JP2005207748A - Magnetic induction type rotational position sensor - Google Patents

Magnetic induction type rotational position sensor Download PDF

Info

Publication number
JP2005207748A
JP2005207748A JP2004011478A JP2004011478A JP2005207748A JP 2005207748 A JP2005207748 A JP 2005207748A JP 2004011478 A JP2004011478 A JP 2004011478A JP 2004011478 A JP2004011478 A JP 2004011478A JP 2005207748 A JP2005207748 A JP 2005207748A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
stator
magnetic pole
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004011478A
Other languages
Japanese (ja)
Inventor
Yasuo Sawamura
康男 澤村
Yoshinori Ito
善規 伊藤
Toshiyuki Abe
敏之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP2004011478A priority Critical patent/JP2005207748A/en
Publication of JP2005207748A publication Critical patent/JP2005207748A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic induction type rotational position sensor capable of obtaining a sine wave output by simple constitution. <P>SOLUTION: This sensor has a stator 101 arranged concentrically with a plurality of magnetic pole pins 2, a rotor 105 arranged opposedly under a coaxial condition to the stator 101, a primary side excitation coil 104 arranged in the stator 101, and a secondary side induction coil 103 arranged in the each magnetic pole pin 2. A cross-sectional shape of the each magnetic pole pin 2 is formed into a sector shape around the rotation center 105a of the rotor 105 as the center to change sine-wave-likely an overlap area S of a magnetic substance 106 in the rotor 105 and the each magnetic pole pin 2, in response to a rotation angle position of the rotor 105, and a sine-wave-like irregular patterns are formed in an inner circumferential edge of the magnetic substance in the rotor 105. The sine-wave-like output is obtained from the secondary side induction coil 103, because the overlap area S is changed sine-wave-likely. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回転体の回転位置を精度良く検出可能な磁気誘導型回転位置センサに関し、特に、二次側誘導コイルが巻かれている磁極ピンの改良に関するものである。   The present invention relates to a magnetic induction type rotational position sensor capable of accurately detecting the rotational position of a rotating body, and more particularly to an improvement of a magnetic pole pin around which a secondary induction coil is wound.

回転体の回転位置を磁気誘導を利用して検出する回転位置センサは、下記の特許文献1、2、3に開示されているように公知である。かかる磁気誘導型回転位置センサでは、一次側励磁コイルによって発生する交流信号を磁路経由で二次側誘導コイルにて受け、磁路の透磁率が、ロータの回転位置で変化するように当該ロータの輪郭パターンが設定されている。一般には、ロータの輪郭パターンには正弦波形状が採用されており、二次側誘導コイルの芯には円形断面の磁極ピンが用いられている。   A rotational position sensor that detects the rotational position of a rotating body using magnetic induction is known as disclosed in Patent Documents 1, 2, and 3 below. In such a magnetic induction type rotational position sensor, an AC signal generated by the primary side excitation coil is received by the secondary side induction coil via the magnetic path, and the magnetic path permeability changes in accordance with the rotational position of the rotor. The contour pattern is set. In general, a sinusoidal shape is adopted for the contour pattern of the rotor, and a magnetic pin having a circular cross section is used for the core of the secondary induction coil.

図1(a)はこの構成の磁気誘導型回転位置センサの構成例を示す説明図であり、図1(b)はロータと磁極ピンの重なり面積を示す説明図である。磁気誘導型回転位置センサ100は、円板形状のステータ101の表面に、同心円上に複数本の円形断面の磁極ピン102が取付けられ、各磁極ピン102に二次側誘導コイル103が巻きつけられている。例えば、4本の磁極ピン102が90度間隔で配置されており、直径方向に対峙している一組の二次側誘導コイル103は巻き方向が逆の状態で相互に直列接続されている。同様に、残りの一組の二次側誘導コイル103も、巻き方向が逆の状態で相互に直列接続されている。   FIG. 1A is an explanatory diagram showing a configuration example of the magnetic induction type rotational position sensor having this configuration, and FIG. 1B is an explanatory diagram showing an overlapping area of the rotor and the magnetic pin. In the magnetic induction type rotational position sensor 100, a plurality of circular magnetic pole pins 102 are concentrically mounted on the surface of a disk-shaped stator 101, and a secondary induction coil 103 is wound around each magnetic pole pin 102. ing. For example, four magnetic pole pins 102 are arranged at intervals of 90 degrees, and a pair of secondary-side induction coils 103 facing each other in the diametrical direction are connected in series with each other in the winding direction reversed. Similarly, the remaining set of secondary side induction coils 103 are also connected in series with each other in the reverse winding direction.

ステータ101の側には、各磁極ピン102を取り囲む状態で一次側励磁コイル104が円環状に配置されている。また、ステータ101の表面に同軸状態で対峙した状態で円盤状のロータ105が配置されている。ロータ105のステータ側表面には、各磁極ピン102に対峙した状態で、磁性体からなるリング状の磁性板106が固定されている。ロータ105には回転シャフト(図示せず)が同軸状態で固着されている。ロータ105の磁性板106の内周縁107は、磁極ピン102が配列されている同心円108に沿って、正弦波状の凹凸パターンが繰り返される輪郭形状をしている。   On the stator 101 side, a primary side excitation coil 104 is annularly arranged so as to surround each magnetic pole pin 102. In addition, a disk-shaped rotor 105 is disposed on the surface of the stator 101 so as to face each other in a coaxial state. On the stator side surface of the rotor 105, a ring-shaped magnetic plate 106 made of a magnetic material is fixed in a state facing the magnetic pole pins 102. A rotating shaft (not shown) is fixed to the rotor 105 in a coaxial state. The inner peripheral edge 107 of the magnetic plate 106 of the rotor 105 has a contour shape in which a sinusoidal uneven pattern is repeated along a concentric circle 108 on which the magnetic pole pins 102 are arranged.

ロータ105が回転すると、その回転に伴って、ロータ105の磁性板106と各磁極ピン102との重なり面積(図1(b)における斜線部分の面積)が変化する。二次側誘導コイル103に発生する磁束量は重なり面積に概ね比例する。重なり面積が正弦波状に変化する場合には、一次側励磁コイル104にsinωtの励磁電圧を加えると、ロータ105の回転角θに応じて一組の二次側誘導コイル105からは、sinθ・sinωtの電圧が得られ、残りの一組の二次側誘導コイル105からはcosθ・sinωtの電圧が得られる。従って、これらの2組の誘導電圧に基づき、不図示の信号処理回路によって、ロータ102の回転位置を表す信号を生成できる。すなわち、ロータ105が取付けられている回転体の回転位置を示す信号を得ることができる。
特開平9−53909号公報 特開2000−352501号公報 特開2003−42805号公報
When the rotor 105 rotates, the overlapping area (the area of the hatched portion in FIG. 1B) between the magnetic plate 106 of the rotor 105 and each magnetic pole pin 102 changes with the rotation. The amount of magnetic flux generated in the secondary induction coil 103 is approximately proportional to the overlapping area. When the overlapping area changes in a sine wave shape, when a sin ωt excitation voltage is applied to the primary side excitation coil 104, the set of secondary side induction coils 105 generates sin θ · sin ωt according to the rotation angle θ of the rotor 105. From the remaining set of secondary induction coils 105, a voltage of cos θ · sin ωt is obtained. Therefore, a signal representing the rotational position of the rotor 102 can be generated by a signal processing circuit (not shown) based on these two sets of induced voltages. That is, a signal indicating the rotational position of the rotating body to which the rotor 105 is attached can be obtained.
JP-A-9-53909 JP 2000-352501 A JP 2003-42805 A

しかしながら、従来においては円形断面の磁極ピンを用いているので、ロータの回転に伴う当該ロータ105と磁極ピンとの重なり面積の変化が正弦波状の変化から乖離している。したがって、ロータの回転に伴って発生するコイルを通過する磁束量の変化も正弦波状の変化から乖離する。このことが原因となって計測誤差が発生するおそれがある。   However, since the magnetic pole pin having a circular cross section is conventionally used, the change in the overlapping area of the rotor 105 and the magnetic pin due to the rotation of the rotor deviates from the sinusoidal change. Therefore, the change in the amount of magnetic flux passing through the coil generated as the rotor rotates also deviates from the sine wave-like change. This may cause measurement errors.

本発明の課題は、二次側誘導コイルが巻かれた磁極ピンと、正弦波状の凹凸パターンを備えたロータとの重なり面積を精度良く正弦波状に変化させることが可能な、高分解能化および高精度化に有利な磁気誘導型回転位置センサを提案することある。   It is an object of the present invention to provide a high resolution and high accuracy capable of accurately changing the overlapping area between a magnetic pole pin wound with a secondary induction coil and a rotor having a sinusoidal uneven pattern into a sinusoidal shape. In some cases, a magnetic induction type rotational position sensor is proposed which is advantageous for the realization.

上記の課題を解決するために、本発明の磁気誘導型回転位置センサは、
ステータと、
前記ステータに対して同軸状態で対向配置されたロータと、
前記ステータにおける前記ロータに対峙している表面に、前記ロータの回転中心を中心として同心状に配置された複数の磁極ピンと、
前記ステータあるいは各磁極ピンに配置された一次側励磁コイルと、
各磁極突起に配置された二次側誘導コイルとを有し、
各磁極ピンの断面形状は、前記回転中心を中心とする所定角度の扇形形状、または、前記回転中心を通る直径線に両辺が平行な矩形形状であり、
前記ロータは、前記磁極ピンが配列されている同心円に沿って、正弦波状に凹凸パターンが繰り返される輪郭形状をしており、
前記ロータと各磁極ピンの重なり面積の変化によって引き起こされる前記一次側励磁コイルと前記二次側誘導コイルの間の磁気結合状態の変化に基づき、前記ロータの回転位置が検出されることを特徴としている。
In order to solve the above problems, a magnetic induction type rotational position sensor according to the present invention includes:
A stator,
A rotor disposed coaxially with the stator; and
A plurality of magnetic pole pins arranged concentrically about the rotation center of the rotor on the surface of the stator facing the rotor;
A primary excitation coil disposed on the stator or each magnetic pin;
A secondary induction coil arranged on each magnetic pole projection,
The cross-sectional shape of each magnetic pin is a sector shape with a predetermined angle around the rotation center, or a rectangular shape with both sides parallel to a diameter line passing through the rotation center,
The rotor has a contour shape in which a concavo-convex pattern is repeated in a sinusoidal shape along a concentric circle in which the magnetic pin is arranged,
The rotational position of the rotor is detected based on a change in the magnetic coupling state between the primary side excitation coil and the secondary side induction coil caused by a change in the overlapping area of the rotor and each magnetic pin. Yes.

本発明の磁気誘導型回転位置センサでは、二次側誘導コイルが巻き付けられている磁極ピンを扇形あるいは矩形の断面形状としてある。したがって、磁極ピンと、正弦波状の凹凸パターンが繰り返される輪郭を備えたロータとの重なり面積は、ロータの回転に伴って、ほぼ正弦波状に変化する。磁極ピンに誘導される磁束量はこの重なり面積に比例するので、精度良く正弦波状の出力信号を得ることができる。よって、本発明によれば、磁極ピンの断面形状を工夫するという簡単な構成により、高分解能化および高精度化に有利な磁気誘導型回転位置センサを実現できる。   In the magnetic induction type rotational position sensor of the present invention, the magnetic pole pin around which the secondary induction coil is wound has a fan-shaped or rectangular cross-sectional shape. Therefore, the overlapping area of the magnetic pole pin and the rotor having a contour in which the sinusoidal uneven pattern is repeated changes substantially in a sinusoidal manner as the rotor rotates. Since the amount of magnetic flux induced to the magnetic pin is proportional to the overlapping area, a sinusoidal output signal can be obtained with high accuracy. Therefore, according to the present invention, a magnetic induction type rotational position sensor advantageous for high resolution and high accuracy can be realized with a simple configuration in which the cross-sectional shape of the magnetic pole pin is devised.

以下に、図面を参照して、本発明を適用した磁気誘導型回転位置センサの例を説明する。   An example of a magnetic induction type rotational position sensor to which the present invention is applied will be described below with reference to the drawings.

本例の磁気誘導型回転位置センサの基本構成は、図1(a)に示す従来のものと同一であるので、その説明を省略する。図2には本例の磁気誘導型回転位置センサ1の磁極ピン2の断面形状を示してある。磁極ピン2は、ロータ105の回転中心105aを中心とする所定角度の扇形断面をしている。   The basic configuration of the magnetic induction type rotational position sensor of this example is the same as that of the conventional one shown in FIG. FIG. 2 shows a cross-sectional shape of the magnetic pole pin 2 of the magnetic induction type rotational position sensor 1 of this example. The magnetic pole pin 2 has a fan-shaped cross section with a predetermined angle centered on the rotation center 105 a of the rotor 105.

ここで、ロータ105の磁性板106内周縁に形成されている正弦波状の凹凸パターンは、磁極ピン2が配列されている同心円108に沿って形成されている。この同心円108の曲率による重なり面積への影響は小さく、無視することができるので、正弦波状の凹凸パターンの中心線が直線であると仮定し、また、磁極ピン2とロータ105の重なり面積が二次側誘導コイル103の出力に比例するものと仮定する。この場合、磁極ピン2の形状は、中心105aを通る直径線Lに左右両辺が平行な長方形となり、幅が一定であるので、図3のグラフにおける凹凸パターンを表す正弦波曲線yを、次のように、点x1からx2まで定積分すれば重なり面積Sが求まる(磁極ピンの幅=x2−x1)。
Here, the sinusoidal uneven pattern formed on the inner peripheral edge of the magnetic plate 106 of the rotor 105 is formed along a concentric circle 108 on which the magnetic pole pins 2 are arranged. Since the influence of the curvature of the concentric circle 108 on the overlapping area is small and can be ignored, it is assumed that the center line of the sinusoidal uneven pattern is a straight line, and the overlapping area of the magnetic pole pin 2 and the rotor 105 is two. It is assumed that it is proportional to the output of the secondary induction coil 103. In this case, since the shape of the magnetic pole pin 2 is a rectangle whose left and right sides are parallel to the diameter line L passing through the center 105a and the width is constant, the sinusoidal curve y representing the uneven pattern in the graph of FIG. As described above, if the point x1 to the point x2 are definitely integrated, the overlapping area S can be obtained (the width of the magnetic pin = x2−x1).

Figure 2005207748
Figure 2005207748

したがって、重なり面積Sが完全な正弦波となり、二次側誘導コイル103の出力が完全な正弦波となることが分かる。上記のように、曲率を無視したことによる重なり面積Sへの影響は僅かであるので、扇形断面あるいは長方形断面の磁極ピン2を用いれば、二次側誘導コイルから精度良く正弦波出力を得ることができる。よって、扇形断面あるいは長方形断面の磁極ピンを用いるという簡単な構成により、高分解能化および高精度化に有利な磁気誘導型回転位置センサを実現できる。   Therefore, it can be seen that the overlapping area S becomes a perfect sine wave, and the output of the secondary induction coil 103 becomes a perfect sine wave. As described above, since the influence on the overlapping area S by neglecting the curvature is slight, if the magnetic pin 2 having a fan-shaped cross section or a rectangular cross section is used, a sine wave output can be accurately obtained from the secondary induction coil. Can do. Therefore, a magnetic induction type rotational position sensor advantageous for high resolution and high accuracy can be realized by a simple configuration using a magnetic pin having a sector cross section or a rectangular cross section.

また、従来の円形磁極ピンの場合には、一般に円筒状の磁極ピンを加工し、それを組立作業において位置決めしている。組立に使用する部品の寸法の組み合わせで位置決め精度が決まり、位置精度が悪くなる場合がある。これに対して、扇形断面の磁極ピンを用いる場合には、リング状に加工した後に、フライス加工で磁極ピンを成形すれば、単一の部品で磁極ピンの位置が決まるので、位置精度が向上し加工バラツキによる誤差精度も向上するという効果が得られる。また、磁路の一部も同時に加工できるので、部品点数の削減になるという効果も得られる。   In the case of a conventional circular magnetic pole pin, generally, a cylindrical magnetic pole pin is processed and positioned in an assembly operation. The positioning accuracy is determined by the combination of the dimensions of the parts used for assembly, and the positioning accuracy may deteriorate. On the other hand, when using a magnetic pin with a fan-shaped cross section, if the magnetic pin is formed by milling after being processed into a ring shape, the position of the magnetic pin is determined by a single component, thus improving the positional accuracy. The effect of improving the error accuracy due to machining variations can be obtained. In addition, since a part of the magnetic path can be processed at the same time, an effect of reducing the number of parts can be obtained.

(a)は従来の磁気誘導型回転位置センサの構成を示す説明図であり、(b)はロータと磁極ピンの重なり状態を示す説明図である。(A) is explanatory drawing which shows the structure of the conventional magnetic induction type rotational position sensor, (b) is explanatory drawing which shows the overlapping state of a rotor and a magnetic pole pin. 本発明を適用した磁気誘導型回転位置センサにおけるロータと磁極ピンの重なり状態を示す説明図である。It is explanatory drawing which shows the overlap state of the rotor and magnetic pole pin in the magnetic induction type rotational position sensor to which this invention is applied. 図2におけるロータと磁極ピンの重なり面積の算出法を示すグラフである。It is a graph which shows the calculation method of the overlapping area of the rotor and magnetic pole pin in FIG.

符号の説明Explanation of symbols

1 磁気誘導型回転位置センサ
2 磁極ピン
101 ステータ
103 二次側誘導コイル
104 一次側励磁コイル
105 ロータ
105a 回転中心
106 磁性体
107 磁性体の内周縁
108 同心円
S 磁極ピンとロータの重なり面積
DESCRIPTION OF SYMBOLS 1 Magnetic induction type rotation position sensor 2 Magnetic pole pin 101 Stator 103 Secondary side induction coil 104 Primary side excitation coil 105 Rotor 105a Rotation center 106 Magnetic body 107 Inner peripheral edge 108 of magnetic body S Concentric circle S The overlapping area of a magnetic pole pin and a rotor

Claims (1)

ステータと、
前記ステータに対して同軸状態で対向配置されたロータと、
前記ステータにおける前記ロータに対峙している表面に、前記ロータの回転中心を中心として同心状に配置された複数の磁極ピンと、
前記ステータあるいは各磁極ピンに配置された一次側励磁コイルと、
各磁極突起に配置された二次側誘導コイルとを有し、
各磁極ピンの断面形状は、前記回転中心を中心とする所定角度の扇形形状、または、前記回転中心を通る直径線に両辺が平行な矩形形状であり、
前記ロータは、前記磁極ピンが配列されている同心円に沿って、正弦波状に凹凸パターンが繰り返される輪郭形状をしており、
前記ロータと各磁極ピンの重なり面積の変化によって引き起こされる前記一次側励磁コイルと前記二次側誘導コイルの間の磁気結合状態の変化に基づき、前記ロータの回転位置が検出される磁気誘導型回転位置センサ。
A stator,
A rotor disposed coaxially with the stator; and
A plurality of magnetic pole pins arranged concentrically about the rotation center of the rotor on the surface of the stator facing the rotor;
A primary excitation coil disposed on the stator or each magnetic pin;
A secondary induction coil arranged on each magnetic pole projection,
The cross-sectional shape of each magnetic pin is a sector shape with a predetermined angle around the rotation center, or a rectangular shape with both sides parallel to a diameter line passing through the rotation center,
The rotor has a contour shape in which a concavo-convex pattern is repeated in a sinusoidal shape along a concentric circle in which the magnetic pin is arranged,
Magnetic induction type rotation in which the rotational position of the rotor is detected based on a change in the magnetic coupling state between the primary side excitation coil and the secondary side induction coil caused by a change in the overlapping area of the rotor and each magnetic pin Position sensor.
JP2004011478A 2004-01-20 2004-01-20 Magnetic induction type rotational position sensor Pending JP2005207748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011478A JP2005207748A (en) 2004-01-20 2004-01-20 Magnetic induction type rotational position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011478A JP2005207748A (en) 2004-01-20 2004-01-20 Magnetic induction type rotational position sensor

Publications (1)

Publication Number Publication Date
JP2005207748A true JP2005207748A (en) 2005-08-04

Family

ID=34898155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011478A Pending JP2005207748A (en) 2004-01-20 2004-01-20 Magnetic induction type rotational position sensor

Country Status (1)

Country Link
JP (1) JP2005207748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058936A (en) * 2009-09-09 2011-03-24 Toyota Motor Corp Magnetic resolver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058936A (en) * 2009-09-09 2011-03-24 Toyota Motor Corp Magnetic resolver
US8519701B2 (en) 2009-09-09 2013-08-27 Toyota Jidosha Kabushiki Kaisha Magnetic resolver

Similar Documents

Publication Publication Date Title
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
JP3740984B2 (en) Electric pole position detector
JP2008151774A (en) Rotation angle detector and rotating machine
JPWO2008050581A1 (en) Rotation angle detector
JP6849188B2 (en) Angle detector
US9071103B2 (en) Color wheel driving motor and digital-light-processing projector
JP2009261154A (en) Embedded magnet type motor and its design method
CN109075688B (en) Rotating electrical machine
JPH10288537A (en) Variable reluctance type resolver
JP2005207748A (en) Magnetic induction type rotational position sensor
JP2018124190A (en) Magnetic encoder and manufacturing method therefor
JP5920386B2 (en) Magnet for rotation angle sensor and rotation angle sensor
JP2016008929A (en) Revolution speed sensor
JPH03249529A (en) Torque sensor
EP3343181B1 (en) Device for measuring an angular position
CN105890833A (en) Axial flux focusing small diameter low cost torque sensor
JP2019211335A (en) Magnetostrictive torque sensor having rotating angle detection function
JP2002353029A (en) Jig for magnetization
JP2007114074A (en) Variable reluctance type resolver
JP7320683B2 (en) Resolver
US20230344327A1 (en) Resolver
JP2005121501A (en) Tandem rotation detector
US20200141765A1 (en) Magnetic Encoder and Apparatus Having the Same
JP2005121378A (en) Noncontact type position sensor
JP2008292469A (en) Variable reluctance rotational angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090903

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02