JP2005207880A - Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device - Google Patents

Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device Download PDF

Info

Publication number
JP2005207880A
JP2005207880A JP2004014556A JP2004014556A JP2005207880A JP 2005207880 A JP2005207880 A JP 2005207880A JP 2004014556 A JP2004014556 A JP 2004014556A JP 2004014556 A JP2004014556 A JP 2004014556A JP 2005207880 A JP2005207880 A JP 2005207880A
Authority
JP
Japan
Prior art keywords
electron beam
sample
electron
wafer
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014556A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Shinji Nomichi
伸治 野路
Toru Satake
徹 佐竹
Shiyunichi Aiyoshizawa
俊一 相吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004014556A priority Critical patent/JP2005207880A/en
Publication of JP2005207880A publication Critical patent/JP2005207880A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron beam device which can irradiate a sample with a low-energy electron beam in an electron beam device for irradiating a low-permittivity material with an electron beam to anneal or harden it and a method for manufacturing a device by using the electron beam device. <P>SOLUTION: In the electron beam device where the sample 3 is irradiated with an electron beam emitted from an electron gun 11 to modify a material property 2 on the surface of the sample 3, the electron gun 11 is located in a position which cannot be seen directly from the sample 3 and the electron beam emitted from the electron gun 11 is deflected by a deflection means 13 and is incident on the surface of the sample 3. The electron gun 11 is located so as to form a prescribed angle between its optical axis and the normal 4 of the sample 3, and deflection means 16 and 17 deflect the electron beam so as to irradiate the surface of the sample 3 with the electron beam of a uniform irradiation dose. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低誘電率材料を電子線で照射してアニール又は硬化を行うための電子線装置及び該電子線装置を用いたデバイス製造方法に関する。   The present invention relates to an electron beam apparatus for performing annealing or curing by irradiating a low dielectric constant material with an electron beam and a device manufacturing method using the electron beam apparatus.

有機物の低誘電率材料をアニールするには、従来は、加熱による方法、紫外線照射による方法又は窓付き電子線照射装置によるもの等が行われていた。しかし、加熱によるのでは1枚のウェーハを処理するのに長時間を要し、紫外線照射を行うとしても照射装置の出力が小さいために1枚のウェーハの処理に長時間を要するという問題がある。また、窓付き電子線装置を用いる場合には、電子線に窓を通過させるよう高エネルギのビームとすることが必要であるが、電子線を高エネルギとすると、その殆どが材料を通過してしまって効率が悪いという問題があった。   In order to anneal an organic low dielectric constant material, conventionally, a method using heating, a method using ultraviolet irradiation, or a method using an electron beam irradiation apparatus with a window has been used. However, heating requires a long time to process one wafer, and even if ultraviolet irradiation is performed, there is a problem that a long time is required to process one wafer because the output of the irradiation apparatus is small. . In addition, when using an electron beam apparatus with a window, it is necessary to use a high energy beam so that the electron beam can pass through the window. However, when the electron beam has a high energy, most of it passes through the material. There was a problem that it was inefficient.

本発明は上記の問題点を解決するために提案されたものであり、本発明は、真空中で低エネルギの電子線を照射することによりアニール又は硬化を可能とする電子線装置及び該電子線装置を用いたデバイス製造方法を提供することを目的とする。   The present invention has been proposed to solve the above-described problems. The present invention relates to an electron beam apparatus that can be annealed or cured by irradiating a low energy electron beam in a vacuum, and the electron beam. An object of the present invention is to provide a device manufacturing method using the apparatus.

上記の目的を達成するために、請求項1の発明は、
電子銃から放出された電子線を試料に照射し、該試料の表面の材質を変化させる電子線装置において、
前記電子銃が、前記試料から直視不能な位置に配置され、
前記電子銃から放出された電子線を偏向して前記試料の表面に入射させる偏向手段を備える
ことを特徴とする電子線装置、
を提供する。
In order to achieve the above object, the invention of claim 1
In an electron beam apparatus that irradiates a sample with an electron beam emitted from an electron gun and changes the material of the surface of the sample,
The electron gun is disposed at a position where it cannot be directly viewed from the sample;
An electron beam apparatus comprising deflection means for deflecting an electron beam emitted from the electron gun so as to enter the surface of the sample;
I will provide a.

請求項2の発明は、前記電子銃の光軸と前記試料の法線とが所定の角度をなすように、前記電子銃を配置し、前記偏向手段が、前記電子線を前記光軸に沿う方向から前記法線に沿う方向へ偏向させるよう動作することを特徴とするものである。   According to a second aspect of the present invention, the electron gun is arranged so that an optical axis of the electron gun and a normal line of the sample form a predetermined angle, and the deflecting unit moves the electron beam along the optical axis. It is characterized by operating to deflect in a direction along the normal from the direction.

請求項3の発明は、前記偏向手段が、前記電子線を前記試料の表面に一様に照射するよう偏向する偏向器を更に含むことを特徴とする。
請求項4の発明は、前記偏向器の近傍に配置され、前記電子線を通過させるための小開口を有する開口板を更に備えることを特徴とする。
The invention of claim 3 is characterized in that the deflecting means further includes a deflector for deflecting the electron beam so as to uniformly irradiate the surface of the sample.
The invention of claim 4 further includes an aperture plate disposed in the vicinity of the deflector and having a small aperture for allowing the electron beam to pass therethrough.

請求項5の発明は、(1)基板に誘電体材料を塗布するステップと、(2)前記誘電体材料が塗布された基板を試料室にロードするステップと、(3)請求項1〜4のいずれか一つに記載の電子線装置を用いて、前記誘電体材料に電子線を照射するステップと、
を備えることを特徴とするデバイス製造方法を提供する。
The invention of claim 5 includes (1) a step of applying a dielectric material to a substrate, (2) a step of loading the substrate coated with the dielectric material into a sample chamber, and (3) claims 1-4. Irradiating the dielectric material with an electron beam using the electron beam apparatus according to any one of
A device manufacturing method is provided.

図1は、本発明に係る電子線装置の一つの実施の形態における構成を概略的に示す図である。同図において、試料室1の底部に設けられたステージ(図示せず)の上に、1.5〜3の範囲の誘電率を持つ低誘電率層2が表面に塗布されたウェーハ3が載置されている。ウェーハ3の材料は例えばSiである。ウェーハ3の表面の低誘電率層2は、ウェーハ3の法線4の方向に進行する電子線によって照射される。この電子線の持つエネルギは2〜10keVである。この目的のために、試料室1には、円筒部51とこの円筒部51に連なって上端に向かって径が細くなる円錐台部52とを有する筒体5が載置され、試料室1及び筒体5の内部は真空に保たれる。筒体5の円錐台部52の上部には電子銃室6が設けられ、その中に、LaB製のカソード7、このカソードを加熱するためのカーボンヒーター8、ウェーネルト電極9及びアノード電極10を有する電子銃11が設けられる。電子銃室6の内部はイオンポンプで排気され、高真空に保たれる。これにより、LaB製のカソード7を長寿命に保つことができる。 FIG. 1 is a diagram schematically showing a configuration in one embodiment of an electron beam apparatus according to the present invention. In the figure, a wafer 3 having a surface coated with a low dielectric constant layer 2 having a dielectric constant in the range of 1.5 to 3 is placed on a stage (not shown) provided at the bottom of the sample chamber 1. Is placed. The material of the wafer 3 is, for example, Si. The low dielectric constant layer 2 on the surface of the wafer 3 is irradiated with an electron beam traveling in the direction of the normal 4 of the wafer 3. The energy of this electron beam is 2 to 10 keV. For this purpose, the sample chamber 1 is mounted with a cylindrical body 5 having a cylindrical portion 51 and a truncated cone portion 52 which is continuous with the cylindrical portion 51 and whose diameter decreases toward the upper end. The inside of the cylinder 5 is kept in a vacuum. An electron gun chamber 6 is provided in the upper part of the truncated cone part 52 of the cylindrical body 5. A cathode 7 made of LaB 6 , a carbon heater 8 for heating the cathode, a Wehnelt electrode 9 and an anode electrode 10 are contained therein. An electron gun 11 is provided. The inside of the electron gun chamber 6 is evacuated by an ion pump and kept at a high vacuum. Thereby, the cathode 7 made of LaB 6 can be maintained in a long life.

電子銃11は、その光軸12がウェーハ3の法線4に対して所定の角度、例えば15度傾斜するよう設けられる。そこで、電子銃11から放出された電子線によってウェーハ3を照射するために、電子銃11の前方には電磁偏向器13が配置され、電子銃11から放出された電子線は電磁偏向器13によって進行方向を所定の角度だけ偏向されて法線4に平行に進行する。電磁偏向器13は、例えば、永久磁石と偏向量を調整するためのコイルとを有する。なお、光軸12とウェーハ3の法線4とのなす角度は5度〜45度の範囲内の任意の値であってよい。   The electron gun 11 is provided such that its optical axis 12 is inclined at a predetermined angle, for example, 15 degrees with respect to the normal 4 of the wafer 3. In order to irradiate the wafer 3 with the electron beam emitted from the electron gun 11, an electromagnetic deflector 13 is disposed in front of the electron gun 11, and the electron beam emitted from the electron gun 11 is transmitted by the electromagnetic deflector 13. The traveling direction is deflected by a predetermined angle and proceeds parallel to the normal 4. The electromagnetic deflector 13 includes, for example, a permanent magnet and a coil for adjusting the deflection amount. The angle formed between the optical axis 12 and the normal 4 of the wafer 3 may be any value within the range of 5 degrees to 45 degrees.

電子銃室6と円錐台部52との間を接続する位置に開口板14が配置され、開口板15はその中央に小開口15を有する。そこで、電磁偏向器13によって進行方向を変えられた電子線は開口板14の小開口15を通過して円錐台部52の内部へ入ってウェーハ3の方へ進行する。開口板14はウェーハ3から放出されたガス等の不要物質が電子銃室6内に侵入するのを防止するために設けられ、例えば、電子線の照射によってウェーハ3から放出された正イオンの殆どは、開口板14によって阻止されて電子銃室6に侵入できず、例え侵入したとしても正イオンは電磁偏向器13によって曲げられることがないので、カソード7が損傷されず、カソード7の劣化を防止できる。   An opening plate 14 is disposed at a position connecting the electron gun chamber 6 and the truncated cone portion 52, and the opening plate 15 has a small opening 15 at the center thereof. Therefore, the electron beam whose traveling direction is changed by the electromagnetic deflector 13 passes through the small opening 15 of the aperture plate 14, enters the truncated cone portion 52, and travels toward the wafer 3. The aperture plate 14 is provided in order to prevent unnecessary substances such as gas emitted from the wafer 3 from entering the electron gun chamber 6. For example, most of the positive ions emitted from the wafer 3 by the irradiation of the electron beam. Is blocked by the aperture plate 14 and cannot enter the electron gun chamber 6. Even if it enters, the positive ions are not bent by the electromagnetic deflector 13, so that the cathode 7 is not damaged and the cathode 7 is deteriorated. Can be prevented.

円錐台部52の上端外側には、開口板14を囲むように第1の偏向器16が配置され、円錐台部52の第1の偏向器16に囲まれる部分及びその近傍はTiからなる薄い壁で作られる。これにより、第1の偏向器16は高周波の偏向磁場を円錐台部52の上端内部付近に形成することができる。また、円筒部51の下部外側でウェーハ3の上側の位置に第2の偏向器17が配置され、円筒部51の第2の偏向器17に囲まれる部分及びその近傍もTiからなる薄い壁で作られる。これにより、第2の偏向器17は高周波の偏向磁場を円筒部51の内部に形成することができる。この結果、開口板14を通過してきた電子線は、第1の偏向器16と第2の偏向器17との共同作用により、一定の幅のビームで、一定の走査速度で螺旋形を描くように走査を行い、一点鎖線で示す範囲内を一様なドーズで照射し、ウェーハ3の表面を被覆する低誘電率層2を一様な且つ適切なドーズでウェーハ3を照射する。こうして、低誘電率層2は一様な且つ適切な強さの電子線で照射されるので、低誘電率層2のアニールまたはキュアを行うことができる。   The first deflector 16 is disposed outside the upper end of the truncated cone portion 52 so as to surround the aperture plate 14, and a portion of the truncated cone portion 52 surrounded by the first deflector 16 and the vicinity thereof are thin made of Ti. Made of walls. As a result, the first deflector 16 can form a high-frequency deflection magnetic field in the vicinity of the inside of the upper end of the truncated cone portion 52. The second deflector 17 is disposed outside the lower portion of the cylindrical portion 51 at the upper position of the wafer 3, and the portion surrounded by the second deflector 17 of the cylindrical portion 51 and the vicinity thereof are also thin walls made of Ti. Made. Thus, the second deflector 17 can form a high-frequency deflection magnetic field inside the cylindrical portion 51. As a result, the electron beam that has passed through the aperture plate 14 draws a spiral with a constant width and a constant scanning speed by the cooperative action of the first deflector 16 and the second deflector 17. The wafer 3 is irradiated with a uniform dose within the range indicated by the alternate long and short dash line, and the wafer 3 is irradiated with a uniform and appropriate dose on the low dielectric constant layer 2 covering the surface of the wafer 3. Thus, since the low dielectric constant layer 2 is irradiated with an electron beam having a uniform and appropriate intensity, the low dielectric constant layer 2 can be annealed or cured.

また、装置の外側に、円錐台部52を囲むように、電磁レンズを構成する強磁性体コア53と励磁コイル54とを設け、ウェーハ3上でのビーム径を所定の値に制御すると、ウェーハ表面を一様なドーズで照射するのに好都合である。   Further, when a ferromagnetic core 53 and an excitation coil 54 that constitute an electromagnetic lens are provided outside the apparatus so as to surround the truncated cone portion 52, and the beam diameter on the wafer 3 is controlled to a predetermined value, the wafer It is convenient to irradiate the surface with a uniform dose.

以上、図1を用いて説明した、本発明に係る電子線装置は、図2及び図3に示す半導体デバイス製造方法におけるアニール工程において適用される。
図2は、半導体デバイス製造方法の一例を示すフローチャートである。この製造方法は以下の主工程を含んでいる。
(1)ウェーハを製造するウェーハ製造工程(又は、ウェーハを準備するウェーハ準備工程)S1
(2)露光に使用するマスクを製造するマスク製造工程(又は、マスクを準備するマスク準備工程)S2
(3)ウェーハに必要な加工処理を行うウェーハ・プロセッシング工程S3
(4)ウェーハ上に形成されたチップを一個づつ切り出し、動作可能にならしめるチップ組立て工程S4
(5)完成したチップを検査する検査工程S5。
上記のそれぞれの主工程は更に幾つかのサブ工程からなる。
The electron beam apparatus according to the present invention described above with reference to FIG. 1 is applied in the annealing step in the semiconductor device manufacturing method shown in FIGS.
FIG. 2 is a flowchart showing an example of a semiconductor device manufacturing method. This manufacturing method includes the following main steps.
(1) Wafer manufacturing process for manufacturing a wafer (or wafer preparation process for preparing a wafer) S1
(2) Mask manufacturing process for manufacturing a mask used for exposure (or mask preparation process for preparing a mask) S2
(3) Wafer processing step S3 for performing necessary processing on the wafer
(4) Chip assembly process S4 for cutting out chips formed on the wafer one by one and making them operable.
(5) Inspection step S5 for inspecting the completed chip.
Each of the above main processes further comprises several sub-processes.

これらの主工程の中で、半導体デバイスの性能に決定的な影響を及ぼすのが(3)のウェーハ・プロセッシング工程S3である。この工程では、設計された回路パターンをウェーハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウェーハ・プロセッシング工程は以下の各工程を含む。
(1)絶縁層となる誘電体薄膜や配線部、或いは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリング等を用いる)
(2)この薄膜層やウェーハ基板を酸化する酸化工程
(3)薄膜層やウェーハ基板を選択的に加工するためにマスク(レチクル)を用いてレジスト・パターンを形成するリソグラフィ工程
(4)レジスト・パターンに従って薄膜層や基板を加工するエッチング工程(例えばドライ・エッチング技術を用いる)
(5)イオン・不純物注入拡散工程
(6)レジスト剥離工程
(7)加工されたウェーハを検査する工程。
ウェーハ・プロセッシング工程は必要な層数だけ繰り返され、設計通り動作する半導体デバイスを製造する。
Among these main processes, the wafer processing process S3 of (3) has a decisive influence on the performance of the semiconductor device. In this process, designed circuit patterns are sequentially stacked on a wafer to form a large number of chips that operate as memories and MPUs. This wafer processing process includes the following processes.
(1) A thin film forming process for forming a dielectric thin film to be an insulating layer, a wiring part, or a metal thin film for forming an electrode part (using CVD, sputtering, etc.)
(2) Oxidation process for oxidizing the thin film layer and the wafer substrate (3) Lithography process for forming a resist pattern using a mask (reticle) to selectively process the thin film layer and the wafer substrate (4) Etching process that processes thin film layers and substrates according to patterns (eg using dry etching technology)
(5) Ion / impurity implantation diffusion step (6) Resist stripping step (7) A step of inspecting the processed wafer.
The wafer processing process is repeated for as many layers as necessary to produce a semiconductor device that operates as designed.

図3は、図2のウェーハ・プロセッシング工程の中核をなすリソグラフィ工程を示すフローチャートである。リソグラフィ工程は以下の各工程を含む。
(1)前段の工程で回路パターンが形成されたウェーハ上にレジストをコートするレジスト塗布工程S11
(2)レジストを露光する工程S12
(3)露光されたレジストを現像してレジストのパターンを得る現像工程S13
(4)現像されたレジスト・パターンを安定化するためのポストベーク工程S14。
FIG. 3 is a flowchart showing a lithography process that forms the core of the wafer processing process of FIG. The lithography process includes the following processes.
(1) Resist coating step S11 for coating a resist on the wafer on which the circuit pattern is formed in the previous step.
(2) Step S12 for exposing the resist
(3) Development step S13 of developing the exposed resist to obtain a resist pattern
(4) A post-baking step S14 for stabilizing the developed resist pattern.

上記の半導体デバイス製造方法、ウェーハ・プロセッシング工程及びリソグラフィ工程は周知であり、ここでの説明は省略する。更に、多層配線を行うには、(1)誘電体塗布工程、(2)アニール工程、(3)ビア形成工程、(4)導電体メッキ工程及び(5)エッチング工程を多層配線の層数だけ繰り返す。上記(2)のアニール工程に本発明に係る電子線装置を用いると、誘電体層の低誘電体化をスループット良く形成することができ、製品の高周波特性が向上するとともにチップの機械的強度が向上する。   The above semiconductor device manufacturing method, wafer processing step, and lithography step are well known and will not be described here. Further, in order to perform multilayer wiring, (1) dielectric coating process, (2) annealing process, (3) via formation process, (4) conductor plating process, and (5) etching process are performed by the number of layers of the multilayer wiring. repeat. When the electron beam apparatus according to the present invention is used in the annealing step (2), the dielectric layer can be formed with low throughput with good throughput, the high frequency characteristics of the product are improved, and the mechanical strength of the chip is increased. improves.

以上、本発明に係る電子線装置の一つの実施の形態を詳述したが、本発明はこうした実施の形態に限定されるものではない。例えば、上の説明では、ウェーハの表面を被覆する低誘電率層を電子線で照射したが、ウェーハに代えて、任意の他の試料を用いることができる。また、試料の法線と電子銃の光軸とのなす角度は15度に限られるわけではなく、電磁偏向器の特性に依存して5度〜45度の範囲内の任意の角度に設定可能である。   Although one embodiment of the electron beam apparatus according to the present invention has been described in detail above, the present invention is not limited to such an embodiment. For example, in the above description, the low dielectric constant layer covering the surface of the wafer is irradiated with the electron beam, but any other sample can be used instead of the wafer. In addition, the angle between the normal line of the sample and the optical axis of the electron gun is not limited to 15 degrees, and can be set to any angle within the range of 5 degrees to 45 degrees depending on the characteristics of the electromagnetic deflector. It is.

本発明に係る電子線装置の一つの実施の形態が以上のとおりの構成を有することから理解されるように、本発明は、
(1)2〜10keVの低エネルギの電子線で試料を照射することができるので、試料表面の低誘電率材料をアニール又はキュアを行うことができる、
(2)電子線の照射によって試料から放出されたガスが電離して作られた正イオン等の不要物質が電子銃室に侵入するのを減少させることができるので、電子銃のカソードの劣化を防止できる、
(3)電子銃のカソードやカーボンヒーターから蒸発したLa、B、C等の材料が低誘電率材料に添加されることがない、
等の格別の効果を奏する。
As will be understood from the fact that one embodiment of the electron beam apparatus according to the present invention has the above-described configuration, the present invention
(1) Since the sample can be irradiated with a low energy electron beam of 2 to 10 keV, the low dielectric constant material on the sample surface can be annealed or cured.
(2) Since it is possible to reduce the intrusion of unnecessary substances such as positive ions produced by ionizing the gas released from the sample by electron beam irradiation into the electron gun chamber, the deterioration of the cathode of the electron gun can be reduced. Can prevent,
(3) Materials such as La, B, and C evaporated from the electron gun cathode and carbon heater are not added to the low dielectric constant material.
There are exceptional effects such as.

本発明に係る電子線装置の一つの実施の形態を概略的示す図である。1 is a diagram schematically showing one embodiment of an electron beam apparatus according to the present invention. 本発明に係る電子線装置を用いることができるデバイス製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the device manufacturing method which can use the electron beam apparatus which concerns on this invention. 図2におけるリソグラフィ工程の手順を示すフローチャートである。It is a flowchart which shows the procedure of the lithography process in FIG.

符号の説明Explanation of symbols

1:試料室、 2:低誘電率材料、 3:ウェーハ、 4:法線、
5:筒体、 6:電子銃室、 7:カソード、 8:カーボンヒーター、 9:ウェーネルト電極、 10:アノード電極、 11:電子銃、 12:電子線の光軸、
13:電磁偏向器、 14:開口板、 15:小開口、 16:17:偏向器、
51:円筒部、 52:円錐台部、53、54:電磁レンズ
1: sample chamber, 2: low dielectric constant material, 3: wafer, 4: normal,
5: cylinder, 6: electron gun chamber, 7: cathode, 8: carbon heater, 9: Wehnelt electrode, 10: anode electrode, 11: electron gun, 12: optical axis of electron beam,
13: Electromagnetic deflector, 14: Aperture plate, 15: Small aperture, 16:17: Deflector,
51: Cylindrical part 52: Frustum part 53, 54: Electromagnetic lens

Claims (5)

電子銃から放出された電子線を試料に照射し、該試料の表面の材質を変化させる電子線装置において、
前記電子銃が、前記試料から直視不能な位置に配置され、
前記電子銃から放出された電子線を偏向して前記試料の表面に入射させる偏向手段を備える
ことを特徴とする電子線装置。
In an electron beam apparatus that irradiates a sample with an electron beam emitted from an electron gun and changes the material of the surface of the sample,
The electron gun is disposed at a position where it cannot be directly viewed from the sample;
An electron beam apparatus, comprising: a deflecting unit that deflects an electron beam emitted from the electron gun so as to enter the surface of the sample.
前記電子銃の光軸と前記試料の法線とが所定の角度をなすように、前記電子銃が配置され、
前記偏向手段が、前記電子線を前記光軸に沿う方向から前記法線に沿う方向へ偏向させるよう動作する、
ことを特徴とする、請求項1に記載の電子線装置。
The electron gun is arranged so that an optical axis of the electron gun and a normal line of the sample form a predetermined angle,
The deflecting means operates to deflect the electron beam from a direction along the optical axis in a direction along the normal;
The electron beam apparatus according to claim 1, wherein:
前記偏向手段が、前記電子線を前記試料の表面に一様に照射するよう偏向する偏向器を更に含むことを特徴とする、請求項1に記載の電子線装置。   2. The electron beam apparatus according to claim 1, wherein the deflecting unit further includes a deflector for deflecting the electron beam so as to uniformly irradiate the surface of the sample. 前記偏向器の近傍に配置され、前記電子線を通過させるための小開口を有する開口板を更に備えることを特徴とする、請求項3に記載の電子線装置。   The electron beam apparatus according to claim 3, further comprising an aperture plate disposed in the vicinity of the deflector and having a small aperture for allowing the electron beam to pass therethrough. (1)基板に誘電体材料を塗布するステップと、
(2)前記誘電体材料が塗布された基板を試料室にロードするステップと、
(3)請求項1〜4のいずれか一つに記載の電子線装置を用いて、前記誘電体材料に電子線を照射するステップと、
を備えることを特徴とするデバイス製造方法。
(1) applying a dielectric material to the substrate;
(2) loading a substrate coated with the dielectric material into a sample chamber;
(3) Using the electron beam apparatus according to any one of claims 1 to 4, irradiating the dielectric material with an electron beam;
A device manufacturing method comprising:
JP2004014556A 2004-01-22 2004-01-22 Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device Pending JP2005207880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014556A JP2005207880A (en) 2004-01-22 2004-01-22 Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014556A JP2005207880A (en) 2004-01-22 2004-01-22 Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device

Publications (1)

Publication Number Publication Date
JP2005207880A true JP2005207880A (en) 2005-08-04

Family

ID=34900310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014556A Pending JP2005207880A (en) 2004-01-22 2004-01-22 Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device

Country Status (1)

Country Link
JP (1) JP2005207880A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093851A (en) * 2013-01-21 2013-05-08 江苏达胜加速器制造有限公司 Guiding control device for electric beam current size
JP2014053113A (en) * 2012-09-06 2014-03-20 Mitsubishi Electric Corp Electron beam processing machine, and method of adjusting the same
CN105097062A (en) * 2015-09-11 2015-11-25 中广核达胜加速器技术有限公司 Accelerator scanning box used for improving energy utilization rate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053113A (en) * 2012-09-06 2014-03-20 Mitsubishi Electric Corp Electron beam processing machine, and method of adjusting the same
CN103093851A (en) * 2013-01-21 2013-05-08 江苏达胜加速器制造有限公司 Guiding control device for electric beam current size
CN105097062A (en) * 2015-09-11 2015-11-25 中广核达胜加速器技术有限公司 Accelerator scanning box used for improving energy utilization rate

Similar Documents

Publication Publication Date Title
US7256405B2 (en) Sample repairing apparatus, a sample repairing method and a device manufacturing method using the same method
KR102330504B1 (en) Multi charged particle beam writing apparatus
JP3350374B2 (en) Focused ion beam apparatus, processing method and semiconductor device manufacturing method
US6414313B1 (en) Multiple numerical aperture electron beam projection lithography system
KR940010199B1 (en) Method and apparatus for irradiating low-energy electrons
JP2005207880A (en) Electron beam device which modifies property of sample and method for manufacturing device by using such electron beam device
KR100313326B1 (en) Electron-Beam Cell Projection Aperture Formation Method
JP2005174568A (en) Object lens, electron beam device, and manufacturing method of device using them
JP2006108697A (en) Ion implantation method and device thereof
JP2002025487A (en) Manufacturing method of electron beam source, electron beam exposure system and semiconductor device
JP2006294627A (en) Electron beam device and device manufacturing method using this device
GB1597594A (en) Manufacture of semiconductor elements
JP3995479B2 (en) Electron beam apparatus and device manufacturing method using the electron beam apparatus
JP2003234078A (en) Electron beam device
JP3929873B2 (en) Electron beam apparatus and device manufacturing method using the apparatus
JP2004273365A (en) Electron beam device and method for manufacturing device using it
JPH07296764A (en) Ion implanting method, and device therefor
JP3895992B2 (en) Electron beam apparatus and semiconductor device manufacturing method using the apparatus
JPH0712033B2 (en) Fine pattern formation method by ion beam
JP4050504B2 (en) Electron beam apparatus and device manufacturing method using the apparatus
JP2003323860A (en) Electron beam equipment and manufacturing method of device using the same
JPH01292827A (en) Focused and charged beam etching apparatus
JP2002208546A (en) Ion beam projection aligner
JP2002170511A (en) Manufacturing method of electron beam device, electron beam exposure device and semiconductor device
WO2000048224A1 (en) Electron gun and electron beam exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090624