of the incinerated fly ash. However, the decrease in the amount of dioxins is a problem in that it is only reduced by about half in some cases and may be only about 30% or about 10%. Further, according to this method, the organic sulfur compound is expensive and expensive.
JP 2003-190917 A JP 2003-94001 A Published by Sadayori Hoshina “Survey Report on Direct Pollution System of Dioxins Contaminated Water Quality and Soil by Fiscal 2002” Published by Japan Society for Promotion of Engineering 2003

80度から100度程度の温度でかつ低コストにダイオキシン類を効率よく無毒化する方法である。   This is a method for efficiently detoxifying dioxins at a temperature of about 80 to 100 degrees and at a low cost.

ダイオキシン類に水とグルタチオンを加えて80度から100度の温度で1週間保存する。   Add water and glutathione to dioxins and store at a temperature of 80 to 100 degrees for 1 week.

グルタチオンは酵母抽出液やビール酵母にも多く含まれ酵母抽出液やビール酵母は安価で手に入りやすくダイオキシン類の無毒化を低コストで実現できる。また、本発明によれば多くのダイオキシン類の量を99%以上減少させることがきる。さらに、試料を保存する温度が100度であって温度が比較的に低いため高価な炉を用意せず比較的低温で無毒化を実現でき、高熱に弱い試料内のダイオキシン類も無毒化できる。   Glutathione is also abundant in yeast extract and brewer's yeast. Yeast extract and brewer's yeast are inexpensive and easy to obtain, and can achieve detoxification of dioxins at low cost. Further, according to the present invention, the amount of many dioxins can be reduced by 99% or more. Furthermore, since the temperature at which the sample is stored is 100 ° C. and the temperature is relatively low, detoxification can be realized at a relatively low temperature without preparing an expensive furnace, and dioxins in the sample that are sensitive to high heat can be detoxified.

以下発明を実施するための最良の形態を示すがこれに限定されるものではない。ダイオキシン類が存在する試料とBBL社製のTryptic Soy Broth液を4分の1に希釈した液に酵母抽出物(BBL社製)を0.1%になるように加えた反応液を混入し、混入した試料を80度から100度に設定して1週間保存する。   The best mode for carrying out the invention will be described below, but the present invention is not limited thereto. Mixing a sample solution containing dioxins and a Tryptic Soy Broth solution made by BBL to 1/4 dilution with a yeast extract (BBL) added to a concentration of 0.1%, The mixed sample is set at 80 to 100 degrees and stored for one week.

表1にダイオキシン類が存在する試料とBBL社製のTryptic Soy Broth液を4分の1に希釈した液に酵母抽出物(BBL社製)を0.1%になるように加えた反応液を混入し、混入した試料を100度に設定して3日間保存した実験結果と1週間保存した実験結果を示す。ダイオキシン類の測定にはガスクロマトグラフィー・マススペクトロメトリーを使用した。

Figure 2005211352
The reaction liquid which added yeast extract (made by BBL) to the liquid which diluted the sample in which dioxins exist in Table 1 and the Tryptic Soy Broth liquid made from BBL to 1/4 is added to 0.1%. The experimental results of mixing and setting the mixed sample at 100 degrees and storing for 3 days and the experimental results stored for 1 week are shown. Gas chromatography / mass spectrometry was used to measure dioxins.
Figure 2005211352

上記実験結果によれば、2、3、7、8−TCDD(Tetra Chloro Dibenzo Dioxin)で0.25%(小数点以下3桁目を四捨五入,以下同じ)、1、2、3、7、8−PeCCDで0.43%、1、2、3、4、7、8−HxCDDで0.82%、2、3、7、8−TCDF(Tetra Chloro Dibenzo Fran)で0.32%に減少するなどしており、他の対象物質にも著しい減少結果として現れているようにその効果は著しいものがある。   According to the above experimental results, 2, 3,4,8-TCDD (Tetra Chloro Dibenzo Dioxin) is 0.25% (the third decimal place is rounded off, the same applies hereinafter), 1, 2, 3, 7, 8- For PeCCD, 0.43%, 1, 2, 3, 4, 7, 8-HxCDD 0.82%, 2, 3, 7, 8-TCDF (Tetra Chloro Divenzo Fran) decreases to 0.32%, etc. The effect is remarkable as it appears as a significant decrease in other target substances.

表2にダイオキシン類が存在する試料とBBL社製のTryptic Soy Broth液を4分の1に希釈した液に酵母抽出物(BBL社製)を0.1%になるように加えた反応液を混入し、混入した試料を80度に設定して3日間保存した実験結果と1週間保存した実験結果を示す。ダイオキシン類の測定にはガスクロマトグラフィー・マススペクトロメトリーを使用した。

Figure 2005211352
Table 2 shows a reaction solution in which a yeast extract (manufactured by BBL) is added to a solution obtained by diluting a sample in which dioxins are present and a Tryptic Soy Broth solution manufactured by BBL to a quarter to 0.1%. The experimental results of mixing and setting the mixed sample at 80 degrees and storing for 3 days and the experimental results stored for 1 week are shown. Gas chromatography / mass spectrometry was used to measure dioxins.
Figure 2005211352

上記実験結果によれば、2、3、7、8−TCDDで100%、1、2、3、7、8−PeCCDで100%、1、2、3、4、7、8−HxCDDで98%、2、3、7、8−TCDFで99%に減少するなどしており、他の対象物質にも著しい減少結果として現れているようにその効果は著しいものがある。   According to the experimental results, 100% for 2, 3, 7, 8-TCDD, 100% for 1, 2, 3, 7, 8-PeCCD, 98 for 1, 2, 3, 4, 7, 8-HxCDD. %, 2, 3, 7, 8-TCDF is reduced to 99%, and the effect is remarkable as shown as a significant reduction result in other target substances.

本発明の原理として以下の様に推測した。化1に蛍光基質を有する物質の化学式(以下、「A物質1」という。)を示す。

Figure 2005211352
化2に1酸素架橋開裂を有する物質の化学式(以下、「B物質2」という。)を示す。
Figure 2005211352
化3にエーテル結合開裂後の物質の化学式(以下、「C物質3」という。名称エスクレチン)を示す。
Figure 2005211352
A物質1は蛍光性質を有していない。B物質2は蛍光性質を有しており所定の波長で発光する。C物質3も蛍光性質を有しており所定の波長で発光する。化4に2、3、7、8−TCDDの化学式を示す。
Figure 2005211352
A物質1は2、3、7、8−TCDDと比較して7、8の部位にメチル基等を有するベンゼン環が結合している点を除いて同じ化学構造をしている。参考文献129ページ以下ではA物質1を擬似的に2、3、7、8−TCDDに見立ててBacillus midousujiを使用して化学反応を起こさせ、1酸素架橋開裂やエーテル結合が開裂して各々B物質2やC物質3が生じた場合、その蛍光を観測して擬似的2、3、7、8−TCDDが分解し無毒化されるかを実験している。 The principle of the present invention was estimated as follows. Chemical formula 1 of the substance having a fluorescent substrate (hereinafter referred to as “A substance 1”) is shown in Chemical formula 1.
Figure 2005211352
Chemical formula 2 shows the chemical formula (hereinafter referred to as “B substance 2”) of a substance having 1 oxygen cross-link cleavage.
Figure 2005211352
Chemical formula of the substance after the ether bond cleavage (hereinafter referred to as “C substance 3”, name esculetin) is shown in Chemical formula 3.
Figure 2005211352
Substance A 1 does not have fluorescent properties. The substance B 2 has a fluorescent property and emits light at a predetermined wavelength. The substance C 3 also has fluorescent properties and emits light at a predetermined wavelength. Chemical formulas of 2, 3, 7, and 8-TCDD are shown in Chemical formula 4.
Figure 2005211352
Substance A 1 has the same chemical structure except that a benzene ring having a methyl group or the like is bonded to sites 7 and 8 as compared to 2, 3, 7, and 8-TCDD. In Reference Document 129 and below, substance A 1 is simulated as 2, 3, 7, 8-TCDD, and a chemical reaction is caused using Bacillus midousuji, and 1 oxygen bridge cleavage or ether bond is cleaved to form B. When the substance 2 and the substance C 3 are generated, the fluorescence is observed to experiment whether the pseudo 2, 3, 7, 8-TCDD is decomposed and detoxified.

図1にグルタチオンによるA物質1の代謝を推測した図を示す(参考文献1の44ページ)。
化5にグルタチオンの化学式を示す。

Figure 2005211352
Bacillus midousujiを使用した結果B物質2、C物質3が生じてA物質1が分解され無毒化されるが、この現象の原理はA物質1の酸素原子に隣接するアンギュラー位に硫黄原子Sが入り、親水化することによって1酸素架橋開裂が生じエーテル結合が開裂していくと推測されている。グルタチオンは硫黄原子Sを有する化学構造を持つが、かかる硫黄原子Sがダイオキシン類のベンゼン環のアンギュラー位に入り親水化することで無毒化する。その後1酸素架橋開裂が生じエーテル結合が開裂すると推測される。そして、試料の温度を上げることによって化学反応が円滑に進行し擬似的な2、3、7、8−TCDDであるA物質1が分解され無毒化されるものと推測される。また、ダイオキシン類における分子の塩素原子に硫黄原子が置換することによって無毒化される場合があると推測される。グルタチオンを含む酵母抽出液のほかグルタチオンを含むビール酵母を溶かした混合物、システイン、メチオニン、硫化鉄を使用しても硫黄元素Sがエーテル結合を担う酸素原子を排除し置換することで1酸素架橋開裂が生じエーテル結合が開裂すると推測される。 FIG. 1 shows a diagram inferring the metabolism of substance A 1 by glutathione (page 44 of Reference 1).
Chemical formula of glutathione is shown in Chemical formula 5.
Figure 2005211352
As a result of using Bacillus midousuji, B substance 2 and C substance 3 are produced and A substance 1 is decomposed and detoxified. The principle of this phenomenon is that sulfur atom S enters the angular position adjacent to the oxygen atom of A substance 1. It is presumed that by hydrophilization, monooxygen bridge cleavage occurs and the ether bond is cleaved. Glutathione has a chemical structure having a sulfur atom S, but the sulfur atom S enters the angular position of the benzene ring of dioxins and is rendered hydrophilic by dehydration. Thereafter, it is presumed that one oxygen bridge cleavage occurs and the ether bond is cleaved. Then, it is presumed that the chemical reaction proceeds smoothly by raising the temperature of the sample, and the pseudo A substance 1 which is 2, 3, 7, 8-TCDD is decomposed and detoxified. Moreover, it is estimated that a sulfur atom may substitute for the chlorine atom of the molecule | numerator in dioxins, and it may detoxify. In addition to yeast extract containing glutathione, a mixture of brewer's yeast containing glutathione, cysteine, methionine, and iron sulfide, sulfur element S eliminates oxygen atoms responsible for ether bonds and replaces them, thereby cross-linking one oxygen. And the ether bond is presumed to be cleaved.

効率よく低コストで80度から100度程度の温度でダイオキシン類を分解し無毒化でき汚染物の除去、廃棄等に関して絶大な効果がある。   Dioxins can be decomposed and detoxified at a temperature of about 80 to 100 degrees efficiently and at a low cost, and there is a great effect in terms of removal and disposal of contaminants.

グルタチオンによるA物質1の代謝を推測した図Figure inferring metabolism of substance A 1 by glutathione

符号の説明Explanation of symbols

1 A物質
2 B物質
3 C物質
1 A substance 2 B substance 3 C substance

Claims (6)

ダイオキシン類に水とグルタチオンを加えた混合物を80度から100度で1週間保存することによってダイオキシン類を分解する方法。   A method for decomposing dioxins by storing a mixture of dioxins with water and glutathione at 80 to 100 degrees for 1 week. ダイオキシン類に水と酵母抽出液を加えた混合物を80度から100度で1週間保存することによってダイオキシン類を分解する方法。   A method of decomposing dioxins by storing a mixture of dioxins with water and yeast extract at 80 to 100 degrees for 1 week. ダイオキシン類に水とビール酵母を加えた混合物を80度から100度で1週間保存することによってダイオキシン類を分解する方法。   A method for decomposing dioxins by storing a mixture of dioxins with water and brewer's yeast at 80 to 100 degrees for 1 week. ダイオキシン類に水と硫化鉄を加えた混合物を80度から100度で1週間保存することによってダイオキシン類を分解する方法。   A method for decomposing dioxins by storing a mixture of dioxins with water and iron sulfide at 80 to 100 degrees for one week. ダイオキシン類に水とシステインを加えた混合物を80度から100度で1週間保存することによってダイオキシン類を分解する方法。   A method for decomposing dioxins by storing a mixture of dioxins with water and cysteine at 80 to 100 degrees for 1 week. ダイオキシン類に水とメチオニンを加えた混合物を80度から100度で1週間保存することによってダイオキシン類を分解する方法。   A method of decomposing dioxins by storing a mixture of dioxins with water and methionine at 80 to 100 degrees for 1 week.
JP2004022252A 2004-01-29 2004-01-29 Detoxication method for dioxins Pending JP2005211352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022252A JP2005211352A (en) 2004-01-29 2004-01-29 Detoxication method for dioxins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022252A JP2005211352A (en) 2004-01-29 2004-01-29 Detoxication method for dioxins

Publications (1)

Publication Number Publication Date
JP2005211352A true JP2005211352A (en) 2005-08-11

Family

ID=34905650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022252A Pending JP2005211352A (en) 2004-01-29 2004-01-29 Detoxication method for dioxins

Country Status (1)

Country Link
JP (1) JP2005211352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236136A (en) * 2011-05-11 2012-12-06 Taisei Corp Method of suppressing elution of heavy metal and/or organic halide contained in sludge and/or soil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287732A (en) * 1987-05-12 1988-11-24 ビーエーエスエフ・アクチエンゲゼルシヤフト Reduction dehalogenation for organic halogen compound
JPH10225677A (en) * 1995-02-06 1998-08-25 Inland Consultants Inc Composition and method for bioremediation of halogen polluted soil
JP2000342709A (en) * 1999-06-07 2000-12-12 Kurita Water Ind Ltd Method of decomposing halogenated organic compound
JP2003251331A (en) * 2002-03-01 2003-09-09 Ecocycle Corp Method for biologically restoring polluted soil or underground water, and additive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287732A (en) * 1987-05-12 1988-11-24 ビーエーエスエフ・アクチエンゲゼルシヤフト Reduction dehalogenation for organic halogen compound
JPH10225677A (en) * 1995-02-06 1998-08-25 Inland Consultants Inc Composition and method for bioremediation of halogen polluted soil
JP2000342709A (en) * 1999-06-07 2000-12-12 Kurita Water Ind Ltd Method of decomposing halogenated organic compound
JP2003251331A (en) * 2002-03-01 2003-09-09 Ecocycle Corp Method for biologically restoring polluted soil or underground water, and additive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236136A (en) * 2011-05-11 2012-12-06 Taisei Corp Method of suppressing elution of heavy metal and/or organic halide contained in sludge and/or soil

Similar Documents

Publication Publication Date Title
Weerasooriya et al. Pyrite-assisted degradation of trichloroethene (TCE)
Teel et al. Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene
Fullana et al. Formation and destruction of chlorinated pollutants during sewage sludge incineration
Dominguez et al. Remediation of HCHs-contaminated sediments by chemical oxidation treatments
ATE505241T1 (en) DECONTAMINANTS
JP5272306B2 (en) Heavy metal treating agent and method for treating heavy metal contaminants
Katsumata et al. Sonochemical degradation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxins in aqueous solution with Fe (III)/UV system
JP2005211352A (en) Detoxication method for dioxins
Darracq et al. Integrated process for hydrophobic VOC treatment—solvent choice
JP2006075469A (en) Method of decomposing organic contaminant
JP2006306736A (en) Method of hydrothermally decomposing fluorinated organic compound
JP2006316183A (en) Heavy metal treating agent and treating method of heavy metal using the same
Strandberg et al. PFAS in waste residuals from Swedish incineration plants
JP2000210683A (en) Method for cleaning soil and/or groundwater
Liu et al. High persistence of novel polyfluoroalkyl betaines in aerobic soils
JP2005288276A (en) Additive used in restoring contaminated soil, ground water or sedimentary soil deposit
JP2004202364A (en) Soil treatment method
Popiel et al. The reactions of sulfur mustard with the active components of organic decontaminants
JP2008200628A (en) Heavy metal treatment agent and method for treating material contaminated with heavy metal using the same
Nguyen et al. Emission and distribution profiles of polycyclic aromatic hydrocarbons in solid residues of municipal and industrial waste incinerators, Northern Vietnam
Peng et al. A review on remediation technologies of pcbs from the contaminated soils or sediments
Błaszczyk et al. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review
Santos et al. Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO
JP2010022958A (en) Photolysis method
Domínguez Torre et al. Remediation of HCHs-contaminated sediments by chemical oxidation treatments

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518